第二章 弹性力学基础知识

合集下载

第二讲-弹性力学基础知识

第二讲-弹性力学基础知识

弹性力学及有限元
NORTHEASTERN UNIVERSITY
2.1
弹性力学的基本假设
2. 均匀性假设
•—— 假设弹性物体是由同一类型的均匀材料组成的。 —— 假设弹性物体是由同一类型的均匀材料组成的。 因此物体各个部分的物理性质都是相同的, 因此物体各个部分的物理性质都是相同的,不随坐标位 置的变化而改变。 置的变化而改变。 •—— 物体的弹性性质处处都是相同的。 —— 物体的弹性性质处处都是相同的。 •工程材料,例如混凝土颗粒远远小于物体的的几何形状, 工程材料,例如混凝土颗粒远远小于物体的的几何形状, 工程材料 并且在物体内部均匀分布,从宏观意义上讲, 并且在物体内部均匀分布,从宏观意义上讲,也可以视 为均匀材料。 为均匀材料。 •对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。 对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。 对于环氧树脂基碳纤维复合材料
三 应力的概念
通常将应力沿垂直于截面和平行于截面两个方向分解为
τ
σ
S
正应力σ 切应力τ
弹性力学及有限元
NORTHEASTERN UNIVERSITY
2.2
弹性力学基本概念

应力的概念
应力分量
应力不仅和点的位置有关,和截面的 方位也有关。 描述应力,通常用一点平行于坐标平 面的单元体,各面上的应力沿坐标轴
独立应力分量:
τ xy = τ yx
τ yz = τ zy
τ xz = τ zx
σx σy σz
τ xy τ yz τ zx
弹性力学及有限元
NORTHEASTERN UNIVERSITY 2.2 弹性力学基本概念

应力的概念-举例
例3 已知单元体各面上的应力分量,试在单元上标出方向与数值。

第二章弹性力学基础知识

第二章弹性力学基础知识

19
用矩阵表示:
yxx
xy y
xz yz
z
zx
zy
其中,只有6个量独立 z。x zy z
xy yx yz zy 剪应力互等定理 zx xz
应力符号的意义(P8)
x
z
yx xz
y yz x
zy
yz
xy yx y
zx
O
y z
xy
第1个下标 x 表示τ所在面的法线方向; 第2个下标 y 表示τ的方向.
符号:
X Y Z —— 面力矢量在坐标轴上投影 k
Q
Z
X S Y
单位: 1N/m2 =1Pa (帕)
i Oj
y
x
1MN/m2 = 106Pa = 1MPa (兆帕)
正负号: X Y Z 的正负号由坐标方向确定。
16
例:表示出下图中正的体力和面力
O(z)
x
X
X
Y
Y
y
O(z)
x
Y
X
X
Y
y
17
2. 应力
5
地位
弹性力学在力学学科和工程学科中,具
有重要的地位: 弹性力学是其他固体力学分支学科的基础。
弹性力学是工程结构分析的重要手段。尤 其对于安全性和经济性要求很高的近代大型 工程结构,须用弹力方法进行分析。
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很 小的次要因素,抓住主要因素,从而建立 计算模型,并归纳为学科的基本假定。
符号:X、Y、Z为体力矢量在坐标轴上的投影 k X V Y
单位: N/m3
kN/m3
i Oj
y

第二章:弹性力学基本理论及变分原理

第二章:弹性力学基本理论及变分原理

第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。

它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。

本章将介绍弹性力学的基本方程及有关的变分原理。

§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。

现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。

§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。

ansys弹性力学基础知识

ansys弹性力学基础知识

My x Iz
铁木辛柯梁
弹性力学解(单位宽度,矩形截面)
My y y 3 x q (4 2 ) Iz h h 5
4
2
应力集中:材料力学和弹性力学处理的不同


5
4、弹性力学的基本假定
(1) 连续性(Continuity)
用途:应力、应变、位移等等才可以用坐标 的连续函数来表示。 (2) 线弹性(Linear elasticity) 用途:符合胡克定律。 (3) 均匀性(Homogeneity) 用途:弹性常数不随位置坐标而变。 (4)各向同性(Isotropy) 用途:弹性常数不随方向而变。 符合以上假定称为理想弹性体。
z 0, zx zy 0
结论:
平面应变问题只有三个应变分量:
x x ( x, y)
y y ( x, y)
xy yx xy ( x, y)
应力分量、位移分量也仅为 x、y 的函数,与 z 无关。
19
例2 如图所示三种情形,是否都属平面问题?是平 面应力问题还是平面应变问题?
平面应力问题
平面应变问题
非平面问题
思考:黑板和甲板力学模型各属于弹性力学那类问题?
20
2-4
平衡微分方程
PA dx PB dy
O
P
取微元体PABC(P点附近),
Z 方向取单位长度。
y
x
x
yx A
X
y
AC面:
2
xy
D
x x dx x
Y
C
B
y y x 1 x y dy x dx (dx) 2 y x 2! x 2 x x dx x 2 xy xy 1 xy 2 dx xy dx (dx) xy 2 x 2! x x y y dy y BC面: 注: 这里用了小变形假定。 yx yx dy y

第二章 弹性力学基础知识

第二章 弹性力学基础知识
返回
3. 均匀性假定 假定整个物体是由同一材料组成的。 假定整个物体是由同一材料组成的。这样,整个物体的 所有各部分才具有相同的弹性,因而物体的弹性常数才不会 随位置坐标而变,可以取出该物体的任意一小部分来加以分 析,然后把分析所得的结果应用于整个物体。如果物体是由 多种材料组成的,但是只要每一种材料的颗粒远远小于物体 而且在物体内是均匀分布的,那么整个物体也就可以假定为 均匀的。 4. 各向同性假定 假定物体的弹性在各方向都是相同的。 假定物体的弹性在各方向都是相同的。即物体的弹性常 数不随方向而变化。对于非晶体材料,是完全符合这一假定 的。而由木材、竹材等作成的构件,就不能当作各向同性体 来研究。至于钢材构件,虽然其内部含有各向异性的晶体, 但由于晶体非常微小,并且是随机排列的,所以从统计平均 意义上讲,钢材构件的弹性基本上是各向同性的。
τ
P ΔA
ΔQ
n
σ
(法线 法线) 法线
应力分量 单位: 单位:
应力的法向分量 应力的切向分量
σ
—— 正应力 —— 剪应力
τ
与面力相同
MPa (兆帕)
应力关于坐标连续分布的
σ = σ (x, y, z) τ =τ (x, y, z)
(2) 一点的应力状态
通过一点P 通过一点 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: 面的应力: 面的应力 σ x ,τ xy ,τ xz y面的应力: 面的应力: 面的应力 z面的应力: 面的应力: 面的应力
一 平衡微分方程 • 从弹性体内任一点取出微元体,建立弹性 从弹性体内任一点取出微元体, 体内一点的应力分量与体力分量之间的关 系。
对于平面问题, 对于平面问题,分析平衡方程
取微元体PABC(P点附近), ( 取微元体

弹性力学第二章

弹性力学第二章

(2)平面应变问题的物理方程 由于平面应力问题中:εz = γ zx = γ zy = 0
µ 1− µ2 σx − εx = σy 1− µ E 1− µ2 µ σy − εy = σy E 1− µ
——平面应变问题 ——平面应变问题 物理方程
第三节
平面问题中一点的应力状态
一点的应力
2. 一点的主应力与应力主向 (1)主应力 若某一斜面上τn = 0 ,则该斜面上的正应力σn 称为该点一个主应力σ; 当τn = 0 时,有 σn =σ = p
px =lσ py = m σ
lσx +m xy =lσ τ m y +lτxy = m σ σ
γ xy =
2(1+ µ) τ xy E
在z方向,εz = 0, σz = µ(σx +σy )
变换关系 : 平面应力物理方程 →平面应变物理方程:
E µ E→ , → µ 2 1− µ 1− µ
平面应变物理方程 →平面应力物理方程:
E→
E(1+ 2µ)
(1+ µ)2
, → µ 1+ µ
µ
思考题 1. 试证:由主应力可以求出主应变,且两者方 向一致。 2. 试证:三个主应力均为压应力,有时可以产 生拉裂现象。 3. 试证:在自重作用下,圆环(平面应力问题) 比圆筒(平面应变问题)的变形大。
E
µ
2.平面应变问题 2.平面应变问题 条件是:⑴很长的常截面柱体 ; ⑵体力、面力、约束平行于柱面横截面, 沿长度方向不变。 应力:
σz = µ(σx +σy )
τ zx =τ zy = 0
应变:
εz = 0 γ zx = 0 γ zy = 0

第二章 弹性力学的基本理论

第二章 弹性力学的基本理论

2
0 0 0
0 0 0
0
0
0
x (2-18)
y
0 0 0
0
0
z
yz
0 0
0
0
66
zx xy
61
弹性力学简明教程
二、平面问题
平面问题{ 平面应力问题 平面应变问题 1、平面应力问题:
z zx zy 0
xz yz 0
由(2-15)式知:
z
fy
0
(2-4)
xz
x
yz
y
z
z
fz
0
x
0
0
0
y 0
0
0 z
0
z y
z
0
x
x
y x
0
36
y
z yz
zx xy
61
fx fy fz
31
0 31
H P 0
36
61
31
31
(2-6)
弹性力学简明教程
二、空间问题的平衡微分方程
弹性力学简明教程
§2 平衡微分方程
一、平面问题的平衡微分方程
y
y
y
dy
x
fy
yx
yx
y
dy
xy
xy
x
dx
y
xy
dy c dx
fx
yx
x
x
x
dx
o(z)
x y
平衡微分方程:
Fx 0 Fy 0
微元体:厚度为1
平面问题的特点:
一切现象都看作是在一个平面内发生的
Fx 0 Fy 0
Mc 0

弹性力学基础(二)

弹性力学基础(二)
边值问题的提法:
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中

第2章 弹性力学基础

第2章 弹性力学基础

第2章弹性力学基础内容提要:本章主要介绍弹性力学的基本概念,主要包括应力、应变的定义和性质,应力平衡方程、几何方程和物理方程,并对弹性力学问题的基本求解方法进行简介。

为了便于对机械结构有限元计算结果能够很好地分析评价,本章还介绍了结构强度与失效的基本理论。

有关能量法的简单知识是后续有限元法的重要理论基础。

教学要求:学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等,了解弹性力学平面问题的应力函数法,掌握结构强度失效准则中的等效应力理论等内容,了解能量法的基本思想。

2.1 引言弹性力学(Elastic Theory)作为一门基础技术学科,是近代工程技术的必要基础之一。

在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等大型结构的设计中,广泛应用着弹性力学的基本公式和结论。

弹性力学与材料力学(Foundamental Strengths of Materials)在研究内容和基本任务方面,是基本相同的,研究对象也是近似的,但是二者的研究方法却有较大的差别。

弹性力学和材料力学研究问题的方法都是从静力学、几何学、物理学三方面入手的。

但是材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。

在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在截面上均匀分布的假定等等)。

杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程。

对于常微分方程,数学求解是没有困难的。

而在弹性力学里研究杆状构件一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确得多。

当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布的假定来简化其数学推导。

但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。

弹性力学基础知识

弹性力学基础知识

第二章弹性力学基础
图二半轴有限元模型
一、应力分量与平衡微分方程
空间独立的应力分量正应力分量:切应力分量:应力分量列阵: x y z σσσ xy
yz zx
τττ{} T
x y z xy yz zx σσσστττ⎡⎤=⎣⎦
注意下标的意义与符号规定!!
(2-1)

二、几何方程
空间独立的应变分量正应变分量:切应变分量:应变分量列阵:(2-3)
z y x εεε,,zx yz xy γγγ,,{}T
zx yz xy z
y x
][γγγεεεε=如何计算正应变和切应变??
y
⎤⎥
五、虚功原理
虚位移:满足物体内变形连续条件,边界上位移约束条件的任何可能的无限小位移。

虚功:真实外力在虚位移上所做的功。

虚应变:对可变形的弹性体,虚位移也必将导致虚应变,虚应变和虚位移之间满足弹性体几何方程。

虚功原理:外力作用下处于平衡状态的弹性体,外力在虚位移上做的总虚功等于弹性体内真实应力在虚应变上做的总虚变形功。

x F Vx
F C
C。

弹性力学第二章

弹性力学第二章

强调指出:张量必须满足坐标变换,否则不能视为张量。也就是 说,从一个坐标系旋转到另一个新的坐标系,张量的表达形式不变。 即应有:T
= Ti1i2 ⋅⋅⋅in ei1 ⊗ ei2 ⊗ ⋅⋅⋅ ⊗ ein = Ti1i2 ⋅⋅⋅in βi1′i1 ei1′ ⊗ β i2′ i2 ei2′ ⊗ = βi1′i1 β i2′ i2
n n 12 n 1
⊗ β in′ in ein′
2
βi′ i Ti i ⋅⋅⋅i ei′ ⊗ ei′ ⊗
⊗ ein′
⊗ ein′
= Ti1′i2′ ⋅⋅⋅in′ ei1′ ⊗ ei2′ ⊗
注:1.对于一个给定的张量,其各分量必须满足式(2.19)的转换 关系;否则,不能视为一个张量。 2.虽然张量的分量是随坐标系的变化而变化的,但张量的本身 则不随坐标系的变化而变化。 3.在一个给定的坐标系,若某一张量的所有分量都为零,则由 式(2.19)可知,在任意的坐标系中这一张量的所有分量也 必为零。这种张量称为零张量,用O表示。
a1 a2 = b1 c1 b2 c2 a3 b3 c3
(2.9)
设: a = ai ei
eijk和δij之间的关系及其证明 :
若i、j、k三个指标中有两个取相同的值,则显然 (2.10) 式(2.10)两边都为零值;或l、m、n中有两个 取相同的值,上式两边也同样为零。下面证明: 当指标i、j、k取三个不同的值,且同时l、m、n 由式(2.10)等号右端行列式的 也取三个不同的值时,式(2.10)是否成立。 分析可知,任意两行或两列较 如: 换一次,行列式的绝对值不 变,仅改变符号,且其符号改 变规则与置换符号的定义是相 (b) 符合的。
12 n
12 n
(2.19)

清华大学_弹性力学_第二章_应力理论_习题答案

清华大学_弹性力学_第二章_应力理论_习题答案

第二章知识点: (1)应力矢量()0limS FSνσ∆→∆∆其中,ν是S ∆的法向量(2)应力张量()()()111121321222323132333σσσσσσσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭其中,()()()123,,σσσ 分别是123,,e e e方向的应力矢量,且()()()111122133121122223323113223333e e e e e e e e e σσσσσσσσσσσσ=++=++=++上式可以写为张量形式ij i j e e σσ=或者用正应力剪应力将应力张量写为x xy xz yx y yz zx zy z σττστστττσ⎛⎫ ⎪= ⎪ ⎪⎝⎭(3)柯西公式(应力矢量和应力张量的关系)()νσνσ=⋅其中,ν是斜面的法向量,对于表面来说,就是外法向量。

可以将柯西公式写成如下形式()i i mj m j i mj i m j i mj im j i ij j e e e e e e e e νσνσνσνσνσδνσ=⋅=⋅=⋅== 即()i ij j νσνσ=这其实是三个式子,分量形式为()()()111122133112112222332231132233333++++i i i i i i νννσνσνσνσνσσνσνσνσνσσνσνσνσνσ==++====在表面上,所求出的()νσ就是外载荷。

(4)应力张量的转轴公式''''m n ij m i n j σσββ=证明如下:'''''''''''''''''''',ij i j m n m n i m i m j n j n ij m i n j m n m n m n m n ij m i n je e e e e e e e e e e e σσσββσββσσσββ====∴=∴=也可以将转轴公式写为矩阵形式[][][][]'Tσβσβ=其中,[]σ、[]'σ是坐标系变换前后的应力张量的分量,[]()'m i ββ=,'m i β是i e 在'm e上的分量,可以用如下公式计算()''cos ,m ii m e e β=(5)剪应力互等定理根据微元体的力矩平衡,可以得到 ,,yz zy xz zx xy yx ττττττ===也就是说ij ji σσ=应力张量是一个二阶对称的张量 (6)主应力由于应力张量是二阶对称的,所以可以将其对角化[][][]123Tσσβσβσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦并且123,,σσσ从大到小排列,他们称为主应力,[]β是三个主应力的方向。

弹性力学-第二章

弹性力学-第二章

(a)
(b)
y
o
z
a
b
x
(c) 刚性槽
2.平面问题的应力边界条件 设在S 部分边界上给定了面力分量 f x ( s) 和 f y ( s) , 则可由边界上任一点微分体的平衡条件,导出应力 与面力之间的关系式。
0 o y P y
tyx txy
x
B
y
fx
A
x
P
x
fy
fx
n
fy
f
斜面上的应力
由式 (2-3)
x=-b为负x 面
l cos n, x cos180 1
m cos n, y cos 90 0
(σ x ) xb f x , (t xy ) x b f y
n
b a x
fx fy
σx
σx
fx fy
t xy
y
t xy
应力边界条件的两种表达式: (1)公式写法 公式写法通常只用于 边界为非坐标面时
x=a为正x 面
l cos n, x cos 0 1
m cos n, y cos 90 0
(σ x ) xa f x , (t xy ) xa f y
b a x
n
fx fy
σx
σx
fx fy
t xy
y
t xy
当边界面为坐标面时
(l x mt xy ) s f x ( s) (m y lt xy ) s f y ( s)
( 2) 斜边 y x tan
l cos n, x cos 90 sin
m cos n, y cos

第二章 弹性力学基础知识

第二章 弹性力学基础知识
弹性力学中的五个基本假定。
关于材料性质的假定及其在建立弹 性力学理论中的作用: (1)连续性--假定物体是连续的。 因此,各物理量可用连续函数表示。
1
(2)完全弹性 -- 假定物体是, a.完全弹性—外力取消,变形恢复,无 残余变形。 b.线性弹性—应力与应变成正比。
因此,即应力与应变关系可用胡克定律表示 (物理线性)。
X Y 0
sin yx cos xy 0
9
例 下面给出平面应力问题(单连通域)的应力场和应变场,试分别判断它
们是否为可能的应力场与应变场(不计体力)。
3 1 2 4 2 2 2 (2) x C ( x y ), y Cy , xy 2Cxy;
0
l cos( N , x) cos(90 ) sin
m cos( N , y) cos
x p( x) p0 l
1, m 0
x ( sin ) xy cos 0 y cos yx ( sin ) 0
p(x) A
p0
B
x X 0, Y p( x) p0 l 代入边界条件公式,有

N l C
x
h
y
x 0 xy (1) 0 y (1) yx 0 p( x)
(3) AC段(y =x tan β):
xy
y
y 0
y 0
带入已知应变分量,方 程不满足,所以不可能 存在.
12
作业:
1. 下面给出平面应力问题(单连通域)的应力场和应变场,试分别判断
它们是否为可能的应力场与应变场(不计体力)。 (1) (2)

弹性力学_第二章__应力状态分析

弹性力学_第二章__应力状态分析

第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。

应力状态是本章讨论的首要问题。

由于应力矢量与内力和作用截面方位均有关。

因此,一点各个截面的应力是不同的。

确定一点不同截面的应力变化规律称为应力状态分析。

首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。

应力状态分析表明应力分量为二阶对称张量。

本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。

本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。

弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。

二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。

体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。

第二章弹性力学基础

第二章弹性力学基础

第二章弹性力学基础弹性力学又称弹性理论,它是固体力学的一个分支。

弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。

弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。

材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。

弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。

对杆状构件作较精确的分析,也需用弹性力学。

结构力学-----研究杆状构件所组成的结构。

例如桁架、刚架。

第一节弹性力学假设在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。

1. 假设物体是线弹性的假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。

即该比例关系不随应力、应变的大小和符号而变。

由材料力学已知:脆性材料的物体:在应力≤比例极限以前,可作为近似的完全弹性体;韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。

这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。

2. 假设物体是连续性的假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。

有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。

注:实际上,一切物体都是由微粒组成的,都不能符合该假定。

但是由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。

3. 假设物体是均匀性、各向同性的整个物体是由同一材料组成的。

这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。

第二章 弹性力学基础1026

第二章 弹性力学基础1026

2.3弹性力学基本变量
正面(外法线是沿着坐标轴的正方向) 负面(外法线是沿着坐标轴的负方向) 正面上的应力以沿坐标轴正方向为正,沿坐标轴负 方向为负 负面上的应力以沿坐标轴负方向为正,沿坐标轴正 方向为负
正应力以拉应力为正,压应力为负
2.3弹性力学基本变量
剪应力互等定律:作用在两个互相垂直的面上并且垂直于该两面交
x
x
y
y
xy
x y
变形协调条件
它的物理意义是:材料 在变形过程中应该是整 体连续的,不应该出现 “撕裂”和“重叠”现 象发生。
2 2 x y 3u 3v 2 2 2 y x xy yx 2
一般而论, 弹性体内任意一点的体力分量、面力分 量、应力分量、应变分量和位移分量,都是随着该点的 位置而变的, 因而都是位置坐标的函数。
u u ( x, y , z ) v v ( x, y , z ) w w( x, y, z )
2.3弹性力学基本变量
位移与应变的关系
ui ui ij dx j wij dx j
2.3弹性力学基本变量
内力:应力 --外力(或温度)的作用 内力
设作用于 A 上的内力为 Q , 则内力的平均集度,即平均应 力 ,为 Q / A Q lim S A 0 A
这个极限矢量S,就是物体在截面 mn上、P点的应力。
应力就是弹性体内某一点作用于某截面单位面积上的内力
均匀性:也就是说整个物体是由同一种材料组成的。这样,
整个物体的所有各部分才具有相同的物理性质,因而物体的弹性 常 数(弹性模量和泊松系数)才不随位置座标而变。
2.2 弹性力学中关于材料性质的假定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y yz P
yx
dz
e e'
dx o A
zy
dy
zx
z
y y y dy y yx yx dy B y
y
35
z
y
yz
o x
z dz z z zy C yz dz zy zx yz dy z zx z dz y y yy dy yx dz yx e yx y dy
第二章 弹性力学基础知识
教学目的:了解弹性力学问题的研究方法。 教学重点:三大方程、两类平面问题的特点、 应力边界条件。 教学难点:两类平面问题的区分。
1
定义
弹性力学
--研究弹性体由于受外力、边 变和位移。
界约束或温度改变等原因而发生的应力、形
研究弹性体的力学,有材料力学、结构 力学、弹性力学。它们的研究对象分别如下:
x , y , z
xy , yz , zx
应 变 位 外 力
x , y , z
xy , yz , zx
u , v, w
X ,Y, Z
X ,Y , Z
27
O(z)
思考题
1. 试画出平面问题正负 y 面上正的应力和正的面 力。
2.试画出C点正的位移。
O x
x
y
z
·
C y
因此材料力学建立的是近似理论,得 出的是近似的解答。从其精度来看,材料 力学解法只能适用于杆件形状的结构。
5
地位
弹性力学在力学学科和工程学科中,
具有重要的地位: 弹性力学是其他固体力学分支学科的基础。 弹性力学是工程结构分析的重要手段。 尤其对于安全性和经济性要求很高的近代大 型工程结构,须用弹力方法进行分析。
静力学、几何学和物理学三方面条件,建立
三套方程; 在边界s上考虑受力或约束条
件,建立边界条件; 并在边界条件下求解上
述方程,得出较精确的解答。
4
第一节 弹性力学的内容
研究方法
材力 也考虑这几方面的条件,但不
是十分严格的:常常引用近似的计算假设 (如平面截面假设)来简化问题,并在许
多方面进行了近似的处理。
2
研究对象
材料力学--研究杆件(如梁、柱和轴) 的拉压、弯曲、剪切、扭转和组 合变形等问题。 结构力学--在材料力学基础上研究杆系结构 (如 桁架、刚架等)。
弹性力学--研究各种形状的弹性体,如杆 件、平面体、空间体、板壳、薄壁 结构等问题。
3
研究方法
在研究方法上,弹力和材力也有区别: 弹力研究方法 :在区域V内严格考虑
符号:
z
Q
Z
X Y Z —— 面力矢量在坐标轴上投影
单位: 1N/m2 =1Pa (帕) 1MN/m2 = 106Pa = 1MPa (兆帕)
k i
x O j
X
S Y
y
正负号: X Y Z 的正负号由坐标方向确定。
16
例:表示出下图中正的体力和面力
O(z)
X
X
Y
x
O(z)
X
Y
x
X
Y
Y
y
y
17
2. 应力
6
2.1弹性力学的基本假定 为什么要提出基本假定? 任何学科的研究,都要略去影响很
小的次要因素,抓住主要因素,从而建立
计算模型,并归纳为学科的基本假定。
7
弹性力学中的五个基本假定。
关于材料性质的假定及其在建立弹 性力学理论中的作用: (1)连续性--假定物体是连续的。 因此,各物理量可用连续函数表示。
z C
z
A
O
应变的正负: 正应变: 伸长时为正,缩短时为负;
剪应变: 以直角变小时为正,变大时为负; x
x P
y
B y
25
(2) 一点应变状态
—— 代表一点 P 的邻域内线段与线段间夹角的改变
x yx zx
xy xz y yz zy z
(1) 物体内部分子或原子间的相互作用力; 内力
(不考虑)
(2) 由于外力作用引起的相互作用力.
Q (1) P点的内力面分布集度 ----P点的应力 s lim A0 A (2) 应力矢量. Q 的极限方向
由外力引起的在 P点的某一面上内力分布集度 应力的法向分量 应力的切向分量

w
u
O
x P v
P
S
y
26
表 1-2
基本量 应力 正应力 剪应力 正应变 剪应变 移 体力 面力 符号
直角坐标表示的基本量
量纲 [力][长度]-2 [力][长度]-2 无量纲 无量纲 [长度] [力][长度]-3 [力][长度]-2 沿坐标轴正向为正 正负号规定 正面上沿坐标轴正向为正 负面上沿坐标轴负向为正 线段伸长为正 线段间直夹角变小为正
P ΔA
ΔQ
n

(法线)
应力分量 单位:

—— 正应力 —— 剪应力

与面力相同
MPa (兆帕)
应力关于坐标连续分布的
( x, y, z ) ( x, y, z )
18
(2) 一点的应力状态
通过一点P 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: x , xy , xz

体,棱边的长度分别为PA=dx,PB=dy,PC=dz。
33
z
y
zy zy dz zx yz zx z dz x yz dy z y yx xy e y y dy dz xz y yx e' yx B dy yz P dy y zx
其中
xy yx yz zy
z
C
z
A
zx xz
x P
y
B
注:
应变无量纲; 应变分量均为位置坐标的函数,即
x
O
z
y
x x ( x, y, z ), ; xy xy ( x, y, z ),
4. 位移
一点的位移 —— 矢量S 量纲:m 或 mm u —— x方向的位移 分量; 位移分量: v —— y方向的位移 分量; w—— z方向的位移 分量。
21
例:正的应力
O(z)
yx
xy
x
y
x
x
xy
y
y
yx
22
应力与面力
在正面上,两者正方向一致, 在负面上,两者正方向相反。
O(z)
x
x
f yxy
xy
x
fy fx
fx
y
23
弹力与材力 相比,正应力符号,相同 切应力符号,不同
O(z)
x
O(z)
x
x
y
x
y
材力:顺时针向为正
dx
C
z z dz
z
zy
A
o
z
x x dx x
xz xz dx x x
xy
xy x
y
dx
首先,以连接六面体前后两面中心的直线 ee ' 为矩轴,列出 力矩的平衡方程
M
ee '
0
z
z z dz z C zy zy dz zx z yz zx dz dy z yz
x , y , z , xy , yz , xz u, v, w
(1)应力边界条件; 建立边界条件: (2)位移边界条件;
31

平衡微分方程
• 从弹性体内任一点取出微元体,建立弹性 体内一点的应力分量与体力分量之间的关 系。
32

平衡微分方程
在物体内的任意一点P,割取一个微小的平行六面
剪应力互等定理
O x
xz xy y y yx yz x zy zx z
y
yx
zx
zy yz
应力符号的意义(P8)
第2个下标 y 表示τ的方向. 应力正负号的规定(P8) 正应力—— 拉为正,压为负。 剪应力—— 坐标正面上,与坐标正向一致时为正; 坐标负面上,与坐标正向相反时为正。 20
条件时,可以用变形前的尺寸代替变形后
的尺寸。 b.简化几何方程:在几何方程中,由于
( , ) ( , ) ( , ) 可略去 ,
2 3
( , )
2
等项,使几何方程成为线性方程。
12
弹性力学基本假定,确定了弹性 力学的研究范围:
理想弹性体的小变形问题。
xy
第1个下标 x 表示τ所在面的法线方向;
z
与材力中剪应力τ正负号规定的区别:
规定使得单元体顺时的剪应力τ为 正,反之为负。
z
xy yx
x
O
xz xy y y yx yz x zx
在用应力莫尔圆时必须按材料力学的规定求解问题
材力:以拉为正
24
3. 形变 (1) 一点形变的度量
形变 —— 物体形状的改变 (1)线段长度的改变 ——用正(线)应变ε度量 (2)两线段间夹角的改变。 ——用剪应变γ度量 (剪应变——两垂直线段夹角(直角)的改变量)
三个方向的线应变:
三个平面内的剪应变:
x , y , z xy , yz , zx
8
(2)完全弹性 -- 假定物体是, a.完全弹性—外力取消,变形恢复,无 残余变形。 b.线性弹性—应力与应变成正比。
因此,即应力与应变关系可用胡克定律表示 (物理线性)。
相关文档
最新文档