第2章 随机过程

合集下载

随机过程第二章

随机过程第二章

4、有限维分布族
定义:设
X t ; t T 为一个 S .P. ,其有限
维分布函数的全体(一维分布函数,二维分布函
数,n维分布函数)。
F Ft1 ,t2 ,,tn x1, x2 ,, xn ; xi R,ti T,n N, i 1,2,, n
称之为 S.P. X t 的有限维分布函数。
2、特点:
独立增量过程在零均值且二阶矩存在时,是正交增量过程。 注:独立增量过程在现实环境中大量存在(例2.10)
3、平稳独立增量过程(定义 2.8)
增量 X(t)-X(s) 的分布律仅依赖于区间长度t-s。(第三章) (三)马尔可夫过程(第四、五章) (四)正态过程 1、定义 2.10: X(t)的有限维分布律是n维正态随机向量的分布律. 2、特点: ①二阶矩过程 ②数字特征成为其参数。
状态空间:S .P. X t 的状态所有可能取值的 集合,称之为状态空间。
小结:
X e, t 是状态与参数的二元函数
若 若
e
t
确定 确定
X e, t 是时间函数
X e, t 是随机变量
是一个确定值 是随机过程 S .P.
r.v.
若 e, t 确定 若 e, t 不定
随机过程的分类
一维正态过程分布律:
X (t ) ~ N u(t ),
2 2
2
(t )

二维正态过程分布律:
X (t1 ), X (t2 ) ~ N u(t1 ),u(t2 ),
这里有5个参数。 其中 1
(t1 ), (t2 ), (t1 , t2 )

(t1 , t2 ) 1 为相关系数或归一化协方差函数

随机过程课程第二章 随机过程的基本概念

随机过程课程第二章 随机过程的基本概念
第二章 随机过程的基本概念
第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩

第2章随机过程的基本概念

第2章随机过程的基本概念
称为过程的n 维分布函数.记
F ?? { F ?t1 , t2 ,? , tn ; x 1 , x 2 ,? , x n ?:
ti ? T , x i ? Ri , i ? 1,2, ? , n , n ? 0} 称F为XT 的有限维分布函数族. 定义3 过程 { X(t), t的? nT维} 特征函数定义为
φ?t1 , t2 ,? , tn;?1 ,θ 2 ,? ,θ n ?
? E{e i[θ 1 X (t1 )? ? } ?θ n X (tn )]
称 {φ(t1, t2 ,? , tn;θ 1 ,θ 2 ,? ,θ n ) : t1 , t2 ,? , tn ? T, n ? 1}
为XT 的有限维特征函数族. 特征函数和分布函数是相互唯一确定.
定义2 过程 { X(t),对t ?任T给} 的
t1 , t2 ,? , tn ? T ,
随机向量
?X (t1 ), X (t2 ),? , X (tn )?
的联合分布函数
F (t1 , t2 ,? , tn; x1 , x2 ,? , xn ) ?
P{ X (t1 ) ? x1 , X (t2 ) ? x2 ,? , X (tn ) ? xn }
X(t1,ω)
X(t2,ω)
t1
t2
X(t,ω1) X(t,ω2) X(t,ω3) tn
定义 对每一固定 ω?,Ω称 { X(t, ? ), t的? 一T}个样本函数.
X是t ?随ω?机过程
也称轨道, 路径,现实.
Ex.5 利用抛硬币的试验定义一个随机过程,
X(t)
?
?cos? t, ?
?2t
出现正面; 出现反面. t ? R.
过程识别

第二章 随机过程

第二章 随机过程

T /2
(2-2-7)
16
如果平稳过程使下式成立
a = a
σ
2

2
(2-2-8)
R (τ ) = R (τ )
称该平稳过程ξ(t)具有各态历经性。 称该平稳过程 具有各态历经性。 具有各态历经性 意义:随机过程中的任一次实现都经历了随机过程的 意义:随机过程中的任一次实现都经历了随机过程的 实现 所有可能状态。 所有可能状态。 具有各态历经性随机过程一定是平稳过程, 具有各态历经性随机过程一定是平稳过程,反之不 一定成立。 一定成立。 求解各种统计平均时(实际中很难获得大量样本), 求解各种统计平均时(实际中很难获得大量样本), 无需作无限多次考察,只要获得一次考察, 无需作无限多次考察,只要获得一次考察,用一次 实现的时间平均值代替过程的统计平均即可。 实现的时间平均值代替过程的统计平均即可。
满足上式则称ξ(t)为广义平稳随机过程或宽平稳随机过 满足上式则称 为广义平稳随机过程或宽平稳随机过 程。 严平稳随机过程(狭义平稳随机过程) 严平稳随机过程(狭义平稳随机过程)只要 Eξ2(t) 均方值有界,它必定是广义平稳随机过程。 均方值有界,它必定是广义平稳随机过程。 反之不一定成立。 反之不一定成立。
C (t1 , t 2 ) = E {[ξ (t1 ) − a (t1 ) ][ξ (t 2 ) − a (t 2 ) ]} =
∞ ∞ −∞ −∞
∫ ∫ [x
1
− a (t1 ) ][ x 2 − a (t 2 ) ] f 2 ( x1 , x2 ; t1 , t 2 ) dx1 x 2
(2-1-5) 2-1-5
互相关函数(针对两个随机过程) 互相关函数(针对两个随机过程)
Cξ ,η (t1 , t2 ) = E {[ξ (t1 ) − a (t1 ) ][η (t2 ) − a (t2 ) ]}

第二章 随机过程的基本概念_2.3 2.4

第二章 随机过程的基本概念_2.3 2.4
相关时间 0 小:随机过程随时间变化快 相关时间 0 大:随机过程随时间变化慢
4 2 0 -2 -4 10 5 0 -5 -10
0
50
100
0
50
100
0 1
2015/5/12
0 100
14
两个不同相关时间随机过程的样本函数
2.3.4 循环平稳的概念
广义循环平稳:
如果随机过程X(t)的均值和自相关函数满足下列关系
2T
0
(1

2T
2 )[ RX ( ) mX ]d 0
平稳随机过程X(t)具有相关函数遍历性的充要条件
1 lim T T

2T
0
(1

2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
2015/5/12 22
第二章随机过程的基本概念
mX mX
其中
RX ( ) RX ( )
RX ( )
1 lim T 2T
T T
x(t
) x(t )dt
则X(t)为遍历(各态历经)过程。
2015/5/12 19
2.3.5 随机过程的各态历经性
X (t ) X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图 各态历经过程的一个样本函数经历了随机过程 所有可能的状态
如果
f XY ( x1 ,..., xN , t1 ,..., t N , y1 ,..., yM , t '1 ,..., t 'M ) f X ( x1 ,..., xN , t1 ,..., t N ) fY ( y1 ,..., yM , t '1 ,..., t 'M )

随机过程 第2章

随机过程 第2章

随机变量 随机变量族
e → x(e) (e, t) → xt(e)=x(e, t)
x=xt(ei)
x
e1 e2 e3
e
概率空间和随机对象
样本空间
概率空间
随机变量
随机向量
随机过程
2.1 随机过程的基本概念
定义:设(Ω, ö,P)为概率空间,T是参数集。 若对任意 t ∈T ,有随机变量X(t, e)与之 对应,则称随机变量族{X(t, e), t ∈T } 是(Ω, ö,P)上的随机过程,简记为 {X(t),t ∈T }或{Xt,t ∈T }。 ★ X(t)的所有可能的取值的集合称为状态空 间或相空间,记为I。
由此可将随机过程分为以下四类:
a. 离散参数离散型随机过程; b. 离散参数连续型随机过程; c. 连续参数离散型随机过程; d. 连续参数连续型随机过程。
2. 以随机过程的统计特征或概率特 征分类:
a. 独立增量过程; b. Markov过程; c. d. e. f. g. 二阶矩过程; 平稳过程; 鞅; 更新过程; Poission过程;
称之为随机过程X(t) 的二维概率密度。
2.3 随机过程的分布律
随机过程的二维分布函数比一维分布函数包含了随 机过程变化规律更多的信息,但它仍不能完整地反 映出随机过程的全部特性及变化规律。用同样的方 法,我们可以引入随机过程 X(t) 的 n 维分布函数和 n 维概率密度。
FX ( x1 , x2 , , xn ; t1 , t2 , tn )
• 又如移动某基站每天的通话次数,X 显然不 能确定,即为随机变量,进一步分析知这 个 X 还和时间 t 有关,即 X(t),所以 X(t) 也构成一个过程,即随机过程;类似地, 气温、气压、商店每天的顾客流量等都构 成一个随机过程。

通信原理第2章 随机过程

通信原理第2章 随机过程
如果平稳随机过程依概率1使下式成立:
aa
则称该平稳随机过程具有各态历经性。 R() R()
“各态历经”的含义:随机过程中的任一实现(样本函数) 都经历了随机过程的所有可能状态。因此, 我们无需(实际中 也不可能)获得大量用来计算统计平均的样本函数,而只需从 任意一个随机过程的样本函数中就可获得它的所有的数字特征, 从而使“统计平均”化为“时间平均”,使实际测量和计算的 问题大为简化。
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在通信系统中所遇到的 随机信号和噪声, 一般均能满足各态历经条件。
第2章 随 机 过 程
三、平稳随机过程自相关函数
对于平稳随机过程而言, 它的自相关函数是特别重要的一 个函数。(其一,平稳随机过程的统计特性,如数字特征等, 可通过自相关函数来描述;其二,自相关函数与平稳随机过程 的谱特性有着内在的联系)。因此,我们有必要了解平稳随机 过程自相关函数的性质。
E[(t1)] x1f1(x1,t1)d1x
第2章 随 机 过 程
注意,这里t1是任取的,所以可以把t1直接写为t, x1改为x, 这时 上式就变为随机过程在任意时刻的数学期望,记作a(t), 于是
a(t)E[(t)] x1(fx,t)dx
a(t)是时间t的函数,它表示随机过程的(n个样本函数曲线的) 摆动中心。
第2章 随 机 过 程
3. 相关函数
衡量随机过程在任意两个时刻获得的随机变量之间的关联 程度时,常用协方差函数B(t1, t2)和相关函数R(t1, t2)来表示。
(1)(自) 协方差函数:定义为 B(t1,t2)=E{[ξ(t1)-a(t1)][ξ(t2)-a(t2)]}
= [x1a(t1)]x2[a(t2)f]2(x1,x2; t1,t2)dx1dx2

第2章 随机过程概述

第2章 随机过程概述
E[ X (t )] mX 常数
(功率有限),且
2
则称
R(t1 , t2 ) E[ X (t ) X (t )] R( )
(t ), t T X为广义平稳随机过程。
t1 t2
用高阶矩来判断广义平稳随机过程是否是狭义平稳随机过程
二者没有关系,但如果狭义平稳随机过程且功率有限,则必为广义平稳的
RX (t1 , t2 ) E[ X (t1 ) X (t2 )]




x1 x2 f ( x1 , x2 ; t1 , t2 )dx1dx2
RXY (t1 , t2 ) E[ X (t1 )Y (t2 )]

xyf ( x, t1; y, t2 )dxdy
一、随机过程的概念
1、随机过程的定义 随机过程 样本函数
X (t ) X (t , e)
X i (t ) X (t , ei ) X (ti ) X (ti , e)
X i (t j ) X (t j , ei )
随机变量
标量
一、随机过程的概念
1、随机过程的定义
随机过程一般表示为{ X (t), t T }。
自相关函数各态历经
T
lim P{| X (t ) X (t ) RX ( ) | } 1
各态历经性-----同时满足以上两条!
平稳随机过程均值各态历经的充要条件
C (0) R(0) m2 2
自相关函数连续的充要条件
R( )在 0点处连续
二、平稳随机过程
4、平稳随机过程自相关函数的性质 非负定性
i , j 1
R(
n

随机过程第二章作业及参考答案

随机过程第二章作业及参考答案

第二章 平稳过程2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。

试证 (1)若t T ∈,而{}12T = ,,,则(){}12X t t = ,,,是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){}0X t t ≥,不是平稳过程。

证明:由题意,U 的分布密度为:()10220u f u ππ⎧<<⎪=⎨⎪⎩,,其它数学期望()()[]sin X m t E X t E Ut ==⎡⎤⎣⎦()()2220001111sin sin cos cos 212222ut du ut d ut ut t t t t ππππππππ=⋅==-=--⎰⎰.相关函数()()()()()sin sin X X R R t t E X t X t E Ut U t ττττ=+=+=⋅+⎡⎤⎡⎤⎣⎦⎣⎦,()()()2200111sin sin cos 2cos 222ut u t du ut u u du ππτττππ⎛⎫=⋅+⋅=⋅-+--⎡⎤ ⎪⎣⎦⎝⎭⎰⎰ ()()2220001111cos 2cos sin 2sin 442u t u du u t u t πππττττππττ⎡⎤=-+-=-+-⎡⎤⎢⎥⎣⎦+⎢⎥⎣⎦⎰()()11sin 22sin 2424t t πτπτπτπτ=-+++.(1)若t T ∈,而{}12T = ,,时,()0X m t =,()X R τ只与τ有关,二者均与t 无关,因此,(){}12X t t = ,,,是平稳过程。

(2)若t T ∈,而[)0T =+∞,时,()X m t 可能取到不是常数的值,所取到的值与t 有关,()X R τ取到的值也与t 有关,因此,(){}0X t t ≥,不是平稳过程。

3. 设随机过程()()0cos X t A t ωΦ=+,t -∞<<+∞其中0ω是常数,A 和Φ是独立随机变量。

第二章随机过程基本概念

第二章随机过程基本概念

2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。

()()()()(){}{}[]()为随机序列。

时,通常称,取可列集合当可以为无穷。

通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。

随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。

为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。

则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。

第二章随机过程(函数)

第二章随机过程(函数)
47
西安电子科技大学 理学院
不相关:2阶联合中心矩
E[(X-E(X) )(Y-E(Y) )] = 0
正交:2阶联合原点矩
E(XY) = 0
独立:f(X,Y,x,y)=f(X,x)f(Y,y)
48
西安电子科技大学 理学院
同样对于离散随机过程有:
49
西安电子科技大学 理学院
西安电子科技大学 理学院


题目
绪论
学 时 4
主要内容
课程介绍、方法分享、相互熟悉、概率论回顾。
第一章
第二章
随机过程(函 16 数)
随机过程(函数)理解、概念、研究方法。
第三章
随机微积分
6
随机微积分及其求解方法介绍。
第四章
随机场
18
随机过程(函数)理解、概念、研究方法。
无线电物理中 无线电物理中的随机场简单应用,纵横分析、资料 第五章 随机场及简单 2 分析、学习方法升华,作业及课堂情况考核。 应用
西安电子科技大学理学院40西安电子科技大学理学院4133相关函数相关函数均值和方差只描述了随机过程在某个特定时刻的统计特均值和方差只描述了随机过程在某个特定时刻的统计特所用的只是一维概率密度所用的只是一维概率密度能反映随机过程在两个不同能反映随机过程在两个不同时刻状态之间的联系时刻状态之间的联系如图所示的两个随机过程如图所示的两个随机过程x和和yytt大致具有相同的均值和方差大致具有相同的均值和方差但这两个信号还是有明但这两个信号还是有明显的区别的显的区别的yytt随时间随时间t的变化较为剧烈的变化较为剧烈各个不同时刻各个不同时刻状态之间的相关性较弱状态之间的相关性较弱随时间的变化较为缓慢随时间的变化较为缓慢同时刻状态之间的相关性较强同时刻状态之间的相关性较强若只用均值函数和方差函数若只用均值函数和方差函数是不能反映出这些特征的是不能反映出这些特征的相关函数能反映两个不同时刻状相关函数能反映两个不同时刻状态之间相关程度的数字特征态之间相关程度的数字特征

第二章、随机过程的基本概念

第二章、随机过程的基本概念

{V (t),t 0}。 1、设已给概率空间(, F, P)及参数集T (,),则称
{X (,t), ,t T},
2020年5月6日星期三
机动 目录 上页 下页 返回 结束
第2页共51页
随机过程(西电版) 2.1 随机过程的定义
第2章 随机过程的基本概念
为该概率空间上的随机过程,简记为 {X (t),t T}。
随机过程(西电版)
2.4 复随机过程
第2章 随机过程的基本概念
设 {X (t),t T},{Y (t),t T}为两个实随机过程,则称
{Z(t) X (t) iY(t),t T}
为复随机过程.
1、复随机过程的数字特征 设复随机过程 {Z (t),t T} 称
(1)均值函数为 mZ (t) E[Z (t)] mX (t) imY (t);
x2
P
A
x1,
A 2
x2
PA x1, A 2x2
3•
x1 2x2
2•
P( P(
A A
x1), x1 2x2 ), x1
2
x2 2x2
1•



1 23
x1
0,
x1
2x2 ,
x1
1或x1
2x2 ,
x2
1 2
F
0,
3
;
x1,
x2
1 3
,
x1
2x2,1
x1
2或x1
2x2 ,
0,
3
;
x1,
x2
.
2020年5月6日星期三
机动 目录 上页 下页 返回 结束
第9页共51页
随机过程2(西.电2版随) 机过程的有限维分布函数族第2章 随机过程的基本概念

第二章 随机过程的基本概念

第二章 随机过程的基本概念
2007年10月
Байду номын сангаас
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
例、设随机相位信号
X (n) cos(n /10 )
其中 {0, / 2} ,且取值概率各为1/2, 求 n1 0 , n2 10 时的一维和二维概率分布。 解、
1
x1 (n) cos(n /10)
xi (n, i ) A cos(0n i )
随机相位信号
2007年10月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
5 0 -5 5 0 -5 5 0 -5 5 0 -5 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
(t1 , t2 ,

xn )
E{exp[ j (u1 X (t1 ) u2 X (t2 )



exp[ j (u1 X (t1 ) u2 X (t2 ) dF (t1 , t2 , tn ; x1 , x2 ,

ui R, ti T , i 1, 2, 为随机过程{ X (t ),t T }的n维特征函数.
模拟自然界实际的随机过程 。
1 0.8 0.6 0.4 0.2 0
0
50
100
150
200
伪随机序列
2007年10月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
伪随机序列应用举例
GPS系统中的码分多址(CDMA)
GPS卫星
0
GPS接收机
伪随机码自相关函数
2007年10月

《随机过程》第二章题目与答案

《随机过程》第二章题目与答案

第二章一、填空题1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类.2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度.3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__.4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__.5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__.二、计算题1、已知Γ分布,X~Γ(α,β),若其中α,β>0,试求Γ分布的特征函数.2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数.3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.4、设随机过程:0),sin()cos()(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数.5、设随机变量Y 具有概率密度f(y),令)0,0(,)(>>=-Y t t X eYt,求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2).6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从N(0,)的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t}的均值函数m(t)和相关函数R(s,t).参考答案:一、填空题1、离散参数链,连续参数链,随机序列,随机过程2、均值函数m X(t),方差函数D X(t),协方差函数B X(s,t),相关函数R X(s,t)3、q+p4、5、二、解答题1、1、g(t)===其中:Γ(α)=2、g(t)= = ===3、由于X与Z是相互独立的正态随机变量,故其线性组合仍为正态随机变量,要计算{X(t),t>0}的一、二维随机概率密度,只要计算数字特征m x(t),D X(t),即可. m x(t)=E(Y+Zt)=EY+tEZ=0,D X(t)=D(Y+Zt)=DY+t2DZ=1+t2,B X(s,t)=EX(s)X(t)- m x(s) m x(t)=E(Y+Zs)(Y+Zt)=1+st,==,故随机过程{X(t),t>0}的一、二维概率密度分别为f t(x)=exp{-},t>0,f s,t(x1,x2)=.exp{[]}, s,t>0,其中4、由数学期望的性质)sin()cos()]sin()cos([)(=+=+=EZ t EY t t Z t Y E t EX θθθθ又因为Y 、Z 相互独立,故])cos[()()sin()sin()()cos()cos()]sin()cos()][sin()cos([)]()([),(),(σ222θθθθθθθθθs t Z E t s Y E t s t Z t Y s Z s Y E t X s X E t s t s RBxX-=+=++===DX(t)=5、有随机变量函数的概率密度公式知:X(t)的一维概率密度:0,/)/ln ()(/)()()()(>-='='=t tx t x f y x y f x y y f x fX(t)的均值函数和相关函数为:dy e y f E t EX ytYte ⎰∞--==0)()()( dy y f e eeE t X t X E t t R t t y Yt Yt x )(][)]()([),(0)(21212121⎰∞+---===6、m(t)=E(Z t )=E[]=0,R(s,t)=E(Zs )=E===。

第二章 随机过程

第二章   随机过程

图2-1-1 噪声电压的输出波形
定义1 设随机试验E的样本空间为 ,如果 对于每一个样本 ,总可以依某种规则确定 一时间t的函数 (T是时间t的变化范 围 ) 与之对应。于是,对于所有的 来说, 就得到一族时间t的函数,称此族时间的函数为 随机过程(也称随机信号)X,而族中的每一个 函数称为该随机过程的样本函数。 注:随机过程是样本函数的集合 。
决定随机信号的主 要物理条件不变
3、主要性质 (1)、若 是严平稳随机过程,则它的一维概 率密度与时间无关。 证明 令 ,则一维概率密度函数
得证。
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
证明: 根据题意有 (2.3.2) (2.3.3) (2.3.4)
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
2.2.1、随机过程的概率分布
随机过程 ,在每一固定时刻 都是随机变量。 随机事件:
发生概率:
, 和


1、一维分布函数 与 和 都有直接的关系,是 和 的 二元函数,记为: (2.2.1) 被称为随机过程的一维分布函数。 2、一维概率密度函数 如果存在二元函数 ,使 (2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足 (2.2.3)
• 研究随机过程的概率密度函数的统计特性是 很困难的; • 随机过程一、二阶矩函数在一定程度上描述 了随机过程的一些重要特性。 (1) 噪声电压是一平稳过程 ,那么一、二阶 矩函数,就是噪声平均功率的直流分量、交 流分量、总平均功率等参数。 (2) 正态随机过程由数学期望和相关函数详 细描述。
1 定义 若随机过程
自协方差函数反映了随机过程 在两个不同 时刻的状态相对于数学均值之间的相关程 度。

第二章随机过程基本概念.

第二章随机过程基本概念.
(1若有的一维密度函数。
为称使可积
}: ({ , ( , ( , (, 0 , (1111T t t X t x f dx
t x f t x F t x f x
Î=³ò¥-(2若有的一维概率分布。
为称满足}: ({}{1
, 0} ({T t t X p p
p p x t X P k k k k k
k Î=³==å
¥¥-k k iux X k k iux X p e
u t p x t X P t X dx t x f e u t t x f t X k , ( (( ( 2 , ( , ( , ( (111jj则有分布列若(,则
有密度若(
有时也需要利用常用的一些特征函数来求随机变量的分布函数,由特征函数与分布函数的一一对应性有:
cos(
(Q
+
=t
a
t
X w
的均值函数,方差函数和自相关函数。其中, a , w为常数, Q是在(0, 2p上均匀分布的随机变量。例4试求随机相位余弦波
2随机过程的特征函数
的一维特征函数。
为称为随机变量,记
由于给定( , ( ( ( , ( (, ( (t X u t u e
E u t t X T t X t X t iuX X jjjÙ==Îåò====
为X (t的有限维分布函数族。
为随机过程的n维分布函数。称关于随机过程X (t的所有有限维分布函数的集合
注意:随机过程的n维分布函数描述了随机过程在任意n不同时刻的状态之间的联系。
随机过程X (t的有限维分布函数族的意义何在?随机过程的n维分布函数(或概率密度能够近似地描述随机过程的统计特性,而且, n越大,则n维分布函数越趋完善地描述随机过程的统计特性。

随机过程的基本概念

随机过程的基本概念

1a2
0
f A(a)da

t1t2 3
可见X(t)不是平稳随机过程。
2.3.1平稳随机过程的定义
★ 平稳随机过程的例题(续)
[例2.12]设随机过程Z(t)=Xcost+Ysint,
-∞<t< ∞,其中X,Y为相互独立的随机变量,
并分别以概率2/3、1/3取值-1和2。试证Z(t)为 广义平稳随机过程,而非狭义平稳随机过程。
2.3.1 平稳随机过程的定义
★ 广义平稳随机过程的定义
如果随机过程X(t)的数学期望为一常数,其相关函数仅与时
间间隔τ= t1 - t2有关,即有
E[X(t)]=mX RX(t1,t2)=RX(t1-t2)=RX(τ) 则称X(t)为广义平稳随机过程。 显然,狭义平稳平稳随机过程必定是广义平稳的,而广义 平稳的随机过程则未必是狭义平稳的。
2.3.1 平稳随机过程的定义
2.3.1 平稳随机过程的定义
★ 狭义平稳随机过程的定义(续)
由定义可知,狭义平稳随机过程的一维概率密度与时
间无关,即有fX(x, t)= fX(x, t+ △t) =fX(x, 0) =fX(x)
由此可以求得X(t)的数学期望和方差都是与时间无关
的常数,即有


E[X (t)] xfX (x,t)dx xfX (x)dx mX
3
3
3
3
RZ (t1, t2 ) E[Z (t1)Z (t2 )] E[ X 2 cos t1 cos t2 + Y 2 sin t1 sin t2
在许多工程技术问题中,大都只研究广义平稳过程。以后 除特别声明外,凡是提到平稳性,都指的是广义平稳。

随机过程课件-第二章

随机过程课件-第二章

例题2.8:
设X(t)为信号过程,Y(t)为噪声过程,令W(t)=X(t)+Y(t),求W(t)的均值
函数和相关函数。
14复Βιβλιοθήκη 机过程定义: 设{Xt, t∈T},{Yt, t∈T}是取实数值的两个随机过程,若对任意t∈T
Zt X t iYt
其中 i 1 ,则称{Zt, t∈T}为复随机过程。 复随机过程的数字特征函数
Ft1,,tn (x1, x2 ,, xn ) P{X (t1) x1, X (tn ) xn}
这些分布函数的全体
F {Ft1,tn (x1, x2 , xn ),t1, t2 ,, tn T , n 1}
称为XT={Xt,t ∈T}的有限维分布函数。
10
数字特征
设XT={X(t),t∈T}是随机过程,如果对任意t∈T,EX(t)存在,则称函数
def
mx (t) EX (t), t T
为XT的均值函数,反映随机过程在时刻t的平均值。
若对任意t∈T,E(X(t))2存在,则称XT为二阶矩过程,而称
def
BX (s,t) E[{X (s) mX (s)}{X (t) mX (t)}], s,t T
为XT的协方差函数,反映随机过程在时刻t和s时的线性相关程度。
随机过程{X(t,e),t ∈T}可以认为是一个二元函数。 对固定的t,X(t,e)是(Ω,F,P)上的随机变量; 对固定的e, X(t,e)是随机过程{X(t,e),t ∈T}的一个样本函数。
5
X(t)通常表示为在时刻t所处的状态。X(t)的所有可能状态所构成的集合 称为状态空间或相空间。
通常我们可以根据随机变量X(t)在时间和状态上的类型区分随机过程 的类型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R (t1, t2 ) E (t1)(t2 )
(2.1 - 12)
2.2
2.2.1 定义
所谓平稳随机过程,是指它的统计特性不随时 间的推移而变化。
fn (x1, x2,, xn;t1,t2,,tn ) fn (x1, x2,, xn;t1 h,t2 h,,tn h)
(2.2 - 1)
则称 (t) 是严平稳随机过程或狭义平稳随机过程。
根据 R( ) P ()
以及 cosc ( c ) ( c )
则功率谱密度为
P
(
)
A2
2
(
c
)
(
c
)
平均功率为
S R(0)
P ()d
A2 2
(2) 现在来求 (t) 的时间平均。
根据式(2.2 - 6)可得
1
a lim T T
T /2
T /2 Acos(ct )dt 0
a x(t) lim 1
T /2
x(t)dt
T T T / 2
R( ) x(t)x(t ) lim 1
T /2
x(t)x(t )dt
T T T / 2
(2.2 - 6)
如果平稳随机过程依概率1使下式成立:
aa
R( ) R( )
则称该平稳随机过程具有各态历经性。
(2.2 - 7)
fn (x1, x2,, xn;t1,t2,,tn )
1
(2 )n/2
n
n
exp
j
j1
xj aj
2
2 j
2
j 1
n
j 1
1
exp
2 j
n j 1
xj aj
2
2 j
2
f (x1,t1) f (x2 ,t2 ) f (xn , tn )
(2.3 - 2)
也就是说,如果高斯过程在不同时刻的取值是不 相关的, 那么它们也是统计独立的。
2.1 随机过程的基本概念和统计特性
2.1.1 随机过程
确定性过程: 其变化过程可以用一个或几个时间t的 确定函数来描述。
随机过程: 其变化过程不可能用一个或几个时间t 的确定函数来描述。
通信过程是信号和噪声通过通信系统的过程。而 通信系统中遇到的信号和噪声总带有随机性,从统计 数学的观点看,随机信号和噪声统称为随机过程。
确知的非周期功率信号的自相关函数与其谱密度是一 对傅氏变换关系。对于平稳随机过程,也有类似的) 1
2
P
(
)e
j
d
(2.2 – 18)
于是
R(0) 1
2
P
( )d
E[
2 (t)]
(2.2 – 17)
因为R(0)表示随机过程的平均功率,它应等于功
因此,可定义单边谱密度 P1( )
(2.2 - 20) (2.2 - 21)
P1() 20P ()
0 0
(2.2 - 22)
[例2–1] 某随机相位余弦波 (t) Acos(ct ) ,其 中A和c 均为常数,θ是在(0, 2 )内均匀分布的随机
变量。
(1) 求 (t) 的自相关函数与功率谱密度; (2) 讨论 (t) 是否具有各态历经性。
fn (x1,
x2 ,,
xn ;t1, t2 ,, tn )
(2
1
)n/ 21 2 n
B 1/2
exp
1
2 B
n j 1
n k 1
B
jk
xj aj
j
xk ak
k
(2.3 - 1)
2.3.2
1. 由式(2.3 - 1)可以看出, 高斯过程的n维分布完全由 n个随机变量的数学期望、方差和两两之间的归一 化协方差函数所决定。因此,对于高斯过程,只 要研究它的数字特征就可以了。
(2.1 - 8)
R(t1,t2 ) E (t1) (t2 )
x1x2 f2 (x1, x2;t1,t2 )dx1dx2
(2.1 - 9)
B(t1,t2 ) R(t1,t2 ) a(t1)a(t2 )
(2.1 - 10)
B (t1,t2 ) E (t1) a (t1) (t2 ) a (t2 ) (2.1 - 11)
样本空间 S1
S2
x1(t)
Sn
t
x2(t)
t (t)
xn(t) t
tk
图 2- 1样本函数的总体
随机过程 (t)具有两个基本特征: a) (t) 是时间t的函数; b) 在某一观察时刻t1,样本的取值 (t1)是一个随机变
量。因此,我们又可以把随机过程看成依赖时间 参数的一族随机变量。可见,随机过程具有随机 变量和时间函数的特点。
2. 如果高斯过程是广义平稳的,则它的均值、方差 与时间无关,协方差函数只与时间间隔有关,而 与时间起点无关,由性质1知,它的n维分布与时 间起点无关。所以,广义平稳的高斯过程也是狭 义平稳的。
3. 如果高斯过程在不同时刻的取值是不相关的, 即 对所有j≠k有bjk=0,这时式(2.3 - 1)变为
随机过程的定义:设 Sk (k 1, 2,) 是随机试验。每一次 试验都有一条时间波形(称为样本函数或实现),记
作xi (t),所有可能出现的结果的总体x1(t), x2 (t),, xn (t)
就构成一随机过程,记作 (t) 。简言之,无穷多个样本
函数的总体叫做随机过程,如图 2 - 1 所示。
4. 高斯过程经过线性变换(或线性系统)后仍是高 斯过程。
f (x)
1
2
exp
(x a)2
2 2
(2.3 - 3)
由式(2.3 - 3)和图2 - 3可知f(x)具有如下特性:
1 f (x)
2
(1) f(x)对称于x=a这条直线。
(2) f (x)dx 1
(2.3 - 4)
O
a
x
图2-3 正态分布的概率密度
一实现的功率谱的统计平均,即
f (t)


O
t
f T(t)

T 2
O
T 2
t
图 2-2 功率信号f(t)及其截短函数
P () E
Pf ()
lim T
E FT () 2
T
(t) 的平均功率S则可表示成
S 1
2
P
()d
1
2
lim E FT () 2 d
T
T
(2.2 – 15) (2.2 – 16)
解:(1) 先考察ξ(t)是否广义平稳。
(t) 的数学期望为
a(t) E[ (t)]
2 0
A c os (ct
)
1
2
d
0
(t) 的自相关函数为
R(t1, t2 )
E[ (t1) (t2 )]
A2 2
cosc (t2
t1)
R( )
因为 (t)数学期望为常数,自相关函数只与 有关,
所以, (t) 是广义平稳。
(2.2 - 9) (2.2 - 10) (2.2 - 11) (2.2 - 12)
(5) R(0) R() [2 方差, (t)的交流功率](2.2 - 13) 当均值为0时,有 R(0) 2 。
2.2.4
随机过程的频谱特性是用它的功率谱密度来表述 的。对于任意的确定功率信号f(t),它的功率谱密度为
第 2 章 随机过程
学习目标:
➢ 随机过程的基本概念;
➢ 随机过程的数字特征(均值、方差、相关函数);
➢ 随机过程的平稳性、各态历经性、自相关函数的 性质、相关函数与功率谱密度的关系;
➢ 高斯随机过程的定义、性质,其一维概率密度函 数和正态分布函数,高斯白噪声;
➢ 随机过程通过线性系统,其输出过程的均值、自 相关函数和功率谱密度、带限白噪声;

R(t1,t1 ) R( )
设有一个二阶矩随机过程 (t) ,它的均值为常数,自
相关函数仅是τ的函数,则称它为宽平稳随机过程或广 义平稳随机过程。
注意:通信系统中所遇到的信号及噪声,大多数可 视为平稳的随机过程。
2.2.2 各态历经性
x(t)是平稳随机过程 (t) 的任意一个实现,它的
时间均值和时间相关函数分别为
率谱密度曲线下的面积。因此,P ( ) 必然是平稳随机 过程的功率谱密度函数。
简记为
R( ) P ()
关系式(2.2 - 18)称为维纳-辛钦关系。
根据上述关系式及自相关函数R(τ)的性质,不难 推演功率谱密度Pξ(ω)有如下性质:
(1) P ( ) 0
[非负性]
(2) P ( ) P ( ) [偶函数]
2.2.3
设 (t)为实平稳随机过程,则它的自相关函数
R( ) E[ (t) (t )]
(2.2 - 8)
具有下列主要性质:
(1) R(0) E[ 2 (t)] [ (t) 的平均功率] (2) R() E2[ (t)] [ (t) 的直流功率] (3) R( ) R( ) [ 的偶函数] (4) R( ) R(0) [ R( ) 的上界]
R( ) lim 1 T T
T /2
T /2 Acos(ct ) Acos(c (t ) ]dt
A2 2
c os c
比较统计平均与时间平均,得 a a, R( ) R( ) ,
因此,随机相位余弦波是各态历经的。
2.3 高斯随机过程
2.3.1 定义
若随机过程ξ(t)的任意n维(n=1, 2, …)分布都是 正态分布,则称它为高斯随机过程或正态过程。
且有
a f (x)dx f (x)dx 1
相关文档
最新文档