2020年11月稽阳联谊学校高三联考数学试题

合集下载

2020.11 浙江省稽阳联考数学试题(含答案)

2020.11 浙江省稽阳联考数学试题(含答案)

y
y
O
O
x
C. 4
y O x
D. 1 2 ()
y
O
x
x
A
B
C
D
5. 已知 a 0,b 0 ,则“ logb 2 loga 2 0 ”是“| a 1|| b 1| ”的
()
A.充要条件
B.必要不充分条件
1
1
C.充分不必要条件
D.既不充分也不必要条件
6. 已知某几何体是由正四棱柱割去两部分后得到,其三视图
AB
y
A EP
交 C1 的两渐近线于点 E, F , O 是坐标原点,则 OE OF 的值为( )
O
B
x
3
A.
4 4
C.
3
B. 1 9
D.
16
第7题图 F
8. 四面体 ABCD 中,AB BC,CD BC, BC 2,且异面直线 AB 与 CD 所成的角为 60 .
若四面体 ABCD 的外接球半径为 5 ,则四面体 ABCD 的体积的最大值为 ( )
(其中 R 表示球的半径).
第Ⅰ卷(选择题,共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个 选项中,只有一项是符合题目要求的。
1.已知集合 M {x | 1 x 4}, N {x | x2 x 6 0},则 M N
(
)
A. {x | 1 x 4} B. {x | 1 x 3} C. {x | 2 x 3} D. {x | 2 x 4}
A. 2e
B. 2e 1
C. 3e
()
D. 3e 1
第Ⅱ卷(非选择题部分 共 110 分)

2020届高三11月联考数学(理)试题(解析版)

2020届高三11月联考数学(理)试题(解析版)

2020届高三11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案.【详解】 根据题意,31211211212i i i i i i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( )A .{|0}x x ≤B .{|2 3 0}x x x ≤≤≤或C .{|23}x x ≤≤D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r ,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( ) A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】 根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43-B .23-C .32-D .34- 【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD ,所以113E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 11)3=1=,所以几何体的体积为2. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( ) A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭ 【答案】C 【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =-- 代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x '+-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩解得1b <,而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案. 【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C =所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 即2357sin 3ABπ=,所以19AB =. 所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 252222ABC S CA CB C =⋅⋅=⨯⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值.【答案】(1)证明见解析;(2 【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ , 所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H ,所以11242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭,所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭, 设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln1mxf x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。

2020届百校联盟TOP20高三上学期11月联考数学(理)试题(解析版)

2020届百校联盟TOP20高三上学期11月联考数学(理)试题(解析版)

2020届百校联盟TOP20高三上学期11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案【详解】 根据题意,31211211212i i i ii i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð() A .{|0}x x ≤ B .{|2 3 0}x x x ≤≤≤或 C .{|23}x x ≤≤ D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r 的充分条件.因为||5a λ=r,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( )A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43B .23C .32D .34-【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD , 所以1313E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 13(31)3=31=, 所以几何体的体积为32. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =.故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+11111212231nn ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=, (2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解. 11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<,BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD 所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( )A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭【答案】C【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==, 所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF =所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z . 因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大,由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =--代入120,440,a b a b ++≤⎧⎨-+≤⎩ 可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b bb b ⎧---<⎪⎨<⎪⎩ 解得1b <, 而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2 【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案.【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C = 所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠,2sin 3ABπ=,所以AB =所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =,所以11sin 2522ABC S CA CB C =⋅⋅=⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,1AA ,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值. 【答案】(1)证明见解析;(25【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ ,所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H , 所以11224OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭, 所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭,设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln 1mx f x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2 【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m=, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a=. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题一、单选题1.已知全集{}1,2,3,4,5,6U =,{}1,2,3A =,{}2,3,4,5B =,则图中阴影部分对应的集合为()A .{}1B .{}2,3C .{}4,5D .{}62.已知1e ,2e 是不共线的单位向量,若122a e e =+ ,12b e e λ=- ,且//a b,则λ=()A .2B .2-C .12-D .123.下列四个函数中,以π,02⎛⎫⎪⎝⎭为其对称中心,且在区间π0,2⎛⎫ ⎪⎝⎭上单调递增的是()A .cos y x =B .tan y x =C .sin y x =D .cos y x=4.已知函数()()1,0ln 1,0x x f x x x --≤⎧=⎨+>⎩,则关于x 的不等式()1f x ≤的解集为()A .(][),2e,-∞-+∞B .[]2,e -C .(][),2e 1,-∞--+∞ D .[]2,e 1--5.“直线10ax by +-=与圆222x y +=有公共点”是“221a b +≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.某袋子中有大小相同的4个白球和2个红球,甲乙两人先后依次从袋中不放回取球,每次取1球,先取到红球者获胜,则甲获胜的概率()A .815B .45C .35D .237.已知双曲线:()222210,0x y a b a b-=>>,过()2,0M a -的直线分别交双曲线左右两支为,A B ,A 关于原点O 的对称点为C ,若π22BMO MBC ∠∠+=,则双曲线的离心率e =()ABC .D .8.已知()f x 是定义在R 上且不恒为0的连续函数,若()()()()f x y f x y f x f y ++-=,1=0,则()A .()02f =-B .()f x 为奇函数C .()f x 的周期为2D .()22f x -≤≤二、多选题9.下列说法正确的是()A .若随机变量18,4B ξ⎛⎫~ ⎪⎝⎭,则()32D ξ=B .残差平方和越大,模型的拟合效果越好C .若随机变量()2,N ημσ~,则当μ减小时,()P ημσ-<保持不变D .一组数据的极差不小于该组数据的标准差10.某校南门前有条长80米,宽8米的公路(如图矩形ABCD ),公路的一侧划有16个长5米宽2.5米的停车位(如矩形AEFG ),由于停车位不足,放学时段造成道路拥堵,学校提出一个改造方案,在不改变停车位的大小和汽车通道宽度的条件下,通过压缩道路边绿化带及改变停车位方向来增加停车位,记绿化带被压缩的宽度3AM =(米),停车位相对道路倾斜的角度E A M ∠α''=,其中ππ,63α⎛⎫∈ ⎪⎝⎭,则()A .4cos 5α=B .35=cos αC .该路段改造后的停车位比改造前增加8个D .该路段改造后的停车位比改造前增加9个11.如图,ABCD 是边长为2的正方形,1AA ,1BB ,1CC ,1DD 都垂直于底面ABCD ,且1111333322DD AA CC BB ====,点E 在线段1CC 上,平面1BED 交线段1AA 于点F ,则()A .1A ,1B ,1C ,1D 四点不共面B .该几何体的体积为8C .过四点1A ,1C ,B ,D 四点的外接球表面积为12πD .截面四边形1BED F 的周长的最小值为10三、填空题12.已知i 为虚数单位,若94i z z z z ⋅+-=+,则z =.13.已知等比数列{}n a 的前n 项和为n S ,若()231nn n S S =+,则62S S =.14.已知函数()1e e sin212x xf x x -=--+,若对任意()1,x ∈+∞,()()ln 2f a x f x +-<,则实数a 的取值范围为.四、解答题15.如图,四边形ABCD 为圆台12O O 的轴截面,2AB CD =,圆台的母线与底面所成的角为60︒,母线长为2,P 是弧 AB上的点,CP E 为AP 的中点.(1)证明://DE 平面BCP ;(2)求平面ACP 与平面BCP 夹角的余弦值.16.如图,ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,直线l 与ABC V 的边AB ,AC分别相交于点D ,E ,设ADE θ∠=,满足()()1cos cos 2a Bb Ac θθ-++=.(1)求角θ的大小;(2)若AE =ADE V 的面积为ADE V 的周长.17.已知函数()()2ln f x x x a =+.(1)当0a =时,求曲线()y f x =在点()(),e f e 处的切线方程;(2)若()f x 有两个极值点,求a 的取值范围.18.已知椭圆C :2212x y +=的左右顶点分别为A ,B ,左右焦点分别为1F ,2F ,O 为坐标原点,E 为椭圆在第一象限上的一点,直线EA ,EB 分别交y 轴于点P ,Q .(1)求OP OQ ⋅的值;(2)在直线2F Q 上取一点D (异于2F ),使得1OD =.(ⅰ)证明:P ,D ,1F 三点共线;(ⅱ)求2PDF 与12PF F 面积之比的取值范围.19.每个正整数k 有唯一的“阶乘表示”为(1a ,2a ,…,m a ),这些i a 满足121!2!!m k a a m a =⋅+⋅+⋅⋅⋅+⋅,其中每个()*1,2,3,,N i a i m m =⋅⋅⋅∈都是整数,且0i a i ≤≤,0m a >.(1)求正整数3,4,5,6的“阶乘表示”;(2)若正整数k 对应的“阶乘表示”为(1a ,2a ,…,m a ),正整数k '对应的“阶乘表示”(1a ',2a ',…,s a ')()'''12,,,s a a a ,其中m s >,求证:k k '>;(3)对正整数k ,记()*,N !n k b n m n n ⎡⎤=≤∈⎢⎣⎦,表示不超过x 的最大整数,数列(){}1n n b -前n 项和为n S ,若2024m k S -=,当k 最小时,求m a 的值.。

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考信息技术答案解析

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考信息技术答案解析

绝密★启用前
浙江省绍兴市稽阳联谊学校
2021届高三毕业班上学期11月联考质量检测信息技术试题参考答案解析
2020年11月一、选择题
第1题:
【答案】A。

【解析】信息具有真伪性,虚假的美容广告是假信息,故A选项是正确的。

汉字在计算机内部是以二进制进行处理的,故B选项错误。

信息不以计算机作为存储与处理的工具时,可以采用其他各种编码,故C错误。

语言、文字、图像等都是信息的常用表达方式,而微信是信息的常用表达技术而不是表达方式,故D 错误。

第2题:
【答案】B。

【解析】POP3协议用于接收E-Mail;IE 浏览器可浏览但不能直接编辑网页文件;在IE浏览器中清空历史纪录时无需使用HTTP协议;将网页添加到收藏夹时会弹出输入名称的对话框,可见名称是可以重命名。

故本题的答案为B。

第3题:
【答案】C。

【解析】①是通过人工设定完成,不涉及人工智能;②其实是读取编码并以此编码为线索在相应数据库中找到对应的价格,不涉及人工智能;③和④因为涉及分析和判断,属于人工智能;⑤只是拍摄获取,不涉及人工智能;故本题的答案为C。

第4题:
【答案】C。

【解析】上述字符共需要13B的存储空间(空格也是一个字符);字符“Z”的内码用十六进制表示为“5A”;字符“!”的内码是“A3 A1”;字符“庆70”的
1。

人教版2020届高三数学上学期11月联考试题 理新人教版

人教版2020届高三数学上学期11月联考试题 理新人教版

2019届高三数学上学期11月联考试题 理一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是正确的, 将正确答案填写在答题卷相应位置上.) 1.已知集合A ={x |x 2-2x -3≤0},B ={x |4x≥2},则A ∪B =( ) A.B.C. (-∞,3]D. [-1,+∞)2.已知i 是虚数单位,复数z 满足z (3+4i )=1+i ,则复平面内表示z 的共轭复数的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.若1021⎪⎭⎫ ⎝⎛=a ,2151b -⎪⎭⎫ ⎝⎛=,1031log c =,则a ,b ,c 大小关系为( ) A. a >b >c B. a >c >b C. c >b >a D. b >a >c 4.用数学归纳法证明1+21+31+…+1n 21-<n (n ∈N *,n >1),第一步应验证不等式( ) A.2211<+ B. 331211<++ C.34131211<+++ D. 231211<++ 5.两曲线x y =,2x y =在x ∈[0,1]内围成的图形面积是( )A.31 B. 32C. 1D. 2 6若cos (8π-α)=61,则cos (43π+2α)的值为( )A. 1817 B. 1817-C.1918 D. 1918-7.已知等差数列{a n }的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A. 1B. 6C. 7D. 6或78.已知函数f (x )=ln x +2x -6的零点位于区间(m -1,m )(m ∈Z )内, 则m 3m 1log 27+ =( )A. 1B. 2C. 3D. 49.已知命题P :若△ABC 为钝角三角形,则sin A <cos B ;命题q :∀x ,y ∈R ,若x +y ≠2,则x ≠-1或y ≠3,则下列命题为真命题的是( )A. p ∨(¬q )B. (¬p )∧qC. p ∧qD. (¬p )∧(¬q )10.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB |=2,OC =OB OA 3235-,若若M 是线段AB 的中点,则 OM OC •的值为( )A. 3B. 23C. 2D. -311.下面四个推理中,属于演绎推理的是( )A. 观察下列各式:72=49,73=343,74=2401,…,则72015的末两位数字为43B. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,可得偶函数的导函数为奇函数C. 在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积之比为1:8D. 已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应12.定义在(0,+∞)的函数f (x )的导函数)(/x f 满足08)(/3>+x f x ,且f (2)=2,则不等式的解集为( )A. (-∞,2)B. (-∞,ln2)C. (0,2)D. (0,ln2)二、填空题(本大题共4小题,每小题5分,共20分,将正确答案填写在答题卷相应位置.)13.在等比数列{}n a 中,22=a ,且451131=+a a ,则31a a +的值为______. 14.曲线f (x )=x ln x 在点P (1,0)处的切线l 与两坐标轴围成的三角形的面积是 ______ .15.已知O 为坐标原点,点A (5,-4),点M (x ,y )为平面区域⎪⎩⎪⎨⎧≤<≥+2y 12x y x 内的一个动点,则OM OA •的取值范围是 ______ .16设向量OA =(1,-2),OB =(a ,-1),OC =(-b ,0),其中O 为坐标原点,a >0,b >0,若A 、B 、C 三点共线,则ba 21+的最小值为 ______ . 三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题(含答案)

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题(含答案)

浙江省稽阳联谊学校2025届高三上学期11月联考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5,6},A ={1,2,3},B ={2,3,4,5},则图中阴影部分对应的集合为( )A. {1}B. {2,3}C. {4,5}D. {6}2.已知e 1,e 2是不共线的单位向量,若a =e 1+2e 2,b =λe 1−e 2,且a //b ,则λ=( )A. 2B. −2C. −12D. 123.下列四个函数中,以(π2,0)为其对称中心,且在区间(0,π2)上单调递增的是( )A. y =cos xB. y =tan xC. y =sin xD. y =|cos x|4.已知函数f(x)={−x−1,x ≤0ln (x +1),x >0,则关于x 的不等式f(x)≤1的解集为( )A. (−∞,−2]∪[e,+∞) B. [−2,e]C. (−∞,−2]∪[e−1,+∞)D. [−2,e−1]5.“直线ax +by−1=0与圆x 2+y 2=2有公共点”是“a 2+b 2≥1”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.某袋子中有大小相同的4个白球和2个红球,甲乙两人先后依次从袋中不放回取球,每次取1球,先取到红球者获胜,则甲获胜的概率( )A. 815B. 45C. 35D. 237.已知双曲线:x 2a 2−y 2b 2=1(a >0,b >0),过M(−2a,0)的直线分别交双曲线左右两支为A ,B ,A 关于原点O的对称点为C ,若2∠BMO +∠MBC =π2,则双曲线的离心率e =( )A.2B.3C. 22D. 238.已知f(x)是定义在R 上且不恒为0的连续函数,若f(x +y)+f(x−y)=f(x)f(y),f(1)=0,则( )A. f(0)=1B. f(x)为奇函数C. f(x)的周期为2D. −2≤f(x)≤2二、多选题:本题共3小题,共18分。

2020年稽阳联考参考答案

2020年稽阳联考参考答案

2020年11月稽阳联考数学参考答案及评分标准第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各 题 详 细 参 考 解 答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<<,选B.2. 解:由于(1i)11222i i i z i +===-+-,则||2z =.选B. 3. 解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A. 4. 解:由于sin ()2cos x xf x x=-为偶函数, 且()f x 在0x =右侧取值正,故选A.5. 解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()1211112247222S +⋅⋅=⨯++⨯=11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选 A.7. 解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立003412x x y y y +=⎧⎪⎨=⎪⎩得点E ⎫,同理F ,则()()()()22222200000048361213422OE OF x y y y -⋅=+==---,故选B. 8. 解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60,所以60ABE ∠=.设三棱柱底面三角形ABE ∆的外接圆半径为r ,则2r ==,1A2sin 6023AE r ==222222cos6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅=,所以22122AB BE AB BE AB BE AB BE AB BE =+-⋅≥⋅-⋅=⋅所以111sin 60332A BCD ABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤ 故四面体ABCD 的体积的最大值为故选A. 9. 解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误. 设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+. 故222211()()22p q m n p q m n m n m nS S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d +---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m nS S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确. 故选D. 注:本题也可用特殊数列代入,利用排除法求解.10. 解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e+-≤+-- 从而1(1)2a b e +≥+,从而211b a e+≤+.另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e 上单调递增,在1(,)e+∞上单调递减,从而1()()0f x f e ≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

浙江省绍兴市稽阳联谊学校2021届高三上学期11月联考数学试题 答案

浙江省绍兴市稽阳联谊学校2021届高三上学期11月联考数学试题 答案

2020年11月稽阳联考数学参考答案及评分标准第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各题详细参考解答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<< ,选B.2.解:由于(1i)11222i i i z i +===-+-,则||2z =.选B.3.解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域为如图所示的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A.4.解:由于sin ()2cos x x f x x=-为偶函数,且()f x 在0x =右侧取值正,故选A.5.解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()1211112247222S +⋅⋅=⨯+⋅+⨯=+.11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选A.7.解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立00341232x x y y y x +=⎧⎪⎨=⎪⎩得点E ⎛⎫,同理F,则()()()()22222200000048361213422OE OF x y y y -⋅=+==--- ,故选 B.8.解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60 ,所以60ABE ∠= .设三棱柱底面三角形ABE ∆的外接圆半径为r ,则512r =-=,2sin 6023AE r == ,再由余弦定理,222222cos 6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅= ,所以22122AB BE AB BE AB BE AB BE AB BE=+-⋅≥⋅-⋅=⋅所以1113sin 60233326A BCD ABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤ ,故四面体ABCD 的体积的最大值为23.故选A.9.解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误.设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.故222211()()22p q m n p q m n m n m n S S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d +---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m n S S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确.故选D.注:本题也可用特殊数列代入,利用排除法求解.10.解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e +-≤+--从而1(1)2a b e +≥+,从而211b a e+≤+.另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e 上单调递增,在1(,)e +∞上单调递减,从而1()()0f x f e ≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

浙江省稽阳联谊学校2024届高三上学期11月联考数学试题含解析

浙江省稽阳联谊学校2024届高三上学期11月联考数学试题含解析

2023年11月稽阳高三联考数学试题卷(答案在最后)考生须知:1.本试题卷分选择题和非选择题两部分,满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束后,只需上交答题卷.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合01x A x x ⎧⎫=<⎨⎬-⎩⎭,112B x x ⎧⎫=->⎨⎩⎭,则A B ⋃=()A.1,12⎛⎫⎪⎝⎭B.()3,1,2⎛⎫-∞⋃+∞⎪⎝⎭C.13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭D.30,2⎛⎫ ⎪⎝⎭【答案】B 【解析】【分析】解出分式不等式和绝对值不等式,根据并集含义即可得到答案.【详解】(){}{}010011xA xx x x x x x ⎧⎫=<=-<=<<⎨⎬-⎩⎭,112x ->即112x ->或112x -<-,解得12x <或32x >,则1{|2B x x =<或3}2x >,则()3,1,2A B ⎛⎫-∞⋃+∞⋃ ⎝=⎪⎭,故选:B.2.已知复数z 满足()12i 3i z -=+,则z z ⋅=()A.175i+ B.45C.2D.1【答案】C 【解析】【分析】根据复数除法运算结合共轭复数的概念即可.【详解】由题意得3i (3i)(12i)17i12i (12i)(12i)5z ++++===--+,则17i 17i 5025525z z -+⋅=⋅==,故选:C.3.已知平面向量a ,b ,c 均为单位向量,则“3a b c +-= ”是“a 与b共线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用向量加法的三角形不等式,结合充分条件、必要条件的定义判断即得.【详解】平面向量a ,b ,c 均为单位向量,则||||||||3a b c a b c +-≤++= ,当且仅当,,a b c -同向共线时取等号,则当3a b c +-= 时,a 与b 共线,反之,a 与b共线并且方向相反时,1a b c +-= ,所以“3a b c +-= ”是“a 与b共线”的充分不必要条件,A 正确.故选:A4.我国魏晋时期的数学家刘徽创造性的提出了“割圆术”,刘徽认为圆的内接正n 边形随着边数n 的无限增大,圆的内接正n 边形的周长就无限接近圆的周长,并由此求得圆周率π的近似值.如图当6n =时,圆内接正六边形的周长为6r ,故6π2rr≈,即3π≈.运用“割圆术”的思想,下列估算正确的是()A.12n =时,π12sin15≈B.12n =时,π6sin15≈C.12n =时,π12cos15≈D.12n =时,π24cos15≈【答案】A 【解析】【分析】求出正十二边形的周长L ,可得出π2Lr≈,即可得解.【详解】设圆的内接正十二边形被分成12个如图所示的等腰三角形,其顶角为30 ,即30AOB ∠= ,作OH AB ⊥于点H ,则H 为AB 的中点,且15AOH ∠=,因为OA OB r ==,在Rt AOH △中,sin AH AOH OA∠=,即sin15AH r =,所以,sin15AH r = ,则22sin15AB AH r == ,所以,正十二边形的周长为122sin1524sin15L r r =⨯⨯=,所以,24sin15π12sin1522L r r r≈==.故选:A.5.已知等比数列{}n a 满足2342a a a +=,()()235111a a a ++=-,则1a 的值不可能...是()A.2-B.14C.1D.2【答案】D 【解析】【分析】根据题意求出首项和公比即可得解.【详解】设公比为()0q q ≠,由2342a a a +=,()()235111a a a ++=-,得()()23111241112111a q a q a qa q a q a q ⎧+=⎪⎨++=-⎪⎩,解得112q a =-⎧⎨=-⎩或111q a =-⎧⎨=⎩或121q a =⎧⎨=⎩或1214q a =⎧⎪⎨=⎪⎩.故选:D .6.第33届夏季奥运会预计在2024年7月26日至8月11日在法国巴黎举办,这届奥运会将新增电子竞技和冲浪两个竞赛项目以及滑板等5个表演项目.现有三个场地A ,B ,C 分别承担竞赛项目与表演项目比赛,其中电子竞技和冲浪两个项目仅能A ,B 两地承办,且各自承办其中一项.5个表演项目分别由A ,B ,C 三个场地承办,且每个场地至少承办其中一个项目,则不同的安排方法有()A.150种 B.300种C.720种D.1008种【答案】B【解析】【分析】根据组合数与排列数的计数方法,结合分类分步两个基本原理求解即可得的答案.【详解】首先电子竞技和冲浪两个项目仅能,A B 两地举办,且各自承办其中一项有22A 2=种安排;再次5个表演项目分别由,,A B C 三个场地承办,且每个场地至少承办其中一个项目则有3211253534C A C C C 150+=种,故总数为2150300⨯=种不同的安排方法.故选:B.7.已知()()221x x b f x b -=∈+R 是奇函数,实数m 、n 均小于1,e 2.71828= 为自然对数底数,且22log 2e 1e m b -+-=,22log 4e 14e n b -+-=,则()A.0m n <<B.0n m << C.01m n <<< D.01n m <<<【答案】B 【解析】【分析】利用函数奇偶性的性质可得出1b =,由已知可得出()22log 1e 1m -=-,()22log 12e 1n -=-,由()()22e 12e 1-<-结合对数函数的单调性可得出11m n -<-,可得出()()20m n m n -+-<,可得出n m <,并推导出1m <-、1n <-,即可得解.【详解】对任意的x ∈R ,210x+>,则函数()()221x x bf x b -=∈+R 的定义域为R ,因为函数()()221x x b f x b -=∈+R 为奇函数,则()1002b f -==,可得1b =,所以,()2121x x f x -=+,()()()()22121122112221x xx xx xx x f x f x --------====-+++,则函数()f x 为奇函数,合乎题意,因为22log 12e 1e m -+-=,22log 14e 14e n -+-=,则()222log 1e 2e 1e 1m -=-+=-,()222log 14e 4e 12e 1n -=+=--,因为()()22e 12e 1-<-,则22log 1log 1m n -<-,所以,11m n -<-,即()()2211m n -<-,即22220m m n n --+<,即()()20m n m n -+-<,因为1m <,1n <,则2m n +<,则20m n +-<,故0m n ->,即n m <,又因为()22log 1e 11m -=->,即12m ->,可得12m -<-或12m ->,则1m <-或3m >,即1m <-,同理可知,1n <-,故0n m <<.故选:B.8.椭圆2222Γ:1(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,过点F 的倾斜角为45 的直线l 交椭圆Γ于点M ,N (点M 在x 轴的上方).若AMF 为等腰直角三角形,则椭圆Γ的离心率是()A.1- B.12C.2D.34【答案】C 【解析】【分析】求出,22a c a c M -+⎛⎫⎪⎝⎭,代入椭圆方程化简得到关于e 的方程,解出即可.【详解】显然90AMF ︒∠=,则由题意得2M a c x -=,则22M a c a cy a -+=-=,又因为点,22a c a c M -+⎛⎫ ⎪⎝⎭在椭圆Γ上,所以2222()()144a c a c a b -++=,即()22222()()144a c a c a a c -++=-,即()22()()144a c a c a a c -++=-,根据c e a=得2(1)1144(1)e e e -++=-,整理得323220e e e --+=.所以()2(1)420e e e +-+=,解得2e =,(其中21,10e e =+>=-<均舍去),故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()()πsin 210,2f x A x A ϕϕ⎛⎫=++>< ⎪⎝⎭,()π3f x f ⎛⎫≤ ⎪⎝⎭对任意的x ∈R 恒成立,则()A.()f x 的一个周期为π2B.()f x 的图像关于直线2π3x =-对称C.()f x 在区间5ππ,4⎡⎤⎢⎥⎣⎦上有1个极值点 D.()f x 在区间5ππ,4⎡⎤⎢⎥⎣⎦上单调递增【答案】BD 【解析】【分析】对于A ,求得最小正周期即可判断;对于B ,由题意求得π6ϕ=-,检验2π3x =-πsin 26x ⎛⎫- ⎪⎝⎭是否为1±即可判断;对于CD ,由5ππ,4x ⎡⎤∈⎢⎥⎣⎦可得π11π7π2,366x ⎡⎤-∈⎢⎣⎦,从而可得()f x 在区间5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,没有极值点,即可判断.【详解】对于A ,()f x 的最小正周期2ππ2T ==,A 错;对于B ,因为()π3f x f ⎛⎫≤ ⎪⎝⎭对任意的x ∈R 恒成立,所以当π3x =时,()f x 取得最大值,所以ππ22π,Z 32k k ϕ⨯+=+∈,解得π2π,Z 6k k ϕ=-+∈,又因为π2ϕ<,所以π6ϕ=-,所以()πsin 216f x A x ⎛⎫=-+ ⎪⎝⎭,所以当2π3x =-时,π4ππsin 2sin 1636x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图像关于直线2π3x =-对称,B 对;对于CD ,因为5ππ,4x ⎡⎤∈⎢⎥⎣⎦,所以π11π7π2,366x ⎡⎤-∈⎢⎥⎣⎦,所以()f x 在区间5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,没有极值点,C 错D 对.故选:BD.10.已知()()P A P A =,()()||P B A P B A >,则()A.()()P B P A >B.()()P A B P A B⋅>⋅C.()()||P A B P A B > D.()()P A B P A B⋅<⋅【答案】BD 【解析】【分析】根据对立事件的性质结合已知可得()()12P A P A ==,利用条件概率公式和全概率公式推导可判断ABD ;举特例可判断C.【详解】由对立事件性质知,()()1P A P A +=,又()()P A P A =,所以()()12P A P A ==,因为()()||P B A P B A >,所以()()()()P BA P BA P A P A >,所以()()P BA P BA >,B 正确;又因为()()()()()()P AB P AB P A P A P AB P AB +===+,所以()()()()0P AB P AB P AB P AB -=-<,得()()P AB P AB <,D 正确;由()()P BA P BA >,()()P AB P AB <得()()()()P AB P AB P AB P AB +>+,则()()P B P B >,又()()1P B P B +=,所以()()12P B P B >>,故()()P B P A <,A 错误;以掷一颗骰子为例,不妨记事件A :掷出的点数为奇数;事件B :掷出的点数为1点或3点.则A :掷出的点数为偶数;B :掷出的点数为2点或4点或5点或6点.易知,()()()()112,,233P A P A P B P B ====,()()()()111,0,,362P AB P AB P AB P AB ====,所以()()()()()()1|,|03P BA P BA P B A P B A P A P A ====满足题设()()P A P A =,()()||P B A P B A >,但()()()()()()1|0,|4P AB P AB P A B P A B P B P B ====,故C 错误.故选:BD11.在底面为菱形的直四棱柱1111ABCD A B C D -中,P 为1CC 中点,点Q 满足1DQ DB DD λμ=+,()0,1λ∈,()0,1μ∈()A.当1λμ+=时,1B Q AC ⊥B.当1λμ+=时,11B Q A C ⊥C.当12λμ+=时,//PQ 平面11AC D D.当12λμ+=时,//PQ 平面11AB D 【答案】AC 【解析】【分析】根据共面向量定理和共线向量定理结论结合线面垂直的判定、面面平行的判定和性质一一分析即可.【详解】由题意得三向量共面,当1λμ+=,根据共线向量定理的结论知1Q BD ∈(不与边界点重合),因为底面为菱形的直四棱柱,AC BD ⊥,1DD ⊥底面ABCD ,因为AC ⊂平面ABCD ,所以1DD AC ⊥,又因为1,BD DD ⊂平面11BDD B ,1BD DD D = ,所以AC ⊥平面11BDD B ,因为1B Q ⊂平面11BDD B ,所以1AC B Q ⊥,故A 正确;对B ,若11B Q A C ⊥,且由A 知1AC B Q ⊥,又因为1,AC AC ⊂平面11AA C C ,且1AC C AC ⋂=,所以1B Q ⊥平面11AA C C ,根据A 中的同样方法可证明11B D ⊥平面11AA C C ,则111//B Q D B ,显然不可能,故B 错误;对C ,当12λμ+=时,设BD 的中点为O ,1DD 的中点为M ,则22M DQ DO D λμ=+,则根据()21λμ+=可知Q OM ∈(不包含边界),根据中位线可知1//OP AC ,1AC ⊂平面11AC D ,OP ⊄平面11AC D ,所以//OP 平面11AC D ,同理根据11//PM C D 可得//PM 平面11AC D ,因为OP PM P = ,且,OP PM ⊂平面OPM ,所以平面//OPM 平面11AC D ,因为PQ ⊂平面OPM ,所以//PQ 平面11AC D ,故C 正确;对D ,由平面11AB D 与平面11AC D 相交,所以平面11AB D 与平面OPM 相交,则无法得到//PQ 平面11AB D ,故D 错误.故选:AC.12.已知定义在R 上的函数()f x ,()g x ,其导函数分别为()f x ',()g x ',()()6f x g x =-',()()161f x g x -=++',且()2g x -为奇函数,则()A.()02g =B.()()2f x f x +'='C.()()4g x g x +=D.()()()()113324f g f g +=【答案】ACD【解析】【分析】先根据条件分析出()g x '的周期性对称性,再得到()f x 的周期性的对称性,最后由求导得到()f x '和()g x 的周期性和对称性,代入求解即可.【详解】由题意得()()()()6161f x g x f x g x ⎧=-⎪⎨-=+'+'⎪⎩,所以()()()()161161f x g x f x g x ⎧-=--⎪⎨-+'=+'⎪⎩,两式相减可得()()11g x g x +=-'-'①,所以()g x '关于点()1,0中心对称,又因为()2g x -为奇函数,所以()()()222g x g x g x -=---=--+⎡⎤⎣⎦②,即()()4g x g x +-=,所以()g x 关于点()0,2中心对称,而()g x 定义域为R ,所以()g 02=,A 正确;②式两边对x 求导可得()()g x g x ''=-,所以()g x '是偶函数,以1x +替换①中的x 可得()()()2g x g x g x '''+=--=-,所以()()()42g x g x g x '''+=-+=,所以()g x '是最小正周期为4的周期函数,因为()()6f x g x =-',所以()f x 也是最小正周期为4的周期函数,即()()4f x f x +=,两边求导可得()()4f x f x ''+=,所以()f x '也是最小正周期为4的周期函数,所以()()2f x f x +'='不恒成立,B 错误;由①得()()11g x g x C +=-+,令0x =,解得0x =,所以()()11g x g x +=-③,即()g x 关于直线1x =对称,以1x +替换③中的x 可得()()2g x g x +=-,由②可知()()4g x g x -=-,所以()()24g x g x +=-④,所以()()()442g x g x g x +=-+=,所以C 正确;由上可知()g x '关于点()1,0中心对称,所以()10g '=又因为()g x '是偶函数,所以()()110g g ''-==又因为()g x '是最小正周期为4的周期函数,所以()()310g g ''=-=,由条件()()6f x g x =-'可得()()()()16163636f g f g ⎧=-=⎪⎨=='-'⎪⎩,所以()()()()()()()()()11336163613f g f g g g g g +=+=+,由④知()()134g g +=,所以()()()()11336424f g f g +=⨯=,D 正确,故选:ACD【点睛】关键点睛:解决这类题的关键是熟练掌握对称与周期的关系,若关于两点(纵坐标相同)或者两条直线(平行于y 轴)对称,则周期为这两点或者这两条直线的距离的两倍,若关于一点和一直线(平行于y 轴)对称,则周期为这点和这条直线的距离的四倍.三、填空题:本题共4小题,每小题5分,共20分.13.已知锐角θ满足1sin 3θ=;则ππsin(sin()44θθ+--=________.【答案】43##113【解析】【分析】根据给定条件,利用同角公式、和差角的正弦公式计算得解.【详解】锐角θ满足1sin 3θ=,则cos 3θ==,所以πππ4sin()sin(2cos sin 44433θθθ+--===.故答案为:4314.已知0a >,0b >,193a b -=,则128181ab a b++的最小值为________.【答案】29【解析】【分析】依题意得,21a b +=,则122181818181a b ab ab ab a b ab ab+++=+=+,由基本不等式求解即可.【详解】解:依题意得,2133a b -=,则21a b +=,故12212818181819a b ab ab ab a b ab ab +++=+=+≥=,当且仅当181ab ab=时等号成立,又21a b +=,解得1112,,或,3363a b a b ====,所以128181ab a b++的最小值为29.故答案为:29.15.已知抛物线2:4C x y =,圆222:(4)(0)M x y r r +-=>,若抛物线C 与圆M 有四个公共点,则r 的取值范围为________.【答案】()【解析】【分析】根据抛物线与圆的交点个数联立消元列不等式求解即可得r 的取值范围.【详解】联立方()222244x yx y r⎧=⎪⎨+-=⎪⎩消去x 整理得224160y y r -+-=因为抛物线C 与圆M 有四个公共点,所以()22Δ164164480rr=--=->,且2160r ->所以解得4r <<,则r的取值范围为().故答案为:().16.体积为111ABC A B C -中,2AB =,3AC =,则此三棱柱外接球的表面积的最小值为________.【答案】18π【解析】【分析】设直三棱柱111ABC A B C -的高为h ,ABC 外接圆的半径为r ,(),0,πBAC θθ∠=∈,直三棱柱111ABC A B C -外接球的的半径为R ,根据棱柱的体积可得7sin h θ=,利用正弦定理求出ABC 外接圆的半径,再利用勾股定理求出2R 的最小值,再根据球的表面积公式即可得解.【详解】设直三棱柱111ABC A B C -的高为h ,ABC 外接圆的半径为r ,(),0,πBAC θθ∠=∈,直三棱柱111ABC A B C -外接球的的半径为R ,则123sin 2h θ⨯⨯⋅=,所以sin h θ=,在ABC 中,由余弦定理可得49223cos 1312cos BC θθ=+-⨯⨯=-,则1312cos 2sin sin BC r θθθ-==,所以1312cos 2sin r θθ-=,所以22222221312cos 753cos 53cos 924sin 2sin sin 99cos h R r θθθθθθθ---⎛⎫=+=+==⋅ ⎪-⎝⎭,令()53cos ,2,8t t θ=-∈,则3cos 5t θ=-,则()222999916101629510t tR t t t t t ===≥=-+-⎛⎫---+ ⎪⎝⎭,当且仅当16t t =,即4t =,即1cos 3θ=时取等号,所以此三棱柱外接球的表面积的最小值为94π18π2⨯=.故答案为:18π.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.记ABC的内角A,B ,C 的对边分别为a ,b,c ,已知()223sin sin 2sin sin 8sin sin cos A C A C A C B +=+.(1)证明:2a c b +=;(2)若11cos 14B =,ABC ,求ABC 的周长.【答案】(1)证明见解析(2)15【解析】【分析】(1)根据正、余弦定理进行角换边即可证明;(2)首先求出sin B =,再结合三角形面积公式得21ac =,最后利用(1)中结论和余弦定理即可求出周长.【小问1详解】由正弦定理及余弦定理可得:()()22222222328242a c b a cac ac ac a c b ac+-+=+=++-化简得:22()42a c b a c b +=⇒+=.【小问2详解】因为11cos 14B =,且B 为三角形内角,sin B ∴==.11sin 22ABC S ac B ac ∴==⋅ ,所以21ac =.由余弦定理可得:2222cos a c b ac B =+-,所以22()2(cos 1)a c b ac B +-=+,112,cos ,2114a cb B ac +=== ,2211422117514b b ⎛⎫∴-=⨯⨯+= ⎪⎝⎭,即225,5b b ==,所以周长为315a c b b ++==.18.如图,在四棱锥S ABCD -中,底面ABCD 为矩形,平面SAB ⊥平面ABCD ,2AB AS ==,SB =1AD =,G 为ABC 的重心,(1)SB SE λλ=>.(1)当直线//GE 平面SDC 时,求λ的值;(2)当32λ=时,求平面CAE 与平面DAE 的夹角的大小.【答案】(1)32λ=;(2)π4.【解析】【分析】(1)利用线面平行的性质,结合三角形重心定理求解即得.(2)在平面SAB 内作Ax AB ⊥,以点A 为原点建立空间直角坐标系,利用面面角的向量求法求解即得.【小问1详解】连接DB AC O = ,由四边形ABCD 是矩形,得O 是AC 中点,而G 为ABC 的重心,则点G 在线段DB 上,有2133BG BO BD ==,于是2DGGB=,由//GE 平面SDC ,GE Ì平面SDB ,平面 SDB 平面SDC SD =,得//GE DS ,因此2SE DGEB GB==,所以32λ=.【小问2详解】在SAB △中,32,2AB AS SB ===,则132cos 2SBSBA AB ∠==,有30SBA ∠= ,在平面SAB 内作Ax AB ⊥,由平面SAB ⊥平面ABCD ,平面SAB 平面ABCD AB =,得Ax ⊥平面ABCD ,显然射线,,Ax AB AD 两两垂直,以点A 为坐标原点,射线,,Ax AB AD 分别为,,x y z 轴非负半轴,建立空间直角坐标系,由(1)知,33BE =,则3(0,0,0),(0,0,1),(0,2,0),(0,2,1),(,1,0)3A DBC E ,(0,0,1),(,1,0),(0,2,1)3AD AE AC === ,设平面DAE 的一个法向量为1(,,)n x y z = ,则11003n AD z n AE x y ⎧⋅==⎪⎨⋅=+=⎪⎩,令1y =,得1(n = ,设平面CAE 的一个法向量为2(,,)n a b c =,则222003n AC b c n AE a b ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令a =,得21,2)n =- ,设平面CAE 与平面DAE 的夹角为θ,因此121212||cos |cos ,|2||||n n n n n n θ⋅=〈〉===,从而π4θ=,所以平面CAE 与平面DAE 的夹角的大小为π4.19.电网公司将调整电价,为此从某社区随机抽取100户用户进行月用电量调查,发现他们的月用电量都在50350kw h ~⋅之间,进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.调价方案为:月用电量在kw h m ⋅以下(占总数的71%)的用户电价不变,月用电量在kw h m ⋅以上则电价将上浮10%.(1)求a 和m 的值;(2)若采用按比例分配的分层随机抽样的方法,从月用电量不低于250kw h ⋅的用户中抽9户用户,再从这9户用户中随机抽取3户,记月用电量在区间[)300,350内的户数为ξ,试求ξ的分布列和数学期望.【答案】(1)0.0044,225a m ==(2)分布列见解析,数学期望为1【解析】【分析】(1)根据频率分布直方图利用频率之和为1可求得a 的值,结合百分位数的估计可得m 的值;(2)利用分层抽样得两组各抽取样本数,结合超几何分布求解概率即可得分布列,从而可求数学期望.【小问1详解】因为()500.00240.00360.00600.00240.00121a ⨯+++++=所以0.0044a =第一到第六组的频率依次为:0.12,0.18,0.30,0.22,0.12,0.06前三组频率之和为0.120.180.300.60++=,前四组频率之和为0.120.180.300.220.82+++=,则第71百分位数m 在[)200,250区间内,所以()0.120.180.302000.00440.71m +++-⨯=,解得225m =;【小问2详解】月用电量在[)250,300,[)300,350的频率分别为:0.12,0.06,据按比例分配的分层随机抽样可知:用电量在[)250,300,[)300,350的分别有6人,3人,从而ξ可取的值为:0,1,2,3.()()()()32112366363333339999C C C C C C 515310,1,2,3C 21C 28C 14C 84P P P P ξξξξ============故ξ的分布列为:ξ123P5211528314181则()515310123121281484Eξ=⨯+⨯+⨯+⨯=20.已知各项非零的数列{}n a ,其前n 项的和为n S 2n a c =+.(1)若0c =,证明:221n n a a +>;(2)是否存在常数c ,使得{}n a 是等差数列?若存在,求出c 的所有可能值;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,18c =.【解析】【分析】(1)利用给定的递推公式,结合已知可得0n a >,再借助11n n n S S a ++-=推理即得.(2)假定存在,利用等差数列的通项公式建立关于n 的恒等式,再分析计算判断即得.【小问1详解】由0c =2n a =12a =,又数列{}n a 的首项不为零,则114a =,由20,0n n a a =≥≠,于是0n a >,由21214,4n n n n S a a S ++==,得1112240()n n n n n S a a S a +++-=-=>,所以221n n a a +>.【小问2详解】2n a c =+,得22)(n n S a c =+,有2112)(n n S a c ++=+,两式相减并整理得:1114(())n n n n n a a a a a c +++=-++,假设存在常数c ,使得{}n a 是等差数列,设公差为d ,则有114[2(21)]a nd d a n d c +=⋅+-+,因此对任意*N n ∈,2211)(8448a dn a d cd d d n +=+-+恒成立,从而21128448a a d cd d d d ⎧=+-⎨=⎩,解得10a d ==(舍去)或18c d ==,1128a =+,解得1116a =,则2116n n a -=,所以存在c ,使得{}n a 是等差数列,此时121,816n n c a -==.21.双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,动点B 在C 上.当BF AF ⊥时,2AF BF =,且ABF △的面积为254.(1)求双曲线C 的方程;(2)若点B 在第一象限,且有3BFA BAF ∠=∠,求点B 的横坐标.【答案】(1)22145x y -=;(2)298+.【解析】【分析】(1)根据给定条件,求出点B 的坐标,进而求出|BF |,再结合三角形面积求出22,a b 即得.(2)设出点B 的坐标,利用斜率坐标公式及倍角的正切公式列式计算即得.【小问1详解】设双曲线的半焦距为c ,则(c,0)F ,由222222x c b x a y a b=⎧⎨-=⎩,得2(,)bB c a ±,由||2||AF BF =,得22b aa c =+,于是2()c a a -=,即35,22c a b a ==,由ABF △的面积为254,得2125()24b a c a ⋅+⋅=,解得224,5a b ==,所以双曲线C 的方程为22145x y -=.【小问2详解】设()00,B x y ,其中220000,0,145x y x a y >>-=,当0x c =时,有BF AF ⊥,||2||AF BF =,则1πtan 232BAF BFA ∠=≠∠=,此时3BFA BAF ∠≠∠,因此0x c ≠,设直线AB 、BF 的倾斜角分别为,αβ,则有,πBAF BFA αβ∠=∠=-,又00tan tan(π)tan 3y BFA x ββ∠=-=-=--,00tan tan 2y BAF x α∠==+,则22222tan tan tan tan 2tan (3tan )1tan tan 32tan 1tan tan 213tan 1tan 1tan αααααααααααααα++--===-⋅--⋅-20022220000000022222000000005[3()[3(2)(4)]22[3(2)]415(2)[(2)3](2)[(2)(4)]13()2]4y y y x x x x y x y y x x y x x x x ⋅-+--+++-===++-++---+0000020000(2)(734))734)(2)(3811(2)(381)1(y x x y x x x x x +++==+-+-,当3BFA BAF ∠=∠时,有000000734)tan 3tan (2)(33(8)11y x yBFA x x x α+==-=∠+--,所以0000(734)(3)(2)(38110)x x x x +-++-=,即200429260x x -+=,解得0298x ±=,而02x >,于是0298x +=,所以点B的横坐标为298+.【点睛】关键点睛:本题第2问,设出点B 的坐标,利用斜率坐标公式,结合倍角公式列出方程是求解问题的关系.22.已知函数()2ex f x a -=,()12ln g x x x x ⎛⎫=++ ⎪⎝⎭,e 2.71828= 为自然对数底数.(1)证明:当1x >时,1ln 22x x x<-;(2)若不等式()()f x g x >对任意的()0,x ∈+∞恒成立,求整数a 的最小值.【答案】(1)证明见解析;(2)4.【解析】【分析】(1)记()()1ln ,122x h x x x x=-->,利用导数研究单调性,结合()10h =可证;(2)构造函数()()()m x f x g x =-,根据()92ln 202m a =->确定4a ≥,再构造函数()211222e x x x x x x ϕ-⎛⎫⎛⎫++- ⎪⎪⎝⎭⎝⎭=,利用导数求函数()x ϕ的最大值,结合(1)中结论即可确定a 的最小值.【小问1详解】记()()1ln ,122x h x x x x=-->,则()222111112111102222h x x x x x x ⎛⎫⎛⎫=+-=-+=-> ⎪ ⎪⎝⎭⎝⎭',所以()h x 在()1,+∞上单调递增,又()111ln1022h =--=,所以,当1x >时,()1ln 022x h x x x =-->,即1ln 22x x x<-.【小问2详解】令()()()21e 2ln x m x f x g x a x x x -⎛⎫=-=-++ ⎪⎝⎭,由题可知,当()0,x ∈+∞时,()0m x >恒成立.因为()92ln 202m a =->,所以9ln 22a >,因为28e >,所以ln82>,即2ln 23>,所以992ln 23223a >>⨯=,因为a ∈Z ,所以4a ≥.当(]0,1x ∈时,ln 0x ≤,故()0m x >.当()1,x ∈+∞时,不等式()()f x g x >等价于212ln ex x x x a -⎛⎫++ ⎪⎝⎭>,设()222211212e 222e 2e x xx x x x x x x x x ϕ-⎛⎫⎛⎫⎛⎫++-+-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭==,由(1)知,()212ln ex x x x x ϕ-⎛⎫++ ⎪⎝⎭>,()2223232e 22e xx x x x x ϕ⎛⎫-++++ ⎪⎝⎭'=,记()2232322n x x x x x=-++++,易知,()n x 在()1,+∞上单调递减,且()2232322220222n =-++++=,所以,当()1,2x ∈时,()0n x >,即()0x ϕ'>,()x ϕ单调递增;当()2,x ∈+∞时,()0n x <,即()0x ϕ'<,()x ϕ单调递减.故当2x =时,()x ϕ取得最大值()222221e 222272222e 8ϕ⎛⎫+⨯-- ⎪⎝⎭==.所以,()212ln 4e x x x x x ϕ-⎛⎫++ ⎪⎝⎭>>在区间()0,∞+上恒成立,所以,整数a 的最小值为4.【点睛】本题难点有二:一是通过取特值确定4a ≥,二是利用(1)中结论进行放缩,构造函数()211222e x x x x x x ϕ-⎛⎫⎛⎫++- ⎪⎪⎝⎭⎝⎭=,利用导数求最值即可.对于参变分离之后,函数复杂,不宜直接研究时经常采取适当放缩进行处理.。

20.11稽阳联考数学参考答案和评分标准

20.11稽阳联考数学参考答案和评分标准
PA 的垂线 l ,垂足为 K ,则 PK = 4 ,故点 C 在定直线 l 上. 故 | d − c | 的最小值即为点 D 到直线 l 的距离 DH .由此 DH = DA . 故点 D 的轨迹为以点 A 为焦点,准线为 l 的抛物线.设 AK 的中点 O 为原点建立直角坐标系,则抛物线的方程为 y2 = −4x ,
点 D0 时, x + 2 y 有最大值,最大值为 | PE | .
| PA |
设 抛 物 线 y2 = −4x 上 的 点 D0 (−t 2 , 2t) , 该 点 处 抛 物 线 切 线 为 x + ty − t2 = 0 . 令

1 t
=
k
AM
=−
1 ,则 t = 3
3 ,则切线 D0E : x +
A1
B1
6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,
N
M
S = 11 2 + 1 2 2 3 2 + (1 + 2) 1 4 = 7 + 3 .
2
2
2
2
D
C
V
= V柱

2V锥
=11
2

2
1 3
11 2
1
=
5 3
,故选
A.
A
B
7. 解:椭圆 C2 关于点 P(x0 , y0 ) 的切点弦 AB 的方程为 3x0 x + 4 y0 y = 12 .
ab
ab
当 a = 2,b = 4 取等号.
16.解:根据题意 X 可取 2,3, 4 . P ( X = 2) = 3 2 2 + 3 2 + 2 2 = 11

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考英语试题及答案

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考英语试题及答案

绝密★启用前浙江省绍兴市稽阳联谊学校2021届高三毕业班上学期11月联考质量检测英语试题2020年11月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷 1 至 6页,第Ⅱ卷7至8页。

满分150分,考试用时120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

第I卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2. 选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在本试卷上,否则无效。

第一部分:听力(共两节,满分30分)第一节 (共 5 小题;每小题 1.5 分,满分 7.5 分)听下面 5 段对话。

每段对话后有一个小题,从题中所给的 A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What does the woman want the man to do?A. Have some milk.B. Go shopping.C. Take out the garbage.2. What will the man do tonight?A. Go bowling.B. Visit the woman.C. Prepare for an exam.3. What will the man most probably do?A. Pay for the tickets.B. Go to the ticket office.C. Ask the woman for a discount.4. Where does the conversation take place?A. At home.B. At the doctor’s.C. At the man’s office.5. What are the speakers mainly talking about?A. A man.B. A course.C. A language.第二节(共 15 小题;每小题 1.5 分,满分 22.5 分)听下面 5 段对话或独白。

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考数学答案解析

2020年11月浙江省绍兴市稽阳联谊学校2021届高三毕业班联考数学答案解析

1绝密★启用前浙江省绍兴市稽阳联谊学校2021届高三毕业班上学期11月联考质量检测数学试题参考答案解析2020年11月第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各 题 详 细 参 考 解 答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}MN x x =-<<,选B.2. 解:由于(1i)11222i i i z i +===-+-,则||z =.选B. 3. 解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A. 4. 解:由于sin ()2cos x xf x x=-为偶函数, 且()f x 在0x =右侧取值正,故选A.5. 解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()1211112247222S +⋅⋅=⨯++⨯=+11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选 A.1A 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年11月稽阳联谊学校高三联考数学试题卷本科试题卷分选择题和非选择题两部分,全卷共4页,选择题部分1至3页,非选择题部分3至4页,满分150分,考试时间120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积,h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =13Sh 次独立重复试验中恰好发生k 次的概率其中S 表示棱锥的底面积,h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n) 棱台的体积公式球的表面积公式)2211(31S S S S h V ++=24R S π=其中S 1, S 2分别表示棱台的上下底面 球的体积公式:334R V π=球 (其中R 表示球的半径)面积,h 表示棱台的高第Ⅰ卷(选择题,共40分)一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|14},{|60}M x x N x x x =-<<=--<,则M N = ( )A. {|14}x x -<<B. {|13}x x -<<C. {|23}x x -<<D. {|24}x x -<<2. 已知复数1iz i=-,其中i 为虚数单位,则||z = ( ) A.12B.C. D. 2 3. 若变量y x ,满足2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩,则26y x +-的最小值是 ( )A. 2-B. 45-C. 4-D. 12-4.已知函数sin ()2cos x xf x x=-的图象可能为 ( )A B C D5. 已知0,0a b >>,则“log 2log 20b a >>”是“|1||1|a b ->-”的 ( ) A .充要条件B C .充分不必要条件D 6. A.7,53 C. 3+537. 如图,已知点00(,)P x y 过点P 作椭圆222:143x y C +=直线AB 交1C 的两渐近线于点OE OF ⋅的值为A. 34C. 438. 四面体ABCD 中,,AB BC ⊥若四面体ABCD A. 23 B. 43 C. 33 D.369.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若,p m n q <<<且*,,,,p q m n p q m n N +=+∈,则下列判断正确的是 ( )A. 22p p S p a =⋅B. p q m n a a a a >C. 1111p q m n a a a a +<+D. 1111p q m nS S S S +>+ Oxy Ox y Oxy10. 已知e 为自然对数的底数,,a b 为实数,且不等式ln (21)10x e a x b +--++≤对任意的(0,)x ∈+∞恒成立.则当21b a ++取最大值时,a 的值为 ( ) A. 2e B. 21e - C. 3e D. 31e -第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

11. 已知1tan 42πα⎛⎫+= ⎪⎝⎭,且322ππα<<,则tan α= ▲ ,sin2α= ▲ . 12. 若52345012345(2)(21)(21)(21)(21)(21)x a a x a x a x a x a x ,则012345a a a a a a +++++= ▲ ,2a = ▲ .13.已知动直线:2l y kx =-与圆22:(1)6C x y -+=交于,A B 两点.当1k =时,||AB = ▲ .当l 运动时,线段AB 的中点M 的轨迹方程为 ▲ .14. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin bc A +222)0a b c +-=,则C ∠= ▲ ;若点D 是边AB 上靠近A 的三等分点,且1CD =,则ABC △面积的最大值为 ▲ . 15. 已知正实数,a b 满足121a b+=,则(1)(2)a b ++的最小值为 ▲ . 16. 袋中装有6个大小相同的球,其中3个白球、2个黑球、1个红球.现从中依次取球,每次取1球,且取后不放回,直到取出的球中有两种不同颜色的球时结束.用X 表示终止取球时已取球的次数,则随机变量X 的数学期望()E X = ▲ .17. 已知平面向量,,,a b c d 满足:||||2,8a b a b a c ==⋅=⋅=.若对满足条件的任意c ,||d c -的最小值恰为||d a -.设d xa yb =+,则2x y +的最大值为_____▲_______. 三、解答题:本大题共5小题,共74分。

解答应写出文字说明,证明过程或演算过程.18. (本题满分14分)已知函数2()2sin ()1,[,]442f x x x x πππ=+-∈(I)求()f x 的单调递增区间;(Ⅱ)若不等式|()|2f x m -<在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.19. (本题满分15分)如图,三棱台111ABC A B C -中,,30AB BC ACB ︒⊥∠=,侧面11ACC A 为等腰梯形,11112224AC AA AC C C ====,13A B =. (I)求证:1AC A B ⊥.(Ⅱ)求直线1B C 与平面11ACC A 所成角的正弦值.20. (本题满分15分)已知等差数列{}n a 满足:25a =,3a 是14a +和54a -的等比中项.数列{}n b 满足:1122(21)22n n n a b a b a bn ++++=-+·11122(21)22n n n a b a b a b n ++++=-+. (I)求数列{}n a 和{}n b 的通项公式.(Ⅱ)若n c =1252n c c c n +++<+.21. (本题满分15分)已知椭圆221:12x C y +=左焦点,点E 为2C 的焦点. (I)过点F 的直线与2C 相切于点P ,若||PF =2C 的方程.(Ⅱ)过点E 的直线l 交2C 于,P Q 两点,点M 4OQ OM =-(O 为坐标原点),且点M 1x =-(22y -<<上.记PQM ∆为1S ,EFP ∆的面积为2S ,求12SS 的取值范围.22. (本题满分15分)已知函数22()2()xf x eax x a R =+-∈.(I)若()f x 在[0,)+∞上为单调递增函数,求实数a 的最小值. (Ⅱ)若2()()(22)g x f x e x =++有两个极值点1212,()x x x x <.求实数a 的取值范围;(ii )求证:2122||1ln ||2e a x x a +<+<.2020年11月稽阳联考数学参考答案及评分标准第19题图第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各题详细参考解答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<<,选B.2.解:由于(1i)11222i i i z i +===-+-,则2||2z =.选B. 3.解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域为如图所示 的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A. 4. 解:由于sin ()2cos x xf x x=-为偶函数,且()f x 在0x =右侧取值正,故选A.5. 解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()12111132222473222S +⋅⋅=⨯+⋅⋅⋅⨯+⨯=+. 11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选 A.7. 解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立0034123x x y y y x +=⎧⎪⎨=⎪⎩得点000043,3232E x y x y ⎛⎫ ⎪ ⎪++⎝⎭,同理000043(,)3232F x y x y -- ,则()()()()2222220000004836121343232OE OF x y x y x y -⋅=+==---,故选B. D 1C 1B 1A 1D B8. 解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60,所以60ABE ∠=. 设三棱柱底面三角形ABE ∆的外接圆半径为r,则2r ==,2sin 6023AE r ==222222cos6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅=,所以22122AB BE AB BE AB BE AB BE AB BE =+-⋅≥⋅-⋅=⋅所以111sin 603326A BCD ABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤故四面体ABCD 的体积的最大值为故选A. 9. 解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误. 设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.故222211()()22p q m n p q m n m n m nS S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d+---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m nS S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确. 故选D. 注:本题也可用特殊数列代入,利用排除法求解.AB10. 解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e+-≤+-- 从而1(1)2a b e +≥+,从而211b a e+≤+. 另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e上单调递增,在1(,)e +∞上单调递减,从而1()()0f x f e≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

相关文档
最新文档