高中数学-平面向量复习课教学设计-棠外陈亮

合集下载

高考数学知识点《平面向量》复习教案

高考数学知识点《平面向量》复习教案

高考数学知识点《平面向量》复习教案【小编寄语】查字典数学网小编给大家整理了2021届高考数学知识点«平面向量»温习教案,希望能给大家带来协助!平面向量的坐标运算一.温习目的:1.了解平面向量基本定理,了解平面向量的坐标概念,会用坐标方式停止向量的加法、减法、数乘的运算,掌握向量坐标方式的平行的条件;2.学会运用分类讨论、函数与方程思想处置有关效果。

二.主要知识:1.平面向量坐标的概念;2.用向量的坐标表示向量加法、减法、数乘运算战争行等等;3.会应用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹效果.三.课前预习:1.假定向量 ,那么 ( )2.设四点坐标依次是,那么四边形为 ( )正方形矩形菱形平行四边形3.以下各组向量,共线的是 ( )4.点 ,且有 ,那么。

5.点和向量 = ,假定 =3 ,那么点B的坐标为。

6.设 ,且有 ,那么锐角。

四.例题剖析:例1.向量,,且,务实数的值。

小结:例2. ,(1)求 ;(2)当为何实数时,与平行,平行时它们是同向还是反向?小结:例3.点 ,试用向量方法求直线和 ( 为坐标原点)交点的坐标。

小结:例4.点及 ,试问:(1)当为何值时, 在轴上? 在轴上? 在第三象限?(2)四边形能否能成为平行四边形?假定能,那么求出的值.假定不能,说明理由。

小结:五.课后作业:班级学号姓名1. 且,那么锐角为 ( )2.平面上直线的方向向量,点和在上的射影区分是和,那么,其中 ( )2 -23.向量且,那么 = ( )(A) (B) (C) (D)4.在三角形中,,点在中线上,且,那么点的坐标是 ( )5.平面内有三点,且∥ ,那么的值是 ( )1 56.三点共线的充要条件是 ( )7.假设 , 是平面内一切向量的一组基底,那么以下命题中正确的选项是 ( )假定实数使,那么空间任一向量可以表示为,这里是实数对实数,向量不一定在平面内对平面内任一向量,使的实数有有数对8.向量,与方向相反,且,那么向量的坐标是_ ____.9. ,那么与平行的单位向量的坐标为。

(2021年整理)高中数学必修4第二章平面向量教案完整版

(2021年整理)高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4第二章平面向量教案完整版(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4第二章平面向量教案完整版(推荐完整)的全部内容。

高中数学必修4第二章平面向量教案完整版(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望高中数学必修4第二章平面向量教案完整版(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <高中数学必修4第二章平面向量教案完整版(推荐完整)> 这篇文档的全部内容。

第1课时§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度。

向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段。

《平面向量复习课》教学案例

《平面向量复习课》教学案例

《平面向量复习课》教学案例【设计说明】1.这是一节高三数学复习课,形成完善的知识体系,掌握平面向量问题一般的规律与思想方法,明确高考的命题趋势,提升学生的应试能力是设计本节课的基本出发点。

2.平面向量是高中数学新课程的重要基础知识,更是一种重要的工具,在高中数学中有着重要的地位和作用。

平面向量的概念与运算是应用基础和依据。

在实际的教学中应把平面向量的概念及运算性质作为基础,向量的应用作为主线,逐步熟悉以向量为工具,把几何问题转化为简单的向量运算,变抽象的逻辑推理为具体的向量运算。

因此,本节课定位为梳理向量知识,准确把握向量的运算与概念,明确向量的工具性,提高学生综合解题能力。

3.学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。

激发学生的学习主动性,向学生提供充分从事数学活动的机会,帮助他们在自主探索与合作交流的过程中,真正理解和把握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

因而,本节课的教法设计以学生为主体,问题探索为主线,体现新课改的理念,主要在转变学生学习方式、培养探究能力方面作有意的尝试。

【复习内容】必修4第二章.【教学目标】知识与技能:掌握平面向量的有关概念及运算法则.过程能力与方法:以向量沟通代数与几何之间的桥梁,培养学生综合分析及转化的能力。

态度情感与价值观:在向量综合应用的教学过程中,渗透数形结合思想及等价转化思想,培养学生思维的广阔性和严谨性。

【教学重点】 向量的工具性【教学难点】用向量知识,实现几何与代数之间的等价转化。

【教学模式】探究讨论式【探究过程】一、知识梳理,预备铺垫提出以下三个问题:问题一:平面向量的表示方法有几种?平面向量有三种形式:数量式、几何法与坐标法。

平面向量的数量式体现了向量的数量特征,几何法是用向量长度和方向来表示平面向量,坐标法是用有序实数对来表示平面向量。

平面向量的多种形式是向量工具性的理论依据。

问题二:平面向量的运算有几种?运算法则有那些?问题三:平面向量部分重要的定理有哪些?它们有哪些作用?(学生先先独立思考,可翻阅材料,再小组交流。

高中数学平面向量教案

高中数学平面向量教案

高中数学平面向量教案教案标题:高中数学平面向量教学案教学目标:1. 理解平面向量的概念;2. 掌握平面向量的表示方法:坐标表示法、分量表示法;3. 掌握平面向量的加法、减法和数量积的计算方法;4. 运用平面向量解决实际问题。

教学重点:1. 平面向量的概念和表示方法;2. 平面向量的运算方法。

教学难点:1. 平面向量的加法和减法;2. 平面向量的数量积。

教学准备:教材、黑板、彩色笔、平面向量的相关习题。

教学过程:Step 1:引入平面向量概念(5分钟)教师用平面上两点的例子引入平面向量的概念,并引导学生思考平面向量的特点和表示方法。

Step 2:平面向量的表示方法(10分钟)教师讲解平面向量的坐标表示法和分量表示法,并用具体的例子巩固学生对这两种表示方法的理解。

Step 3:平面向量的加法和减法(15分钟)教师通过几个简单的例子讲解平面向量的加法和减法的概念和计算方法,并让学生通过练习题巩固。

Step 4:平面向量的数量积(15分钟)教师引入平面向量的数量积的概念,并讲解数量积的计算方法和性质。

然后让学生通过练习题巩固。

Step 5:实际问题的应用(10分钟)教师给出一些与平面向量相关的实际问题,要求学生运用所学知识解决问题,并引导学生分析思路和解决方法。

Step 6:总结和拓展(5分钟)教师对本节课的内容进行总结,并拓展一些平面向量的相关知识,如平面向量的夹角、平面向量的垂直和平行关系等。

Step 7:作业布置(5分钟)教师布置相关的课后练习题,巩固所学知识,并留出一些思考题,引导学生进一步思考和探索。

教学反思:本节课通过引入、讲解、练习和应用的方式,全面而系统地介绍了高中数学平面向量的相关知识。

通过举例和练习,让学生理解了平面向量的概念、表示方法、运算方法和实际应用,培养了学生的数学思维能力和解决问题的能力。

同时,做到了知识和能力的有机结合,提高了学生的学习兴趣和学习效果。

陈亮--平面向量数量积的坐标表示、模、夹角

陈亮--平面向量数量积的坐标表示、模、夹角

2.4.2 平面向量数量积的坐标表示、模、夹角陈亮教学目的:(1)掌握两个向量数量积的坐标表示方法;(2)掌握两个向量垂直的坐标条件;(3)会运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.授课类型:高三第一轮复习(文)教学过程一、复习引入:.0)2(cos;.)1(=⋅⇔⊥==⋅==⋅θθ我们学过两向量的和与差可以转化为它们相应的坐标来运算,那么怎样用与来表示⋅呢?在直角坐标系中,已知两个非零向量a=(x1,y1),b=(x2,y2),如何用a与b的坐标表示a b⋅YA(x1,y1)aB(x2,y2)bO ij∵a = x1i + y1j ,b = x2i + y2jX①_____②______③______ ④_____=⋅i i=⋅jj=⋅ji=⋅i j单位向量i 、j 分别与x 轴、y 轴方向相同,求11()()j yixjyi xba2211+⋅+=⋅2211221221jyyji yxjiyxixx+⋅+⋅+=2121yyxx+=二、新课回顾两个向量的数量积等于它们对应坐标的乘积的1212a b x x y y ⋅=+在坐标平面xoy 内,已知=(x 1,y ),=(x ,y )a b ·=(1,√3 ),=(–2,2√3 )a b b a 解:·=1×(–2)+√3×2√a b 、平面向量数量积的坐标表示),2,1(==b a用于计算向量的模()22,,a x y a x y ==+设则)().221221y y x -+-即平面内两点间的距离公式.| |,| |已知=(1,√3 ),=(–2,2√3 )a b a b=√12+( 3 )2=2,a =√(–2)2+b (3,3)a b -=-||a b -2||3(a b ∴-=+向量夹角公式的坐标式:21x+=(x ,y ),=(x ,y )a b(0//)a b a b b λ≠=⇔0a b a b =⇔⊥⋅12210x y x y ⇔-=12120x x y y ⇔+=例3:已知,当k 取何值时,1). 与垂直?2). 与平行? 平行时它们是同向还是反向?()()2,3,2,1-==b a b a k +b a 3-b a k +b a 3-5、两向量垂直、平行的坐标表示=(x 1,y 1),=(x 2,y 2),则a b.的值3434或=-=-b b(1)(,)(,)或--2,22)(2,22)(1)掌握平面向量数量积的坐标表示,即两个向量的数量积等于它们对应坐标的乘积之和;(2)要学会运用平面向量数量积的坐标表示解决有关长度、角度及垂直问题.小结:=(x 1,y 1),=(x 2,y 2)a b =a b 1. //x y ⇔-a λ⇔=b 2.a b ⊥3.a b ⋅||||cos a b θ=⋅0a b ⇔⋅=12x x ⇔+|||a b a b θ⋅⋅224.(1)||a a =2||a a ⇒=2x =+122x x x =(,)a x y =其中。

平面向量复习课公开课教学设计

平面向量复习课公开课教学设计

2.4.3 平面向量复习课公开课教学设计教材说明人教B版必修4第二章第四节课型复习课课时1 课时学情分析学情分析是教学设计中重要因素之一 . 认真研究学生的实际需要、能力水平和认知倾向,可以优化教学过程,更有效地达成教学目标,提高教学效率. 我在教学中把了解学生的兴趣、动机作为分析学情切入点 .一、了解学生的兴趣、动机动机是激励人去行动,以达到一定目的的内在因素;而动机又产生于人的兴趣和需要 .课堂教学的对象是活生生的学生,学生是学习的主人,教会学生学习,是教学活动的核心,教学要获得成功,就要认真分析,了解学生的心理需求,想方设法启动学生的内驱力,并采取各种有力措施,把学生的兴趣和需求纳入合理的轨道,以调动学生的学习积极性,将外在的教学目标系统转换为学生的心理需要,成为学生的学习目标,使学生由“要我学”转变为“我要学”,只有当学生对所学的内容产生了兴趣,形成了内在的需要和动机,他才能具有达成目标的主动性,教学目标的实现才有保证 . 如对概念的复习有多种方法,让学生复述定义是常见的形式,不过这样做会使学生失去兴趣,把定义复述变为填空题,可以提高学生学习兴趣 .二、分析学生的知识能力水平本课是平面向量的复习课,学生应该掌握平面向量概念,三角形重要性质(重心,外心,内心,垂心性质). 能够根据平面向量运算规律 .向量共线与分解知识 . 在教学中发现,学生对向量的基本概念掌握比较好,也能够正确应用公式进行运算,不过对向量共线以及向量分解把握不准 .三、认知倾向或认知风格分析高二 5 班大多数学生认知风格表现为场独立型;高二 6 班学生大多数认知风格属于场依存型,教学活动中,结合考虑两班学生不同的认知倾向,根据学生的认知差异改进教学法方法和教学策略,调整教学内容和教学目标,努力做到因材施教. 如对六班学生,注意培养其独立思考的能力;对五班学生,注意培养其有条理地、细心地分析问题、解决问题的能力等 . 在问题深化环节组织研究学习小组时,我根据学生情况,将具有不同认知倾向的学生组合在一起,让他们在小组学习中,依据各自不同的特点去研究分析问题,相互取长补短 . 以便于他们更深入、全面地分析问题、解决问题 . 同时,这样做,不同认知倾向的学生相互影响,也有助于对学生认知倾向的培养调整 .教学内容分析一、教学主要内容向量是代数研究对象,也是几何研究对象,因此它是沟通代数、几何、三角函数的一种工具 . 向量是既有大小又有方向,与数量不同的量,因而在解决有关向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等各种变换,正确进行向量各种运算;二是向量坐标运算体现了数与形互相转化的思想 . 本课主要内容为:三角形的“四心”与向量例1,例 2,例 3,例 4;向量与解析几何:例 5,例 6;利用向量的坐标运算,解决两直线夹角,判断两直线平行,垂直问题:例 7 ,例 8;利用向量的坐标运算解决有关线段的长度问题:例 9;利用向量的坐标运算,用已知向量表示未知向量:例 10,例 11;利用向量的数量积解决有关距离的问题,距离问题包括点到点的距离,点的线的距离,点到面的距离,线到线的距离,线到面的距离,面到面的距离 . 例 12;向量与轨迹方程的综合例13;向量与数列的综合例 14二、教材编写特点教材的编写体现了知识形成的过程,目的是让学生经历将实际问题抽象成数学模型并予以解决和应用的过程,为学生能在探索、发现的活动中建构数学知识创造条件,所以教学中要充分发挥学生的主观能动性.三、教材内容的数学核心思想数形结合思想,化归转化思想教学目标知识与技能:向量概念与运算法则,向量的分解过程与方法:通过实例引导学生把向量作为沟通代数与几何的桥梁,培养学生分析问题,解决问题的能力 .情感态度与价值观:在向量综合运用的过程中,渗透数形结合与等价转化思想,培养学生思维的深刻性与广阔性 .教学的重点和难点重点:向量的综合应用难点:用向量知识进行代数几何转化教学策略选择与设计一、在平面向量的应用中,用平面向量解决平面几何问题时,首先将几何问题中的几何元素和几何关系用向量表示,然后选择适当的基底向量,将相关向量表示为基向量的线性组合,把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系,注意用向量的语言和方法来表述和解决物理问题 .二、二、向量是数形结合的载体,在本课中,一方面通过数形结合来研究向量的概念和运算;另一方面,我又以向量为工具,运用数形结合的思想解决数学问题. 同时向量的坐标表示为用代数方法研究几何问题提供了可能,丰富了研究问题的范围和手段 .三、以选择、填空题型考查本章的基本概念和性质,这类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题 .四、以解答题出现的题目,一般结合其它数学知识,综合性较强,难度大,以解决几何问题为主 . 在学习本章时应立足于课本,掌握双基,精读课本是关键 . 教学资源资源:三角板,圆规,粉笔,教材手段:多媒体辅助教学,形象直观教学过程设计例集锦1.关于重心G,有重心公式:彳OG = —(OA +0B +0C)3X A +X B +x c yA + y B +y c、G( c , c ),3 3并有性质GA + GB + GC = 0 ;2.关于垂心H,有性质HA HB = HB HC = HC HA ;3.关于外心0,有性质|OA|^OB|=|OC| ;结论:O H G三点共线且OH =30G ;此线称为欧拉(Euler )线.(如何证明?)4.关于内心1,经常涉及内角平分线的研究,如—「AB 丄AC、Al _ 人(一+ —.).|AB| |AC|例1:已知O, N, P在AABC所在平面内,且OA =|OB = OC , NA + NB +NC =0 ,且PA・PB=PB・PC = PC・PA , 则点O, N,P依次是MBC的(A)重心外心垂心(B)重心夕卜心内心(C)外心重心垂心教师提出问题,学生回答,复习公式教师完善教师给出例题,学生回答,教师指导学生说出“四心”及相应特点,分析例题,小组间可以简单讨论通过复习公式,加深对公式的记忆,为下列例题做铺垫通过例题,让学生更好地理解三角形的“四心”与向量知识的综合应用,进步加深对相关公式的理解,灵活运用公式uL o 「;;a;,则P 的轨迹一定通过ABC 的()A 、外心B 、内心C 、重心D 、垂心二、向量与解析几何例5:在解析几何中,熟练掌 握下列结论,有助于更好地运用向 量:(1) A 、B C 三点共线等价于存在 实数〉1 ,使得OCOA 「OB (:• : =1);(2) 厶ABC 的重心G 的坐标公式为1 JOG =—】OA OB OC •3(3) 直线的方向向量是什么? 给AB =DC = (1, 1),1 —_■ 1 3 —_■ ■■■BA + “BC = ■兰〜BD ,则四边形ABCD 勺面积是例3:设斜△ ABC 的外接圆 圆心为O 两条边上的高的交点 为 H ,0H 二 m(OA OB OC), 则实数m= _______________例4: 0是平面上一定点,A 、 B 、C 是平面上不共线的三个点, 动点P 满足复习向量在解析几何中常用的结论教师可以引导补充学生回顾,回答引入向量的坐标表示可以使向量完全代数 化,将数与形紧 密结合起来,这 就可以使很多几 何问题的解答转 化为学生熟知的 数量运算.而平面向量的坐标运 OP = 0A定两点:R (Xi, % ), P2 My ),那么RP2 = (x2 -凶,y2 - %),这也就是方向向量,横坐标单位化,得:(1,tana ),也就是说:直线Ax +By +C =0的方向向量是(B,-A ),直线的法向量是(A,B).例:6 :已知O为坐标原点,点E、F的坐标分别为(-1,0)和(1,0), 点A、P、Q运动时,满足T T T TAE =2EF , AQ =QF ,PQ ”AF =0, AP// E P(1)求动点P的轨迹C的方程.(2)设M、N是轨迹C上的两点,若OM +2ON =3OE,求直线MN的方程三、禾U用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题例7:已知向量OP1,O R2,OR3满口一,「T T T T足条件OP1+OP2+OP^0,T T TOR = OP2 = OP3=1,求证:也PBB是正三角形教师给出例题,学生分析解答学生讨论、动手操作、思考问题并回答算是常考的知识点,运用向量方法解决解析几何的有关知识,有时候显的非常方便.通过平面向量的坐标运算,我们可以培养学生的归纳、猜想、演绎能力,通过代数方法解决几何问题,提高学生用数形结合思想解决问题的能力.x轴、y轴建立直角坐标系,设A2a,0,B 0,2a,则 D a,0,C0,a , 从而可求:AC = -2a,a ,BD = a,-2a ,co^ -2a,a久一羽=P5a 忑a—4a2 _ 45a2 5( 4)e = arccos - —.I 5丿四、利用向量的坐标运算,解决有关线段的长度问题例9:已知ABC,AD为中线,求证AD2=’(AB2+AC2)—f2 \2)证明:以B为坐标原点,以BC所在的直线为x轴建立如图2直角坐标系培养学生的大胆猜想能力,逐步形成“观察——类比——猜想一一质疑一一验证一一应用”获取知识的手段和方法,体会数形结合和分类讨论的思想,提高学生分析问题、解决问题的能力.观察图象写出点坐标并回忆相关公式设A(a,b)C(c,0), D〔2,0)则「C (2)=_ —a i +(0—b) J '2 2-ac a b2=a 2 +b 2-ac +乞4从而I AD |2二五、利用向量的坐标运算,用 已知向量表示未知向量例10:已知点O 是 ABC 内的一点, AOB =150°,BOC =90°,*■ T ■ T T — 设OA =a,OB=b,OC =c,且 a = 2,耳=1, c = 3,试用—f —*Ta,禾口 b 表示c解:以O 为原点,OC OB 所在的直 线为x 轴和y 轴建立如图所示的坐 标系.AD 2c斗2+b2+(c_a)"c 2l学生自习分析并 画出图形充分体现教 师主导作用和学 生主体作用相统 一,体现教学的 直观性和启发 性.l f I A B|2 +| AC I 2 J-I AC |21 2|AB I 2由 0A=2 Z AOx =120°,所以A2cos120°,2sin1200,即A -1, ,3 ,易求 B0,-1 , C3,0,设OA = • QB ,2 OC,即-1, 3 = \ 0,-1 '2 3,0:-1 =3妬<3 =-九<i13…3-A例11:如图,OATOB =1,:OA, OB 120,用 OA,OB 表示OC.解:以O为坐标原点,以OA所在的直线为x轴,建立如图所示的直角坐标系,则 A1,0,由COA =30引导学生思考后回答配合教师板演训练学生对图形的运用,渗透转化思想,培养学生严谨的思维品质,有利于学生对向量的理解.结合向量来解决课后教学反思一、优势在教学中,高二五、六这两个班学生,通过前面学习,大部分学生的知识基础和接受的能力还是可以的.20%的学生是很聪明的,通过自己看书,能够基本掌握本节内容,30%的学生在课堂上能够跟上我的思路,通过讲解,也能很快掌握,30% 的学生勉强能跟上我的思路,但需要时间消化,剩下20%勺学生,如果不预习课本基本上上课很难听懂,即使提前预习了,也不一定能跟的上.二、不足1.教学教法方面一方面学生在接受上有一定的困难,另一方面在细节问题上就很难把握的好一节课45分钟,在这么短的时间内让学生掌握住如此多的知识,难度很大,同时, 一味地赶进度,带来的直接后果就是学生学而不精,对深层的问题,没有实质性的认识,只会死记公式,做原题,对于变形题目,学生仍然无从下手•2.对学生能力估计不足在课堂教学之前,做为教师,我应该对学生有个充分的估量,在这些容易错的地方,学生会出现那些错误,学生会用什么方法解决此题,我应该事先有个充分的估量,不至于课堂教学中,出现我没预料到的情况,造成教学的被动•3.应鼓励学生自主探索、自主学习在问题深化过程,本意很想让学生自主探索,自主学习,但在实际操作过程中,由于师生配合不是特别的默契,没有完全把学生的意图彻底弄透,甚至最后时间都有紧张•虽然如此,但我想,教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,在今后的教学过程中要继续发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式.对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径.4.课堂语言还需要进一步提炼在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强 .5.教师如何把握“收” 与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题 .总之,在本节课的教学反思中 , 我学到了很多东西 . 作为教师 , 我们只是组织者,推进者和指导者 , 我们应该把更多的主动权交给学生 ,让学生充分发挥自己的主观能动性 , 去创造奇迹 , 让他们的思维更灵活 ,情感升华更彻底 , 知识的获得将更完善.教研组点评一、教学目标切合实际,张弛有度教学目标是教学的立足点、出发点和归宿点 . 在本堂课中教师基本上做到了围绕拟定的教学目标组织教学 .在知识点梳理教学环节中师生共同回忆概念,梳理知识,其中的亮点是用题带知识点,把干巴巴的叙述概念变成填空题,从教学效果看反响很好 . 典例集锦教学环节中的例题的设计,虽受课时限制,不能面面俱到,但以点带面,重点突出,以向量应用为纲,纲举目张 .问题深化环节设计学生多层次、多角度分析向量性质与平面几何性质、实数性质的区别,优秀的学生条理清楚、思维敏杰,一般的学生也有自己的发现 . 在教师理性梳理学生的成果之后,引导同学自主探索向量在平面几何及解析几何中的应用. 综合应用题选择恰当,充分体现了向量作为代数与几何之间的桥梁作用,很好地渗透了数形结合思想,培养了学生思维的广阔性和深刻性,成功地完成了教学任务,实现了情感目标 .综上所述,本课教学目标贯彻到位,把握恰到好处 . ( 二、教学模式恰当,引人入胜“探究讨论式”是一种常用的教学方法 . 然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化 . 为了突破这一难点,首先复习旧知识,准备铺垫,接着设计简单的几何图形中的代数求值问题 . 教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者 . ”的教学理念 . 整个教学设计,思路清晰,层次转换自然,点拨及时,自然流畅,引人入胜 .三、体现先进理念,合作探索建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程 . 因此,学习方式的转变,对学生的学习至关重要,也是教学成败的关键 . 本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神 . 从容易混淆的性质入手,让学生发现问题,出现疑惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律 . 同学探究,思维得到进一步的升华,攻克难点,培养了合作精神 . 通过展示研究成果,让学生感到兴趣盎然而充满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥. 体验成功的喜悦,分享快乐,提高了学习的积极性 . 熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做 . 如何落在实处,本课做了有益的尝试 . 案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界 . 教案的设计说明,体现了教者“以学生发展为本的教学理念”. 该教案有些地方还需改进,但仍有很多可圈可点之处,不失为一份体现新的教学理念的教学案例 .。

2019-2020年高中数学平面向量复习课教案

2019-2020年高中数学平面向量复习课教案

2019-2020年高中数学平面向量复习课教案【教学内容及解析】本课时是人教社普通高中课程标准实验教科书A版必修(4)第二章《平面向量》的复习课。

它是对本章内容的总结与升华;这节课既要展示平面向量的形的特性,又要具备数的特性,因此向量的代数形式的运算与其几何意义是紧密联系在一起的。

向量是沟通代数,几何,三角函数的工具,向量的解题方法有向量法和坐标法.而要熟练应用这些方法,学生应该对相应的基本概念比较清楚,因此在复习时应该在引导学生得到结果基础之上,让同学理解相关的意义和了解其实际背景•应该把几何的直观性和向量的运算有机的结合在一起。

【教学目标】1. 复习向量的有关概念;2. 会向量的线性运算,会向量数乘的运算,并体会其几何意义•3. 学会平面向量的正交分解及其坐标表示以及相关应用4. 会求平面向量的数量积,并会应用其判断两个平面向量的垂直关系。

5. 能够用向量解决一些具体问题,如平面几何中的一些问题和物理中的一些问题.领会向量作为工具性的魅力。

【教学重难点】1. 重点是让学生学会向量的相关概念和向量的运算2. 难点是如何用向量的方法解决一些问题【教辅工具】教材、教参、多媒体或实物投影仪、尺规【教学反思】本节复习课在设计中主要体现对本章知识的回顾和梳理,在教学过程中,力求做到以下几点:(1) 关注解题方法产生的思维过程 引导学生探究如何将把问题转化为向量问题,揭示解题方法产生的的思维过程,让学生体会解题思路的形成过程和数学思想方法的运用,从而提高学生综合运用知识分析和解决问题的能力(2) 强化学生的应用意识一是培养学生利用所学数学知识、用数学的思维与观点去观察和分析现实生活现象的习惯和意识, 强化学生的应用意识;二是为学生提供充足的动手操作的机会,一旦形成解决问题的思路,后续的解题过程则放手让学生独立完成,让学生体验问题的解决过程,并在此过程中锻炼与提高数学能力•(3) 引导学生探究解题规律指导学生做好解题后的反思,总结解题规律,从而培养学生理性的、条理的思维习惯,形成对通性 通法的归纳意识•教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式 ⑶能用所学知识解决有关综合问题 • 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量 a 与b ,作=a ,=b ,则Z AOB =0 (0< 0 < n )叫玄与b 的夹角•(0W 0Wn) •并规定0与任何向量的数量积为0.2 .平面向量数量积(内积)的定义:已知两个非零向量a 与b 的数量积,记作a b ,即有a b = |a||b|cos ,a 与b ,它们的夹角是0,则数量| a|| b|cos 叫3 .向量的数量积的几何意义: 数量积a b 等于a 的长度与b 在a 方向上投影| b|cos 的乘积.又,,,所以这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即2.平面内两点间的距离公式一、设,则或.两点间的距离公式)1、向量垂直的判定设,,则1、两向量夹角的余弦()四、讲解范例: 五、设a = (5, -7), b = (-6, -4),求a b 及a 、b 间的夹角0 (精确到1O )例2已知A(1, 2), B(2,3), q-2,5),试判断厶ABC 的形状,并给出证明例3已知a = (3,-1), b = (1, 2),求满足x a = 9与x b = -4的向量x.4 .两个向量的数量积的性质:设a 、b 为两个非零向e 是与b 同向的单位向量.; 2 a b a b = 0 a b = | a|| b| ;当a 与b 反向时, a b = 特别的 a a = |a|2 或4 cos = ;5 | a b| < | a|| b|5 •平面向量数量积的运算律交换律:a b = b a数乘结合律:(a) b =(a b) = a (b) 分配律:(a + b) c = a c + bc 二、讲解新课:1.平面两向量数量积的坐标表示已知两个非零向量,,试用和的坐标表示. 设是轴上的单位向量,是轴上的单位向量,那么,所以 a b = (x 1 % j)(x 2i y 2j) .2=X !X 2i-X i y 2i j X 2y i i j.2y 』2j(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么 |a(X i - X 2)2 (y i - y 2)2 (平面内X 1 x 2 y 』2解:设x = (t, s),由 ••• x = (2, -3) 例4已知a =(l,), b =(+1,-1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求a • b 及丨a ]•] b |,再结合夹角0的范围确定其值 解:由 a =(1, ), b =(+1,-1) 有 a • b =+1+(—1)=4,| a |=2,| b |=2.记a 与b 的夹角为0 ,则cos 0 = 又0 < n ,• 0 =评述:已知三角形函数值求角时,应注重角的范围的确定例5如图,以原点和 A(5, 2)为顶点作等腰直角△ OAB ,使.B = 90,求点B 和向量的坐标 解:设 B 点坐标(x ,y),则=(x , y), = (x-5, y-2)••• _• x(x-5) + y(y-2) = 0 即:x 2 + y 2 _5x - 2y = 0=(x^5)2 + (y-2)2 即:10x + 4y = 29• 2X (-1) +3 X (k-3) = 0 • k =当 C = 90 时,=0,「. -1 + k(k<) = 0 • k =六、 课堂练习:21•若 a=(-4, 3), b=(5 , 6),贝 U 3|a| —4 a • b =( )A.23B.57C.63D.832•已知 A(1 , 2), B(2, 3) , C(-2 , 5),则△ ABC 为( ) A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形3. 已知a=(4 , 3),向量b 是垂直a 的单位向量,贝U b 等于( )A.或B.或C.或D.或4. a=(2 , 3) , b=(-2 , 4),则(a+b) • (a-b)= ________5. ________________________________________________________________ 已知A(3 , 2) ,B(-1, -1),若点P(x ,-)在线段AB 的中垂线上,贝U x= __________________________ 6. 已知 A(1, 0) , B(3 , 1) , C(2 , 0),且 a= , b=,则 a 与 b 的夹角为 _______________七、 小结(略)2 2x y _5x _2y 10x 4y =29 X 1y i 7-2 3=——2X 2_ 3 -2 7 -2• B 点坐标或;=或 例6在厶ABC 中, =(2, 3), =(1,©,且厶ABC 的一个内角为直角,解:当A = 90时, =0,当B = 90时,=0, =_= (1_2 , k —3) = (―1, kJ)又II = II八、课后作业(略)九、板书设计(略)课后记:。

2013届高三数学复习教案第五章《平面向量》(新人教版必修4)05

2013届高三数学复习教案第五章《平面向量》(新人教版必修4)05

第五教时教材:实数与向量的积目的:要求学生掌握实数与向量的积的定义、运算律,理解向量共线的充要条件。

过程:一、复习:向量的加法、减法的定义、运算法则。

二、1.引入新课:已知非零向量a 作出a +a +a 和(-a )+(-a )+(-a)OC =BC AB OA ++=a +a +a =3aPN =MN QM PQ ++=(-a )+(-a )+(-a )=-3a讨论:1︒3a 与a 方向相同且|3a |=3|a|2︒-3a 与a 方向相反且|-3a |=3|a| 2.从而提出课题:实数与向量的积实数λ与向量a 的积,记作:λa定义:实数λ与向量a 的积是一个向量,记作:λa1︒|λa |=|λ||a|2︒λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=03.运算定律:结合律:λ(μa )=(λμ)a①第一分配律:(λ+μ)a =λa +μa②第二分配律:λ(a +b )=λa+λb ③ 结合律证明:如果λ=0,μ=0,a=0至少有一个成立,则①式成立如果λ≠0,μ≠0,a ≠0有:|λ(μa )|=|λ||μa |=|λ||μ||a||(λμ)a |=|λμ|| a |=|λ||μ||a|∴|λ(μa )|=|(λμ)a|如果λ、μ同号,则①式两端向量的方向都与a同向;如果λ、μ异号,则①式两端向量的方向都与a反向。

从而λ(μa )=(λμ)a第一分配律证明:如果λ=0,μ=0,a=0至少有一个成立,则②式显然成立a a a a O A B C a-a- a- a- NMQP如果λ≠0,μ≠0,a≠0当λ、μ同号时,则λa 和μa同向,∴|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a| |λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |∵λ、μ同号 ∴②两边向量方向都与a同向即:|(λ+μ)a |=|λa +μa|当λ、μ异号,当λ>μ时 ②两边向量的方向都与λa同向当λ<μ时 ②两边向量的方向都与μa同向还可证:|(λ+μ)a |=|λa +μa| ∴②式成立第二分配律证明:如果a=0,b =0中至少有一个成立,或λ=0,λ=1则③式显然成立当a≠0,b ≠0且λ≠0,λ≠1时1︒当λ>0且λ≠1时在平面内任取一点O ,作=OA a =AB b =1OA λa=11B A λb则=OB a +b =1OB λa+λb由作法知:AB ∥11B A 有∠OAB=∠OA 1B 1 |AB |=λ|11B A | ==||||111AB OA λ ∴△OAB ∽△OA 1B 1=||1OB λ ∠AOB=∠ A 1OB 1因此,O ,B ,B 1在同一直线上,|1OB |=|λOB | 1OB 与λOB 方向也相同λ(a +b )=λa+λb当λ<0时 可类似证明:λ(a +b )=λa+λb ∴ ③式成立4.例一 (见P104)略三、向量共线的充要条件(向量共线定理)OAB B 1A 1A1.若有向量a (a ≠0)、b ,实数λ,使b =λa则由实数与向量积的定义知:a 与b为共线向量若a 与b 共线(a ≠0)且|b |:|a |=μ,则当a 与b 同向时b =μa当a 与b 反向时b =-μa从而得:向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ使b =λa2.例二(P104-105 略) 三、小结:四、作业: 课本 P105 练习 P107-108 习题5.3 1、2。

高三数学复习教案设计: 《平面向量》

高三数学复习教案设计: 《平面向量》

人类的心正是凭借着希望而得到宽慰,一直生活到生命的最后时刻。

下面是为您推荐高三数学复习教案设计:《平面向量》。

【知识网络】【学法点拨】向量是沟通代数与几何的重要工具,它在日常生活、生产实践以及其他相关学科中有着广泛的应用.学习和理解向量有关知识时,建议:1. 注意比较与分析.向量的有关概念与我们学习过的有关知识既有联系又有区别,如:平行、相等、乘积等等.留心比较分析,可防止学习过的有关知识对现学知识的负面影响.2. 能画图时尽可能多画草图.数离形时少直观,形离数时欠入微.向量具有数与形的双重特征,加减法以三角形法则、平行四边形法则为背景,平行、垂直都对应着一个方程,数形结合考察问题,常常事半功倍.3. 学会联想与化归.向量知识是从日常生活、生产实践中抽象出来的,求解向量综合题,常需要适当联想,并将应用问题数学化,复杂问题熟悉化、简单化.【考点指津】1. 理解向量的概念,掌握向量的几何表示,了解共线向量、相等向量等概念.2.掌握向量的加法与减法,会正确运用三角形法则、平行四边形法则.3掌握向量加法的交换律、结合律,并会用它们进行向量化简与计算.4.理解向量的减法运算可以转化为向量的加法运算.【知识在线】1.(2a 8b)-(4a-2b)=2.在△ABC中,BC→=a,CA→=b,则AB→=3.设a表示向东3km,b表示向北偏东30o走3km,则a b表示的意义为4.画出不共线的任意三个向量,作图验证a-b-c=a-(b c).5.向量a、b满足|a|=8,|b|=10,求|a b|的最大值、最小值.【讲练平台】例1 化简以下各式:①AB→ BC→ CA→ ;②AB→ -AC→ BD→ -CD→ ;③OA→ -OD→ AD→ ;④NQ→ QP→ MN→ -MP→ .结果为0的个数为()分析题设条件中多处涉及首尾相接的两个向量求和以及同起点的两个向量相减,对此,我们可以运用向量加减的定义进行合并,当最终形式出现两相反向量之和或相等向量之差时,结果为0.答 D.点评本题巩固了向量加减的定义及向量加法的交换律、结合律等基础知识.求解时需将杂乱的向量运算式有序化处理,必要时也可化减为加,减低出错律.注意:AB→=-BA→ ,CB→=AB→ .变题作图验证A1A2→ A2A3→ A3A4→ … An-1An→=A1An→ (n≥2,n∈N).例2 如图,在δABC中,D、E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→ ,CE→ .分析本题中的已知向量都集中体现在三角形中.为此,可充分利用向量加减法的三角形法则实施求解.如已知CA→ 、CB→ 可求AB→ ,根据AD→ 、AE→ 、AB→ 均为共线向量,故又可求得AD→ 、DE→ 、.由CA→ 、AD→ 又可求CD→ ,由DE→ 、CD→ 又可求CE→ .解AB→=AC→ CB→=-3a 2b,因D、E为AB→ 的两个三等分点,故AD→=AB→=-a b=DE→ ,CD→=CA→ AD→=3a-a b=2a b,CE→=CD→ DE→=2a b-a b=a b.点评三角形中两边对应向量已知,可求第三边所对应的向量.值得注意的是,向量的方向不能搞错.当向量运算转化成基底向量的代数式运算时,其运算过程可仿照多项式的加减运算进行.例3 已知A、B、C、P为平面内四点,求证:A、B、C三点在一条直线上的充要条件是存在一对实数m、n,使PC→=mPA→ nPB→ ,且m n=1.分析 A、B、C 三点共线的一个充要条件是存在实数λ,使得AC→=λAB→ .很显然,题设条件中向量表达式并未涉及AC→ 、AB→ ,对此,我们不妨利用PC→=PA→ AC→ 来转化,以便进一步分析求证.证明充分性,由PC→=mPA→ nPB→ , m n=1,得PA→ AC→=mPA→ n(PA→ AB→ )=(m n)PA→ nAB→=PA→ nAB→ ,∴AC→=nAB→ .∴A、B、C三点共线.必要性:由A、B、C 三点共线知,存在常数λ,使得AC→=λAB→ ,即AP→ PC→=λ(AP→ PB→ ).PC→=(λ-1)AP→ λPB→=(1-λ)PA→ λPB→ ,m=1-λ,n=λ,m n=1,PC→=mPA→ nPB→ .点评逆向应用向量加法运算法则,使得本题的这种证法比其他证法更简便,值得一提的是,一个向量拆成两个向量的和,一定要强化目标意识.变题在δA BC 所在平面上有一点P ,满足PA→ PB→ PC→=AB→ ,试确定点 P的位置.答:P在 AC边上,且 P为 AC的一个三等分点(距 A点较近)例4 (1)若点 O是三角形ABC的重心,求证:OA→ OB→ OC→=0;(2)若 O为正方形ABCD的中心,求证:OA→ OB→ OC→ OD→=0;(3)若O 为正五边形ABCDE 的中心,求证:OA→ OB→ OC→ OD→ OE→=0.若 O为正n边形A1A2A3…A n的中心,OA1→ OA2→ OA3→ …OAn→=0 还成立吗?说明理由.分析本题四问构成一个题链,条件相似,结论相似,求证方法可望相似.正三角形、正方形性质特殊,我们十分熟悉,求证方法多,不容易发现那一种方更有利于推广,我们选定正五边形来研究.看着结论,联想一个相似的并且已经解决的问题,本课例1的变题A1A2→ A2A3→ A3A4→ … An-1An→ AnA1→=0 ,这里的向量首尾相接,我们能不能将OA→ 、OB→ 、OC→ 、OD→ 、OE→ 也转化成首尾相接的形式呢?运用向量相等的定义试试看.解证(3)以 A为起点作AB′→=OB→ ,以B′为起点作B′C′→=OC→ ,以C′为起点作C′D′→=OD→ ,以D′为起点作D′E′→=OE→ .∵∠AOB=72o,∴∠OAB′=108o.同理∠AB′C′=∠B′C′D′=∠C′D′E′=108o,故∠D′E′A=108o.|OA→ |=|AB′→ |=∣B′C′→ |=|C′D′→ |=|D′E′→ |,故E′与 O重合,OAB′C′D′为正五边形.OA→ OB→ OC→OD→ OE→=OA→ AB′→ B′C′→ C′D′→D′E′→=0.正三角形,正方形、正n边形可类似获证.点评本题不仅揭示了正多边形的一类共同性质,而且巩固了“以退为进”的数学思想.面对一般的问题,我们经常先考虑其特殊的情况;面对陌生的问题,经常去联想熟悉的模型.注意退是为了进,退到特殊简单情形后,要在求解中悟出一般的规律.如退到正方形情况,发现OA→ OB→ 与OC→ OD→ 正好互为相反向量,结论成立.这一方法却不具一般性.【知能集成】1. 基础知识:向量加减的代数形式运算与几何形式运算.2. 基本技能:向量运算中的合二为一与拆一为二.3. 基本思想:向量表达式运算与几何式运算的相互结合思想,联想熟悉的类似的模型,化归转化思想.【训练反馈】1.下列各式正确的是:()A.∣a-b∣≤∣a∣ ∣b∣B. a b∣>∣a∣ ∣b∣C.∣a b∣>∣a-b∣D.∣ a-b∣=∣a∣-∣b∣2.下面式子中不能化简成AD→ 的是()A.OC→ -OA→ C D→B.PB→ -DA→ -BP→C.AB→ -DC→ BC→D.(AD→ -BM→ )(BC→ -MC→ )3.正方形ABCD的边长为1,AB→=a,BC→=b,AC→=c,则a b c、a-b c、-a-b c 的摸分别等于 .4.设a、b 为已知向量,若3x 4y=a,2x-3y=b ,则 x=.y=.5. 已知 e1、e2 不共线,AB→=2e1 ke2,CB→=e1 3e2,C D→=2e1-e2,且A、B、D 三点在同一条直线上,求实数k .6.在正六边形ABCDEF中,O 为中心,若OA→=a,OE→=b,用a、b 表示向量OB→ ,OC→ ,OD→ ,结果分别为(),-b-a,-a B. b,-a,b-a,a,,-a,a b7. 试用向量方法证明:对角线互相平分的四边形是平行四边形.8.已知P为△ABO 所在平面内的一点,满足OP→=,则P在()A.∠AOB的平分线所在直线上B. 线段AB的中垂线上C. AB边所在的直线上D. AB边的中线上.9.设O是平面正多边形A1A2A3…A n 的中心,P为任意点,求证:PA1→ PA2→ PA3→ … PAn→=nPO→ .10.如图设O为△ABC内一点,PQ∥BC,且PQ→ ∶BC→=2∶3,OA→=a,OB→=b,OC→=c,则OP→ ,OQ→ .为△ABC所在平面内一点,PA→ PB→ PC→=0 ,则P为△ABC的()A.重心B.垂心C. 内心D.外心12.在四边形ABCD中,E为AD的中点,F为BC的中点.求证:EF→=(AB→DC→ ).第30课向量的坐标运算【考点指津】1. 理解平面向量的坐标表示法,知道平面向量和一对有序实数一一对应.2. 掌握平面向量的和、差、实数与向量积的坐标运算,能利用向量的坐标运算解题.3. 掌握平面向量平行的充要条件的坐标表示,并利用它解决向量平行(共线)的有关问题,弄清向量平行和直线平行的区别.【知识在线】1. 若向量a的起点坐标为(-2,1),终点坐标为(2,-1),则向量a的坐标为2.若O为坐标原点,向量a=(-3,4),则与a共线的单位向量为3.已知a=(-1,2),b=(1,-2),则a b与a-b的坐标分别为()A.(0,0),(-2,4)B.(0,0),(2,-4)C.(-2,4),(2,-4)D.(1,-1),(-3,3)4.若向量a=(x-2,3),与向量b=(1,y 2)相等,则()A. x=I,y=3,B. x=3,y=1C. x=1,y=-5D. x=5,y=-15.已知A(0,0),B(3,1),C(4,3),D(1,2),M、N分别为DC、AB的中点.(1)求证四边形ABCD为平行四边形;(2)试判断AM→ 、CN→ 是否共线?为什么?【讲练平台】例1 已知a=(1,2),b=(-3,2),当k为何值时,ka b与a-3b平行?分析已知a、b的坐标,可求a-3b的坐标,ka b的坐标也可用含k的表达式表示.运用两向量平行的充要条件x1y2-x2y1=0可求k值.解由已知a=(1,2),b=(-3,2),得a-3b=(10,-4), ka b=(k-3,2k 2).因(ka b)∥(a-3b),故10(2k 2) 4(k-3)=0.得k=- .点评坐标形式给出的两个向量,其横坐标之和即为和向量的横坐标;其纵坐标之和即为和向量的纵坐标.实数与向量的积其横、纵坐标分别等于实数与该向量的横、纵坐标的积.向量的平行用坐标形式表达即为一个方程.例2 已知向量a=(,),b=(-1,2),c=(2,-4).求向量d,使2a,-b c及4(c-a)与d四个向量适当平移后,能形成一个顺次首尾相接的封闭向量链.分析四个向量适当平移后,形成一个顺次首尾相接的封闭向量链,说明这四个向量之和为0.即四个向量的纵横坐标之和均为0.据此列出关于向量d (x,y)的方程组,不难求得x、y.简解设向量d的坐标为(x,y),由2a (-b c) 4(c-a) d=0,可解得d=(-9,23).点评数学语言常有多种表达方式,学会转化与变通是求解的关键.本题以几何特征语言形式出现,最终落足点要变式成方程的语言来求解,这一思想方法在求解向量问题时经常用到.例3 已知平面上三点P(2,1),Q(3,-1),R(-1,3).若点S与这三点可以为一个平行四边形的四个顶点,求S的坐标.分析平行四边形对边对应向量相等或相反,由此可求得S点的坐标.但由于题设四点构成四边形的四个顶点,那一组边是对边不明显,需要分类讨论.简解设S的坐标为(x,y).(1)当PQ→ 与RS→ 是一组对边时,若PQ→=RS→ ,则(3,-1)-(2,1)=(x 1,y-3),即(1,-2)=(x 1,y-3),得S点坐标为(0,1).若PQ→=SR→ ,则S点坐标为(-2,5).(2)当PR→ 与SQ→ 是一组对边时,若PR→=SQ→ ,则S点的坐标为(6,-3).若PR→=QS→ ,则S点的坐标为(0,1).(3)当PS→ 与RQ→ 是一组对边时,若PS→=RQ→ ,则S点的坐标为(6,-3).若PS→=QR→ ,则S点的坐标为(-2,5).综上所述,S点坐标可以为(0,1),(6,-3),(-2,5).点评本题求解需运用分类讨论思想.上述解法思路自然、条理清晰,但很显然不是最简方案,如何数形结合,避免重复劳动,读者不妨思考.例4 向量PA→=(k,12),PB→=(4,5),PC→=(10,k),当k为何值时,A、B、C三点共线.分析三点共线问题前一课已涉及,A、B、C三点共线的充要条件是AB→=λBC→ ,本题所不同的是向量用坐标形式给出,对此,我们可以将坐标代入运算.解AB→=PB→ -PA→=(4-k,-7),BC→=PC→ -PB→=(6,k-5).当A、B、C三点共线时,存在实数λ,使得AB→=λBC→ ,将坐标代入,得4-k=6λ,且 -7=λ(k-5),故(4-k)(k-5)=-42.解得k=11,或k=-2.点评向量的几何运算与向量的坐标运算,可以从不同角度去求解(证)同一个问题.只不过两套工具各有适用范围,即便两套工具都适用,也可能繁简不一,应用时要注意前瞻性选择.变题求证:互不重合的三点A(x1,y1),B(x2,y2),C(x3,y3)共线的充要条件是(x2-x1)(y3-y1)=(x3-x1)(y2-y1).证明必要性(略).充分性若(x2-x1)(y3-y1)=(x3-x1)(y2-y1),由A、B、C互不重合,得(x2-x1)、(y3-y1)、(x3-x1)、(y2-y1)中至少有一个不为零,不妨设x3-x1≠0.令x2-x1=λ(x3-x1),若λ=0,则x2-x1=0,此时y2≠y1(否则A、B重合).而已知等式不成立,故λ≠0.于是(x3-x1)(y2-y1)=λ(x3-x1)(y3-y1).因x3-x1≠0 ,故(y2-y1)=λ(y3-y1).于是(x2-x1,y2-y1)=λ(x3-x1,y3-y1),即AB→=λAC→ ,且AC→ ≠0 .又因AB→ 与AC→ 有相同起点,所以A、B、C三点共线.【知能集成】基础知识:坐标形式的向量的加减运算,实数与向量坐标的积.基本技能:向量平行的充要条件及向量相等的充要条件用坐标形式描述和应用.基本思想:将向量等式转化成方程的思想;对几何图形的分类讨论思想.【训练反馈】1.若a=(2,3),b=(4,y-1),且a∥b,则y=()A.6B.5C.7D. 82.已知点B的坐标为(m,n),AB→ 的坐标为(i,j),则点A的坐标为()A.(m-i,n-j)B.(i-m,j-n)C.(m i,n j)D.(m n,i j)3.若A(-1,-1),B(1,3),C(x,5)三点共线,则x=.4.已知a=(5,4),b=(3,2),则与2a-3b平行的单位向量为5.有下列说法① 已知向量PA→=(x,y),则A点坐标为(x,y);② 位置不同的向量,其坐标有可能相同;③ 已知i=(1,0),j=(0,1),a=(3,4),a=3i-4j ;④ 设a=(m,n),b=(p,q),则a=b的充要条件为m=p,且n=q.其中正确的说法是()A.①③B.①④C.②③D.②④6.下列各向量组中,不能作为表示平面内所有向量的基底的一组是()A.a=(-1,2),b=(0,5)B.a=(1,2),b=(2,1)C.a=(2,-1)b=(3,4)D.a=(-2,1),b=(4,-2)7.设a=(-1,2),b=(-1,1),c=(3,-2),用a、b作基底,可将向量c表示为c=pa qb,则()A.p=4, q=1B.p=1, q=-4C.p=0 , q=4D.p=1, q=48.设i=(1,0),j=(0,1),在平行四边形ABCD中,AC→=4i 2j,BD→=2i 6j,则AB→ 的坐标为 .9.已知3s inβ=sin(2α β),α≠kπ ,β≠kπ,k∈z,a=(2,tan (α β)),b=(1,tanα),求证:a∥b.10.已知A(4,0),B(4,4),C(2,6),求AC与OB的交点P的坐标(x,y).11.已知点O(0,0),A(1,2),B(4,5),且OP→=OA→ tAB→ .(1)当t变化时,点P是否在一条定直线上运动?(2)当t取何值时,点P在y轴上?(3) OABP能否成为平行四边形?若能求出相应的t值;若不能,请说明理由.第31课平面向量的数量积【考点指津】1. 掌握平面向量的数量积及其几何意义.2. 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题.3. 掌握向量垂直的条件.【知识在线】1.若∣a∣=4,∣b∣=3,a?b=-6,则a与b的夹角等于()A.150o B 120o C.60o D.30 o2.若a=(-2,1),b=(1,3),则2a2-a?b=()A,3.已知向量 i=(1,0),j=(0,1),则与向量2i j垂直的一个向量为()A. 2i-jB. i-2jC. i jD. i-j4.已知a=(1,2),b=(1,1),c=b-ka,且c⊥a,则C点坐标为5.已知∣a∣=3,∣b∣=4,且a与b夹角为60o,∣ka-2b∣=13,求k的值【讲练平台】例1 (1)在直角三角形ABC中,∠C=90o,AB=5,AC=4,求AB→ ?BC→(2)若a=(3,-4),b=(2,1),试求(a-2b)?(2a 3b)分析(1)中两向量AB→ 、BC→ 的模及夹角容易求得,故可用公式a?b=|a||b|cosθ求解.(2)中向量a、b坐标已知,可求a2、b2、a?b,也可求a-2b与2a 3b 的坐标,进而用(x1,y1)?(x2,y2)=x1x2 y1y2求解.解(1)在△ABC中,∠C=90o,AB=5,AC=4,故BC=3,且cos∠ABC=,AB→ 与BC→ 的夹角θ=π-∠ABC,∴AB→ ?BC→=-∣AB→ ∣∣BC→ ∣cos∠ABC=-5×3×=-9.(2)解法一 a-2b=(3,-4)-2(2,1)=(-1,-6),2a-3b=2(3,-4) 3(2,1)=(12,-5),(a-2b)?(2a 3b)=(-1)×12 (-6)×(-5)=18.解法二(a-2b)?(2a 3b)=2a2-a?b-6b2=2[32 (-4)2]-[3×2 (-4)×1]-6(22 12)=18.点评向量的数量积有两种计算方法,一是依据模与夹角来计算,二是依据坐标来计算.具体应用时可根据已知条件的特征来选择.值得注意的是,向量的夹角与向量的方向相关,(1)中∠ABC并非AB→ 与BC→ 的夹角.从第(2)问的解法二可以看到,向量数量积的运算律,类似于多项式乘法法则,但并不是所有乘法法则都可以推广到向量数量积的运算.如:a?(b c)=a?b b?c,而(a?b)c≠a(b?c).例2.已知O为三角形ABC所在平面内一点,且满足OA2 BC2=OB2 CA2,试用向量方法证明AB⊥OC .分析要证AB→ ⊥OC→ ,即证AB→ ?OC→=0,题设中不涉及AB→ ,我们用AB→=AO→ OB→ 代换,于是只需证AO→ ?OC→=BO→ ?OC→ .至此,我们可以尝试将已知等式转化成只含有OA→ 、OB→ 、OC→ 的形式.证明由已知得OA→ 2 BC→ 2=OB→ 2 CA→ 2,即OA→ 2 (BO→OC→ )2=OB→ 2 (CO→ OA→ )2,整理得AO→ ?OC→=BO→ ?OC→ ,即OC→ ?(BO→ OA→ )=0,故OC→ ?AB→=0.所以AB→ ⊥OC→ .点评用向量方法证明垂直问题,通常转化为证两个向量的数量积为0.本题已知式与求证式中向量的表达形式不统一,针对差异进行有目标的化归,是求解的关键所在.例3.设OA→=a=( 1, -1),OB→=b=(,3),试求∠AOB及δAOB的面积.分析已知a、b可以求|a|、|b|及a?b,进而求得∠AOB(即a与b的夹角),在求到三角形的两边及夹角后,可用公式:S=∣a∣∣b∣sinθ求面积.解设∠AOB=θ,δAOB的面积为S,由已知得:∣OA→ ∣=∣a∣==2 ,∣OB→ ∣=∣b∣=2 ,∴cosθ===.∴θ=.又S=∣a∣∣b∣sinθ=?2=2 ,即∠AOB=,δAOB的面积为2 .点评向量的数量积公式a?b=∣a∣∣b∣cosθ不仅可以用来求数量积,也可以用来求模与夹角.要注意该公式与三角形的面积公式的区别.此外,本题的解题方法可适用于更一般的情况(见变题).变题设δABC的面积为S,AB→=a,AC→=b,求证S=例4.已知a与b都是非零向量,且a 3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.分析要求夹角θ,必需求出cosθ;求cosθ需求出a?b与∣a∣∣b∣的比值(不一定要求出∣a∣、∣b∣的具体值).由已知的两个向量的垂直关系,可以得到∣a∣∣b∣与a?b的关系.解∵(a 3b)⊥(7a-5b),(a-4b)⊥(7a-2b),∴ (a 3b)?(7a-5b)=0,(a-4b)?(7a-2b)=0.即 7a2 16a?b-15b2=0,7a2-30a?b 8b2=0.两式相减,得 b2=2a?b.故 a2=b2 ,即∣a∣=∣b∣.∴cosθ==.∴θ=60o , a与b的夹角为60o .点评从基本量思想考虑,似乎没有具体的a与b,无法求出a与b的夹角,其实不然,cosθ是一个a?b与∣a∣∣b∣的比值,并不需要具体分别求出.类似于本题的条件表明,向量的数量积公式、向量的垂直关系都揭示了一种数量积与模的关系,就此意义而言,它们的本质是一致的相通的,可以相互转化和利用.在本题求解过程中注意,b2=2a?b不能得出b=2a,同样a2=b2也不能得到a=±b.【知能集成】基础知识:向量数量积的两种计算公式,向量垂直的充要条件.基本技能:求向量数量积、模及向量的夹角,向量垂直问题的论证与求解.基本思想:向量表达式的数量积与多项式乘法进行类比的思想,将线的垂直这一图形特征转化成方程解决的思想.求向量夹角时的设而不求的思想.【训练反馈】。

高中数学平面向量系列复习教案4

高中数学平面向量系列复习教案4

第四教时教材:向量、向量的加法、向量的减法综合练习目的:通过练习要求学生明确掌握向量的概念、几何表示、共线向量的概念,掌握向量的加法与减法的意义与几何运算。

过程:一、 复习:1︒向量的概念:定义、表示法、模、零向量、单位向量、平行向量、相等向量、共线向量2︒向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律例一、设a 表示“向东走3km ”,b 表示“向北走3km ”,则a + b 表示向东北走23km解:OB = OA +AB233322=+=OB (km ) 例二、试用向量方法证明:对角线互相平分的四边形是平行四边形。

证:由向量加法法则: AB = AO +OB ,由已知:AO =OC ∴AB =DC 即AB 与CD 平行且相等∴ABCD 为平行四边形例三、在正六边形中,若OA = a , OE = b ,试用 向量a 、b 将OB 、OC 、OD 解:设正六边形中心为P 则=++=+=OA OE OA PB OP OB )(a =+=PC OP OC a + b + a + b由对称性:OD = b + b + a二、有时间可处理“备用题”:例一、化简FA BC CD DF AB ++++解:FA BC CD DF AB ++++= FA DF CD BC AB ++++=FA DF CD AC +++=FA DF AD ++=FA AF += 0B a +b bCC E F例二、在静水中划船的速度是每分钟40,水流的速度是每分钟20,如果船从岸边出发,径直沿垂直与水流的航线到达对岸,那么船行进的方向应该指向何处?解:如图:船航行的方向是与河岸垂直方向成30︒夹角,即指向河的上游。

三、作业:上述三课中的练习部分(选)B游下游。

高中数学《平面向量》的教案

高中数学《平面向量》的教案

高中数学《平面向量》的教案人教版高中数学《平面向量》的教案作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

那么优秀的教案是什么样的呢?下面是小编帮大家整理的人教版高中数学《平面向量》的教案,欢迎阅读与收藏。

高中数学《平面向量》的教案篇1第一教时教材:向量目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。

过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。

二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。

例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。

2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为(印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。

记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。

的方向是任意的。

注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。

例:温度有零上零下之分,“温度”是否向量?答:不是。

因为零上零下也只是大小之分。

例:与是否同一向量?答:不是同一向量。

例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。

三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。

记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。

高中数学平面向量系列复习教案2

高中数学平面向量系列复习教案2

第二教时教材:向量的加法目的:要求学生掌握向量加法的意义,并能运用三角形法则和平行四边形法则作几个向量的和向量。

能表述向量加法的交换律和结合律,并运用它进行向量计算。

过程:一、复习:向量的定义以及有关概念强调:1︒向量是既有大小又有方向的量。

长度相等、方向相同的向量相等。

2︒正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置。

二、 提出课题:向量是否能进行运算?1. 某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AC BC AB =+2. 若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:AC BC AB =+ 3. 某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+ 4. 船速为AB ,水速为BC , 则两速度和:AC BC AB =+提出课题:向量的加法三、1.定义:求两个向量的和的运算,叫做向量的加法。

注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则:强调:1︒“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点2︒可以推广到n 个向量连加 3︒a a a =+=+004︒不共线向量都可以采用这种法则——三角形法则A B CA BCABCAA AB B BC C a a ab b a a3.例一、已知向量a 、b ,求作向量a +b 作法:在平面内取一点, 作a OA = b AB = 则b a OB +=4.加法的交换律和平行四边形法则上题中b +a 的结果与a +b 是否相同 验证结果相同 从而得到:1︒向量加法的平行四边形法则 2︒向量加法的交换律:a +b =b +a 5. 向量加法的结合律:(a +b ) +c =a + (b +c )证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+ a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。

高中数学解题技巧复习教案(2):平面向量 教案

高中数学解题技巧复习教案(2):平面向量 教案

第二讲 平面向量 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.2.平面向量的坐标运算,平面向量的数量积及其几何意义.3.两非零向量平行、垂直的充要条件.4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =命题意图:本题考查能够结合图形进行向量计算的能力.解:22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,故选A .例2.在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积.解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+.例3.如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( )(A )BA BC 21+-(B )BA BC 21--(C )BA BC 21-(D )BA BC 21+命题意图: 本题主要考查向量的加法和减法运算能力.解:BA BC BD CB CD 21+-=+=,故选A.例4.与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( )(A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54(C )⎪⎭⎫- ⎝⎛31,322(D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当222274134312525,,cos ,.55271432255a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫⎝⎭=-=== ⎪⋅⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭时当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-===- ⎪⋅⎝⎭⎛⎫时故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选 B. 例5.设向量a 与b 的夹角为θ,且)3,3(=a ,)1,1(2-=-a b ,则=θcos __.命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由()2311,1,2.231 2.xx b y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得23cos ,33a ba b a b ⋅⨯===⋅+()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = () (A ) ⎪⎪⎭⎫ ⎝⎛21,23(B )⎪⎪⎭⎫ ⎝⎛23,21(C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩故选B.1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+=(C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D).点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.例8.设函数f(x)=a-b,其中向量a=(m,cos2x),b=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点⎪⎭⎫ ⎝⎛2,4π,(Ⅰ)某某数m 的值;(Ⅱ)求函数f(x)的最小值及此时x 的值的集合.解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,例9.设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)某某数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x的最小值为110.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ.(I )求θ的取值X 围;(II )求函数2()2sin 24f θθθ⎛⎫=+- ⎪⎝⎭π的最大解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+- ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.例11.已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值X 围;解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5,则(2,4)AC =-,∴cos cos ,A AC AB ∠=<=sin ∠A=;(2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值X 围是25(,)3+∞例12.在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos C C C =∴=又22sin cos 1C C +=解得1cos 8C =±.tan 0C >,C ∴是锐角.1cos 8C ∴=.(2)52CB CA =,5cos 2ab C ∴=,20ab ∴=.又9a b +=22281a ab b ∴++=.2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈. (Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx) =sin2x -2sinxcosx+3cos2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),(2k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例14.已知向量a =(sinθ,1),b =(1,cosθ),-π2<θ<π2. (Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值.命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sinθ+cosθ=0,由此得 tanθ=-1(-π2<θ<π2),所以 θ=-π4; (Ⅱ)由a =(sinθ,1),b =(1,cosθ)得|a +b |=(sinθ+1)2+(1+cosθ)2=3+2(sinθ+cosθ) =3+22sin(θ+π4), 当sin(θ+π4)=1时,|a +b|取得最大值,即当θ=π4时,|a +b|最大值为2+1. 例15.如图,三定点(2,1),(0,1),(2,1);A B C --三动点D 、E 、M 满足,,AD t AB BE tBC ==,[0,1].DM tDE t =∈ (I )求动直线DE 斜率的变化X 围;(II )求动点M 的轨迹方程。

高中数学平面向量教学设计

高中数学平面向量教学设计

高中数学平面向量教学设计一、教学任务及对象1、教学任务本教学设计旨在围绕高中数学课程中的平面向量单元,使学生掌握平面向量的基本概念、运算法则和几何意义。

教学任务包括:理解向量的定义及表示方法;掌握向量的加减、数乘、点积和叉积运算;应用向量知识解决几何问题;培养逻辑思维、空间想象及问题解决能力。

2、教学对象教学对象为高中二年级学生,他们在之前的学习中已掌握基本的几何知识和代数运算,具有一定的空间想象能力和逻辑思维能力。

此外,学生对数学学习保持较高的兴趣,但在解决实际问题时,可能缺乏将理论知识与实际问题相结合的能力。

因此,在教学过程中,需针对学生的实际情况,采用适当的教学策略,提高他们的实践应用能力。

二、教学目标1、知识与技能(1)理解平面向量的定义,掌握向量、零向量、单位向量等基本概念。

(2)掌握平面向量的坐标表示方法,能够将几何问题转化为代数问题。

(3)熟练进行平面向量的加减、数乘、点积和叉积运算,并理解其几何意义。

(4)运用向量知识解决几何问题,如向量平行、垂直、夹角等。

(5)培养运用向量方法分析问题、解决问题的能力,提高逻辑思维和空间想象能力。

2、过程与方法(1)通过自主探究、合作学习等方式,使学生参与到向量知识的学习过程中,培养自主学习能力。

(2)运用实际问题引入向量概念,让学生体会数学知识在实际生活中的应用,提高问题解决能力。

(3)采用直观演示、案例分析等方法,引导学生理解向量运算的几何意义,增强空间想象能力。

(4)通过课堂讨论、课后作业等形式,巩固所学知识,提高学生运用向量知识解决问题的能力。

3、情感,态度与价值观(1)激发学生对数学学习的兴趣,使其在探究向量知识的过程中,体验数学的乐趣。

(2)培养学生严谨、细致的学习态度,使其在面对复杂问题时,能够保持冷静、有耐心地解决问题。

(3)通过小组合作学习,培养学生团队协作精神,提高沟通与交流能力。

(4)引导学生正确看待数学学习,认识到数学知识在日常生活和未来发展中的重要性,树立正确的价值观。

高中数学解题技巧复习教案(2):平面向量

高中数学解题技巧复习教案(2):平面向量

第二讲平面向量【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.2.平面向量的坐标运算,平面向量的数量积及其几何意义.3.两非零向量平行、垂直的充要条件.4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式.例1已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD =命题意图:本题考查能够结合图形进行向量计算的能力.解:22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,故选A .例2.在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积.解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+.例3.如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( )(A )BA BC 21+- (B ) BA BC 21--(C ) BA BC 21- (D )BABC 21+命题意图: 本题主要考查向量的加法和减法运算能力.解:BA BC BD CB CD 21+-=+=,故选A.例4.与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( )(A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54(C )⎪⎭⎫-⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫⎝⎛-31,322命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-===- ⎪⋅⎝⎭⎛⎫时故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __.命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解:()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由()2311,1,2.231 2.x x by y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得23cos ,33a b a b a b⋅⨯===⋅+例6.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = () (A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D )()0,1命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩故选B.例7.设平面向量1a 、2a 、3a 的和1230a aa ++=.如果向量1b 、2b 、3b ,满足2i ib a =,且i a 顺时针旋转30o后与i b 同向,其中1,2,3i =,则( )(A )1230b bb -++= (B )1230b b b -+=(C )1230b bb +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选 D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D).点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.例8.设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合.解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,例9. 设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1.例10.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+- ⎪⎝⎭π的最大解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.例11. 已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0)(1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围;解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>==sin ∠A ;(2)∠A为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例12.在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sintan cos CC C=∴=又22sin cos 1C C += 解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=.(2)52CB CA =, 5cos 2ab C ∴=, 20ab ∴=.又9a b += 22281a ab b ∴++=. 2241a b ∴+=. 2222cos 36c a b ab C ∴=+-=. 6c ∴=.例13.设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),(2k dπ=-k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例14.已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ; (Ⅱ)求|a +b |的最大值.命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a+b|=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例15.如图,三定点(2,1),(0,1),(2,1);A B C --三动点D 、(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

“平面向量复习课”教学案例分析.doc

“平面向量复习课”教学案例分析.doc

“平面向量复习课”教学案例分析【教案设计说明】1、平面向最作为i种工具,在中学数学中有着重要的作用。

平面向量具有一套区好的运算性质。

在实际的教学中应把平血向量的概念及运算性质作为基础,向量的应用作为主线, 逐步熟悉以向量为工具,把几何问题转化为简单的向量运算,变抽象的逻辑推理为具体的向量运算。

本节课通过平而向量这一章复习,帮助学生梳理学习过的知识,并把向量与三角、数列、解几结合起来,提高学生综合解题能力。

2、以学生为主体,问题探索为主线,体现课改的理念。

教师激发学生的学习主动性,向学生提供充分从事数学活动的机会,帮助他们在自主探索与合作交流的过程中,真正理解和把握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。

山于本教学班是区重点班级,学生具有-定的探究能力,因而,本课的设计主要在转变学生学习方式、培养探究能力方而作一尝试。

【教案】【教学内容】新教材,高三复习。

【知识与技能】向量的概念及运算法则。

【过程能力与方法】教学目标:把握向量的运算法则并能应用。

教学重点:向量的综合应用。

教学难点:用向量知识,实现儿何与代数之间的等价转化。

能力练习:以向量沟通代数与儿何之间的桥梁,培养学生综合分析问题解决问题的能力。

【态度情感与价值观】在向量综合应用的教学过程中,渗透数形结合思想及等价转化思想,培养学生思维的广阔性和严谨性。

【教学模式】探究讨论式【探究过程】一、知识梳理,预备铺垫1.平而向量的表示方法:儿何法与坐标法。

几何法是用向量长度和方向来表示平面向昂:,坐标法是用有序实数对来表示平面向量。

平面内任一向量石还有下列表示方法:用与之共线非零向量5表示,k液nQ。

4=为@1+必林(瓦力为平面基底,矽2色人)。

事=狞+方(勺顷Q2.向景坐标运算法则:(1)设4 = "1'』1), 8=(",/2),则&±8 = "1±",』1±』2)(>)族=(初,初),・8 = 1四+加2二、概念辨析,巩固提高下列命题中正确的是()若歹〃5, b亦则万〃B;若雨与②是共线向量,则a, b, c, d四点必共线;若阡2件则届>电若灸*则反〃石.(目的在于帮助学生弄清轻易混淆的几个问题,帮助学生区别平面向量性质与平面几何性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量》复习课教学设计
成都棠湖外国语学校陈亮
【教学内容及解析】
本课时是人教社普通高中课程标准实验教科书A版必修(4)第二章《平面向量》的复习课。

它是对本章内容的总结与升华;这节课既要展示平面向量的形的特性,又要具备数的特性,因此向量的代数形式的运算与其几何意义是紧密联系在一起的。

向量是沟通代数,几何,三角函数的工具,向量的解题方法有向量法和坐标法.而要熟练应用这些方法,学生应该对相应的基本概念比较清楚,因此在复习时,应该在引导学生得到结果基础之上,让同学理解相关的意义和了解其实际背景.应该把几何的直观性和向量的运算有机的结合在一起。

【教学目标】
1.复习向量的有关概念;
2.会向量的线性运算,会向量数乘的运算,并体会其几何意义.
3.学会平面向量的正交分解及其坐标表示以及相关应用.
4.会求平面向量的数量积,并会应用其判断两个平面向量的垂直关系。

5.能够用向量解决一些具体问题,如平面几何中的一些问题和物理中的一些问题.领会向量作为工
具性的魅力。

【教学重难点】
1.重点是让学生学会向量的相关概念和向量的运算
2.难点是如何用向量的方法解决一些问题.
【教辅工具】
教材、教参、多媒体或实物投影仪、尺规
(三)教学过程
【教学反思】
本节复习课在设计中主要体现对本章知识的回顾和梳理,在教学过程中,力求做到以下几点:(1)关注解题方法产生的思维过程
引导学生探究如何将把问题转化为向量问题,揭示解题方法产生的的思维过程,让学生体会解题思路的形成过程和数学思想方法的运用,从而提高学生综合运用知识分析和解决问题的能力.
(2)强化学生的应用意识
一是培养学生利用所学数学知识、用数学的思维与观点去观察和分析现实生活现象的习惯和意识,强化学生的应用意识;二是为学生提供充足的动手操作的机会,一旦形成解决问题的思路,后续的解题过程则放手让学生独立完成,让学生体验问题的解决过程,并在此过程中锻炼与提高数学能力.
(3)引导学生探究解题规律
指导学生做好解题后的反思,总结解题规律,从而培养学生理性的、条理的思维习惯,形成对通性通法的归纳意识.。

相关文档
最新文档