一元二次方程-韦达定理的应用及答案
一元二次方程根与系数的关系及应用题
一元二次方程根与系数的关系及应用题一、 根与系数的关系(韦达定理);1、定理来源,用配方法推导出来的一元二次方程的求根公式中,由两个根的相互运算而得,2、定理内容,(1)12b x x a +=- (2) 12cx x a=3、定理特征:和与积的形式特点。
4、定理的延伸:当二次项系数为1时,两根之和等于一次项系数的相反数,两根之积为常数项。
5、解一元二次方程的又一种方法:观察法,总结观察法的知识要点:用了根的定义和韦达定理,是一种综合性题目,是竞赛中常见的一种题型。
若0a b c ++=,则有:11x =,2c x a =,(2)若0a b c -+=,则有:11x =-,2cx a= 这里的0a b c ++=是指各项系数不变号和为零的情况,这里的0a b c -+=是指要改变一次项系数符号后和为零的情况。
如: (1)2543215432210x x ++= (2)()219981997199910x x -⨯-=例1.(1)如果x x 12、是方程3x x 2720-+=的两个根,那么x x 12+=_______ x x 12=_______. (2)如果x x 12、是方程2x x 2350--=的两个根,那么x x 12+=________ x x 12=________. (3)如果方程20542=--x x 的两个根是x 1和x 2,则21x x +________ 21x x =_________.例2 已知32-是一元二次方程042=+-c x x 的一个根,则方程的另一根是 ;例3 已知关于x 的一元二次方程230x x --=的两个实数根分别为βα、,求: (1)11αβ+;(2)()()33++βα的值; (3)22αβ+; (4)αβ-.例 4 已知βα、是关于x 的一元二次方程()03222=+++m x m x 的两个不相等的实数根,且满足1-11=+βα,求m 的值.例5 △ABC 的一边长为4,另外两边是方程23150x x m -+=的两根,求m 的取值范围.变式练习:1.设1x ,2x是方程220x -+=的两根,求1211x x +的值.2.下列方程中,两根均为正数的有 个。
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)
专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
初中数学竞赛:韦达定理(附练习题及答案)
初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。
思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。
【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。
思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。
专题12 韦达定理及其应用(解析版)
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
一元二次方程韦达定理、应用
一元二次方程韦达定理、应用一.选择题(共12小题)1.(2020•邵阳)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣22.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8B.10C.12D.143.关于x的一元二次方程x2﹣5x+2p=0的一个根为1,则另一根为()A.﹣6B.2C.4D.14.(2020•雅安)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k5.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或46.(2020•如东县二模)若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5B.﹣1C.5D.17.(2020•仁寿县模拟)已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3B.﹣3C.D.﹣8.(2020•烟台模拟)已知a、b是一元二次方程x2+x﹣c=0的两根,且a+b﹣2ab=5,那么c等于()A.3B.﹣3C.2D.﹣29.(2019秋•潮州期末)已知x1,x2是一元二次方程x2+2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12+2x1=0C.x1x2=﹣2D.x1+x2=﹣210.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个11.(2020•泰兴市一模)一元二次方程x2﹣4x+2=0根的情况是()A.无实数根B.有两个正根C.有一个正根,一个负根D.有两个负根12.(2020•文登区模拟)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是()A.2016B.2020C.2025D.2034二.填空题(共4小题)13.(2020•泰州)方程x2+2x﹣3=0的两根为x1、x2,则x1•x2的值为.14.(2020春•崇川区期末)若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.15.(2020春•九龙坡区校级期末)已知α、β是方程x2+3x﹣8=0的两个实数根,则α2+β2的值为.16.(2020•眉山)设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.三.解答题(共6小题)17.解下列方程(1)x2﹣8x+15=0;(2)﹣=1.18.(2020•十堰)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.19.(2020•广东)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b =0的解.试判断该三角形的形状,并说明理由.20.(2020春•如东县期末)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.21.(2018秋•和平区期末)如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C 出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.(2017秋•沈阳月考)某商场销售某种冰箱,冰箱每台进货价为2500元,销售价为2900元,平均每天能售出8台;为促销,经调查销售价每降低50元时,平均每天就能多售出4台,商场要想使冰箱的销售利润平均每天达到4800元,并尽可能的减少库存,那么冰箱的定价为多少元?。
微专题一元二次方程的根与系数的关系(韦达定理)-上海市 2021-2022高一上学期期中复习数学讲义
微专题:一元二次方程的根与系数的关系(韦达定理)【主题】根与系数的关系(韦达定理):如果一元二次方程20ax bx c ++= (0),(0)a ≠∆>的实数根分别为:12,x x ,由解方程中的公式法得:1x =2x =;那么可推得1212,b cx x x x a a+=-=;这是一元二次方程根与系数的关系;【典例】例1、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2; (1)求k 的取值范围;(2)若1x 1+1x 2=-1,求k 的值;例2、关于x 的一元二次方程x 2-(m -3)x -m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实根为x 1,x 2,且|x 1|=|x 2|-2,求m 的值及方程的根例3、已知m 2-2m -1=0,n 2+2n -1=0,且mn ≠1,则mn +n +1n 的值为_______【归纳】一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为“韦达定理”; 定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么:x 1+x 2=-b a ,x 1x 2=ca .说明:利用根与系数的关系求值,要熟练掌握以下等式变形:x 21+x 22=(x 1+x 2)2-2x 1x 2,1x 1+1x 2=x 1+x 2x 1x 2,(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,2121212||()4x x x x x x -=+-|, x 1x 22+x 21x 2=x 1x 2(x 1+x 2),x 31+x 32=(x 1+x 2)3-3x 1x 2(x 1+x 2)等等;【特别说明】在今后的解题过程中,如果仅仅由韦达定理解题时,必须考虑到根的判别式Δ是否大于或大于零;因为,韦达定理成立的前提是一元二次方程有实数根; 【即时练习】1、已知关于x 的一元二次方程mx 2-(m +2)x +m 4=0有两个不相等的实数根x 1,x 2.若1x 1+1x 2=4m ,则m 的值是( )A .2B .-1C .2或-1D .不存在2、已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a =________.3、设a ,b 是方程x 2+x -2 022=0的两个实数根,则a 2+2a +b 的值为________.4、已知关于x 的一元二次方程21202mx x ++=有两个不相等的实数根; (1)求m 的取值范围;(2)当方程一个根为1时,求m 的值以及方程的另一个根.5、已知关于x 的一元二次方程()2120x m x m --++=,(1)若方程有两个相等的实数根,求m 的值;(2)若方程两实数根之积等于292m m -+6m +的值.【教师版】 微专题:一元二次方程的根与系数的关系(韦达定理)【主题】根与系数的关系(韦达定理):如果一元二次方程20ax bx c ++= (0),(0)a ≠∆>的实数根分别为:12,x x ,由解方程中的公式法得:1x =2x =;那么可推得1212,b cx x x x a a+=-=;这是一元二次方程根与系数的关系;【典例】例1、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2; (1)求k 的取值范围;(2)若1x 1+1x 2=-1,求k 的值;【提示】注意:首先通过判别式确定参数的取值范围;【解析】(1)由题得Δ=(2k +3)2-4k 2>0,解得k >-34,所以,k 的取值范围为⎝⎛⎭⎫-34,+∞; (2)由题知,x 1+x 2=-2k -3,x 1x 2=k 2,所以,1x 1+1x 2=x 1+x 2x 1x 2=-2k -3k 2=-1,解得k 1=3,k 2=-1,又因为k >-34,所以,k =3;【说明】一元二次方程的根与系数关系:首先,通过判别式保证有根,然后,根与系数关系再结合代数变换。
初中数学 一元二次方程的韦达定理有什么应用
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)
中考要求知识点基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题例题精讲板块一根的判别式☞定义:运用配方法解一元二次方程过程中得到2224(24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.☞判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=.根的判别式与韦达定理②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.☞根的判别式的应用:☞⑴运用判别式,判定方程实数根的个数;【例1】不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【解析】略【答案】⑴22340x x +-=∵2342(4)410∆=-⨯⨯-=>∴方程有两个不相等的实数根.⑵∵0a ≠∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零∵22()40b a b ∆=--⋅⋅=∵无论b 取任何数,2b 均为非负数∴0∆≥,故方程有两个实数根【巩固】不解方程,判别一元二次方程2261x x -=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【解析】由方程可得3680∆=+>,所以方程有两个不相等的实数根.【答案】A【巩固】不解方程判定下列方程根的情况:⑴22340x x +-=;⑵232x +=21x +=;⑷22(21)220m x mx +-+=;⑸2210x ax a ++-=220+=;⑺4(1)30x x +-=;⑻2(1)(2)x x m --=【解析】略【答案】⑴两个不等的实数根;⑵两个相等的实数根;⑶无实数根;⑷无实数根;⑸两个不等的实数根;⑹无实数根;⑺两个不相等的实数根;⑻两个不相等的实数根【例2】已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++=的根的情况().A .有2个负根B .有2个正根C .有2个异号的实根D .无实根【解析】方程2222()()0x a b c x a b c ++++++=的判别式为:2222()4()a b c a b c ∆=++-++222333222a b c ab bc ca=---+++222222222(2)(2)(2)a ab b b bc c c bc a a b c =-+-+-+-+-+----222222[()()()]a b b c c a a b c =--+-+-+++∵a ,b ,c 不全为0,∴0∆<.∴原方程无实数根.故选D .【答案】D☞⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;【例3】m 取什么值时,关于x 的方程222(3)6x mx +-=有两个相等的实数根【解析】略【答案】1m =±【巩固】如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是()A .1k <B .0k ≠C .10k k <≠且D .1k >【解析】由题可得36360k k ∆=->⎧⎨≠⎩所以10k k <≠且【答案】C【巩固】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【解析】注意二次项系数不为0【答案】9k <且0k ≠【巩固】若关于x 的二次方程2(1)220m x mx m -++-=有两个不相等的实数根,则m 的取值范围是【解析】注意二次项系数不为0【答案】23m >且1m ≠【巩固】若关于x 的一元二次方程2(1)210k x x ++-=有实数根,则k 的最小整数值为【解析】注意题目要求以及二次项系数不为0的条件【答案】2k =-【巩固】已知方程22(21)10m x m x +++=有实数根,求m 的范围.【解析】注意分两种情况讨论:若0m =,则原方程可化为101x x +=⇒=-满足题意;若0m ≠,则由题意可知221(21)404104m m m m ∆=+-≥⇒+≥⇒≥-.综上可知,14m ≥-【答案】14m ≥-【例4】关于x的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【解析】由题意,得4(1)4(12)010120k k k k ++->⎧⎪+≥⎨⎪-≠⎩解得12k -≤<且12k ≠【答案】12k -≤<且12k ≠【巩固】关于x的方程210x ++=有两个不相等的实数根,则k 的取值范围为________.【解析】2400k ⎧∆=->⎪⎨>⎪⎩,解得1k >【答案】1k >【巩固】已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -【解析】∵0>△,∴2m >∴|1||1||2|23m m m m --+-=-【答案】23m -【巩固】已知关于x 的一元二次方程20x m -=有两个不相等的实数根,求m 的取值范围.【解析】由题意可知,原方程的判别式21(41303m m m ∆=+=+>⇒>-.又101m m -≥⇒≤,故113m -<≤.【答案】113m -<≤【巩固】k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【解析】需要分两种情况来讨论:⑴当10k -=时,原方程是一元一次方程,有一个实数根45x =;⑵当10k -≠时,方程是一元二次方程,故0∆≥,解得214k ≥-且1k ≠,所以当214k ≥-且1k ≠时方程有两个实数根.综上所述,当214k ≥-时,方程有实数根.【答案】214k ≥-【例5】关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是.【解析】由一元二次方程根的情况可知240b ac -≥,即()()284660a --⨯⨯-≥,解得263a ≤,故max 8a =.【答案】8【巩固】若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【解析】0∆≥,即()()22414450a a a +-+-≥,解不等式得3a ≤,即123a =,,.【答案】1,2,3【例6】已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【解析】∵()()2212102x a b x b b -+--+=有两个相等的实数根.∴0∆=,即()()222210a b b b ++-+=∴()()22210a b b ++-=,∴0a b +=,10b -=∴1b =,1a =-,因此321a b +=-.【答案】1-【巩固】当a b 、为何值时,方程()2222134420x a x a ab b ++++++=有实根?【解析】要使关于x 的一元二次方程()2222134420x a x a ab b ++++++=有实根,则必有0∆≥,即()()22241434420a a ab b +-+++≥,得()()22210a b a ++-≤.又因为()()22210a b a ++-≥,所以()()22210a b a ++-=,得1a =,12b =-.【答案】1a =,12b =-【例7】已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是()A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【解析】22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b ac b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .【答案】C【巩固】若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=().A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【解析】∵方程2(2)2(1)0m x m x m +-++=只有一个实数根,∴20m +=,得2m =-.∴方程2(1)220m x mx m +-+-=,即为方程2440x x -+-=,∴244(1)(4)0∆=-⨯-⨯-=.∴方程2(1)220m x mx m +-+-=有2个相等的实数根.故选C .特别注意方程2(2)2(1)0m x m x m +-++=只有一个实数根.若20m +≠,则方程要么有2个根(相等或不相等),要么没有实数根.条件指明,该方程只有1个实数根,所以20m +=,且10m +≠.【答案】C☞⑶通过判别式,证明与方程相关的代数问题;【例8】对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【解析】略【答案】∵210m +≠,故方程为一元二次方程.()()()2222422414442016m m m m m m ∆=--++=---()424241616444m m m m =---=-++()222m =-+∵220m +≠,∴0∆<,故方程无实根.【巩固】求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【解析】略【答案】∵2(2)10x m x m -+++=是关于x 的一元二次方程∴[]22(2)4(1)m m m ∆=-+-+=∵20m ≥∴原方程有两个实数根.【巩固】已知实数a 、b 、c 、r 、p 满足2pr >,20pc b ra -+=,求证:一元二次方程220ax bx c ++=必有实根.【解析】略【答案】2(2)4b ac ∆=-,因2b pc ra =+,则222()4()()2(2)pc m ac pc ra ac pr ∆=+-=++-.又2pr >,所以当0ac ≥时,0∆≥;当0ac <时,40ac ->,2()40pc ra ac ∆=+->.因此,一元二次方程220ax bx c ++=必有实根.【巩固】证明:无论实数m 、n 取何值时,方程2()0mx m n x n +++=都有实数根【解析】注意分类讨论.【答案】⑴若0m =,则方程为nx n =-,当0n ≠时,有实数根1x =-;当0n =时,方程的根为任意实数⑵当0m ≠时,原方程为一元二次方程22()4()0m n mn m n ∆=+-=-≥∴方程必有实数根综合⑴⑵可知,原结论成立【巩固】已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【解析】略【答案】当0m =时,()22250mx m x m -+++=可化为450x -+=,此时方程有根,故0m ≠故214(2)4(5)0404m m m m m ∆=+-+<⇒-<⇒>.方程()()25220(5)m x m x m m --++=≠的判别式为:224(2)4(5)4(94)0m m m m ∆=+--=+>故方程()()25220(5)m x m x m m --++=≠有两个实数根.板块二韦达定理☞如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12c x x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.☞利用韦达定理求代数式的值【例9】不解方程224)0x x +-,求两根之和与两根之积【解析】韦达定理成立的前提条件是0∆≥【答案】令此方程的两个实数根为1x 、2x由韦达定理得124422x x --+=-=,122x x ⋅=-=【巩固】设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值⑴12(3)(3)x x --;⑵211211x xx x +++;⑶12x x -【解析】不解方程,即利用韦达定理将12x x +、12x x 的整体构造出来【答案】由韦达定理得1274x x +=,1234x x ⋅=-⑴12121237(3)(3)3()939344x x x x x x --=-++=--⨯+=;⑵221221112121212121212(1)(1)()2()10111(1)(1)132x x x x x x x x x x x x x x x x x x x x ++++-+++===+++++++⑶2221212127397()()4()4()4416x x x x x x -=+-=-⨯-=,∴12x x -=【巩固】已知方程22430x x +-=的两个根为1x 、2x ⑴12x x +=;⑵12_______x x ⋅=;⑶1211_______x x +=;⑷2212_______x x +=【解析】略【答案】⑴2-;⑵32-;⑶43;⑷7【巩固】已知α、β是方程2520x x ++=+的值.【解析】注意α,β均为负数,很多学生求出的结果均为负值【答案】由韦达定理可得,5αβ+=-,2αβ=∴22222()2522a a ββαβαβαβαβαβ++++=++===+=☞利用韦达定理求参数的值【例10】若3-、2是方程20x px q -+=的两个根,则________p q +=【解析】略【答案】7-【巩固】若方程210x px ++=的一个根为1-,则它的另一根等于,p 等于【解析】部分学生喜欢将1x =-代入原方程,求p 的数值,然后再求方程另外一个根,此方法较慢。
一元二次方程根与系数的关系及应用-强方法
一元二次方程根与系数的关系及应用【定理内容】一、韦达定理1.()002≠=++a c bx ax 的求根公式: 当042≥-ac b 时,a ac b b x 242-±-= 2.定理的内容:若1x ,2x 为()002≠=++a c bx ax 的两根:则 =+21x x ab - ,=⋅21x x ac [注:这就是一元二次方程根与系数的关系,常称为韦达定理]二、韦达定理的应用(一)已知一根,求另一根。
1.已知方程23520x x +-=的一个根是2-,求另一个根。
512,3321(2,)33aa a a a -+=-=-=-=解:设另一根为由韦达定理得 设出另一根,由韦达定理直接解得。
亦可用于验根,确定根的符号。
(二)求关于两根的代数式的值。
(常见题型)1. 设1x ,2x 方程0522=--x x 的两个根,求下列代数式的值。
(先写1x +2x =?,1x 2x =?)(1)2221x x + (2)2111x x + (3)222111x x + (4)122221x x x x ⋅+⋅ (5)()221x x - (6)21x x -12122221212121212122221212122222212121215,22(1)()211(2)()211(3)()x x x x x x x x x x x x x x x x x x x x x x x x x x x x +==-+=+-++=++-+==解:由韦达定理22122112122222121212121212(4)()(5)()2()4(6)||x x x x x x x x x x x x x x x x x x x x ⋅+⋅=+-=+-=+--==借助完全平方公式变形之后,代入即可。
2.已知:α、β是方程012=--x x 的两实根,求:βα34+. 224210=+1+=1=13(+1)3(1)5x x αβαααββααβαα--=∴∴-∴+=+-=解:、是方程的两个根,(三)确定方程中待定字母的值1.已知关于x 的方程02)1(2=+++-k x k x 的两个实数根的平方和等于6,求k 的值。
韦达定理(根与系数的关系)全面练习题及答案
1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程ax2+bx+c=0(a丰0),如果方程有两个实数根x,x,那么12说明:定理成立的条件A>0练习题一、填空:1、如果一兀二次方程ax2+bx+c=0(a丰0)的两根为x,x,那么x+x=1212xx=.122、如果方程x2+px+q=0的两根为x,x,那么x+x=,xx=.1212123、方程2x2-3x-1=0的两根为x,x,那么x+x=,xx=.1212124、如果一元二次方程x2+mx+n二0的两根互为相反数,那么m=;如果两根互为倒数,5方程x2+mx+(n-1)=0的两个根是2和一4,那么m=,n=.6、以x,x为根的一元二次方程(二次项系数为1)是127、以<3+1,v3-1为根的一元二次方程是.8、若两数和为3,两数积为一4,则这两数分别为.9、以3+迈和3-迈为根的一元二次方程是.10、若两数和为4,两数积为3,则这两数分别为.11、已知方程2x2+3x-4二0的两根为x,x,那么x2+x2=.121212、若方程x2-6x+m=0的一个根是3-j2,则另一根是,m的值是.13、若方程x2-(k-1)x-k-1=0的两根互为相反数,则k=,若两根互为倒数,贝Uk=.14、如果是关于x的万程x2+mx+n=0的根是-詔2和J3,那么x2+mx+n在实数范围内可分解为.二已知方程x2—3x—2—0的两根为x,且>x,求下列各式的值:1212(1 )x2+x2=;(2)11+= 12x x12(3 )(x一x)2—=;(4)(x+1)(x+1)=. 1212三、选择题:1、关于x的方程2x2-8x-p=0有一个正根,一个负根,则p的值是()(A)0(B)正数(C)—8(D)—42、已知方程x2+2x—1=0的两根是x,x,那么x2x+xx2+1—()12(A)-7 (B)3 (C)7 (D)—33、已知方程2x2—x—3—0的两根为x,x12 那么丄+丄=()xx12(B)1(C)3 (D)4、下列方程中,两个实数根之和为2的一元次方程是(A)x2+2x—3—0 (B)x2—2x+3—0(C)x2—2x—3—0 (D)x2+2x+3—05、若方程4x2+(a2—3a-10)x+4a—0的两根互为相反数, 则a的值是((A)5或—2 (B)5 (C)—2 (D)—5或26、若方程2x2—3x—4—0的两根是x,x,那么(x+1)(x1211(C)2 +1)的值是((B)—6 (D)-27、分别以方程x2—2x—1=0两根的平方为根的方程是(C)y2—6y—1—0(D)y2+6y一1—0(A)y2+6y+1—0 (B)y2一6y+1—0四、解答题:1、若关于x的方程5x2+23x+m=0的一个根是一5,求另一个根及m的值.2、关于x的方程x2+2(m-2)x+m2+4二0有两个实数根,且这两根平方和比两根积大21.求m的值.3、若关于x的方程x2+(m-2)x-m-3=0两根的平方和是9.求m的值.4、已知方程x2-3x-m二0的两根之差的平方是7,求m的值.5、已知方程x2+(m2-4m-5)x+m=0的两根互为相反数,求m的值.6、关于x的方程3x2-(4m2-1)x+m(m+2)=0的两实数根之和等于两实数根的倒数和,求m的值.7、已知方程x2-2x+3m=0,若两根之差为一4,求m的值.8、已知x,x是一元二次方程4kx2-4kx+k+1二0的两个实数根.123(1)是否存在实数k,使(2x-x)(x-2x)二-一成立?若存在,求出k的值;若不存在,请12122您说明理由.⑵求使九+•-2的值为整数的实数k的整数值.xx21韦达定理;肘于一元二次方程ax 3+^+^0^*0).如果方程有两个窝雜根环E ・那么丙+Aj=__,片%=-aa说明:定理成立的条件也±0练习题iK 如果一元二次方程o?+址+G =0S 古叭的两根为工厂旳,那么心+勺工_£2、如果方程工"卡戸工+《弓0的两根为為’x ±,那么百*0=_1&孔=―I①方程2+—H 工一1"的两根为f 那么斗+斗巧匸士一-涉如果一元二次方稈十+淞E+丹土0的两根互丸相反数.那么rn=PJ 如果两根互为倒数.那么祥=_...护趕++楓子厲-120的两个根是2和一4、那么m=2."-7.以.旺,观为根的一元二次方程(二抿项系数为O 是代宀七入九沁、 以舲+1,再-1为银的一元…祢方稈是%-2怡喘池可T,斑nl 若两数和为趴踽数积为-4,则这两敢分别為壬TA 曲_口?馭齢血利3-迈再根的一元二次方程是上也如壬 kd@若两数和为4,两数厂-门,瓦这两数分别为」和占II 、已期方穆2d+3工一4=U 的茁郴为“,j 心,那虫工;于工;@若方理宀钳+协=0的一卡根2近.耻I -根是丄坐_,用的值鬼J_.售琥d 塑),若方程讹-1)—七-1=0的两覘耳知皈数“则"_L ・若两根互为倒数,则"竺.严炭贅关于”的方程一F+酥+姑=0的根是-近和更、邯么F+吟严右険数范川內出分解为(世环Q 【環也),答案: 根与系数的关系(韦达定理) —、填空:9、g已知方jix3-jj-2=o的两根为卧小且7筍亠“求下列各貳的值:⑶匚―可『==;⑷佃+1)(工严1)=—.—■三、选择题;@关于x的方程2Sp=0有-牛正根,一个负根・则p的值是(ja>)(A)0(B)正数(C)-8<D)~42、已知方程x z+2i-l=0的两根是冲x2.削么彳珀卡旺帀'42(B(A)-7(B)3{(:)了(D)-3氛已知方程空疋-工-3"的两根为书.%那么丄+丄=©A〉円x i”电(A)-|(B)+(C)3(D)-3瑾®'下测方理中,两个实数根之和为2的一元二次方程是(匚)(A)x5+2x~3=0CB)j2-2x+3=Q免钮1(C)F-2—3=0(D)J2+2x+3=O形若方程4?+(/—加―】哄+硼二0的弊互曲相反数,则"的帶1是〔C> tA)5或一2(B)5(C)-2(□)-5或26.若方程"-脈-斗=G的两根是鬲』补那么詬+i〕g+D的值是(C)(A)—扌(B)-6(C)|(D)殆@为别以方程工―2—1-0两根杓平方为根的方程是(B)%■<缜二工■,儿仏二-I矗=了求曲的值, 呼1+孙:一尊1%H 屈Qn 山械一小-.叙知九十*二A M 叩 [7k +Jk^-旳Ml 二^|.二-S*L yt-卒gd -上(韭华,“対s 站叮,也么、叔4y网二7盘亠丨m H 料r 寻]二w(K.+ViJ-4>«=74—f 二切=』石-J ,仃工X-$%占=f£tQ7•迩己知X ],号是一元二祝方程4fac s -4^+A+1=0的两个实数根.3⑴是否存程实数帚便俗I--qH 咼-2即=-二成立?若存在,求出A 的直;若平存也 请您说明理由.d 二協’必f ““二W£*■J ■号虫S”⑵求使A +2__2的值为整数的实坡丘的鰹数学.X?斗m 的值.>tKi ,T 十41曰- 丁-仆(厲T )(器叶1":Pz 「匕—I@己知方程x 1-2x+^m=0・若两根之差为Q 求朋的值一I"创冷一缈5左&乜乔戚宜癸£a 4窗巳*试2T%亠fr~i.^'*-??d -1—◎二讥“埠£ 厶二-耳“$£.心f-7Z+■/A0关于工的方程如'-(4用*」找十粗佃+2]二0的两实数根之和等于两实数很的倒数和,求。
韦达定理在一元二次方程中的应用
例 :已知二次函数y=-x²+p x>β,求证:p+q>1.
(1)一元二次方程y=-x²+p x+q中,两根α、 β.利用韦达定理求得根与系数的关系式: α+β =p, αβ=-q. (2)求得等式关系 p +q= α+β - αβ. (3)要想p+q>1.相当于求α+β – αβ >1. 将α+β – αβ因式分解为-(α-1)(β -1)+1. (4)利用α、β的大小关系α>1>β得出结论.
韦达定理在一元二次方程中的应用
韦达定理最重要的贡献是对代数学的推进, 它最早系统地引入代数符号,推进了方程论 的发展,用字母代替未知数,指出了根与系 数之间的关系。韦达定理为数学中的一元方 程的研究奠定了基础,对一元方程的应用创 造和开拓了广泛的发展空间。利用韦达定理 可以快速求出两方程根的关系,韦达定理应 用广泛,在初等数学、解析几何、平面几何、 方程论中均有体现。
证明:由题意可知方程-x² +px+q=0的两根为
α 、 β. 由韦达定理得 α+β =p, αβ=-q. 于是 p +q= α+β - αβ, =-(αβ-α-β +1)+1 =-(α-1)(β -1)+1>1(因为α>1> β).
1.学会用韦达定理求代数式的值。 2.理解并掌握用韦达定理求待定系数。 3.理解并掌握应用韦达定理构建方程,解 方程。
一元二次方程根与系数的关系应用例析及训练(含答案)
一元二次方程根与系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。
下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。
解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。
解得:所以,使方程(1)有整数根的的整数值是。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。
解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。
设方程的两个根为,∵<0∴原方程有两个异号的实数根。
一元二次方程根与系数关系及其应用
一元二次方程根与系数关系及其应用【学习目标】1、学会用韦达定理求代数式的值。
2、理解并掌握应用韦达定理求待定系数。
3、理解并掌握应用韦达定理构造方程,解方程组。
4、能应用韦达定理分解二次三项式。
知识框图: 求代数式的值求待定系数一元二次 韦达定理 应用 构造方程解特殊的二元二次方程组二次三项式的因式分解等韦达定理:一元二次方程20(0)ax bx c a ++=≠如果有两实数根12,x x ,那么1212,b c x x x x a a +=-=。
韦达定理逆定理:如果且,则是的两根。
一、不解方程,判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
解:说明:判别根的符号,要把“根的判别式”和“根与系数的关系”结合起来,<0,两根一正一负;若>0,还要看的正负方可判别。
二、已知一元二次方程的一个根,求出另一个根以及字母系数的值。
例1:已知方程的一个根为2,求另一个根及的值。
分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。
解法一:解法二:练习;若x 1=23-是二次方程x 2+ax +1=0的一个根,则a =,该方程的另一个根x 2=.三、计算根的对称式的值例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===- (3)(4)说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【练习】1.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2=,x 1·x 2=,(x 1-x 2)2=2.已知方程2x 2-3x+k=0的两根之差为212 ,则k=; 3.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为;四、已知一元二次方程两根之间关系,求字母系数值或取值X 围。
(完整word版)一元二次方程-韦达定理的应用及答案
一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ , 当△〈0 时_________方程___________ .韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数2.求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1。
关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m>2 时,原方程永远有两个实数根.例 2。
已知关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k, 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由。
例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;例 4.已知关于 x 的一元二次方程21(2)302x m x m +-+-=(1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
例 5。
当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于 2。
例 6.已知 a ,b ,c ,是△ ABC 的三边长, 且关于 x 的方程 22(1)2(1)0b x ax c x --+-=有两个相等的实根,求证: 这个三角形是直角三角形。
例 7。
若 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求mn的值。
韦达定理及其推广
扩展形式
研究韦达定理的扩展形式,将其应用于更广泛 的数学问题中。
应用实例
收集和整理韦达定理在不同领域的应用实例,展示其实际价值。
THANKS FOR WATCHING
感谢您的观看
韦达定理及其推广
目录
• 韦达定理的概述 • 韦达定理的证明 • 韦达定理的推广 • 韦达定理的应用实例 • 韦达定理的局限性 • 韦达定理的未来发展
01 韦达定理的概述
韦达定理的定义
韦达定理
对于一元二次方程 $ax^2 + bx + c = 0$,其根的和等于方程的一次项系数 除以二次项系数的负值,根的积等于 常数项除以二次项系数。
推广到复数域
韦达定理在复数域中的推广,主要是将实数 域中的根与系数的关系扩展到复数域。在复 数域中,根和系数的关系可以通过共轭复数 进行表述,并涉及到复数的模和幅角。
具体来说,如果一个n次多项式在复数域中的 根为α1, α2, ..., αn,那么这些根的共轭复数 和为0,即α1 + α2 + ... + αn = 0。此外, 根的乘积等于常数项除以首项系数,即α1 *
04 韦达定理的应用实例
在数学竞赛中的应用
代数方程的求解
函数性质分析
韦达定理在数学竞赛中常用于求解代数方程, 特别是二次方程和其变种。通过利用根与系 数的关系,可以快速找到方程的解。
利用韦达定理,可以分析函数的性质,如对 称性、单调性等。例如,通过分析二次函数 的根,可以判断函数的开口方向和顶点位置。
数学表达式
根的和 $x_1 + x_2 = -frac{b}{a}$,根 的积 $x_1 cdot x_2 = frac{c}{a}$。
【机构适用;新人教版九年级上学期】韦达定理及一元二次方程的应用
一、韦达定理[准备知识回顾]:1、一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。
2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=242b b aca-+-,x 2=242b b ac a---.(2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ;方程没有实数根,则 。
[韦达定理相关知识]如果方程)0(02≠=++a c bx ax 的两个实数根是21,x x ,那么a b x x -=+21,acx x =21.➢ 韦达定理的逆定理:如果实数21,x x 满足acx x a b x x =-=+2121,,那么21,x x 是一元二次方程02=++c bx ax 的两个根.利用韦达定理的逆定理,可以比较简捷地检验解一元二次方程所得结果是否正确. ➢ 韦达定理的两个重要推论:推论1:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =21. 推论2:以两个数21,x x 为根的一元二次方程(二次项系数为1)是0)(21212=++-x x x x x x .知识重难点梳理韦达定理及一元二次方程的应用➢ 一元二次方程的根与系数的关系的应用:(1)验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根. (2)由已知方程的一个根,求出另一个根及未知系数.(3)不解方程,可以利用韦达定理求关于21,x x 的对称式的值,如,2221x x +,1121x x +221212,x x x x +2112121211,,x x x x x x x x ---等等.说明:如果把含21,x x 的代数式中21,x x 互换,代数式不变,那么,我们就称这类代数式为关于21,x x 的对称式.(4)已知方程的两根,求作这个一元二次方程. (5)已知两数的和与积,求这两个数.(6)已知方程两个根满足某种关系,确定方程中字母系数的值. (7)证明方程系数之间的特殊关系.(8)解决其它问题,如讨论根的范围,判定三角形的形状等.根的符号的讨论:利用韦达定理,还可进一步讨论根的符号,设一元二次方程02=++c bx ax )0(≠a 的两根为21,x x ,则:(1)当0,021>≥∆x x 且时,两根同号.①当0,0,02121>+>≥∆x x x x 且时,两根同为正数; ②当0,0,02121<+>≥∆x x x x 且时,两根同为负数. (2)当0,021<>∆x x 且时,两根异号.①当0,0,02121>+<>∆x x x x 且时,两根异号且正根的绝对值较大; ②当0,0,02121<+<>∆x x x x 且时,两根异号且负根的绝对值较大.题型一:由已知方程的一个根,求出另一个根及未知系数. 1、已知方程5x 2+kx-6=0 有一个根为2,求另一个根和k 的值变式训练1.已知方程02)1(32=+--x k x 的一个根是1,则另一个根是 ,=k 。
韦达定理——精选推荐
于是,c、d是⽅程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知⼆式具有共同的形式:x2+x-1=0.于是a和b可视为该⼀元⼆次⽅程的两个根.再观察待求式的结构,容易想到直接应⽤韦达定理求解.解:由已知可构造⼀个⼀元⼆次⽅程x2+x-1=0,其⼆根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.⼆、先恒等变形,再应⽤韦达定理若已知条件或待证结论,经过恒等变形或换元等⽅法,构造出形如a+b、a·b形式的式⼦,则可考虑应⽤韦达定理.例3若实数x、y、z满⾜x=6-y,z2=xy-9.求证:x=y.证明:将已知⼆式变形为x+y=6,xy=z2+9.由韦达定理知x、y是⽅程u2-6u+(z2+9)=0的两个根.∵x、y是实数,∴△=36-4z2-36≥0.则z2≤0,⼜∵z为实数,∴z2=0,即△=0.于是,⽅程u2-6u+(z2+9)=0有等根,故x=y.由已知⼆式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知⼀元⼆次⽅程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑⽤韦达定理例5已知⽅程x2+px+q=0的⼆根之⽐为1∶2,⽅程的判别式的值为1.求p与q之值,解此⽅程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代⼊③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴⽅程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6设⽅程x2+px+q=0的两根之差等于⽅程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设⽅程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从⽽有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代⼊①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个⼀元⼆次⽅程有公共根的题⽬,可考虑⽤韦达定理例7m为问值时,⽅程x2+mx-3=0与⽅程x2-4x-(m-1)=0有⼀个公共根?并求出这个公共根.解:设公共根为α,易知,原⽅程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代⼊①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代⼊③,得m=-2.故当m=-2时,两个已知⽅程有⼀个公共根,这个公共根为3.韦达定理的补充资料:韦达定理的发展简史法国数学家弗朗索⽡·韦达于1615年在著作《论⽅程的识别与订正》中改进了三、四次⽅程的解法,还对n=2、3的情形,建⽴了⽅程根与系数之间的关系,现代称之为韦达定理。
2021年初升高数学无忧衔接(沪教版2020)专题02 一元二次方程与韦达定理(解析版)
专题02 一元二次方程与韦达定理课程要求《初中课程要求》 1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为高中阶段的使用打下基础.2.一元二次方程根与系数的关系的探索与推导,向我们展示了认识事物的一般规律,提倡积极思维,勇于探索,锻炼我们分析、观察、归纳的能力及推理论证的能力.3.一元二次方程的根与系数的关系,中考考查的频率较高,高考也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分.4.韦达定理的原定理的功能是:若已知一元二次方程,则可写出该方程的两根之和的值及两根之积的值.而其逆定理的功能是:若已知一元二次方程的两个根,可写出这个方程.《高中课程要求》韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。
而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.热身练习一、单选题1.(2020·上海高一开学考试)已知1x =是一元二次方程20x ax b ++=的一个根,则222a ab b ++=( ) A .2 B .1 C .0 D .-1【答案】B【分析】由1x =是方程的根,可得1a b +=-,再利用完全平方公式计算可得;【详解】解:∵1x =是一元二次方程20x ax b ++=的一个根,∵210a b ++=,∵1a b +=-, ∵22222()(1)1a ab b a b ++=+=-=.故选:B .【点睛】本题方程的解以及完全平方公式的应用,属于基础题.2.(2020·上海高一开学考试)关于x 的方程()2210mx m x m +++=有两个不等的实根,则m 的取值范围是( ) A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,4⎛⎫-∞-⎪⎝⎭C .1,4⎡⎤-+∞⎢⎥⎣⎦D .()1,00,4⎛⎫-+∞ ⎪⎝⎭【答案】D【分析】根据题意得0m ≠且0∆>,解不等式即可得答案.【详解】解:因为关于x 的方程()2210mx m x m +++=有两个不等的实根0m ≠且0∆>,即:()22214410m m m +-=+>且0m ≠,解得14m >-且0m ≠. 故选:D.【点睛】本题考查一元二次方程的实数根问题,是基础题.3.(2020·上海高一开学考试)已知关于x 的方程x 2+x ﹣a =0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A【分析】设另一根为t ,结合韦达定理即可求解 【详解】设方程的另一个根为t , 根据题意得2+t =﹣1,解得t =﹣3, 即方程的另一个根是﹣3. 故选:A .【点睛】本题考查一元二次方程根与系数的关系,属于基础题 二、填空题4.(2020·上海交大附中高一开学考试)方程22112310x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭的解为____________. 【答案】2x =或12x = 【分析】令1t x x=+换元转化为一元二次方程求解. 【详解】令1t x x =+,则22212x t x+=-,原方程可变为:22(2)310t t ---=,即22350t t --=,(1)(25)0t t +-=,11t =-,252t =,11t =-时,11x x+=-,210x x ++=,1430,无实数解252t =时,152x x +=,22520x x -+=,解得12x =,212x =.故答案为:2x =或12x =【点睛】本题考查用换元法解方程,对较为复杂的方程(高次的或分式等方程)可用换元法进行转化,化为低次方程,整式方程求解.5.(2020·上海高一开学考试)若关于x 的一元二次方程12x 2﹣2kx +1﹣4k =0有两个相等的实数根,则代数式(k ﹣2)2+2k (1﹣k )的值为__________. 【答案】312【分析】一元二次方程有两个相等的实数根则0∆=,列出方程化简可得k 2+2k 12=,所求等式展开配凑即可得解.【详解】∵关于x 的一元二次方程12x 2﹣2kx +1﹣4k =0有两个相等的实数根, ∵∆=(﹣2k )2﹣412⨯⨯(1﹣4k )=0, 整理得,2k 2+4k ﹣1=0,即k 2+2k 12=, ∵2222(2)2(1)442224k k k k k k k k k -+-=-++-=--+()211244322k k =-++=-+=故答案为:312【点睛】本题考查一元二次方程的根与判别式的关系,属于基础题.根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a -+=.①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=242b b ac a-±-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1)当Δ>0时,方程有两个不相等的实数根x 1,2=242b b ac a-±-;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根2142b b ac x a -+-=,2242b b acx a---=, 则有知识精讲2212442222b b ac b b ac b bx x a a a a-+-----+=+==-;2222122244(4)42244b b ac b b ac b b ac ac cx x a a a a a-+------=⋅===.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知 x 1+x 2=-p ,x 1·x 2=q , 即p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. 【难度】★★【解析】由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.设方程的另一个根为1x ,则5621-=x ,531-=∴x .由52)53(k-=+-,得7-=k .所以,方程的另一个根为53-.k 的值为-7. 【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值. 【难度】★★【解析】分析:分别变形为可以利用x 1+x 2和x 1x 2来表示的形式.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,2521-=+∴x x ,2321-=x x .(1)∵|x 1-x 2|2=21x +22x -2x 1x 2=(x 1+x 2)2-4x 1x 2)23(4)25(2-⨯--=6425+=449=, 典例剖析27||21=-∴x x . (2)493425)23()23(2)25()(2)(112222121221222122212221+=--⨯--=-+=⋅+=+x x x x x x x x x x x x 937=. (3)31x +32x =(x 1+x 2)(21x -x 1x 2+22x )=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]8215)]23(3)25[()25(2-=-⨯--⨯-=.评析:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-12121211x x x x x x ++= 22121212()()4x x x x x x -=+- 2121212||()4x x x x x x -=+-,一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a acb b x 2421-+-=,aacb b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两个根,则||||21a x x ∆=-(其中Δ=b 2-4ac ). 【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______. 【难度】★★ 【答案】见解析【解析】分析:运用根的意义和根与系数关系解题.解:由于α、β是方程x 2+2x -5=0的实数根,∴α2+2α-5=0,αβ=-5,∴α2+2α=5∴α2+αβ+2α=α2+2α+αβ=5-5=0评析:注意利用变形为可以用根系关系表示的形式.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1) 恰当组合; (2) 根据根的定义降次; (3) 构造对称式.【例4】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.【难度】★★【解析】分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此其根的判别式应大于等于零.解:设x 1,x 2是方程的两根,由韦达定理,得x 1+x 2=-2(m -2),x 1·x 2=m 2+4.∵21x +22x -x 1·x 2=21, ∴(x 1+x 2)2-3x 1·x 2=21, 即[-2(m -2)]2-3(m 2+4)=21,化简,得m 2-16m -17=0,解得m =-1,或m =17. 当m =-1时,方程为x 2-6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m = -1.评析:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,韦达定理成立的前提是一元二次方程有实数根.【例5】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由. 【难度】★★【解析】分析:利用判别式和根与系数关系共同解决本题. 解:由Δ=-32m +16≥0得21≤m .x 1+x 2=-m +1,041221≥=m x x . ∴x 1与x 2可能同号,分两种情况讨论: (1)若x 1>0,x 2>0,则⎩⎨⎧>>+002121x x x x ,解得m <1且m ≠0.21≤∴m 且m ≠0.(2)若x 1<0,x 2<0,则⎩⎨⎧><+002121x x x x ,解得m >1,与21≤m 相矛盾.综上所述:当21≤m 且m ≠0时,方程的两根同号. 【例6】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【难度】★★ 【答案】【解析】构造二次函数()a x x x f +-=42,由()03<f 即可满足题意【例7】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围. 【难度】★★ 【答案】 【解析】构造二次函数()()659222+-+-+=a a x a x x f ,由()00<f 且()02<f 即可满足题意【例8】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 【难度】★★ 【答案】B【解析】评析 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.【例9】解方程121193482232222=+-++-++x x x x x x x x . 【难度】★★ 【答案】-1,-4,28952895-+,. 【解析】分析:观察方程左边两式的关系,用换元法,令t x x xx =-++4322代入求解.1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m的值范围是 .3<a 382<<a 对点精练【难度】★★ 【答案】5132m -<≤2.0519998081999522=++=+-b b a a 及已知,求ba的值. 【难度】★★ 【答案】58 【解析】由方程的结构可知a 、b 1是方程08199952=+-x x 的两根,由韦达定理可得58=b a 3.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 . 【难度】★★ 【答案】11182m <≤ 【解析】提示:根据两边之和、两边之差的关系及△≥0得到. 4.已知关于x 的方程:04)2(22=---m x m x .(1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 【难度】★★【解析】分析: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手. 解:(1)△=2m 2-4m +4=2(m -1)2+2>0,∴方程总有两个不相等的实数根;(2) ∵x 1·x 2=24m -≤0,∴1x 、2x 异号或其中一根为0,∴对212+=x x 可分两种情况讨论,去掉绝对值.当x 1≥0,x 2<0时,-x 2-x 1=2,即-(m -2)=2,解得m =0,此时,方程为x 2+2x =0,解得x 1=0,x 2=-2; 当x 1≤0,x 2>0时,x 2+x 1=m -2=2,解得m =4, 当m =4时,x 2-2x -4=0, 解得151x =-,251x =.5.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长; (3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD . 【难度】★★★【解析】(1)当m =2时,x 2-4x +4=0. ∵△=0,方程有两个相等的实数根.∴AB=CD ,此时AB ∥CD ,则该四边形是平行四边形; 当m >2时,△=m -2>0, 又∵AB+CD=2m >0, AB •CD=217()24m -+ >0, ∴AB ≠CD . 该四边形是梯形.(2) 根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.则根据PQ=1,得CD-AB=2. 由CD-AB=||||21a x x ∆=-解得m =3 当m =3时,则有x 2-6x +8=0, ∴x =2或x =4, 即AB=2,CD=4(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC . ∴∠BCD=60°,∠BDC=30°. ∵tan ∠BDC+tan ∠BCD=433, tan ∠BDC •tan ∠BCD=1. ∴所求作的方程是y 2-433y +1=0. 评析:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性. 6.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2= 2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.【难度】★★★【解析】解:易证△ABC ∽△ACD ,∴AC AB AD AC=,AC 2=AD •AB ,同理BC 2=BD •AB , ∵2221AC BC =,∴21m n = ∴m =2n …①, ∵关于x 的方程14x 2-2(n -1)x +m 2-12=0有两实数根, ∴△=[-2(n -1)]2-4×14×(m 2-12)≥0, ∴4n 2-m 2-8n +16≥0,把①代入上式得n ≤2…②, 设关于x 的方程14x 2-2(n -1)x +m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n -1),x 1•x 2=4(m 2-2),依题意有(x 1-x 2)2<192,即[8(n -1)]2-16(m 2-12)<192, ∴4n 2-m 2-8n +4<0,把①式代入上式得n >12…③, 由②、③得12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n =1,m =2时,所求解析式为y =2x +1,当n =2,m =4时,解析式为y =4x +2.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、单选题1.(2019·沈阳市·辽宁实验中学高一月考)已知1x ,2x 是关于x 的一元二次方程()22230x m x m -++=的反思总结课后练习两个不相等的实数根,并且满足12111x x +=,则实数m 的直是( ) A .1- B .3 C .1-或3 D .3-或1【答案】B【分析】利用韦达定理求解即可.【详解】因为1x ,2x 是一元二次方程()22230x m x m -++=的两个不相等的实数根,所以1223x x m +=+,212x x m =,所以122121211231x x m x x x x m+++===, 解得3m =或1m =-,又因为()222341290m m m ∆=+-=+>,得34m >-,所以3m =. 故选:B.【点睛】本题考查一元二次方程根与系数的关系,属于简单题.2.(2020·西藏昌都市第四高级中学高一期中)下列关于x 的方程有实数根的是( ) A .x 2﹣x +1=0 B .x 2+x +1=0 C .(x ﹣1)2+1=0 D .x 2﹣4x +4=0【答案】D【分析】利用判别式即可判断.【详解】对于A ,()21430∆=--=-<,故方程误实数根,不符合题意; 对于B ,21430∆=-=-<,故方程误实数根,不符合题意; 对于C ,方程化为2(1)1x -=-无实数根,不符合题意;对于D ,方程化为()220x -=,解得2x =,有实数根,符合题意. 故选:D.3.(2020·全国高一单元测试)关于x 的方程220x kx +-=的一个根是-2,则方程的另一个根是( ) A .-1 B .1 C .2 D .-2【答案】B【分析】运用韦达定理即可.【详解】设方程的另一个根为t ,由根与系数的关系可得,22t -⨯=-,解得1t =; 故选:B.【点睛】此题考查方程根与系数的关系,属于初高中衔接题.4.(2020·南宁市银海三美学校高一月考)若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k <【答案】C【分析】由二次函数的图象和性质列出不等式,求出k 的取值范围. 【详解】∵关于x 的一元二次方程210kx x -+=有实数根, ∵0k ≠且()2140k ∆=--≥, 解得:14k ≤且0k ≠. 故选:C.5.(2021·辽宁丹东市·高一期末)已知方程2210x x --=的两根为1x 与2x ,则2212x x +=( )A .1B .2C .4D .6【答案】D【分析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解. 【详解】显然方程有两个实数解,由题意122x x +=,121x x =-,所以2222121212()222(1)6x x x x x x +=+-=-⨯-=.故选:D .6.(2020·江苏省江浦高级中学高一期中)关于x 的一元二次方程:2240x x m --=有两个实数根1x 、2x ,则21211m x x ⎛⎫+⎪⎝⎭=( ) A .44mB .44m -C .4D .-4【答案】D【分析】根据一元二次方程的根与系数的关系,得到122124x x x x m +=⎧⎨=-⎩,化简2212121211x x m m x x x x ⎛⎫++=⋅ ⎪⎝⎭,代入即可求解.【详解】由2240x x m --=有两个实数根12,x x ,可得122124x x x x m +=⎧⎨=-⎩,所以22212212121144x x m m m x x x x m ⎛⎫++=⋅=⋅=-⎪-⎝⎭. 故选:D .【点睛】本题主要考查了一元二次方程方程的性质及其应用,其中解答中熟记一元二次方程的根与系数的关系是解答的关键,着重考查推理与运算能力,属于基础题. 二、填空题7.(2021·北京大峪中学高一期中)已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=_________【答案】14【分析】由韦达定理可得答案.【详解】方程2410x x -+=的两根为1x 和2x ,则1x +24x =,1x 21x =,则()222121212216214x x x x x x +=+-=-=.故答案为:14.8.(2020·安徽池州市·池州一中高一期中)若一元二次方程2(1)2(1)0m x m x m -++-=有两个正根,求m的取值范围__________. 【答案】(0,1)【分析】设两根为12,x x ,由一元二次方程2(1)2(1)0m x m x m -++-=有两个正根,根据根的判别式和韦达定理,列式即可得解.【详解】设两根为12,x x ,根据题意可得: 由24(1)4(1)0m m m ∆=++->且10m -≠, 又有:122(1)01m x x m -+⋅=>-,1201mx x m -+=>-,解得:01m << 故答案为:(0,1)9.(2021·上海高一期末)设一元二次方程2630x x --=的两个实根为1x 、2x ,则2212x x +=________.【答案】42【分析】根据一元二次方程根与系数的关系,结合完全平方和公式进行求解即可.【详解】一元二次方程2630x x --=的两个实根为1x 、2x ,所以有12126,3x x x x +==-,因此222121212()2362(3)42x x x x x x +=+-=-⨯-=,故答案为:4210.(2021·上海市大同中学高一期末)已知关于x 的等式20x x a ++=的两根为1x 、2x ,则|12x x -=______________. 14a -【分析】用韦达定理求解即可 【详解】121x x +=-12x x a =()2121212414x x x x x x a -=+-=-14a -11.(2020·上海市嘉定区第一中学高一月考)已知关于x 的方程221(1)104x k x k -+++=有两个实数根1x 、2x ,若2212126x x x x +=-15,则k 的值为________【答案】4【分析】将2212126x x x x +=-15,变形为()21212815x x x x +=-,根据方程221(1)104x k x k -+++=有两个实数根1x 、2x ,得到212121+1,14x x k x x k =+⋅=+,再代入上式求解. 【详解】因为方程221(1)104x k x k -+++=有两个实数根1x 、2x , 所以212121+1,14x x k x x k =+⋅=+, 因为2212126x x x x +=-15, 所以()21212815x x x x +=-,()221181154k k ⎛⎫+=⨯+- ⎪⎝⎭,即()()240k k +-=, 解得4k =或2k =-(舍去) 故答案为:412.(2020·上海市市西中学高一期中)若关于x 的方程22430x x +-=的两个根为12,x x ,则2212x x +=______【答案】7【分析】根据一元二次方程的根与系数的关系,代入可得答案.【详解】因为关于x 的方程22430x x +-=的两个根为12,x x ,所以12+2x x =-,1232x x ⋅=-, 所以()()22221212123+22272x x x x x x ⎛⎫+=-⋅=--⨯-= ⎪⎝⎭, 故答案为:7.13.(2021·上海市川沙中学高一期末)已知方程2310x x --=的两根为1x ,2x ,则()()1233x x --=_______________. 【答案】-1【分析】直接利用韦达定理计算可得;【详解】解:因为方程2310x x --=的两根为1x ,2x ,所以123x x +=,121x x =- 所以()()()121212391333391x x x x x x -++=--⨯=+--=- 故答案为:1-14.(2021·上海高一期末)已知α、β是方程22430x x +-=的两个根,则11αβ+=________【答案】43【分析】由于11αβαβαβ++=,所以利用根与系数的关系直接求解即可 【详解】解:因为α、β是22430x x +-=的两个实数根,所以232αβαβ+=-⎧⎪⎨=-⎪⎩,所以1124332αβαβαβ+-+===-, 故答案为:43【点睛】熟练掌握根与系数的关系是解题关键.15.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 . 【难度】★★【解析】解:设x 1,x 2是方程的两个根,则①x 1+x 2=-p ,②x 1x 2=q , ∵②-①得:p+q=28, ∴x 1x 2-x 1-x 2=28, ∴x 1x 2-x 1-x 2+1=28+1, ∴x 1(x 2-1)-(x 2-1)=29, 即(x 1-1)(x 2-1)=29, ∵两根均为正整数,∴x 1-1=1,x 2-1=29或x 1-1=29,x 2-1=1,∴方程的两个根是:x 1=2,x 2=30.或x 1=30,x 2=2. 故答案为:x 1=30,x 2=2. 三、解答题16.(2020·山东省淄博第一中学高一开学考试)已知关于x 的一元二次方程22210x ax a +-+=的两个实根的平方和为294,求a 的值. 【答案】a =3【分析】设1x ,2x 为方程的两根,写出韦达定理及根的判别式,再根据222121212()2x x x x x x +=+-,即可得到关于a 的一元二次方程,解得即可;【详解】解:设1x ,2x 为方程22210x ax a +-+=的两根,则有:()28210a a ∆=--+≥即21680a a +-≥①,122a x x +=-②,12122a x x -=③ 将②和③代入2221212122()2429124x x x x x a a x ==-+=++-解得3a =或11a =- 但11a =-不满足① 式, 故答案:3a =17.(2020·上海市徐汇中学高一期中)已知1x ,2x 是关于x 的方程22(21)0x a x a +-+=的两个实根,若()()122211x x ++=,求a 的值.【答案】1-【分析】根据两根之和等于b a -,两根之积等于ca,把问题转化为方程即可解决问题. 【详解】解:1x 、2x 是方程22(21)0x a x a +-+=的两个实数根,1212x x a ∴+=-,212x x a =12(2)(2)11x x ++=,12122()411x x x x ∴+++=,22(12)70a a ∴+--=, 即2450a a --=, 解得1a =-,或5a =. 又22(21)4140a a a ∆=--=-,14a∴. 5a ∴=不合题意,舍去.1a ∴=-.18.(2021·北京高一期末)已知关于x 的方程222(1)30x m x m -++-=有两个不等实根.(∵)求实数m 的取值范围;(∵)设方程的两个实根为12,x x ,且21212()()120x x x x +-+-=,求实数m 的值;(∵)请写出一个整数m 的值,使得方程有两个正整数的根.(结论不需要证明) 【答案】(∵)()2,-+∞;(∵)1m =;(∵)6m =【分析】(∵)依题意0∆>,解得即可;(∵)利用韦达定理得到()1221x x m +=+,再代入方程,解得即可;(∵)依题意找出合适的m 即可; 【详解】解:(∵)因为方程222(1)30x m x m -++-=有两个不相等实数根,所以[]()222(1)430m m ∆=-+-->,即240m +>,解得2m >-,即()2,m ∈-+∞(∵)因为方程222(1)30x m x m -++-=的两个实根为12,x x ,所以()1221x x m +=+,2123x x m =-,又21212()()120x x x x +-+-=,所以()()22121120m m +-+-=⎡⎤⎣⎦,解得1m =或52m =-,又()2,m ∈-+∞,所以1m =(∵)当6m =时,方程214330x x -+=,解得111x =,23x =满足条件; 19. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?【难度】★★【解析】解:(a +b )2≤4正确.理由:原式可化为(x 1+x 2)2-=3x 1x 2+1, ∴(a +b )2=4ab +1,∵△=9(a +b )2-4×3×4ab ≥0, ∴3(a +b )2-4×4ab ≥0, ∴(a +b )2≥163ab ,即4ab +1≥163ab ∴4ab ≤3,∴4ab +1≤4,即(a +b )2≤4.20.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . (1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 【难度】★★【解析】解:∵方程有两个不相等的实数根, ∴△=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1, 结合题意知:-1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2-2x 1x 2=4(m -2)2-2(m 2-3m +3)=2m 2-10m +10=6 ∴m =5172±,∵-1≤m <1,∴m =5172-∴当m =-1时,式子取最大值为10. 21.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20xx a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.【解析】解:设x 12+ax 1+1=0,x 12+bx 1+c =0,两式相减,得(a -b )x 1+1-c =0,解得x 1=1c a b--, 同理,由x 22+x 2+a =0,x 22+cx 2+b =0,得x 2=(1)1a bc c -≠- ∴x 2=11x , 由韦达定理的两根之积的关系知,11x 是第一个方程的根, ∴x 2是方程x 2+ax +1=0和x 2+x +a =0的公共根, 因此两式相减有(a -1)(x 2-1)=0, 当a =1时,这两个方程无实根, 故x 2=1,从而x 1=1, 于是a =-2,b +c =-1, 所以a +b +c =-3.22.(2020·上海高一开学考试)已知关于x 的方程22(21)(2)0x m x m +++-=,m 取何值时, (1)方程有两个不相等的实数根; (2)方程有两个相等的实数根; (3)方程有实数根; (4)方程没有实数根?【分析】由题意,求得判别式22(21)4(2)5(43)m m m ∆=+--=-. (1) 由方程有两个不相等的实数根据,则0∆>,即可求解; (2) 由方程有两个不相等的实数根据,则0∆=,即可求解;(3) 由方程有实数根据,则0∆≥,即可求解;(4) 由方程没有实数根据,则∆<0,即可求解;【详解】由题意,可得判别式22(21)4(2)5(43)m m m ∆=+--=-.(1) 由方程有两个不相等的实数根据,则0∆>,即5(43)0m ->,解得34m >; (2) 由方程有两个不相等的实数根据,则0∆=,即5(43)0m -=,解得34m =; (3) 由方程有实数根据,则0∆≥,即5(43)0m -≥, 解得34m ≥; (4) 由方程没有实数根据,则∆<0,即5(43)0m -<,解得34m <. 【点睛】本题主要考查了一元二次方程的性质及其应用,其中解答中熟记一元二次方程根的情况,合理利用判别式列出相应的条件是解答的关键,着重考查了运算与求解能力,属于基础题.23.(2020·上海高一开学考试)已知函数2()4(0,,)f x ax x b a a b R =++<∈,设关于x 的方程()0f x =的两实根为12,x x ,方程f (x )=x 的两实根为,αβ.(1)若||1αβ-=,求a 与b 的关系式;(2)若,a b 均为负整数,且||1αβ-=,求f (x )的解析式;【答案】(1)249(0,,)a ab a a b R +=<∈;(2)2()42f x x x =-+-. 【分析】(1)根据根与系数的关系,以及||1αβ-=,得到a 与b 的关系式;(2)由(1)中得到的关系,和,a b 均为负整数,求得,a b ,得到()f x 的解析式.【详解】(1)由()f x x =得23(0,,)ax x b a a b R ++<∈有两个不等实根为,αβ,∵3940,,b ab a aαβαβ∆=->+=-= 由||1αβ-=得2()1αβ-=,即2294()41b a a αβαβ+-=-=, ∵249(0,,)a ab a a b R +=<∈.(2)由(1)得(4)9a a b +=,而,a b 均为负整数,∵149a a b =-⎧⎨+=-⎩或941a a b =-⎧⎨+=-⎩或343a a b =-⎧⎨+=-⎩显然后两种情况不合题意,应舍去,从而有149a a b =-⎧⎨+=-⎩∵12a b =-⎧⎨=-⎩ 故所求函数解析式为2()42f x x x =-+-. 【点睛】本题考查了一元二次方程的根与系数的关系,考查了学生分析观察能力,推理能力,属于中档题.。
韦达定理全面练习题及答案
1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( )(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( )(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ ,当△<0 时_________方程___________ .韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数2.求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m>2 时,原方程永远有两个实数根.例 2.已知关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由.例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;例 4.已知关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
例 5.当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于 2.例 6.已知 a,b,c,是△ ABC 的三边长, 且关于 x 的方程 22(1)2(1)0b x ax c x --+-=有两个相等的实根,求证: 这个三角形是直角三角形。
例 7.若 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求m n 的值。
课堂练习:1.下列一元二次方程中, 没有实数根的是( )A. 2210x x +-=B. 220x ++=C. 210x +=D. 220x x ++=2.已知12,x x 是方程2310x x -+=的两个根,则1211x x +的值是( ) A.3 B.-3 C C.13 D .1 3.关于 x 的二次方程22(1)230m x x m m -+++-=的一个根为 0, 则 m 的值为( )A.1B.-3C.1 或-3D.不等于 1 的实数4.方程 22(25)(2)0x k x k --+-= 的两根互为相反数, k 的值为( )A. k =5或 - 5B. k =5C. k = -5D.以上都不对5.若方程240x mx ++=的两根之差的平方为 48, 则 m 的值为( )A.±8B.8C.-8D.±46.已知关于 x 的方程210(3)70x m x m -++-=, 若有一个根为0, 则 m=________ , 这时方程的另一个根是 ________; 若两根之和为35-, 则 m=_______ , 这时方程的两个根为____________7.已知方程 210x px +-=的一个根为2- 可求得 p=_______ 8.若2-是关于 x 的方程2280x x k -+=的一个根, 则另一个根为 _____ , k = _____ 。
9.方程22650x x --=两根为α,β, 则222______,()=______αβαβ+=-。
10.要使2469n n a -+与3na 是同类项, 则 n=______________ 11.解下列方程:(1) 2(21)16x -= (2) 2430x x -+= (3) 25320x x --= 12.关于 x 的方程2(21)(3)0ax a x a --+-=有实数根, 求 a 的取值范围。
13.设12,x x 是方程22410x x -+=的两根, 利用根与系数关系求下列各式的值:(1) 12(1)(1)x x ++; (2)1221x x x x +; (3) 2212x x + . 14.关于 x 的方程2(21)(3)0x a x a ----=, 试说明无论 a 为任何实数, 方程总有两个不等实数根。
15.已知关于 x 的方程222(1)3110x m x m +-+-= ,( 1) m 为何值时, 方程有两个相等的实数根?( 2) 是否存在实数 m , 使方程的两根1221+1x x x x =-?若存在, 求出方程的根; 若不存在, 请说明理由。
16.关于 x 一元二次方程 2()2()0c b x b a x a b -+-+-= 有两个相等的实数根,其中 a, b, c 是三角形三边的长,试判断这个三角形的形状。
17.已知 Rt △ABC 中, 两直角边长为方程2(27)4(2)0x m x m m -++-=的两根, 且斜边长为 13, 求S ABC ∆的值.韦达定理的应用测试题日期:_______月________日 满分:_________ 100 分 :______ 得分:__________1.关于 x 的方程2210ax x -+= 中, 如果 a<0, 那么根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定2.将方程2410x x --=的左边变成平方的形式是( )A. 2(2)1x -=B. 2(2)1x -=C. (x - 2) 2 =5D. 2(2)5x -=3.设 12,x x 是方程222630x x -+=的两根, 则2212x x + 的值是( )A.15B.12C.6D.34.已知 x 方程20(0)mx nx k m ++=≠有两个实数根, 则下列关于判别式的判断正确的是( )A. 240n mk -< 0B. 240n mk -=C. 240n mk ->D. 240n mk -≥ 5.若关于 x 的一元二次方程2690kx x -+=有两个不相等的实数根, 则 k 的取值范围为( )A. k<1B.k≠0C. k>0D. k<1 且 k≠06.关于 x 的方程2(2)210a x ax a --++=有两个不相等的实数根,a 的值为( )A. a<-2B. - 2<a<2C. a>-2 且 a ≠ 2D. a ≥ -2 且 a ≠ 27.设 n 为方程20(0)x mx n n ++=≠的一个根, 则 m n + 等于________8.如果一元二次方程 2240x x k ++=有两个相等的实数根, 那么 k=_______9.如果关于 x 的方程222(41)210x k x k -++-=有两个不相等的实数根, 那么 k 的取值范围是_______10.已知12,x x 是方程2520x x ---=的两根, 则:(1) 12x x + =________ ; (2) 12x x ⋅ ==________ ; (3) 212()x x -=________11.解下列一元二次方程:(1) 22310x x ++= (2) 27430x x --= (3) 2620x x -+=12.已知关于 x 的方程22(1)10x m x m -++-=的一个根为 4, 求 m 值及此方程的另一个根。
个不相等的实数根。
14.若规定两数 a, b 通过“ ※” 运算, 得到 4ab, 即 a ※b=4ab. 例如 2※6=4×2×6=48.(1) 求 3※5 的值; (2) 求 x ※x+2 ※x-2※4=0 中 x 的值。
15.求证: 不论 k 取什么实数, 方程2(6)4(3)0x k x k -++-=一定有两个不相等的实数根.一元二次方程韦达定理的应用参考答案知识点:一元二次方程根的判别式 :当△>0 时240b ac ->方程有两个不相等的实数根,当△=0 时240b ac -=方程有有两个相等的实数根,当△<0 时240b ac -<方程没有实数根.韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数2.求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m>2 时,原方程永远有两个实数根. 分析:224(2)41(84)b ac m m ∆=-=--⨯⨯- 配方法 论证例 2.已知关于 x 的方程22(1)10kx k x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由.(1)13k >-且0k ≠ (2)不存在,k=-1时无实数根例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;(1)k ≤5 (2)3k =±例 4.已知关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
(1)222214(2)4(3)616(3)702b ac m m m m m ∆=-=---=-+=-+>(2)121121221x x x x x x m m +=++=+-+=+,121x m =-121x m =-,代入方程求m 的值,12120,17m m ==例 5.当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(2) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于 2. 分析:224(1)48(7)0b ac m m ∆=-=--⨯⨯-≥两根之和和两根之积去判断。
例 6.已知 a,b,c,是△ ABC 的三边长, 且关于 x 的方程 22(1)2(1)0b x ax c x --++=有两个相等的实根,求证: 这个三角形是直角三角形。
证明:22444()()0b ac a b c b c ∆=-=-+-= 222a c b +=例 7.若 n>0 ,关于 x 的方程21(2)04x m n x mn --+=有两个相等的正的实数根, 求m n 的值。