完整word版,双代号网络图时间参数的计算
双代号网络计划时间参数的计算
双代号网络计划时间参数的计算(按节点计算法)一、节点最早时间的计算:1.节点i的最早时间应从网络图的起点节点开始,顺着箭线方向逐个累加计算,看箭头,取最大值。
2.起点节点的最早时间如无规定时,其值等于零。
3.其他节点的最早时间应为:式中——工作i-j的箭尾节点i的最早时间4.网络计划计算工期Tc为:式中——终点节点n的最早时间二、确定网络计划的计划工期Tp当已规定了要求工期Tr时Tp≤Tr;当未规定要求工期时Tp=Tc三、节点最迟时间的计算:1.节点i的最迟时间应从网络图的终点节点开始,逆着箭线的方向依次逐项递减计算,看箭尾,取最小值。
(当部分工作分期完成时,有关节点的最迟时间必须从分期完成节点开始逆向逐项计算)2.终点节点的最迟时间应按网络计划的计划工期Tp确定。
(分期完成节点的最迟时间应等于分期完成的时刻)3.其他节点的最迟时间应为:式中——工作i-j的箭头节点i的最迟时间。
四、1.工作i-j的最早开始时间ES i-j的计算应为:工作i-j的箭尾节点i的最早时间。
2.工作i-j的最早完成时间EF i-j的计算应为:式中——工作i-j的箭尾节点i的最早时间+工作i-j持续时间3.工作i-j的最迟完成时间LF i-j的计算应为:工作i-j的箭头节点i的最迟时间。
4.工作i-j的最迟开始时间LS i-j的计算应为:工作i-j的箭头节点i的最迟时间-工作i-j持续时间5.总时差TF i-j的计算:TF i-j = LS i-j - ES i-j 或TF i-j = LF i-j - EF i-j 即:工作i-j的箭头节点i的最迟时间-工作i-j持续时间-工作i-j的箭尾节点i的最早时间6.自由时差FF i-j的计算:FF i-j =工作i-j的箭头节点j的最早时间-工作i-j持续时间-工作i-j的箭尾节点i的最早时间确定关键线路(节点跟踪法)从左向右顺箭线方向,后一个节点最早时间取决于前面哪一个节点,由这些节点组成的线路就是关键线路。
双代号网络图六个时间参数计算口诀【范本模板】
双代号网络图六个时间参数计算口诀(技巧)
工作最早时间的计算:顺着箭线,取大值
工作最迟时间的计算:逆着箭线,取小值
总时差: 最迟开减最早开
自由时差:后早开减本早完
1.工作最早时间的计算(包括工作最早开始时间和工作最早完成时间):“顺着箭线计算,依次取大”(最早开始时间——取紧前工作最早完成时间的最大值),起始结点工作最早开始时间为0. 用最早开始时间加持续时间就是该工作的最早完成时间。
2.网络计划工期的计算:终点节点的最早完成时间最大值就是该网络计划的计算工期,一般以这个计划工期为要求工期.
3.工作最迟时间的计算(包括工作最迟完成时间和最迟开始时间):“逆着箭线计算,依次取小”(最迟完成时间—-取紧后工作最迟开始时间的最小值)。
与终点节点相连的最后一个工作的最早完成时间(计算工期)就是最后一个工作的最迟完成时间。
用最迟完成时间减去工作的持续时间就是该工作的最迟开始时间.
4.总时差:“最迟开减最早开"(最迟开始时间减最早开始时间或者最迟完成时间减最早完成时间)。
注意这里都是“最迟减最早”.每个工作都有总时差,最小的总时差是零,我们经常说总时差为零的工作是“没有总时差”。
5.自由时差:“后早开减本早完”(紧后工作的最早开始时间减本工作的最早完成时间)。
自由时差总是小于、最多等于总时差,不会大于总时差。
双代号网络图时间参数计算技巧
某工程项目的双代号网络见下图。
(时间单位:月)1、计算时间参数(1)计算节点最早时间,计算方法:最早时间:从左向右累加,取最大值。
(2)计算最迟时间,最迟时间计算方法:从右向左递减,取小值。
2、计算工作的六个时间参数自由时差:该工作在不影响其紧后工作最早开始时间的情况下所具有的机动时间。
总时差:该工作在不影响总工期情况下所具有的机动时间。
通过前面计算节点的最早和最迟时间,可以先确定工作的最早开始时间和最迟完成时间,根据工作持续时间,计算出最早完成时间和最迟开始时间,以F工作为例,计算F工作的4个参数(以工作计算法标示)如下:注:EF=ES+工作持续时间LF=LS+工作持续时间接下来计算F工作的总时差TF,在工作计算法中,总时差TF=LS-ES或LF-EF,在节点计算法,总时差TF可以紧后工作的最迟时间-本工作的最早完成时间,或者是紧后工作最迟时间-最早时间,以F工作为例计算它的TF:接下来计算F工作的自由时差FF,根据定义:该工作在不影响其紧后工作最早开始时间的情况下所具有的机动时间,自由时差FF=紧后工作最早(或最小)开始时间-本工作最早完成时间ES,以F工作为例,F的紧后工作为G和H,G工作的最早开始时间为10(即4节点的最早时间),H工作的最早开始时间为11(即5节点的最早时间),G工作的时间最小,所以F的自由时差FF=G工作的最早开始时间ES-F工作的最早完成时间EF:最后计算所有工作的时间参数如图:A:挖基坑。
B:垫层C:挖方D:填方:E:挡土墙F:填方G:挖方H填方通过上图我们得知:(1)关键线路为1-3-5-6,计算工期为16个月。
(2)当计划工期=计算工期时,关键工作的总时差和自由时差为0,即总时差为0的工作就是关键工作,当工作的总时差为0时,其自由时差必然为0.(3)当计划工期≠计算工期时,总时差最小的工作为关键工作。
总结:以前一直学的是工作计算法,其计算复杂且容易出错,较耗时间,本次运用节点计算法和工作计算法优点的进行综合,使更容易掌握和提高计算准确度,为后面的工期优化调整铺垫基础。
双代号网络计划时间参数计算
双代号网络计划时间参数计算网络计划指在网络图上标注时间参数而编制的进度计划。
网络计划的时间参数是确定工程计划工期、确定关键线路、关键工作的基础,也是判定非关键工作机动时间和进行优化,计划管理的依据。
时间参数计算应在各项工作的持续时间确定之后进行。
网络计划的时间参数主要有: ·工作的时间参数:最早开始时间 ES (Early start ) 最早完成时间 EF (Early finish ) 最迟开始时间 LS (Late start ) 最迟完成时间 LF (Late finish ) 总时差 TF (Total float ) 自由时差 FF (Free float ) ·节点的时间参数:最早开始时间 TE (Early event time ) 最早完成时间 TL (Late event time )在计算各种时间参数时,为了与数字坐标轴的规定一致,规定工作的开始时间或结束时间都是指时间终了时刻。
如坐标上某工作的开始(或完成)时间为第5天,是指第5个工作日的下班时,即第6个工作日的上班时。
在计算中,规定网络计划的起始工作从第0天开始,实际上指的是第1个工作日的上班开始。
一.双代号网络计划时间参数的计算双代号网络计划时间参数的计算有“按工作计算法”和“按节点计算法”两种。
(一)按工作计算法计算时间参数工作计算法是指以网络计划中的工作为对象,直接计算各项工作的时间参数。
计算程序如下:1.工作最早开始时间的计算工作的最早开始时间是指其所有紧前工作全部完成后,本工作最早可能的开始时刻。
工作j i -的最早开始时间以j i ES -表示。
规定:工作的最早开始时间应从网络计划的起点节点开始,顺着箭线方向自左向右依次逐项计算,直到终点节点为止。
必须先计算其紧前工作,然后再计算本工作。
(1)以网络计划起点节点为开始节点的工作的最早开始时间,如无规定时,其值等于零。
如网络计划起点节点代号为i ,则:(2)其它工作的最早开始时间等于其紧前工作的最早开始时间加上该紧前工作的工作历时所得之和的最大值,即:当工作j i -与其紧前工作i h -之间无虚工作时,有多项工作时取最大值:当工作j i -h-ii-j式中,()h g i h ES ES -- - 工作j i -的紧前工作i h -(h g -)的最早开始时间;()h g i h D D -- - 工作j i -的紧前工作i h -(h g -)的工作历时。
双代号网络计划时间参数计算
双代号网络计划时间参数计算1.最早开始时间(ES):是指一个活动在没有任何限制条件的情况下,可以开始的最早时间。
计算ES的方法是将该活动的所有前驱活动(即直接前置活动)的最早结束时间(EF)中的最大值加1、如果一个活动没有前驱活动,则其ES为12.最早结束时间(EF):是指一个活动可以结束的最早时间。
计算EF的方法是将该活动的ES加上活动持续时间(D)。
3.最迟开始时间(LS):是指一个活动在不影响后续活动的情况下,可以开始的最迟时间。
计算LS的方法是将该活动的所有后继活动(即直接后继活动)的最迟开始时间(LS)中的最小值减去活动持续时间(D)。
如果一个活动没有后继活动,则其LS等于LF减去持续时间(D)。
4.最迟结束时间(LF):是指一个活动可以结束的最迟时间。
计算LF的方法是将该活动的LS减去15.总时差(TF):是指一个活动可以延迟的时间。
计算TF的方法是将该活动的LF减去EF。
如果一个活动的TF为0,则表示该活动是关键活动,即项目进度的关键路径上的活动。
在计算双代号网络的时间参数时,需要先确定活动的依赖关系,并绘制双代号网络图。
然后按照上述方法计算每个活动的ES、EF、LS、LF和TF。
1.当一个活动有多个前驱活动时,需要选择最大的EF作为其ES。
同时,当一个活动有多个后继活动时,需要选择最小的LS作为其LF。
2.同样地,当一个活动的所有前驱活动具有相同的ES时,需要选择最大的EF作为该活动的ES。
当一个活动的所有后继活动具有相同的LS时,需要选择最小的LS作为该活动的LF。
3.当一个活动的ES等于EF时,说明该活动的前驱活动与其同时开始,即并行活动。
4.当一个活动的LS等于LF时,说明该活动的后继活动与其同时开始,即并行活动。
通过计算双代号网络的时间参数,项目经理可以确定项目关键路径以及每个活动的最早开始时间、最早结束时间、最迟开始时间、最迟结束时间和总时差,从而更好地控制和管理项目进度。
双代号网络图时间参数计算
ห้องสมุดไป่ตู้ ⑷ 最迟开始时间
是在不影响整个计划工期按时完成的条件下,本工作 i-j 最迟必须开始 的时间,最迟开始时间用LSi-j 表示。最迟开始时间应从网络计划的终 点节点开始,逆箭线方向依次计算。
① 终节点的最迟开始时间LSi-j等于该网络计划的计划工期减该工作的持
建设中的溪洛渡水电站
⑶ 最迟完成时间
是在不影响整个计划按期完成的前提下,本工作最迟必须完成的时间。 最迟完成时间LFi-j 应从终点节点开始,逆着箭线方向依次逐项计算。 ① 终节点的最迟完成时间LFi-j按该网络计划的计划工期确定:
LFi-n = Tp ② 其它工作 i-j 的最迟完成时间LFi-j等于其紧后工作最迟完成时间减紧 后工作持续时间的差:
② 自由时差的计算 自由时差是各工作在不影响后续工作最早开始时间的前提下所具有的机 动时间。 终点节点(j = n)的自由时差FFi-j按网络计划的计划工期TP 确定 FFi-n = TP -ESi-n- Di-n 工作 i-j 的自由时差FFi-j : FFi-j = ESj-k – ESi-j – Di-j 或 FFi-j = ESj-k – EFi-j
ESi-j = 0(i =1) ② 当工作i-j 有多项紧前工作,其最早开始时间ESi-j :
ESi-j = max(ESh-i +Dh-i ) 式中: ESh-i ——节点i 的紧前节点 h 的最早开始时间;
Dh-i ——工作 i-j 的持续时间。
⑵ 最早完成时间 最早完成时间EFi-j是在各紧前 工作全部完成后,本工作有可 能完成的最早时刻。最早完成 时间等于最早开始时间加上本 工作的持续时间。 EFi-j= ESi-j + Di-j
双代号网络图六个参数计算方法Word版
双代号网络图六个参数计算的简易方法
一、非常有用的要点:
任何一个工作总时差≥自由时差
自由时差等于各时间间隔的最小值(这点对六时参数的计算非常用用)
关键线路上相邻工作的时间间隔为零,且自由时差=总时差
最迟开始时间—最早开始时间(最小)关键工作:总时差最小的工作
最迟完成时间—最早完成时间(最小)在网络计划中,计算工期是根据终点节点的最早完成时间的最大值
二、双代号网络图六时参数我总结的计算步骤(比书上简单得多)
①②
t过程
做题次序: 1 4 5 ES LS TF
2 3 6 FS LF FF
步骤一:
1、A上再做A下
2
3、起点的A上=0,下一个的A上
A上
4、A下=A上+t过程(时间)
步骤二:
1、 B 下再做B 上
2、 做的方向从结束点往开始点
3、 结束点B 下=T (需要的总时间=结束工作节点中最大的A 下)
结束点B 上=T-t 过程(时间)
4、B 下=前一个的B 上(这里的前一个是从终点起算的)
遇到多指出去的时,取数值小的B 上
B 上=B 下—t 过程(时间)
步骤三:
总时差=B 上—A 上=B 下—A 下
如果不相等,你就是算错了
步骤四:
自由时差=紧后工作A 上(取最小的)—本工作A 下
=紧后工作的最早开始时间—本工作的最迟开始时间
(有多个紧后工作的取最小值)
例:。
双代号网络计划时间参数的计算方法
双代号网络计划时间参数的计算方法双代号网络计划时间参数的计算方法自认为对双代号网络图的知识掌握的差不多,也能够理解;只是在遇到这六个时间参数的时候,还是有些发怵,今天重新把这六个参数捋了捋,总结如下:1、最早开始时间、最早完成时间:从网络计划的起点节点开始,顺着箭头方向依次进行;以网络计划起点为开始节点的工作,当未规定其最早开始时间时,其最早开始时间为零;有多个紧前工作的工作,其最早开始时间等于其紧前工作最早完成时间的最大值。
2、最迟开始时间、最迟完成时间:从网络计划的终点节点开始,顺着箭头方向依次进行;以网络终点节点为完成节点的工作,其最迟完成时间等于网络计划的计划工期,即要先找出关键线路,求出计划总工期作为最后一项工作的最迟完成时间;有多个紧后工作的工作,其最迟完成时间等于其紧后工作最迟开始时间的最小值。
3、总时差:不影响总工期的时差,等于该工作最迟完成时间与最早完成时间之差,或该工作最迟开始时间与最早开始时间之差;总时差最小的工作为关键工作,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作;同一条线路上的总时差相等(同一条线路都可以共用的时间,谁用了是谁的,不影响总工期)。
4、自由时差不影响紧后工作的时间;对于有多个紧后工作的工作,其自由时差等于本工作之紧后工作最早开始时间-本工作最早完成时间所得之差的最小值;无紧后工作的工作,也就是以网络计划重点节点为完成节点的工作,其自由时差等于计划工期与本工作最早完成时间之差;对于网络计划中以重点节点为完成节点的工作,其自由时差与总时差相等;只有一项紧前工作的紧前工作,该紧前工作的自由时差为0;自由时差小于等于总时差,总时差为零自由时差必为0。
呵呵,本来想用通俗的语言解释一下,可写下来还是有点绕,我觉得这东西贵在理解,好像只是专家们为了考试罗列了一些概念,把简单的问题弄复杂了;没办法为了考试,慢慢理解吧。
二、搭接网络计划时间参数的计算单代号搭接网络计划时间参数的计算与前述单代号网络计划和双代号网络计划时间参数的计算原理基本相同。
双代号网络图时间参数计算节点计算法
双代号网络图时间参数计算节点计算法ET-节点最早时间L T-节点最迟时间从起始节点开始顺着箭线方向依次进行计算步骤:1、计算节点的最早时间节点最早时间的计算应从网络计划的起点开始,顺着箭线方向依次进行,其计算步骤如下:1-1网络计划的起始节点,未规定最早时间时,其值等于01-2其他节点的最早时间等于所有箭头指向该节点工作的紧前节点最早时间+其作业时间(取最大值)2、确定计算工期与计划工期网络的计算工期等于网络计划终点节点的最早时间,若未规定要求工期,网络的计划工期等于计算工期。
3、确定节点最迟时间节点最迟时间的计算应从网络计划的终点节点开始,从后向前算。
3-1网络计划终点节点的最迟时间等于计划工期,在没有规定计划工期时等于计算工期,即最终节点的最早时间。
3-2其他节点的最迟时间等于该节点指向其他节点的最迟时间减去持续时间,取小值。
4、确定关键节点与关键工作当计划工期等于计算工期时,关键节点的最迟时间等于最早时间。
5、确定关键工作关键工作两端的节点必为关键节点,但两端为关键节点的工作不一定是关键工作。
当计划工期等于计算工期时,利用关键节点来判定关键工作必须满足紧前节点的最早时间+持续时间=紧后节点最早时间或紧前节点的最迟时间+持续时间=紧后节点最迟时间二、已知节点参数求工作参数(六大参数)最早开始ES,最早完成EF、最迟开始LS、最迟完成LF、总时差TF自有时差FF计算步骤:1、求最早开始时间某工作最早开始时间ES=其紧前节点的最早时间ET12、求最早完成时间某工作最早完成时间EF=其紧前节点的最早时间ET1+该工作持续时间D 3、求最迟完成时间某工作最迟开始时间LS=其紧后节点的最迟时间L T24、求最迟开始时间某工作最迟完成时间LF=其紧后节点最迟时间L T2-该工作持续时间D 5、求总时差某工作总时差TF=该工作紧后节点最迟时间L T2-该工作紧前节点的最早时间ET1 - 该工作持续时间D6、求自有时差某工作自由时差FF=该工作紧后节点最迟时间L T2-该工作紧前节点最迟时间L T1-该工作持续工期D。
双代号网络图参数计算
双代号网络计划时间参数的计算 (一) 、计算目的
1.计算工期Tc 2.确定关键线路 3.确定非关键工作的机动时间
(二) 、网络计划各项时间参数及其符号
1、双代号网络计划时间参数及其含义
(1) 工作的时间参数 ①工作的持续时间(Di-j) ②工作的最早开始时间(ESi-j) ③工作的最早完成时间(EFi-j) ④工作的最迟开始时间(LSi-j) ⑤工作的最迟完成时间(LFi-j) ⑥工作的总时差(TFi-j) ⑦工作的自由时差 (FFi-j)
时差的概念:
1、时差 在一定的前提条件下,本工作可利用的机动时间。 没有时差的工作称为关键工作。 2、总时差 不影响总工期的前提下,本工作可利用的机动时间, 称为总时差。 3 、自由时差 不影响其紧后工作最早可能开始的前提下,本工作可利 用的机动时间。
按工作计算法计算时间参数
(1) 工作时间参数与工期的计算公式
⑦ 工作的自由时差 当 时,
FF i
j
FF i j Tp EF i 当 j n 时,
-
j
FFi j minESj k EFi j
FFi-j的计算:FF本=ES紧后-EF本 = ES紧后- ES本-D本
3. 图上计算法
图上计算法是在图上直接计算时间参 数,将所算数值标注于网络图上的一种方 法。
例
LSi j LFi j Di j
⑤工作的最迟完成时间
n 时, 当 j 时, n
当j
LFi j minLSi j
-LFi j LFi j NhomakorabeaTp逆线相减、逢圈取小 ⑥工作的总时差( TF) j i
TFi j LSi j ESi j TFi j LFi j EFi j
(完整word版)双代号时标网络计划时间参数计算[经典练习]
双代号时标网络计划时间参数计算一.双代号时标网络计划的概念双代号时标网络计划简称时标网络计划,实质上是在一般网络图上加注时间坐标,它所表达的逻辑关系与原网络计划完全相同,但箭线的长度不能任意画,与工作的持续时间相对应。
时标网络计划既有一般网络计划的优点,又有横道图直观易懂的优点。
•在时标网络计划中,网络计划的各个时间参数可以直观地表达出来,因此,可直观地进行判读;•利用时标网络计划,可以很方便地绘制出资源需要曲线,便于进行优化和控制;•在时标网络计划中,可以利用前锋线方法对计划进行动态跟踪和调整。
时标网络计划可按最早时间和最迟时间两种方法绘制,使用较多的是最早时标网络计划。
二.时标网络计划的绘制时标网络计划宜按最早时间绘制。
在绘制前,首先应根据确定的时间单位绘制出一个时间坐标表,时间坐标单位可根据计划期的长短确定(可以是小时、天、周、旬、月或季等),如下表所示;时标一般标注在时标表的顶部或底部(也可在顶部和底部同时标注,特别是大型的、复杂的网络计划),要注明时标单位。
有时在顶部或底部还加注相对应的日历坐标和计算坐标。
时标表中的刻度线应为细实线,为使图面清晰,此线一般不画或少画。
时标形式有以下三种:计算坐标主要用作网络计划时间参数的计算,但不够明确。
如网络计划表示的计划任务从第0天开始,就不易理解。
日历坐标可明确表示整个工程的开工日期和完工日期以及各项工作的开始日期和完成日期,同时还可以考虑扣除节假日休息时间。
工作日坐标可明确表示各项工作在工程开工后第几天开始和第几天完成,但不能表示工程的开工日期和完工日期以及各项工作的开始日期和完成日期。
在时标网络计划中,以实线表示工作,实线后不足部分(与紧后工作开始节点之间的部分)用波形线表示,波形线的长度表示该工作与紧后工作之间的时间间隔;由于虚工作的持续时间为0,所以,应垂直于时间坐标(画成垂直方向),用虚箭线表示,如果虚工作的开始节点与结束节点不在同一时刻上时,水平方向的长度用波形线表示,垂直部分仍应画成虚箭线。
双代号网络图中时间参数的计算
双代号网络图中时间参数的计算双代号网络图中时间参数的计算3.双代号网络图中时间参数的计算(1)时间参数计算数学模型:下面取一网络片断(图9-24)作为计算简图。
图9-24计算简图节点编号:令整个计划的开始时间为第0天,则:最早时间:工作最早开始时间等于其紧前工作最早完成时间的最大值。
令整个计划的总工期为一常数,则:最迟时间:工作最迟完成时间等于其紧后工作最迟开始时间的最小值。
总时差:TF ij=自由时差:在网络计划中,总时差最小的工作为关键工作。
特别地,当网络计划的计划工期等于计算工期时,总时差为零的工作就是关键工作。
由于工作的自由时差是总时差的构成部分,所以,当工作的总时差为零时,其自由时差必然为零。
即:关键工作:如果网络计划中工作数量比较多,一般用项目管理软件进行计算。
如果数量不多也可用手工进行计算。
(2)计算步骤时间参数的计算方法很多,可人工计算,也可通过计算机计算。
手工计算一般采用图上计算法或表上计算法。
不管采用哪种方法,其计算步骤大致相同,具体步骤为:1)计算工作的最早时间。
工作的最早时间是从左向右逐项工作进行计算。
先定计划的开始时间,网络图中的起始节点一般取相对时间为第0天,则第一项工作的最早开始时间为第0天,将它与第一项工作的持续时间相加,即为该工作的最早完成时间。
逐项进行计算,一直算到最后一项工作,其最早完成时间即为该计划的计算工期。
2)确定网络计划的计划工期。
如果项目的总工期没有特殊的规定,一般取项目的计划工期为计算工期。
3)计算工作的最迟时间。
工作的最迟时间是从右向左逐项进行计算。
先定计划工期,最后一项工作的完成时间即为所定的计划工期时间,将它与其持续时间相减,即为最后一项工作的最迟开始时间。
逆方向逐项进行计算,一直算到第一项工作。
4)计算工作的总时差。
每一工作的最迟时间与最早时间之差,即为该工作的总时差。
5)计算工作的自由时差。
某一工作的自由时差为其紧后工作的最早开始时间最小值减去本工作的最早完成时间。
双代号网络计划图讲解11页word文档
双代号网络计划图讲解:代号讲解计划网络双代号网络计划图es 双代号网络计划图计算双代号网络计划计算篇一:双代号网络图解析实例一、双代号网络图6个时间参数的计算方法(图上计算法)从左向右累加,多个紧前取大,计算最早开始结束;从右到左累减,多个紧后取小,计算最迟结束开始。
紧后左上-自己右下=自由时差。
上方之差或下方之差是总时差。
计算某工作总时差的简单方法:①找出关键线路,计算总工期;②找出经过该工作的所有线路,求出最长的时间③该工作总时差=总工期-②二、双代号时标网络图双代号时标网络计划是以时间坐标为尺度编制的网络计划,以实箭线表示工作,以虚箭线表示虚工作,以波形线表示工作的自由时差。
双代号时标网络图1、关键线路在时标双代号网络图上逆方向看,没有出现波形线的线路为关键线路(包括虚工作)。
如图中①→②→⑥→⑧2、时差计算1)自由时差双代号时标网络图自由时差的计算很简单,就是该工作箭线上波形线的长度。
如A工作的FF=0,B工作的FF=1但是有一种特殊情况,很容易忽略。
如上图,E工作的箭线上没有波形线,但是E工作与其紧后工作之间都有时间间隔,此时E工作的自由时差=E与其紧后工作时间间隔的最小值,即E的自由时差为1。
2)总时差。
总时差的简单计算方法:计算哪个工作的总时差,就以哪个工作为起点工作(一定要注意,即不是从头算,也不是从该工作的紧后算,而是从该工作开始算),寻找通过该工作的所有线路,然后计算各条线路的波形线的长度和,该工作的总时差=波形线长度和的最小值。
还是以上面的网络图为例,计算E工作的总时差:以E工作为起点工作,通过E工作的线路有EH和EJ,两条线路的波形线的和都是2,所以此时E的总时差就是2。
再比如,计算C工作的总时差:通过C工作的线路有三条,CEH,波形线的和为4;CEJ,波形线的和为4;CGJ,波形线的和为1,那么C的总时差就是1。
篇二:双代号网络计划图个人学习总结双代号网络计划图个人学习总结一.网络图要素1.节点:表示工作的开始、结束或连接关系,也称为事件。
双代号网络图6个时间参数简单计算方法
双代号网络图6个时间参数简单计算方法双代号网络图(也称为双代号网)是一种用来表达工程项目或生产流程中各个活动之间的先后关系的工具。
它通过使用箭头来表示活动,箭头的方向表示活动的先后顺序,箭头上的时间参数表示活动的开始时间和持续时间。
在双代号网络图中,有六个重要的时间参数,分别是:最早开始时间(ES)、最早结束时间(EF)、最晚开始时间(LS)、最晚结束时间(LF)、总时差(TF)和自由时差(FF)。
1. 最早开始时间(Early Start,ES):指一个活动可以开始的最早时间。
对于一个活动,它的最早开始时间等于它的前驱活动的最早结束时间(EF)。
2. 最早结束时间(Early Finish,EF):指一个活动结束的最早时间。
对于一个活动,它的最早结束时间等于最早开始时间(ES)加上该活动的持续时间(D)。
3. 最晚开始时间(Late Start,LS):指一个活动可以开始的最晚时间。
对于一个活动,它的最晚开始时间等于它的后继活动的最早开始时间(ES)减去该活动的持续时间(D)。
4. 最晚结束时间(Late Finish,LF):指一个活动结束的最晚时间。
对于一个活动,它的最晚结束时间等于它的后继活动的最早开始时间(ES)减去15. 总时差(Total Float,TF):指一个活动可以延迟的最长时间,而不会导致项目整体工期延长。
总时差等于最晚开始时间(LS)减去最早开始时间(ES),或等于最晚结束时间(LF)减去最早结束时间(EF)。
6. 自由时差(Free Float,FF):指一个活动可以延迟的最长时间,而不会导致后续活动受到延迟的影响。
自由时差等于后继活动的最早开始时间(ES)减去该活动的最早结束时间(EF)减去1计算这六个时间参数的方法如下:1.计算最早开始时间(ES)和最早结束时间(EF):根据箭头的方向,从左往右依次确定每个活动的最早开始时间和最早结束时间。
对于第一个活动,最早开始时间为0,最早结束时间为持续时间(D)。
双代号网络图六个时间参数的简易计算
关于盘算双代号收集图的标题用图上盘算法盘算如图所示双代号收集图的各项时光参数(六时标注)肯定症结路线.症结工作和总工期.注:个中工作F的最迟完成时光为盘算工期17 其自由时差为17-12=5(盘算工期-F的最早完成时光,因F后没有紧后工作了;H后也没有紧后工作了)双代号收集图是运用较为广泛的一种收集筹划情势.它是以箭线及其两头节点的编号暗示工作的收集图.双代号收集图中的盘算重要有六个时光参数:ES:最早开端时光,指各项工作紧前工作全体完成后,本工作最有可能开端的时刻;EF:最早完成时光,指各项紧前工作全体完成后,本工作有可能完成的最早时刻LF:最迟完成时光,不影响全部收集筹划工期完成的前提下,本工作的最迟完成时光;LS:最迟开端时光,指不影响全部收集筹划工期完成的前提下,本工作最迟开端时光;TF:总时差,指不影响筹划工期的前提下,本工作可以运用的灵活时光;FF:自由时差,不影响紧后工作最早开端的前提下,本工作可以运用的灵活时光.双代号收集图时光参数的盘算一般采取图上盘算法.下面用例题进行讲授.例题:试盘算下面双代号收集图中,求工作C的总时差?早时光盘算:ES,假如该工作与开端节点相连,最早开端时光为0,即A的最早开端时光ES=0;EF,最早停止时光等于该工作的最早开端+中断时光,即A的最早停止EF为0+5=5;假如工作有紧前工作的时刻,最早开端等于紧前工作的最早停止取大值,即B的最早开端FS=5,同理最早停止EF为5+6=11,而E工作的最早开端ES为B.C工作最早停止(11.8)取大值为11.迟时光盘算:LF,假如该工作与停止节点相连,最迟停止时光为盘算工期23,即F的最迟停止时光LF=23;LS,最迟开端时光等于最迟停止时光减去中断时光,即LS=LF-D;假如工作有紧后工作,最迟停止时光等于紧后工作最迟开端时光取小值.时差盘算: FF,自由时差=(紧后工作的ES-本工作的EF);TF,总时差=(紧后工作的LS-本工作的ES)或者=(紧后工作的LF-本工作的EF).该题解析:则C工作的总时差为3.。
双代号网络图6个时间参数的计算方法
一、双代号网络图6个时间参数的计算方法(图上计算法)从左向右累加,多个紧前取大,计算最早开始结束;从右到左累减,多个紧后取小,计算最迟结束开始。
紧后左上-自己右下=自由时差。
上方之差或下方之差是总时差。
计算某工作总时差的简单方法:①找出关键线路,计算总工期;②找出经过该工作的所有线路,求出最长的时间③该工作总时差=总工期-②二、双代号时标网络图双代号时标网络计划是以时间坐标为尺度编制的网络计划,以实箭线表示工作,以虚箭线表示虚工作,以波形线表示工作的自由时差。
双代号时标网络图1、关键线路在时标双代号网络图上逆方向看,没有出现波形线的线路为关键线路(包括虚工作)。
如图中①→②→⑥→⑧2、时差计算1)自由时差双代号时标网络图自由时差的计算很简单,就是该工作箭线上波形线的长度。
如A工作的FF=0,B工作的FF=1但是有一种特殊情况,很容易忽略。
如上图,E工作的箭线上没有波形线,但是E工作与其紧后工作之间都有时间间隔,此时E工作的自由时差=E与其紧后工作时间间隔的最小值,即E的自由时差为1。
2)总时差。
总时差的简单计算方法:计算哪个工作的总时差,就以哪个工作为起点工作(一定要注意,即不是从头算,也不是从该工作的紧后算,而是从该工作开始算),寻找通过该工作的所有线路,然后计算各条线路的波形线的长度和,该工作的总时差=波形线长度和的最小值。
还是以上面的网络图为例,计算E工作的总时差:以E工作为起点工作,通过E工作的线路有EH和EJ,两条线路的波形线的和都是2,所以此时E的总时差就是2。
再比如,计算C工作的总时差:通过C工作的线路有三条,CEH,波形线的和为4;CEJ,波形线的和为4;CGJ,波形线的和为1,那么C的总时差就是1。
3.4双代号网络图时间参数的计算(精)
2) 其他节点。其他节点i的最迟时间 为:
——工作
的箭头节点的最迟时间。
2. 工作i-j的时间参数
(1)最早时间 工作 最早开始时间 :
工作
最早完成时间
:
(2)最迟时间 工作 的最迟完成时间 工作 的最迟开始时间
: :
3.时差的计算
I 4
(⑥,17)
8
3
G (⑤,10) 7 7
J 5
图例: (源节点号,标号值)
对节点进行标号计算
FF i-j(Free Float Time)
• 解释:
• 第一类、最早时间参数:
• • ——是限制紧后工作提前的时间参数。 ——是限制紧前工作推迟的时间参数。 最早可能开始时间 最早可能完成时间 • 第二类、最迟时间参数:
i i
j
最迟必须开始时间 最迟必须完成时间
j
i-j 工作的工作范围
• 计算步骤: • (1)计算最早时间参数ESi-j和EFi-j。 • 计算顺序:由起始节点开始顺着箭线方向算至终点节点用 加法。 EFi-j= ESi-j+ Di-j
3.“ 最迟时间”的计算
(1)本工作最迟完成时间(LF) LFi-j=min{LSj-k} LFi-n=TP (2)本工作最迟开始时间(LS): LSi-j=LFi-j-Di-j
计算规则:“ 逆线累减,逢圈取小”
0 1 A 4 5 1 1 C 5
2
5
B 2 5
1 3 7 9 4
9 14 F 9 14 5 工期 14
5
B 2
1 3 7 9
6
4 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双代号网络图时间参数的计算
二、工作计算法
【例题】:根据表中逻辑关系,绘制双代号网络图,并采用工作计算法计算各工作的时间参数。
(一)工作的最早开始时间ES i-j
--各紧前工作全部完成后,本工作可能开始的最早时刻。
(二)工作的最早完成时间EF i-j
EF i-j=ES i-j + D i-j
1.计算工期T c等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间的最大值,即T c=max{EF i-n}
2.当网络计划未规定要求工期T r时,T p=T c
3.当规定了要求工期T r时,T c≤T p,T p≤T r
--各紧前工作全部完成后,本工作可能完成的最早时刻。
(三)工作最迟完成时间LF i-j
1.结束工作的最迟完成时间LF i-j=T p
2. 其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算。
--在不影响计划工期的前提下,该工作最迟必须完成的时刻。
(四)工作最迟开始时间LS i-j
LS i-j=LF i-j-D i-j
--在不影响计划工期的前提下,该工作最迟必须开始的时刻。
(五)工作的总时差TF i-j
TF i-j=LS i-j-ES i-j 或TF i-j=LF i-j-EF i-j
--在不影响计划工期的前提下,该工作存在的机动时间。
(六)自由时差FF i-j
FF i-j=ES j-k-EF i-j
--在不影响紧后工作最早开始时间的前提下,该工作存在的机动时间。
作业1:根据表中逻辑关系,绘制双代号网络图。