二次函数知识点总结(整理版)
二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。
二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。
2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。
4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。
三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。
2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。
3. 标准式:$y = ax^2 + bx + c$。
四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。
2. 完全平方法:通过配方将二次方程转化为完全平方的形式。
3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。
五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。
2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。
3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。
二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容,也是高中数学的基础。
它在数学和实际生活中都有广泛的应用。
下面就来对二次函数的知识点进行一个全面的总结。
一、二次函数的定义一般地,形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,叫做二次函数。
其中,$x$是自变量,$a$叫做二次项系数,$b$叫做一次项系数,$c$叫做常数项。
需要注意的是,二次函数的二次项系数$a$不能为$0$,否则就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
抛物线的对称轴是直线$x =\frac{b}{2a}$。
抛物线的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。
三、二次函数的表达式1、一般式:$y = ax^2 + bx + c$($a ≠ 0$)2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$,顶点坐标为$(h, k)$)3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$,$x_1$、$x_2$是抛物线与$x$轴交点的横坐标)四、二次函数的性质1、当$a > 0$时,在对称轴左侧,$y$随$x$的增大而减小;在对称轴右侧,$y$随$x$的增大而增大。
当$a < 0$时,在对称轴左侧,$y$随$x$的增大而增大;在对称轴右侧,$y$随$x$的增大而减小。
2、二次函数的最值:当$a > 0$时,函数有最小值,$y_{min} =\frac{4ac b^2}{4a}$。
当$a < 0$时,函数有最大值,$y_{max} =\frac{4ac b^2}{4a}$。
五、二次函数与一元二次方程的关系抛物线$y = ax^2 + bx + c$与$x$轴的交点的横坐标就是一元二次方程$ax^2 + bx + c = 0$的根。
九年级二次函数常考知识点总结整理

1二次函数知识点总结整理一、 函数定义与表达式1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).二、 函数图像的性质——抛物线(1)开口方向——二次项系数a二次函数2y ax bx c =++中,显然0a ≠.当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.I aI 越大开口就越小,IaI 越小开口就越大.(2)抛物线是轴对称图形,对称轴为直线: ① 一般式 为直线 2bx a =- ②顶点式为直线x=h③两根式为直线x=221x x +(3)对称轴位置一次项系数b 和二次项系数a 共同决定对称轴的位置。
(“左同右异”) a 与b 同号(即ab >0)对称轴在y 轴左侧 a 与b 异号(即ab <0) 对称轴在y 轴右侧(4)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大;当a<0时,在对称轴左侧(当2b x a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a<-时),y 随着x 的增大而减少;当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a-=;当a<0时,函数有最大值,并且当x=a b 2-,2max 44ac by a-=;(5)a\b\c 符号判别二次函数y=ax2+bx+c (a ≠0) 中a 、b 、c 的符号判别:① a 的符号判别由开口方向确定:当开口向上时,a >0;当开口向下时,a <0;② c 的符号判别由与Y 轴的交点来确定:若交点在X 轴的上方,则c >0;若交点在X 轴的下方,则C<0; ③ b 的符号由对称轴来确定:对称轴在Y 轴的左侧,则a 、b 同号;若对称轴在Y 轴的右侧,则a 、b异号。
二次函数知识点总结3篇

二次函数知识点总结第一篇:二次函数的基本定义及图像二次函数是指一个多项式中最高次为二次的函数,通常写成 $f(x)=ax^2+bx+c$ 的形式,其中 a,b,c 为常数,a 不为零。
二次函数是数学中一类重要的函数类型,其图像为对称的抛物线。
一、基本定义对于二次函数 $f(x)=ax^2+bx+c$,其中 a,b,c 为常数,a 不为零:1. a 是二次函数的开口方向和开口程度的决定因素,当a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。
2. x=-b/2a 是二次函数的对称轴。
3. (x, y) = (-b/2a, c-b^2/4a) 是二次函数的顶点,也是对称轴上的最高点或最低点。
4. 当 a>0 时,对于任何 x,有$f(x)≥y_{min}$;当a<0 时,对于任何 x,有$f(x)≤y_{max}$,其中$y_{min}$ 和 $y_{max}$ 分别为二次函数的最小值和最大值。
二、图像特征二次函数的图像是一条对称的抛物线,其最高点或最低点位于对称轴上,最大值或最小值发生在相应顶点处。
抛物线与 x 轴的交点称为根,由于对称性,常见情况下二次函数最多有两个根。
三、常用的二次函数图像变换1. 上下移动。
将二次函数整体向上或向下平移 k 个单位,得到一种新的二次函数 $y=f(x)+k$。
2. 左右移动。
将二次函数整体向左或向右平移 k 个单位,得到一种新的二次函数 $y=f(x-k)$ 或 $y=f(x+k)$。
3. 垂直方向压缩或拉伸。
将二次函数沿 y 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=sf(x)$。
4. 水平方向压缩或拉伸。
将二次函数沿 x 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=f(sx)$。
总之,二次函数的图像特征以及常用的变换方式是掌握二次函数知识的重要基础。
在实际应用中,这些基础概念和操作将为我们处理二次函数相关问题提供宝贵的帮助和指导。
《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
初中二次函数知识点汇总(史上最全)

二次函数知识点一、根本概念:1.二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、根本形式1. 二次函数根本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:〔上加下减〕3. ()2y a x h =-的性质:〔左加右减〕4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴与顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以与()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标与开口方向,再确定其对称抛物线的顶点坐标与开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-②当0∆=时,图象与x 轴只有一个交点; ③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的在联系:二次函数考察重点与常见题型1. 考察二次函数的定义、性质,有关试题常出现在选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考察两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是〔 〕3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
二次函数知识点总结(详细)

2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。
(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。
2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
二次函数知识点总结

二次函数知识点总结一、基本概念二次函数,是指一种关系式y=ax²+bx+c,其中a为非零常数,而b和c为常数,x和y分别为自变量和因变量。
二次函数的解析式为y=ax²+bx+c,其中x为自变量,y 为因变量,a、b、c分别为常数,a不等于0.二、图像特征1. 开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2. 对称轴二次函数y=ax²+bx+c的对称轴为x=-b/2a.3. 单调性当a>0时,函数在对称轴左侧单减,右侧单增;当a<0时,函数在对称轴左侧单增,右侧单减。
4. 零点当y=0时,二次函数的解析式可变为ax²+bx+c=0,由求根公式可知,它有两个实数根x1、x2,为二次函数的零点。
5. 最值当a>0时,二次函数在对称轴上有一个最小值;当a<0时,二次函数在对称轴上有一个最大值。
三、性质和运用1. 判别式对于二次函数y=ax²+bx+c,判别式D=b²-4ac可以用来判断它的零点个数和类型:当D>0时,函数有两个不同实根,图像与x轴有两个交点;当D=0时,函数有一个重根,图像与x轴只有一个交点;当D<0时,函数没有实根,图像与x轴没有交点。
2. 求导对于二次函数y=ax²+bx+c,可以对其求导,得到y'=2ax+b,这个导数表示了函数在各个点的斜率,因此可以用来求函数的切线和极值。
3. 模型应用由于具有一定的可控性和可预测性,二次函数可以用来建立各种实际应用中的数学模型,例如:抛物线、自由落体、平衡价格等等。
4. 与图像的关系可以通过调整a、b、c的值,来控制函数图像的形态和特征,例如调整a的值可以改变函数的开口方向和形状,调整b的值可以改变对称轴的位置,调整c的值可以改变函数图像与y轴的截距。
四、常见问题1. 二次函数如何确定开口方向?二次函数的开口方向由二次项系数a的符号决定,当a>0时,函数开口向上;当a<0时,函数开口向下。
二次函数知识点整理总结

二次函数知识点整理总结二次函数(QuadraticFunction)是指具有二次有理子式构成的函数,它是数学中最普遍应用的一类函数,广泛应用于工程、经济、物理等领域。
下面,我们将对二次函数的基本概念、其特性及应用进行概括总结。
一、二次函数的概念二次函数由一元二次多项式构成,用二阶导数表示,其一般表达式为:y = ax^2 + bx + c(a≠0),其中a、b、c为实常数,x为未知数,当a>0时,该函数为一个凹曲线,当a<0时,该函数为一个凸曲线。
其平面直角坐标系表达式如下:y = a(x-x1)^2 + y1其中x1为函数图象的极值点,y1为函数图象的极值点纵坐标值,a为函数图象的凹、凸性系数。
二、二次函数的特性(1)二次函数的直线对称,即函数的图象关于直线y=x进行对称,因此在求解中可以利用此特点减少求解量;(2)二次函数在极值点处的导数为0,因此可以通过求解导数为0的极值点确定函数的极值;(3)二次函数的一阶导数与二阶导数都有确定的特点,可以用于判断函数的凹、凸性,一阶导数的方向可以引导我们确定最优解所在的方向。
三、二次函数的应用(1)物理上的应用:二次函数具有方程的坐标表示形式,可以用来描述物体在不同情况下的抛体问题,从而对抛体运动进行研究和模拟;(2)经济学上的应用:二次函数可以用来表示投资者表现出不同收益水平时的投资行为,从而为经济策略制定提供把握;(3)工程学上的应用:二次函数可以用来描述桥梁的设计,从而确定桥梁的宽度和高度;(4)数学教育上的应用:二次函数可以帮助我们更加深入地理解函数,从而培养学生系统、深根地掌握函数的规律。
总之,二次函数是一类重要的数学工具,它在物理、经济、工程以及数学教育等领域均有着不可忽视的应用价值,因此了解二次函数的基本概念、其特性及应用对于我们更好地运用二次函数具有重要的意义。
二次函数知识点归纳总结

二次函数知识点归纳总结二次函数是高中数学中的一个重要内容,也是数学建模和解几何问题的重要工具。
下面是关于二次函数的知识点的归纳总结。
一、基本概念1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c (a ≠ 0) 的函数,其中 a、b、c 是常数。
2.二次函数的图象:二次函数的图象是一个抛物线,开口方向取决于a的正负性,顶点坐标为(-b/2a,f(-b/2a))。
3.对称轴:二次函数的对称轴是与图象关于x轴对称的直线,其方程为x=-b/2a。
4. 零点:二次函数的零点是函数图象与 x 轴的交点,可以通过求解二次方程 ax^2 + bx + c =0 来得到。
5.最值:二次函数的最值取决于a的正负性,当a>0时,函数取最小值;当a<0时,函数取最大值。
二、二次函数的变形与性质1.平移变换:二次函数可以通过平移变换来改变其图象的位置。
平移变换的一般形式是f(x)→f(x-h)+k,其中h和k是任意实数。
2.缩放变换:二次函数可以通过缩放变换来改变其图象的形状。
缩放变换的一般形式是f(x)→af(x),其中a是非零实数。
3.纵坐标平移:二次函数可以通过纵坐标平移来改变其图象的位置。
纵坐标平移的一般形式是f(x)→f(x)+k,其中k是任意实数。
4.二次函数的奇偶性:如果a是偶数,则二次函数是偶函数;如果a是奇数,则二次函数是奇函数。
5.顶点坐标的性质:顶点坐标(-b/2a,f(-b/2a))是二次函数的最值点,当a>0时是最小值,当a<0时是最大值。
三、二次函数的方程与不等式1. 二次方程的解:二次方程 ax^2 + bx + c =0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 来得到。
2. 解的判别式:二次方程 ax^2 + bx + c =0 的解的判别式是 D =b^2 - 4ac,根据判别式的值可以判断方程有几个实数解。
二次函数知识点总结

二次函数知识点总结二次函数是数学中一个重要的函数类型,它在许多领域都有广泛的应用。
二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。
以下是二次函数的主要知识点总结:1. 定义:二次函数是最高次项为二次的多项式函数。
2. 标准形式:二次函数的标准形式是 y = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。
3. 系数意义:系数 a 决定了抛物线的开口方向和宽度,b 和 c 决定了抛物线的位置。
4. 开口方向:当 a > 0 时,抛物线向上开口;当 a < 0 时,抛物线向下开口。
5. 顶点:二次函数的顶点是抛物线的最值点,其坐标可以通过公式(-b/2a, f(-b/2a)) 计算得出。
6. 对称轴:二次函数的对称轴是一条垂直于 x 轴的直线,其方程为x = -b/2a。
7. 极值:当 a > 0 时,抛物线有最小值;当 a < 0 时,抛物线有最大值。
8. 零点:二次函数的零点是函数图像与 x 轴的交点,可以通过求解方程 ax^2 + bx + c = 0 得到。
9. 判别式:二次方程 ax^2 + bx + c = 0 的判别式为Δ = b^2 -4ac,它决定了方程的根的性质。
- 当Δ > 0 时,方程有两个不相等的实数根。
- 当Δ = 0 时,方程有两个相等的实数根。
- 当Δ < 0 时,方程没有实数根。
10. 应用:二次函数在物理、工程、经济学等领域有广泛应用,如抛体运动、最优化问题等。
11. 图像特征:二次函数的图像是一个抛物线,其形状和位置由系数a、b、c 共同决定。
12. 函数性质:二次函数具有连续性、可导性等性质,其导数为 f'(x) = 2ax + b。
13. 函数图像绘制:通过确定顶点、对称轴和零点,可以绘制出二次函数的图像。
14. 函数变换:通过对二次函数进行平移、伸缩等变换,可以得到新的二次函数图像。
二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的重要内容之一,它在解决实际问题、解析几何和函数图像的分析等方面都有重要应用。
下面我将详细总结二次函数的知识点。
一、二次函数的定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a≠0。
二、二次函数的图像:1.函数的对称轴:对称轴是函数图像关于其顶点对称的直线。
对称轴的方程为x=-b/(2a)。
如果a>0,则对称轴是向下开口的抛物线;如果a<0,则对称轴是向上开口的抛物线。
2.函数的顶点:顶点是函数图像的最高点或者最低点。
顶点的坐标为(-b/(2a),f(-b/(2a)))。
3.函数的开口方向:如果a>0,则函数开口向下,图像是一个向下的抛物线;如果a<0,则函数开口向上,图像是一个向上的抛物线。
4.函数的图像关于对称轴对称,左侧和右侧的图像相同。
三、二次函数的常用形式:1. 标准型:y = ax^2 + bx + c。
2.顶点型:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
3.因式分解型:y=a(x-x1)(x-x2),其中x1和x2为函数的零点。
四、二次函数的性质:1. 零点:也称为函数的根或者解,即使方程ax^2 + bx + c = 0的解。
二次函数的零点可以通过因式分解、求根公式或者配方法来求得。
2. 判别式:Δ = b^2 - 4ac,用于判断二次方程的解的情况。
a.如果Δ>0,则方程有两个不相等的实数根。
b.如果Δ=0,则方程有一个实数根。
c.如果Δ<0,则方程没有实数根,但可能有复数根。
3.对称性:抛物线在对称轴处对称,即f(x)=f(-x)。
4.单调性:对称轴两侧函数的增减情况是一样的,当a>0时,函数在对称轴左侧单调递减,在对称轴右侧单调递增,当a<0时,函数在对称轴左侧单调递增,在对称轴右侧单调递减。
5.最值:函数的最高点或最低点即为函数的最值,当a>0时,函数有最小值;当a<0时,函数有最大值。
二次函数知识点汇总(全)

二次函数知识点(第一讲)、二次函数概念:1. 二次函数的概念:一般地,形如y=aχ2∙bx ∙c ( a , b , C是常数,a =O )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a = 0 ,而b ,c可以为零•二次函数的定义域是全体实数.2. 二次函数y =aχ2∙bx C的结构特征:⑴ 等号左边是函数,右边是关于自变量X的二次式,X的最高次数是2 .⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,C是常数项.二、二次函数的基本形式1. 二次函数基本形式:y =aχ2的性质:a的绝对值越大,抛物线的开口越小。
2. y =aχ2 C的性质:(上加下减)23. y =a (x —h )的性质:(左加右减)a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h ,0) X=hx>h 时,y 随X 的增大而增大;Xeh 时,y 随X 的增大而减小;X = h 时,y 有最小值0 .a cθ向下(h ,0) X=hx>h 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值0 .24. y=a(x —h)+k 的性质:a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h, k ) X=hx>h 时,y 随X 的增大而增大;XCh 时,y 随X 的增大而减小;x=h 时,y 有最小值k .a v0向下 (h, k ) X=hXAh 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式 y =a X -∙h j 亠k ,确定其顶点坐标 h , k ; ⑵ 保持抛物线y =aχ2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2. 平移规律在原有函数的基础上 h 值正右移,负左移;k 值正上移,负下移”概括成八个字“左加右减, 上加下减”.y=ax 2* y=ax 2+k向上(k>0)【或下(k<0)] y=a (x-h)2向右(h>0)【或左(h<0)] 平移|k|个单位y=a(x-h)2+k向上(k>0)【或向下(k<0)】平移Ikl 个单位向上(k>0)【或下(k<0)]平移|k 个单位向右(h>0)【或左(h<0)] 平移Kl 个单位向右(h>0)【或左(*0)] 平移Ikl 个单位平移∣k ∣个单位方法二:⑴y = ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y = ax 2 ∙ bx ∙ c 变成2 卜 2y = ax bx C m (或 y = ax bx c - m )⑵y =ax 2 ∙ bx C 沿轴平移:向左(右)平移 m 个单位,y = ax 2 bx C 变成2 卜 2y = a(x m) b(x m) c (或 y = a(x _ m) b(x _ m) c )四、二次函数y =a X _h i 亠k 与y =aχ2 bx c 的比较2从解析式上看,y =a X _h ]亠k 与y =aχ2 ∙ bx C 是两种不同的表达形式,后者通过配方可以得到五、二次函数y =aχ2 bx c 图象的画法五点绘图法:利用配方法将二次函数y =aχ2 bx C 化为顶点式y=a(x-h)2 ∙k ,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 •一般我们选取的五点为: 顶点、与y 轴的交点O, c 、以及O,c 关于对称轴对称的点 2h ,C 、与X 轴的交点x 1, 0,X 2,O (若与X 轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 X 轴的交点,与y 轴的交点•六、二次函数y =ax 2 bx c 的性质随X 的增大而增大;当 ^-―时,y 随X 的增大而减小;当X b 时,2a2a七、二次函数解析式的表示方法1. 一般式: y =ax bx c ( a , b , C 为常数,a =O );2.顶点式: y =a(x-h) k ( a , h , k 为常数,a =O );3.两根式: y =a(x -x ι)(x -X 2) ( a =O , X i , X 2是抛物线与X 轴两交点的横坐标)前者,即y =a,其中Ta24ac — b 4a1.当a O 时,抛物线开口向上,对称轴为X b,顶点坐标为2ab 4ac-b 2— ,2a 4a当X 时,y 随X 的增大而减小;当X^ 时,2a2a最小值4ac "2 .4ay随X 的增大而增大;当X=E 时,y 有2.当a :::0时,抛物线开口向下, X =-b,顶点坐标为( b 4ac-b 2•当X ::」时,I ■—, 2a2a 4a2ay 有最大值4ac - b 2 4a对称轴为 y注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式,只有抛物线与X 轴有交点,即b 2_4ac_o 时,抛物线的解析式才可以用交点式表示.二次函数 解析式的这三种形式可以互化•八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y =aχ2 ∙ bx ∙ c 中,a 作为二次项系数,显然 a 厂0 .⑴当a 0时,抛物线开口向上,a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当a :::0时,抛物线开口向下,a 的值越小,开口越小,反之 a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在a 0的前提下,当b 0时,一卫:::0 ,即抛物线的对称轴在 y 轴左侧;2a当b =0时,一丄=0 ,即抛物线的对称轴就是 y 轴;2a当b <0时,—b .0,即抛物线对称轴在 y 轴的右侧.2a⑵ 在a <0的前提下,结论刚好与上述相反,即当b 0时,—卫∙0 ,即抛物线的对称轴在 y 轴右侧;2a当b =0时,—b =O ,即抛物线的对称轴就是 y 轴;2a当b <0时,一P ::: 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.Kab 的符号的判定:对称轴X —在y 轴左边则ab • 0,在y 轴的右侧则ab ::: 0 ,概括的说就2a是“左同右异” 总结: 3. 常数项C总结起来,C 决定了抛物线与y 轴交点的位置.总之,只要a, b , C 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必 须根据题目的特点,选择适当的形式,才能使解题简便•一般来说,有如下几种情况:⑴当C 0时,抛物线与 y 轴的交点在X 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵当C =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ; ⑶当C <0时,抛物线与 y 轴的交点在X 轴下方,即抛物线与 y 轴交点的纵坐标为负.1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与X轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于X轴对称y = aX ∙ bx关于X轴对称后,得到的解析式是y - -aχ2 -bx -C ;2 2y=ax-h]亠k关于X轴对称后,得到的解析式是y - -a X -h k ;2. 关于y轴对称^aX bx关于y轴对称后,得到的解析式是y =aχ2 -bx ∙ c ;2 2y=ax-h「k关于y轴对称后,得到的解析式是y = a X^i ^k ;3. 关于原点对称y = ax2 bx C关于原点对称后,得到的解析式是y =-aχ2∙ bx-c ;2 2y = a X- h ■关于原点对称后,得到的解析式是y - -a X ∙ h k ;4.关于顶点对称(即:抛物线绕顶点旋转180°)y=aX ∙ bx关汙顶点对称后,得到的解析式是y»bx c 卫;2a2y =a x-h k关于顶点对称后,得到的解析式是2y = -a X - h j 亠k •5. 关于点m, n对称2 2y =a X -h i亠k关于点m , n 对称后,得到的解析式是y = -a x ■ h —2m i亠2n —k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变•求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与X轴交点情况):一元二次方程ax2 bx C 0是二次函数y=aχ2 bx G当函数值y =O时的特殊情况• 图象与X轴的交点个数:①当厶-b2 -4ac 0时,图象与X轴交于两点Axl,0 , B X2 , 0 (X^-X2),其中的X i,X2是一元次方程ax2 bx C =0 a十0的两根.这两点间的距离②当=0时,图象与X轴只有一个交点;③当.—::0时,图象与X轴没有交点•1'当a 0时,图象落在X轴的上方,无论X为任何实数,都有y ∙0 ;2'当a :::0时,图象落在X轴的下方,无论X为任何实数,都有y:::0 .2.抛物线y =aχ2 bx C的图象与y轴一定相交,交点坐标为(0,C);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与X轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y =aχ2∙ bx ∙ c中a,b,C的符号,或由二次函数中a,b,C的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与X轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx C(^--=0)本身就是所含字母X的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:Δ>0抛物线与X轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根A =0抛物线与X轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根A <0抛物线与X轴无交占二次三项式的值恒为正一元二次方程无实数根.AB = X2 - X i I =b 4ac二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以X为自变量的二次函数y = (m「2)x2∙ m2「m「2的图像经过原点,则m的值是___________2 .综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx ∙ b的图像在第一、二、三象限内,那么函数3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:5已知一条抛物线经过(0,3) , (4,6)两点,对称轴为X ,求这条抛物线的解析式。
数学二次函数知识点总结【通用6篇】

数学二次函数知识点总结【通用6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲致辞、法律文书、心得体会、岗位职责、鉴定评语、实习文案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, legal documents, personal experiences, job responsibilities, appraisal comments, internship copywriting, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学二次函数知识点总结【通用6篇】作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。
二次函数知识点概括总结

中a b ac k a b h 4422-=-=,.Ø 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.² 二次函数解析式的表示方法二次函数解析式的表示方法Ø 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ¹);Ø 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ¹);Ø 两根式:12()()y a x x x x =--(0a ¹,1x ,2x 是抛物线与x 轴两交点的横坐标). Ø 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ² 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点的三要素:开口方向、对称轴、顶点. .Ø a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;时,开口向下;a 相等,抛物线的开口大小、形状相同相等,抛物线的开口大小、形状相同. .Ø 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . Ø 顶点坐标坐标:),(ab ac a b 4422-- Ø 顶点决定抛物线的位置顶点决定抛物线的位置..几个不同的二次函数,几个不同的二次函数,如果二次项系数如果二次项系数a 相同,相同,那么抛物线的开口方向、那么抛物线的开口方向、那么抛物线的开口方向、开口开口大小完全相同,只是顶点的位置不同大小完全相同,只是顶点的位置不同. .² 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系与函数图像的关系 Ø 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ¹.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大的大小决定开口的大 小.小.Ø 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.决定了抛物线的对称轴. ⑴ 在0a >的前提下,的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;轴左侧;当0b =时,02b a-=,即抛物线的对称轴就是y 轴;轴;二次函数知识点总结及相关典型题目第一部分 二次函数基础知识² 相关概念及定义相关概念及定义Ø 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ¹)的函数,叫做二次函数。
(完整版)二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
初中二次函数知识点总结[整理版]
![初中二次函数知识点总结[整理版]](https://img.taocdn.com/s3/m/0a1ca6fb7f1922791688e82f.png)
二次函数知识点一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1、二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2、2y ax c =+的性质: 上加下减。
3、()2y a x h =-的性质:左加右减。
4、()2y a x h k =-+的性质:三、二次函数图象的平移 1、平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x的增大而减小;0x =时,y 有最小值0.0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上 ()0c ,y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x的增大而减小;0x =时,y 有最小值c .0a <向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x的增大而增大;0x =时,y 有最大值c .a 的符号 开口方向 顶点坐标 对称轴 性质0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x的增大而减小;x h =时,y 有最小值0.0a <向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a > 向上 ()h k , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22、平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
二次函数知识点总结
1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
二次项系数0a ≠ 2.二次函数的基本形式
①二次函数最基本的形式:2
y ax =的性质:
22③()2
y a x h =-的性质:是经2y ax =左右移动得到(即水平在x 轴方向移动):左加右减 ④()2
y a x h k =-+的性质:
3.关于平移“左加右减,上加下减”
4.二次函数顶点式
()2
y a x h k
=-+与一般式
2
y ax bx c =++的区别与联系: 区别:()2
y a x h k =-+与2y ax bx c =++是两种不同的表达形式;
★联系:将一般式2
y ax bx c =++转化成顶点式 2
2424b ac b y a x a a -⎛
⎫=++ ⎪⎝⎭
;
其中顶点坐标可求2
424b ac b h k a a
-=-=
,. 5.二次函数2y ax bx c =++图象画法:先定对称轴;再定开口方向;最后上下移动;
★做题必须求出的4个点:
①顶点2424b ac b a a ⎛⎫
-- ⎪⎝⎭
, ②与
y 轴的交点()0c ,;(即当x=0时,求得y=c )
③与x 轴的交点()10x ,,()2
0x ,(即当y=0时,求得a
ac
b b x 242-±
-=)
6.2
y ax bx c =++的性质:
① 当0a >时,开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a
a ⎛⎫-- ⎪⎝⎭,.当2b
x a <-
时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b
x a
=-时,y 有最小值
244ac b a -.
②当0a <时,开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.当2b
x a <-
时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b
x a
=-时,y 有最大值244ac b a -.
2
7.二次函数解析式的表示方法:
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).
★怎样设二次函数解析式:根据已知条件确定二次函数解析式,通常利用待定系数法.
1. 已知抛物线上普通的3点的坐标,一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;
4. 已知抛物线上纵坐标相同的两点,因为抛物线的对称性,故常选用顶点式.
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可
以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
8、二次函数的图象与各项系数之间的关系
1. 二次项系数a :二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.
⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.
★a 决定了开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.
2. 一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b
a -
<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b
a -=,即抛物线的对称轴就是y 轴;
当0b <时,02b
a
->,即抛物线对称轴在y 轴的右侧.
⑵ 在0a <的前提下,结论刚好与上述相反.
3. 常数项c :抛物线与y 轴的交点
⑴ 当0c >时,与y 轴交于x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,与y 轴交于原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,与y 轴交于x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.
★总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.
9.二次函数与一元二次方程:
★一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数如下:
① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,
,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根:★a
ac
b b x 242-±-=.
★A 、B 两点间的距离21AB x x =-.
② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.
1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.
★抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; ▲▲▲解题思路总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,
b ,
c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
(6)关于x 轴对称: 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2
y a x h k =-+关于x 轴对称后,得到的解析式是()2
y a x h k =---; (7) 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;
()2
y a x h k =-+关于y 轴对称后,得到的解析式是()2
y a x h k =++;。