最全面高一年级期末考试模拟试卷(精华版)

合集下载

最全面高一期末考试模拟试卷4(精华版)

最全面高一期末考试模拟试卷4(精华版)

2018—2019 学年高一年级期末考试模拟试卷4一、单选题在浙江台州市分布着国内罕见的珊瑚岩景观,是典型的火山熔岩地貌造型的代表作为“地壳物质循环示意图”。

完成下面小题。

( 下面左图) 。

下面右图1.形成珊瑚岩的物质来自于(.地核)A.地壳 B .地幔 D .岩石圈C2.该珊瑚岩形成的主要过程与右图中序号直接相关的是()A.① B .②.③.④C D“海绵城市”是指城市能够像海绵一样,在适应环境变化和应对自然灾害等方面具有良好的“弹性”,下雨时,吸水、蓄水、渗水、净水;需要时,将共为蓄存的水“释放”并加以利用。

完成下列问题。

读“海绵城市示意图”,3.建设“海绵城市”,主要目的是A.根治城市水污染 B .加速城市水循环.缓解城市用地紧张 D .提高水资源利用率C4.下列城市中,最适宜建设海绵城市的是A.乌鲁木齐 B .呼和浩特 C .石家庄.拉萨D5.图示地理事物,主要的作用是A.树木、草木大量吸收大气降水和地下水C.河流、湖泊可以调蓄多雨和少雨期降水量.城市小区、污水处理厂可以净化水质.湿地公转、拦水坝可以增加下渗水量BD6.菲律宾玛雅农场是世界生态农业的典范,20 世纪70 年代该农场还是一家面粉厂,经过十年的建设,形成了一个农、林、牧、副、渔良性循环的生态农场。

从经济效益考虑,该农业生产模式的最大好处是A.开展多种经营,增加农场收入C.减少了水土流失的发生频率.改善能源消费结构,利于植被保护.废弃物得到充分利用,减少了污染BD一般住宅特别是高层住宅的第一、第二层销售都较为困难,其价位也较其他层位低。

开发商通过将第一、第二层转为做底商,价格可以卖得更好,同时住宅小区的商业配套也得以解决。

据此完成下面小题。

7.有关底商,下列说法正确的是A.底商只为本小区的居民服务B.底商既可以销售商品,也可以提供其他服务C.因底商租金较高,一般都销售较高级的商品D.底商与大型超市没有竞争关系8.以下店铺最适合布局在底商的是A.鞋帽制造厂 B .水果店 C .大型家电专卖店.服装批发店D阅读下列材料,回答下面小题。

最全面【必考题】高一数学上期末模拟试卷(及答案)(精华版)

最全面【必考题】高一数学上期末模拟试卷(及答案)(精华版)

【必考题】高一数学上期末模拟试卷 ( 及答案 )一、选择题1. 已知 f 是( ) x 是偶函数,它在 0, .若 f lg x f 1 ,则 x 的取值范围上是增函数 1101101100, 10,,10 ,1A .B .C .0,1 10,D .a,b, c 的大小关系是(2. 设 a log 6 3 , cb lg5 ,c log 14 7 ,则 c) D . cb 时, a bA . ab B . a C . ba cb a a b a ;当3. 在实数的原有运算法则中,补充定义新运算“”如下:当2b ,已知函数 a b 时, f x 1 x x 2 2 x x2,2 ,则满足a b f m 1f 3m 的实数的取值范围是()1212 1 2 23,, 2,1, A . B . C . D .2 32,则 e 3c a , b ,c 的大小关系是( 4. 设 a log 2 3 , )3 ,cb ba C . bc axA . ab cB . D . a c bf x a ,且不等式 f 2x 的解集为 1,3 ,若方程5. 已知二次函数的二次项系数为 a f x6a 0 ,有两个相等的根,则实数 ( )1 51 51 5A .-B . 1C . 1或D .1或a x,x 1 f (x)6. 若函数是 R 上的单调递增函数,则实数a 的取值范围是a 24x 2, x 1( ) D . 4,8)1, A . B .( 1,8)C .( 4,8)1 41 4 a 163 b7. 已知 a log 13, 5,则( ),c c b c a bD . bc aA . a b cB .C . x 3 8. 用二分法求方程的近似解,求得f ( x) 2 x 9 的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 f ( x)-63-2.625-1.459-0.141.34180.5793x3则当精确度为 0.1 时,方程 2x 9 0 的近似解可取为C . 1.8B . 1.7D . 1.9A . 1.6 9. 设 fx f xf x 0 ,当x ,恒有 是 R 上的周期为 2 的函数,且对任意的实数 x1 2log 10 x1,0 1 ,若关于 x 的方程 f xx 0 且 a 1 )a 时, f x( a a 的取值范围是 恰有五个不相同的实数根,则实数 ( )A . 3,5 4,64,63,5B .C .D .x7,7 上的奇函数 f x 26 ,则不等式10. 定义在,当 0 x 7 时, f xx f x0 的解集为A . 2,7 2,0 2,7B .2,02,7, 22,7C .D .f (x )=x ( e x +ae ﹣x )( x ∈ R ),若函数 f ( x )是偶函数,记 a=m ,若函数 f 11. 已知函数 (x )为奇函数,记 A .0 a=n ,则 B . 121 的值为( ) m+2n C . 2 D .﹣ 1x ,x 1f x2 的 fx1 log2 x, x 1,则满足 ()12. 设函数 的取值范围是 x A .1,2二、填空题B . 0,2C . 1,D . 0,1 4,( x xlog 2 x,(0 4)f ( x) k 有两个不同的实 f ( x).若关于 x 的方程, 13. 已知函数x 4)根,则实数k 的取值范围是.14. 对于函数 f (x ),若存在 x 0∈ R ,使 f ( x 0) =x 0,则称 x 0 是 f ( x )的一个不动点,已知 f ( x ) =x 2+ax+4 在 [1 , 3] 恒有两个不同的不动点,则实数 a 的取值范围 .1 1 y f ( x) x 0 时, 15. 已知 是定义在 R 上的奇函数,且当 f (x),则此函数xx42的值域为 .x2ax ax, x 1, 1,x 1, x 2 R, x 1 x 2 f ( x) { 16. 已知函数若f ( x 1 ) f ( x 2 ) 成立,,使得 1,.x 则实数 a 的取值范围是2f x 与g x 有g xf f x 17. 已知常数 ,若 a R ,函数 f xlog 2 xa , 相同的值域,则 a 的取值范围为.f x f x [0,) 上是减函数,则18. 已知函数是定义在 R 上的偶函数,且 在区间 f x f 2 的解集是 .2f x2xx a x a 3,0 19. 若函数 在区间 上不是单调函数,则实数a 的取值范围是 .x2x 1, m 1,10 m.20. 已知函数 y2 x 2 , .若该函数的值域为 ,则 三、解答题21. 已知集合 Ax | 2 3x 1 8 , B x | 2x 1 5 , Cx | x a 或xa 1 .A B, AB (1)求 ;C R CA ,求实数 a 的取值范围.(2)若22. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某 x% (0 x 100 )的 地上班族 S 中的成员仅以自驾或公交方式通勤.分析显示:当30,0 S 中 30x 成员自驾时,自驾群体的人均通勤时间为f x(单位:1800 x90,30 2 xx 100x 影响,恒为 分钟),而公交群体的人均通勤时间不受 下列问题:40 分钟,试根据上述分析结果回答(1)当 x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? g x g x 的单调性,并说明其实(2)求该地上班族 S 的人均通勤时间 的表达式;讨论 际意义. m 2 2m 30,23. 已知幂函数 f x xm Z 为偶函数,且在区间 上单调递减 .(1)求函数f x 的解析式;b F x a f x的奇偶性 a, b R (2)讨论 .(直接给出结论,不需证明)xf x2x2在区间 f x 4x a , g x log x a 0, a 1 24. 已知函数 .a (1)若函数 f x 1,m m 的取值范围; 上不具有单调性,求实数 1 2f1g 1 , t 2g x x 0,1 t 1 , t 2 的大小 (2)若 ,设 t 1f x ,当 时,试比较 .2 2g( x)f ( x) 1 .25. 已知 f ( x) , x1 g(x) 的奇偶性;10 (1)判断函数10f ( i )f (i ) 的值 .(2)求i 1i 1f (5) f (2)xa ( 8 26. 已知函数 f ( x ) 0 , 且a 1), 且 a .f (2m 3)( x) f (m 2) , 求实数 m 的取值范围 ;( 1) 若 | f 1| t 有两个解 , 求实数 t 的取值范围 .( 2) 若方程【参考答案】 *** 试卷处理标记,请不要删除一、选择题1. C 解析: C 【解析】 【分析】f lg x f 1 变形为 f lg xf 1 利用偶函数的性质将不等式,再由函数y f x 0,lg x 1 ,利用绝对值不等式的解法和对数函数的单在 上的单调性得出调性即可求出结果 【详解】 . y f x f lg xf 1 f lg x f 1 由于函数是偶函数,由 得 ,函数 y f x 在 0,lg x 1,即 1 lg x 1 ,解得又 上是增函数,则1 10x 10 .故选: C.【点睛】 本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题2.A解析: A 【解析】 【分析】 .x 2 log x构造函数 f x ,利用单调性比较大小即可 .【详解】 x 210 1log 2 xf x 1,f x log x 1 log x 2 1构造函数 ,则 在 上是增函数,又 a f 6 , bf , c f 14 ,故 a b c .故选 A【点睛】 本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题3.C.解析: C【解析】 f x1 x2 2 x 3x4 ; 2 x 1 时, 当2当 1 x 2 时, f xx x 2 2 4 ;x x3x 4, 2 4,1 4 在 x x 12f x 所以 ,3xx f x2,1 f x4 在 1,2 易知, 单调递增, 单调递增,且2 x 1 时, f x 3, 1 2 时, f3 ,x max minfx 2,2 则 在 上单调递增,2 2 m m 1 3m 21 22 ,故选 3所以 f m 1 f 3m 得:2 ,解得 m C .1 3mx 4, 2 x 1 f x点睛:新定义的题关键是读懂题意,根据条件,得到 ,通过单调3x4,1 3m x 2f x f m 1f 在 2,2 上单调递增,解不等式 性分析,得到,要符合定义域2 2 m m 1 3m 22 和单调性的双重要求,则,解得答案. 1 3m4.A解析: A 【解析】【分析】 根据指数幂与对数式的化简运算 【详解】,结合函数图像即可比较大小.2e 3x因为 a log 2 3 , b 3 ,c x:令 fxlog 2 x , g 函数图像如下图所示2 , g 44 2则 f 4log 24 所以当 x3 时 , 23 log 2 3 ,即 a b b3 , ce 362 3 66 446b则 327 , cee2.753.1b6c 6,即 b 所以cca b 综上可知 故选 :A 【点睛】, 本题考查了指数函数、对数函数与幂函数大小的比较 及不等式性质比较大小 ,属于中档题 .5.A解析: A 【解析】 【分析】 ,因为函数值都大于 1,需借助函数图像2设 fx axbx c ,可知 1、 3 为方程 f x2x 0 的两根,且 0 ,利用韦达定a f x6a 0 有两个相等的根,由理可将 b 、c 用 a 表示,再由方程 值. 【详解】 a 的0 求出实数 由于不等式f x 2x 的解集为 1,3 , 2ax即关于 x 的二次不等式b 2 xc 0 的解集为 1,3 a 0 .,则 2由题意可知, 1、 3 为关于 x 的二次方程 axb 2 xc 0 的两根,b 2 ca由韦达定理得1 3 4 , 1 3 3 , b4a 2 , c 3a ,a4a 2f x ax 2 x 3a ,f x6a 0 有两相等的根,x 的二次方程由题意知,关于 2即关于 x 的二次方程 ax4a 2 x 9a 0 有两相等的根,1522a则4 a 2 36a10a 2 2 2a0 , a 0 ,解得 ,故选: A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题 的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于 中等题 .解析: D 【解析】【分析】 根据分段函数单调性列不等式,解得结果 【详解】.xa ,x 1 因为函数f ( x)是 R 上的单调递增函数,a 24x 2, x 1a 1a 2 所以4 0 4 a 8a242 a故选: D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题7.C.解析: C 【解析】 【分析】首先将 b 表示为对数的形式,判断出 b 0 ,然后利用中间值以及对数、指数函数的单调性3 比较与 a, c 的大小,即可得到2【详解】 a, b, c 的大小关系 .1 41 4b因为 5b log 5 log 5 1 0 ,,所以 1 43 2alog 13 log 3 4log 3 3,log 3 3 3 又因为 ,所以 a1, , 1 33 1631,833 23, 2 2c 又因为 ,所以 c, c a C. b .所以 故选: 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.解析: C 【解析】【分析】 利用零点存在定理和精确度可判断出方程的近似解 【详解】 .根据表中数据可知f 1.75 0.14 0 , f 1.8125 0.5793 0 ,由精确度为 0.1 可知1.75 1.8 , 1.8125 1.8 ,故方程的一个近似解为 1.8 ,选 C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区 间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终 零点所在区间的端点的近似值相同,则近似值即为所求的近似解9.D.解析: D 【解析】 x1 2由 fx f x 0 ,知 f x 是偶函数,当 x1,0 时, 1 ,且f xf x 是 R 上的周期为 2 的函数,yf x y log a 1 x x 的方程作出函数 和 的函数图象,关于 f x log a x 10 ( y f x 和a 0 且 a 1 ) 恰有五个不相同的实数根,即为函数y log a 1 x 的图象有 5 个交点,a 3 5 1114 a 6 . 所以 log a log a D.1 ,解得 1故选点睛:对于方程解的个数 ( 或函数零点个数 ) 问题,可利用函数的值域或最值,结合函数的 单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从 图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.B解析: B 【解析】 【分析】 f (2)0 ,则 ( 2,0)f ( x) 0 的解集为 2,7 0x 7时, f ( x) 为单调增函数,且当 ,再结合f (x) 0 的解集为 (2,7] f ( x) 为奇函数,所以不等式 【详解】 .2x在(0,7] 0x 7时, f()6 ,所以 当 上单调递增,因为 x f ( x) 227 ,f ( x) 0 等价于 f (x)f (2) f (2) 2 6 0 ,所以当 0 x 7 时, ,即2 x [ 7,7] 在[ 2 7,0) 7 x 0 因为 f (x) 是定义在 上的奇函数,所以 时, f ( x) 上单调递增, f ( 2)f (x) f (2) 0 的解集为 0 ,所以 f ( x) (2,7]0 等价于 f ( x)f ( 2) ,即 x 0 ,所以不等且 ( 2,0) 式 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区 间上单调性相同,偶函数在其对称的区间上单调性相反.11.BB 解析: 【解析】试题分析:利用函数 f ( x ) =x ( e x +ae ﹣x )是偶函数,得到 g (x ) =e x +ae ﹣x为奇函数,然后利 m .函数 f ( x ) =x ( e x +ae ﹣x )是奇函数,所以 g ( x ) =e x +ae ﹣x 为偶函用 g (0) =0,可以解得 数,可得 n ,即可得出结论.解:设 g ( x ) =e x +ae ﹣x ,因为函数 数.f ( x ) =x ( e x +ae ﹣x )是偶函数,所以g ( x ) =e x +ae ﹣x 为奇函又因为函数 f ( x )的定义域为 R ,所以 g ( 0) =0, 即 g (0) =1+a=0,解得 a=﹣ 1,所以 m=﹣ 1.因为函数 f ( x ) =x ( e x +ae ﹣x )是奇函数,所以 g ( x ) =e x +ae ﹣x 为偶函数 所以( e ﹣x +ae x )=e x +ae ﹣x 即( 1﹣ a )( e ﹣x ﹣e x )=0 对任意的 x 都成立 所以 所以 故选 a=1,所以 n=1, m+2n=1 B .考点:函数奇偶性的性质.12.D解析: D 【解析】 【分析】分类讨论: ① ② 当 1 时; 当 1时,再按照指数不等式和对数不等式求解,最后x x 出它们的并集即可. 【详解】 21 xx 0 , 0 x 1.当 x12 的可变形为 1 x 1, 1 2当 x 1 时, 1 log 2 x 2 的可变形为 x1,故答案为0,, x .故选 D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函 数的图象与直线有两个交点时有 (1,2)解析: 【解析】作出函数 f (x) 的图象,如图所示,41单调递减,且 4 x当 x 4 时, f ( x) log x 单调f (x) 1 12 ,当 0 x 4 时, 2 xy k 有两个交点时,有递增,且 f ( x) log 2 x 2 ,所以函数 f ( x) 的图象与直线 k 2 .1 14.【解析】【分析】不动点实际上就是方程 f ( x0)=x0 的实数根二次函数 f( x )=x2+ax+4有不动点是指方程x=x2+ax+4 有实根即方程 x=x2+ax+4 有两个 不同实根然后根据根列出不等式解答即可 10 3, 3 解析:【解析】 【分析】f ( x 0) =x 0 的实数根,二次函数 f (x )=x 2+ax+4 有不动点,是指方不动点实际上就是方程x=x 2+ax+4 有实根,即方程 x=x 2+ax+4 有两个不同实根,然后根据根列出不等式解答即程 可.【详解】 解:根据题意, 两个实数根,f ( x ) =x 2+ax+4 在[1 , 3] 恒有两个不同的不动点,得x=x 2+ax+4 在 [1 , 3] 有x 2 +( a ﹣ 1) x+4=0 在 [1 , 3] 有两个不同实数根,令 g ( x ) =x 2+( a ﹣ 1) x+4 在 [1 ,3] 有两即 个不同交点,g (1) g (3) 0 0a 3a 4 10 0 0∴,即,1 a1 a131322 1) 22( a 1) 16 0(a 16 0103, 3 解得: a ∈; 103故答案为: , 3 . 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范 围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所 以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函 1 1 解析:, 4 4【解析】 【分析】 x 0 时函数值的取值范围,再由奇函数性质得出 x 0 时的范围,合并后可得值可求出 域. 【详解】 21 1 21 42x,所以 0 t 1 , 设 t,当 x0 时, , 21 ytt tx20, 1414f x所以 0 y,故当 x0 时, . 14因为 yf x 是定义在 x 0 时, R 上的奇函数,所以当 f x,0 ,故函数 1 1 , 4 4f x . 的值域是1 1 , 4 4故答案为: . 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出 x 0 时的函x 0 时的范围,然后求并集即可.数值范围,再由对称性得出16.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为 .17.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为 当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值 范围为故答案为 :【点睛】本题考查对数型函数的值域要注意二次函数的值 0,1解析: 【解析】【分析】分别求出 【详解】f ( x), g(x) 的值域,对 a 分类讨论,即可求解 . 2a R , f xlog 2 xa log 2 a ,f x [log a,) ,的值域为 2 2g xf f xlog 2 ([ f ( x)]a) ,2当 0 a 1,log 2 a 0,[ f ( x)] 0, g (x) log 2 a ,g(x) 值域为 [log a,) ,函数 2 f (x), g (x) 的值域相同; 此时 221时, log 2a 0,[ f ( x)](log 2 a) 当 a ,2g( x) log 2[(log a) a] ,2 2当 1 2 时, log 2 a1,(log 1, log 2 a (log 2 a)aa 2当 a 2,log a a)log 2 a ,2 2 2log 2 a (log 2 a)a ,f (x),g (x) 的值域不同,a 1时,函数所以当 0,1 .故 a 的取值范围为 0,1 故答案为 : .【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.18.【解析】【分析】由题意先确定函数在上是增函数再将不等式转化为即可 求得的取值范围【详解】函数是定义在上的偶函数且在区间上是减函数函数在 区间上是增函数或解集为故答案为:【点睛】本题考查偶函数与单调性结合 , 2 2,解析:【解析】 【分析】 f x ,0 f 1 1 f 2 由题意先确定函数 在 上是增函数,再将不等式转化为 即可求得 x 的取值范围 【详解】 . 函数 f x R 上的偶函数,且 f ,0 上是增函数x 在区间 [0, ) 上是减函数,是定义在 函数 fx 在区间 f xf 2f xf 2x x 22 或 x ≤ , 2 22, 解集为 , 22,故答案为: 【点睛】本题考查偶函数与单调性结合解抽象函数不等式问题,直观想象能力,属于中等题型19.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为 .分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为 称轴显然不在则只需的对称轴位于该区间即解得:满足题意 ①当时因为的对 ②当时此时函数9,00,3解析: 【解析】 【分析】a 分类讨论 将函数转化为分段函数,对参数 【详解】.2f x 2xx a x a ,转化为分段函数:223x 2ax 2ax a , x a 2, x a af x.x2为更好说明问题,不妨设:a322h x 3x 2ax a ,其对称轴为 x ;22g x①当 x2ax a xa .,其对称轴为 a 0 时, a 3因为 h x 3,0 的对称轴 x显然不在,则 gx a3,0 只需 的对称轴位于该区间,即,a 0,3 0 时, 3x 2, x x , x 解得: ,满足题意 .a②当 0 0f x,此时2 3,0 函数在区间 是单调函数,不满足题意 .a 0 时, ③当 因为 g x 3,0的对称轴 xa 显然不在a 3hx 3,0只需 的对称轴位于该区间即可,即解得: a 9,0 ,满足题意 . a9,0 0,3 . 综上所述: 9,00,3 .故答案为: 【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论 .20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详 解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值 1 又4【点睛】此题考查二次因为当时所以当时且解得或(舍)故故答案为:解析: 4 【解析】【分析】 根据二次函数的单调性结合值域,分析最值即可求解 【详解】 .2二次函数 y x2x 2 的图像的对称轴为 x 1 ,x ,1 递减,在 x 1,函数在 递增,1时,函数 f x 取得最小值 5 ,所以当 x且当 1,y y 10 ,且 x m时,x 4 或 1 时, m1,又因为当 解得 m2 (舍),故m 4 .故答案为: 4【点睛】 此题考查二次函数值域问题,根据二次函数的值域求参数的取值三、解答题.A B x |1 x 3 , A B x | x 3 ;( 2)a 1,2 21. ( 1) 【解析】 【分析】 A 1,3 , B ,3 A B, A B 的值 . (2) (1)首先求得,由此求得 a 1a1,2 C R C a, a 1 a,a 11,3 ,解得 .,由于 ,故a 1 3【详解】 A x|1 x 3 , B x | x 3 解: ,(1) A Bx |1 x 3 , A B x | x 3 ;(2)∵ Cx | x a 或xa 1 x | a 1 ,∴ C R Cx a ,a a 1 1a 1,2 ∵ C R C A ,∴ ,∴ .322. (1) x45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2) 见解析 . 【解析】 【分析】(1)由题意知求出 f ( x )> 40 时 x 的取值范围即可;(2)分段求出 【详解】g ( x )的解析式,判断 g ( x )的单调性,再说明其实际意义. (1)由题意知,当30 x 100 时,1800 x900 f x2x90 40 ,x2即65x 0 ,x 20 或 x 45 ,解得 ∴ x45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;x 30 时,(2)当 x 10g x30 x% 40 1 x%40;当 30x 100 时,2180 xx1310g x2 x90 x% 40 1 x%x 58 ;50 x4010g x∴ ;2x13 x58 50 10 g x 单调递减; 0 x 32.5 时, 当 g x 32.5x 100 时, 当 单调递增;说明该地上班族 S 中有小于 32.5%的人自驾时,人均通勤时间是递减的; 有大于 32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为 32.5% 时,人均通勤时间最少.【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力. 423. ( 1) f x 【解析】 【分析】x ( 2)见解析2m0,f ( x) 在上单调递减 ,可推出 0 ( m Z ),再结合 f ( x) 为偶(1) 由幂函数 2m 3m ,得出结论 函数,即可确定 ; F (x) ,再依次讨论参数 a,b 是否为 f (x) 代入 ,即可得到 0 的情况即可 . (2) 将 【详解】 m 2 2m 30,f x xm Z (1) ∵幂函数 在区间 上是单调递减函数 ,2mm∴ ∵ 0 ,解得 0 或 m xm2 m3 3 ,2 .2m Z ,∴ 3 m 1 m 1或m2 ∵函数 f 1, xm Z 为偶函数 ,m f∴ 4xx ;∴ b b x4(2) F x a f xa x2bx 3,ax4xf xx 0 时, F x 当 a b 既是奇函数又是偶函数 ; 0, b ≠0 时 , F x 当 a 是奇函数 ; 0 时, F x a 0, b 当 是偶函数 ; 0, b ≠0 时, F x 当 a.是非偶非偶函数 【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用 ,学生需要熟练掌握好其定义并灵活应用.;(2) t 1 t 21, 24. ( 1) 【解析】 【分析】(1)根据二次函数的单调性得到答案 .2a 2 ,再计算 (2)计算得到 0 ,t 2 log 2 x 0 ,得到答案 t 1x 1.【详解】 2(1)函数 f x 2x4 x a 的对称轴为 x 1 ,1,m m 1,f x 函数 在区间 上不具有单调性,故 m 1 ,即 .(2) f 1g 1 2 4 log a 1 0 ,故 ,即 a a 2 .1 2 22x当 x 0,1 时, 0 ; t g x log x 0 .t f x2 x 1 x 12 2 1t 1t 2故 【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综 合应用 .25. ( 1) g( x) 为奇函数;( 2) 20 【解析】【分析】 (1)先求得函数 g x 证得 g x 为奇函数 .g x g x 的定义域,然后由 (2)根据 gx 所求表达式的值 【详解】 g( i ) g(i ) 0 ,从而得到 f ( i ) f (i) 2 ,由此求得为奇函数,求得 . x 1 1 2 2x R x R x R .(1) ,定义域为,当 时, g( x)x11 x x1 12 22 1x2 ,所以 g( x) 为奇函数. 因为 g( x )g( x ) xx 11 2x21 g( 10i )g(i) 0 ,于是 f ( i)f (i ) 102 i 12 .(2)由( 1)得 1010f ( i )f (i ) [ f ( i)f (i )]10 2 20所以i 1i 1i 1【点睛】本小题主要考查函数奇偶性的判断,考查利用函数的奇偶性进行计算,属于基础题 .( ,5) ;( 2) 0,1 .26. ( 1) 【解析】 【分析】 f (5) f (2)8 求得 a 的值,再利用指数函数的单调性解不等式,即可得答案;(1)由y | f ( x) 1| 与 y t 的图象,利用两个图象有两个交点,可得实数t 的取(2)作出函数 值范围 . 【详解】 f (5) f (2) 8( 1) ∵ 5 a3∴ a8 则 a 22ax2 , 则函数 即 f ( x) 是增函数 f ( x ) f (2 m 3) f ( m 2) , 得 2m3 m 2由 得 m5 ,即实数 m 的取值范围是 ( ,5) . xxy t y 21 图象与 图象有两个不同交点 ( 2) f (x )2 ,, 由题知 t (0,1)由图知 :【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。

高一语文期末综合测试试题及参考答案

高一语文期末综合测试试题及参考答案

高一语文期末综合测试试题及参考答案通过高一语文测试,学生能了解自己的学习水平,为接下来的学习提供方向,下面是店铺给大家带来的高一语文期末综合测试试题及参考答案,希望对你有帮助。

高一语文期末综合测试试题一、本大题4小题,每小题3分,共12分。

1.下列词语中加点的字,读音全都正确的一组是( )A.酝酿(niàng) 校(xiào)对腼腆(tiǎn) 匪我愆(qiān)期B.匹(pǐ)配穿凿(záo) 内讧(hòng) 美人之贻(yí)C.莞(guǎn)尔搭讪(shàn) 隽(juàn)永其黄而陨(yùn)D.刹(shà)那机械(xiè) 恪(kè)守周公吐哺(pǔ)2.下列各句中加点的成语使用正确一句是( )A.不可否认正是这种根深蒂固的极具个性的文化传统成了欧洲经济和社会发展优雅的负担。

B.提高教师素质改变教育观念与我们新课程改革的成果休戚相关。

C.“抄袭”已经是人人喊打了,而另一种学术腐败—劣质译著汗牛充栋,并没有引起人们的普遍关注。

D.陈师傅是学雷锋的老典型了,一年下来,仅在厂区信手拈来的螺丝钉一类,就攒了大半箱。

3.在下面各句横线处依次填入的词语,最恰当的一组是( )(1)他在集资办厂的过程中_________了种种磨难,尝尽了苦辣酸甜。

(2)人们将从异彩纷呈的表演中_________到中华文化的博大和精深。

(3)美国众议院今天通过一项提案,明目张胆地干涉别国内政,________鼓吹占领别国领土的合法性。

A.经受体味公开B.经历体验公然C.经历体味公然D.经受体验公开4.下列各句中,没有语病的一句是( )A.这份合同上写着公司的名称和公章。

B.现在当务之急是解决能源短缺问题。

C.他的画作色调和谐,风格清新,得到了评论界一致好评。

D.从冰心年轻时候的“梦”里,给了我深刻的启示。

5.下列文学常识,不正确的一组是( )A.《归去来兮辞》的作者是陶渊明,“辞”是一种文体。

(精华版)物理必修一期末测试题含答案

(精华版)物理必修一期末测试题含答案

强力推荐2022-2022年高一物理必修一期末测试题(1)C.③中高速行驶的磁悬浮列车,因速度很大,所以加速度很大 D.④中空间站一定不能看作质点9.如图所示,一人站在电梯中的体重计上,随电梯一起运动。

下列各种情况中,体重计的示数最大的是()2A.电梯匀减速上升,加速度的大小为1.0 m/s2B.电梯匀加速上升,加速度的大小为1.0 m/s2C.电梯匀减速下降,加速度的大小为0.5 m/s2D.电梯匀加速下降,加速度的大小为0.5 m/s10.下列说法正确的是()A.物体运动的加速度等于0,而速度却不为0B.两物体相比,一个物体的速度变化量比较大,而加速度却比较小 C.物体具有向东的加速度,速度的方向就一定向东D.物体做直线运动,后一阶段的加速度比前一阶段小,速度也一定比前一阶段小11.竖直升空的火箭,其速度图象如图所示,由图可知() A.火箭离地最大的高度是48000m 2B.火箭的最大加速度是20m/sC.火箭前40s上升,以后下降D.火箭上升到最高点所用时间是40 s12.如图所示,在倾角为α的斜面上,放一质量为m的小球,小球和斜面及挡板间均无摩擦,当挡板绕O点逆时针缓慢地转向水平位置的过程中,则有()A.斜面对球的支持力逐渐减小 B.斜面对球的支持力先减小后增大C.挡板对小球的弹力先减小后增大一、选择题(本题共12小题,每小题4分,共48分.其中1-9题为单选,10-12题为多选。

全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下列各组物理量中,全部都是矢量的是()A.位移、加速度、速度、时间 B.速度、力、时间、平均速度 C.位移、速度、加速度、平均速度 D.速度、质量、加速度、路程 2.某人沿着半径为 R的圆形跑道跑了1.75圈时,他的()A.路程和位移的大小均为3.5 πR B.路程为3.5 πR、位移的大小为2R C.路程和位移的大小均为2R D.路程为0.5 πR、位移的大小为2R3.如图所示,用水平外力F将木块压在竖直墙面上,木块保持静止,下列说法中正确的是() A.木块所受的重力与墙对木块的静摩擦力是一对平衡力B.木块所受的重力与墙对木块的静摩擦力是一对作用力与反作用力C.木块对墙的压力与水平外力F是一对平衡力D.水平外力F与墙对木块的支持力是一对作用力与反作用力4()(G为重力,F为脚对球的作用力,F阻为阻力)5.在物理学发展的过程中,某位科学家开创了理想实验的科学方法,并用这种方法研究了力和运动的关系,这位科学家是() A.牛顿 B.笛卡尔 C.伽利略D.亚里士多德 6.下列说法中正确的是()A.惯性是只有物体在匀速直线运动或静止时才表现出来的性质 B.物体的惯性与物体的运动状态有关,速度大的物体惯性大C.静止的物体不易被推动,说明物体在静止时的惯性比在运动时的惯性大 D.惯性是物体的固有属性,与运动状态和是否受力无关7.静止在光滑水平面上的物体,受到一个水平拉力。

高一语文期末模拟考试卷金太阳

高一语文期末模拟考试卷金太阳

一、选择题(每小题2分,共20分)1. 下列词语中,字形、字音完全正确的一项是()A. 瞠目结舌(chēng)B. 落落大方(fāng)C. 震耳欲聋(zhèn)D. 呕心沥血(lì)2. 下列句子中,没有语病的一项是()A. 随着科技的不断发展,人类的生活水平在不断提高,但是环境污染的问题也日益严重。

B. 为了提高学生的综合素质,学校决定增加体育课和音乐课的课时。

C. 他不但学习好,而且积极参加社会实践活动,是我们班上的优秀学生。

D. 经过长时间的研究,科学家们终于发现了这种疾病的治疗方法。

3. 下列各句中,使用成语正确的一项是()A. 他的演讲非常精彩,赢得了全场观众的阵阵掌声。

B. 这位画家的作品独具匠心,让人赞叹不已。

C. 他的脸色苍白,像是大病初愈。

D. 她的工作态度非常认真,从不推诿责任。

4. 下列各句中,标点符号使用正确的一项是()A. 他问我:“你去哪儿?”我说:“我去图书馆。

”B. 这个问题涉及到很多方面,如经济、政治、文化等。

C. 我喜欢看电影,尤其是恐怖片和科幻片。

D. 她的房间布置得很漂亮,墙上挂着一幅山水画。

5. 下列各句中,修辞手法使用正确的一项是()A. 他像一只勤劳的蜜蜂,在知识的海洋中采撷着知识的蜜。

B. 这座城市的夜晚,灯火辉煌,犹如一幅美丽的画卷。

C. 他的声音洪亮,就像一个巨大的喇叭。

D. 他的成绩一直名列前茅,是班级里的学霸。

6. 下列各句中,文学常识表述正确的一项是()A. 《红楼梦》是我国古代四大名著之一,作者为曹雪芹。

B. 《三国演义》是明代小说家罗贯中的代表作,讲述了三国时期的历史故事。

C. 《水浒传》是明代小说家施耐庵的作品,描写了一百零八位好汉的故事。

D. 《西游记》是明代小说家吴承恩的作品,以唐僧师徒取经为主线。

7. 下列各句中,词语解释正确的一项是()A. 跃然纸上:形容文章或画作生动形象。

B. 眉清目秀:形容人长得漂亮。

高一语文下学期期末考试模拟试题

高一语文下学期期末考试模拟试题

高一语文下学期期末考试模拟试题语文是高一学习的重要科目之一。

你知道高一语文下学期期末考试都考哪些知识吗?下面是小编为大家带来的高一语文下学期期末考试模拟试题,欢迎阅读。

第Ⅰ卷(选择题共30分)一、(本大题共4小题,每小题3分,共12分)1.下列词语中,字形和加点字的读音全部正确的一项是( )A.姗姗来迟功亏一蒉裨将(pí)诤友(zhèng)B.沸反盈天无耻谰言炮烙(páo)吮吸(yǔn)C.殚精竭虑负隅顽抗恫吓(dòng)拂晓(fú)D.卑躬曲膝长篇累牍回溯(sù)蛮横(hèng)2.下列语句中,加点的成语使用恰当的一项是( )A.家庭教育的粗暴专制必然会导致孩子产生更加逆反的心理,父母们应该改变耳提面命的做法,多一点民主,多一点平等的思想。

B.学习西方发达国家的管理经验,需要提倡“拿来主义”精神,如果脱离国情,盲目照搬,就有可能画虎不成反类犬。

C.收入差别过大,造成骨干教师流失,对那些师资力量本就不厚实的普通学校而言,无异于釜底抽薪。

D.明明是一条商业步行街,但是竟然还有许多机动车辆来往穿梭,令行人或如白驹过隙,或如悬崖却步。

3.下列各句中,没有语病的一句是( )A.近年,中国政府在世界各地兴办孔子学院,让世界不仅更全面地认识了中国,而且还激发了各国友人学习汉语和中国文化典籍的热情。

B.端午节已是中国的法定节日,然而在我国内地的很多大城市已经难见赛龙舟的景象,倒是繁荣的国际大都市香港却还保留着五月五赛龙舟以纪念伟大的爱国诗人屈原。

C.防止考生作弊的手段已从道德层面延伸到技术层面,手机探测仪、信息干扰仪、录像监控设备等将对防止考生作弊起到震慑作用。

D.上海世博会是由中国政府主办的国际性大型博览会,它以“城市,让生活更美好”为主题。

现在总计有240多个国家和国际组织参展,创下158年世博史的最高纪录。

4.下列各项中,标点符号使用符合规范的一项是( )A.科学对人类事物的影响有两种方式。

2021-2022高中数学必修一期末模拟试卷(含答案)

2021-2022高中数学必修一期末模拟试卷(含答案)

一、选择题1.若函数2()f x x x a =--有四个零点,则关于x 的方程210ax x ++=的实根个数为( ) A .0B .1C .2D .不确定2.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年3.已知函数21,0()log ,0x x f x x x ⎧+≤=⎨>⎩,若123123()()(),(,,f x f x f x x x x ==互不相等),则123x x x ++的取值范围是( )A .(2,0]-B .(1,0)-C .(1,0]-D .(2,0)-4.集合{}1002,x x x x R =∈的真子集的个数为( )A .2B .4C .6D .75.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<6.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数7.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦8.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭9.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-10.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个11.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆12.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈二、填空题13.已知函数24()ln(1)x f x e-=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______. 14.已知()14f x x=-,若存在区间[]()0a b ⊆+∞,,,使得()[]{}[]|y y f x x a b ma mb =∈=,,,.则实数m 的取值范围是__________.15.函数x )是_________(奇、偶)函数. 16.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.17.已知函数()()1f x a =-[]0,2上是减函数,则实数a 的取值范围是_____.18.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________19.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.20.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________三、解答题21.已知函数2()29f x x ax =-+.(I)当0a ≤时,设()(2)x g x f =,证明:函数()g x 在R 上单调递增; (II)若[1,2]x ∀∈,(2)0x f ≤成立,求实数a 的取值范围; (III)若函数()f x 在(3,9)-有两个零点,求实数a 的取值范围.22.某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用,约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为20km 时,折旧费为0.1元.现设一次载客的路程为x km. (1)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(2)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每千米的收益y 取得最大值?(每千米收益计算公式为)F Cy x-=23.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 24.化简计算:(1)0160.25361.587-⎛⎫⨯-+ ⎪⎝⎭(2)lg5lg 20lg 2lg50lg 25⋅-⋅-. 25.已知函数2()2(1)4f x x k x =+-+.(Ⅰ)若函数()f x 在区间[2,4]上具有单调性,求实数k 的取值范围; (Ⅱ)若()0f x >对任意的[1,2]x ∈恒成立,求实数k 的取值范围.26.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0f x =可得出2x x a =-,将问题转化为曲线2yx 与曲线y x a =-有4个交点,数形结合可求得实数a 的取值范围,进而结合判别式可判断出方程210ax x ++=的实数根个数. 【详解】由()0f x =可得出2x x a =-,作出函数2yx 与函数y x a =-的图象如下图所示:,,x a x a y x a x a x a-≥⎧=-=⎨-+<⎩,若使得函数()2f x x x a =--有4个零点,则直线y x a =-与y x a =-+均与函数2y x 的图象有两个交点, 联立2y x a y x =-⎧⎨=⎩可得20x x a -+=,1140a ∆=->,解得14a <, 联立2y x a y x =-+⎧⎨=⎩可得20x x a +-=,2140a ∆=+>,解得14a >-, 当0a =时,则()()21f x x x xx =-=-,令()0f x =,可得0x =或1x =±,此时,函数()y f x =只有3个零点,不合乎题意.综上所述,实数a 的取值范围是11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭. 对于二次方程210ax x ++=,140a ∆=->, 因此,关于x 的二次方程210ax x ++=有两个实根. 故选:C. 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.2.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.3.C解析:C 【分析】做出函数图像,由图象得出三个交点的横坐标关系,以及交点横坐标的取值范围,即可求解. 【详解】做出函数()f x 的图象如图,设()()()123===f x f x f x a ,则01a <≤, 因此12232(1)2,0log 1+=⨯-=-<≤x x x ,得312<≤x 于是12310-<++≤x x x , 故选:C.【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题.4.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势,当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x=比2x y =增长的快;当x 较大时,2xy =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x=的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.5.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<,故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.6.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性. 7.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.8.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.9.B解析:B 【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系. 【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0, ∴f (x )在(-∞,1]上单调递减, ∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增, ∴f (-1)=f (3)>f (2)>f (1) 即f (-1)>f (2)>f (1) 故选B . 【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用.10.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数.【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.11.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.12.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.二、填空题13.2【分析】由题意得令显然为偶函数则方程有四个实根函数x >0有两个零点令x >0则关于t 的方程即在内有两个不相等的实根结合函数的图象可得由此可求出答案【详解】解:方程令则显然为偶函数∴方程有四个实根函数解析:2 【分析】由题意得242()()10x x a f x g x ee-+-=⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x ee -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案. 【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->的图象,得222a e e e -<<+, 即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =, 故答案为:2. 【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.14.【分析】依题意在上单调增则(a )(b )从而可得必须有两个不相等的正根利用该方程有二异正根的条件即可求得实数的取值范围【详解】在是增函数在上值域为(a )(b )所以(a )且(b )即且所以且所以必须有两个 解析:(0,4)【分析】 依题意,1()4f x x=-在[a ,]b 上单调增,则f (a )ma =,f (b )mb =,从而可得210mx x -+=必须有两个不相等的正根,利用该方程有二异正根的条件即可求得实数m 的取值范围.【详解】1()4f x x=-在(0,)+∞是增函数, ()f x ∴在[x a ∈,]b 上值域为[f (a ),f (b )]所以f (a )ma =且f (b )mb =, 即14ma a-=且14mb b -=, 所以2410ma a -+=且2410mb b -+=,所以2410mx x -+=必须有两个不相等的正根,故0m ≠, ∴40101640m m m ⎧>⎪⎪⎪>⎨⎪=->⎪⎪⎩,解得04m <<. ∴实数m 的取值范围是(0,4).故答案为:(0,4).【点睛】本题主要考查函数单调性的性质,着重考查二次函数根的分布问题,将所求的问题转化为210mx x -+=必须有两个不相等的正根是关键,属于中档题.15.奇【解析】又所以函数f(x)是奇函数点睛:判断函数的奇偶性其中包括两个必备条件:(1)定义域关于原点对称这是函数具有奇偶性的必要不充分条件所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等解析:奇【解析】210x x x x x x R+->=-≥∴∈又()()))lg lg lg10f x f x x x -+=+== 所以函数f(x) 是奇函数.点睛: 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.16.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型 解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224x t t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】函数11x y a +=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224x t t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性, 当12t =时,()min 34f t =, 则函数()11142x x f x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34. 故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键. 17.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围.【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0;∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数;②a=1时,f (x )=0,不满足在[0,2]上是减函数;∴a≠1;③0<a <1时,a ﹣1<0; ∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数;∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数;∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数;∴综上得,实数a 的取值范围为012a a <<≤或.故答案为012a a <<≤或.【点睛】考查函数定义域的概念,函数单调性的定义及判断.18.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和 解析:1,13⎛⎫ ⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【详解】解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<, 所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题. 19.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中PQ P =,即可求出实数a 的取值范围. 【详解】 由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且P Q P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞-【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.20.【解析】【分析】根据一元二次不等式的解法和指数函数的单调性求出集合和集合然后进行交集的运算即可求解【详解】根据一元二次不等式的解法可得集合由指数函数的单调性可得集合所以【点睛】本题主要考查了集合表示 解析:(][),31,0-∞-⋃-【解析】【分析】根据一元二次不等式的解法和指数函数的单调性,求出集合A 和集合B ,然后进行交集的运算,即可求解.【详解】根据一元二次不等式的解法,可得集合(][),31,A =-∞-⋃-+∞,由指数函数的单调性,可得集合(),0B =-∞,所以A B =(][),31,0-∞-⋃-.【点睛】本题主要考查了集合表示方法、一元二次不等式的解法和指数函数的单调性,以及交集的运算,着重考查了推理与运算能力,属于基础题.三、解答题21.(I)证明见解析 ;(II) 134a ≥;(III) 35a << . 【分析】 (I)根据函数单调性定义法证明即可;(II) 设2(12)x t x =<<,则24t <<则 92t a t +≤,令9()h t t t=+,求()h t 最大值即可; (III)根据零点分布列出等价不等式求解即可.【详解】 (Ⅰ)()(2)4229x x x g x f a ==-⋅+,设21x x R >∈,221121()()4229(4229)x x x x g x g x a a -=-⋅+--⋅+2121442(22)x x x x a =---212121(22)(22)2(22)x x x x x x a =-+--2121(22)[(22)2]x x x x a =-+-因为函数2xy =在R 上单调递增,所以2122x x >,所以21220x x ->,又21(22)0,0x x a +>≤,所以21(22)20x x a +->, 2121(22)[(22)2]0x x x x a -+->,所以21()()g x g x >,所以函数()g x 在R 上单调递增.(Ⅱ)设2(12)x t x =<<,则24t <<,都有2290t at -+≤,92t a t +≤,令9()h t t t=+, 易证()h t 在(2,3)单调递减,在(3,4)单调递增, 又1325(2)(4)24h h ==,,()h t 最大值为132, 13132,24a a ≥≥. (III)因为函数()f x 在(3,9)-有两个零点且对称轴为x a =,所以2394360(3)0(9)0a a f f -<<⎧⎪->⎪⎨->⎪⎪>⎩, 解得35a <<.【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)7,032.40.2,3x F x x <≤⎧=⎨->⎩,212.3 1.6(0)4000C x x x =++>;(2)100km. 【分析】(1)根据在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费求得F ,设折旧费2z kx =,由路程为20km 时,折旧费为0.1元.代入求得k ,再根据运输成本包含固定费用,二是燃油费和折旧费求得C .(2)根据F C y x-=,结合(1)求得y ,再根据分段函数的最值的求法求解. 【详解】 (1)由题意得:7,037 2.4(3),3x F x x <≤⎧=⎨+->⎩,. 即7,032.40.2,3x F x x <≤⎧=⎨->⎩. 设折旧费2z kx =,将(20,0.1)代入,得0.1400k =,解得14000k =. 所以212.3 1.6(0)4000C x x x =++>. (2)因为F C y x-=, 所以 4.7 1.6,234000 2.50.8,34000x x x y x x x ⎧--≤≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩, 当3x >时,由基本不等式,得0.80.75y ≤-=, 当且仅当100x =时取等号.当23x ≤≤时,由y 在[2,3]上单调递减,当2x =时,得max 10.750.752000y =-<. 综上所述,该市出租汽车一次载客路程为100km 时,每千米的收益y 取得最大值.【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.23.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.24.(1)110;(2)-1【分析】(1)原式化简为分数指数幂,计算结果;(2)根据对数运算公式化简求值.【详解】(1)原式113133234432222323-⎛⎫⎛⎫=+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭ 1133********⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭110=(2)原式()()22lg5lg 25lg 2lg 510lg5=⨯⨯-⋅⨯- ()()lg52lg2lg5lg2lg512lg5=⨯+-⋅+-()22lg 2lg5lg5lg 2lg5lg 22lg5=⋅+-⋅--()()2lg 2lg5lg5lg 2lg5lg5=⋅+-+- ()lg5lg2lg51lg5=⋅+--lg51lg51=--=-【点睛】本题考查指数幂和对数运算,重点考查计算能力,转化与变形,属于基础题型. 25.(1)(,3][1,)-∞-⋃-+∞(2)()1,-+∞【分析】(1)根据二次函数对称轴与区间关系,即可求解;(2)分离参数可得42(1)4k x ->--,求出44y x =--的最大值即可求解. 【详解】(1)由函数2()2(1)4f x x k x =+-+知, 函数()f x 图象的对称轴为1x k =-.因为函数()f x 在区间[]2,4上具有单调性,所以12k -≤或14k -≥,解得3k ≤-或1k ≥-,所以实数k 的取值范围为(,3][1,)-∞-⋃-+∞.(2) 因为()0f x >对任意的[1,2]x ∈恒成立, 所以可得42(1)k x x ->--对任意的[1,2]x ∈恒成立,因为44()44y x x x =--=-+≤-=-,当且仅当2x =时等号成立,即max 4y =-,所以只需2(1)4k ->-,解得1k -<,所以实数k 的取值范围为()1,-+∞.【点睛】关键点睛:不等式在某区间上恒成立求参数的取值范围,一般需要分离参数,转化为求最值问题,往往可以利用函数单调性或均值不等式求最值,即可求出答案,本题中利用了均值不等式,特别注意等号是否能取到,否则不能用均值不等式求最值.26.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解,当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =, 当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;。

2020年度高一语文第二学期期末模拟试卷及答案(共三套)

2020年度高一语文第二学期期末模拟试卷及答案(共三套)

2020年年高一语文第二学期期末模拟试卷及答案(共三套)试卷类型:B2020年年高一语文第二学期期末模拟试卷及答案(一)本试卷共8页,21小题,满分150分。

考试用时150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的铅笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、本大题5小题,每小题共15分1.下列词语中加点的字,每对读音都不相同....的一组是A.蹙.缩/撮.合悭.吝/铿.锵脖颈./长颈.鹿B.纶.巾/冠.军蚊蚋./口讷.更.深/不更.事C.驯.熟/殉.节银镯./蜀.国新正./正.经人D.险峻./郡.守凝噎./懿.旨间.或/不间.断2.下列句子中的括号应依次填上一些词语,正确..的一项是这个单元的议论文作者,他们或思索日常生活( )的丰富含义,或追问心灵( )的原因,或( )国家发展的方略,或( )美的存在。

A.蕴藏迷惘探究找寻B.隐藏迷茫探究找寻C.蕴藏迷茫找寻探究D.隐藏迷惘探究发现zxxk3.下面语段中画线的词语,使用不恰当...的一项是《红楼梦》是一座富丽堂皇、精工细巧的艺术大厦,我们看到了缔造者的匠心。

《红楼梦》是一条天造地设的江流,我们看到了它的波澜。

虽然,它没有金鼓大作的场面、兵血交飞的情景,但是,它不是平淡无奇的。

它和传奇式的作品分道扬镳,以独特的形式安排情节,而又注重在日常生活的描写中,体现生活的波涛发展。

江西省抚州一中2024届高一数学第二学期期末综合测试模拟试题含解析

江西省抚州一中2024届高一数学第二学期期末综合测试模拟试题含解析

江西省抚州一中2024届高一数学第二学期期末综合测试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某单位共有老年人180人,中年人540人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则和的值不可以是下列四个选项中的哪组( ) A . B . C .D .2.若直线过点()(1,2,4,23,则此直线的倾斜角是( ) A .30B .45C .60D .90。

3.下列四个函数中,以π为最小正周期,且在区间,2ππ⎛⎫⎪⎝⎭上为减函数的是( ) A .2cos y x =B .2sin y x =C .cos 13xy ⎛⎫= ⎪⎝⎭D .cot y x =-4.一组数据0,1,2,3,4的方差是 A .65B 2C .2D .45.已知平面向量a ,b ,c ,e ,在下列命题中:①//a b 存在唯一的实数R λ∈,使得b a λ=;②e 为单位向量,且a //e ,则a a e =±;③2a a a ⋅=;④a 与b 共线,b 与c 共线,则a 与c 共线;⑤若a b b c ⋅=⋅且0b ≠,则a c =.正确命题的序号是( ) A .①④⑤B .②③④C .①⑤D .②③6.三棱锥P ABC -中,底面ABC ∆是边长为2的正三角形,PA ⊥底面ABC ,且2PA =,则此三棱锥外接球的半径为( )A .B .C .2D .7.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示: 开业天数 1020304050销售额/天(万元)62758189根据上表提供的数据,求得y 关于x 的线性回归方程为0.6754.9y x =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A .68B .68.3C .71D .71.38.在△ABC 中,点D 在边BC 上,若2BD DC =,则AD = A .14AB +34AC B .34AB +14AC C .13AB +23AC D .23AB +13AC 9.若复数i2im z +=-(i 是虚数单位)是纯虚数,则实数m 的值为( ) A .2-B .12-C .12D .210.对于一个给定的数列{}n a ,定义:若()11n n n a a a n ∆+=-∈*N ,称数列{}1na ∆为数列{}n a 的一阶差分数列;若()2111n n n a a a n ∆∆∆+=-∈*N,称数列{}2na ∆为数列{}n a 的二阶差分数列.若数列{}n a 的二阶差分数列{}2n a ∆的所有项都等于1,且1820170a a ==,则2018a =( )A .2018B .1009C .1000D .500二、填空题:本大题共6小题,每小题5分,共30分。

高中高一期末考试试卷试题高中高一模拟题.doc

高中高一期末考试试卷试题高中高一模拟题.doc
PP P P | PP || P P | 4
10.设S是
ABC的面积,A, B, C的对边分别为
a, b, c,且2Ssin A
uuur
uuur
(BA
BC )sin B,
则 (A)
A.
ABC是钝角三角形
B

ABC是锐角三角形
C.
ABC可能为钝角三角形,也可能为锐角三角形
D
.无法判断
[提示]:Q 2Ssin A
r
C.4 2k
D.8 k
B.0
3.已知a, b为非零实数,且
a
b,则下列不等式一定成立的是


A.a2
b2
B
.1 1
C
.| a | | b |
D
.2a
2b
a
b
r
r
r
r
r
r
r
r
r
r
r
0,且
(ar
ar)b
.若向量a
与b不共线,a
b
c
与c的夹角为


4
a
,则向量a
a b
A.π
B.π
C
.π
D
.0
2
6
3
5.若a≥0,b≥0,且a
uuur
(5
x,
3
y).
18.(本小题满分
12分)已知向量OA
4), OB
(6, 3), OC
(Ⅰ)若点A, B, C能构成三角形,求
x, y应满足的条件;
(Ⅱ)若
ABC为等腰直角三角形,且
B为直角,求x, y的值.
[解答]:(Ⅰ) 若点A, B, C能构成三角形,则这三点不共线,

高一语文期末模拟卷01(全解全析)

高一语文期末模拟卷01(全解全析)

20232024学年上学期期末模拟考试01高一语文(考试时间:150分钟试卷满分:150分)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。

用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。

将条形码粘贴在答题卡“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.测试范围:必修上册全册。

5.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)(2023·江苏期中)阅读下面的文字,完成小题。

从基层上看去,中国社会是乡土性的。

我说中国的基层是乡土性的,那是因为我考虑到从这基层上曾长出一层比较上和乡土基层不完全相同的社会,而且在近百年来更在东西方接触边缘上发生了一种很特殊的社会。

那些被称为土头土脑的乡下人,他们才是中国社会的基层。

我们说乡下人土气,这个土字却用得很好。

土字的基本意义是指泥土。

乡下人离不了泥土,因为在乡下住,种地是最普通的谋生办法。

在我们这片远东大陆上,可能在很古的时候住过些还不知道种地的原始人,那些人的生活怎样,对于我们至多只有一些好奇的兴趣罢了。

以现在的情形来说,这片大陆上最大多数的人是拖泥带水下田讨生活的了。

我们不妨缩小一些范围来看,三条大河的流域已经全是农业区。

而且,据说凡是从这个农业老家里迁移到四围边地上去的子弟,也老是很忠实地守着这直接向土里去讨生活的传统。

靠种地谋生的人才明白泥土的可贵。

农业直接取资于土地,种地的人搬不动地,长在土里的庄稼行动不得,土气是因为不流动而发生的。

2021-2022高中数学必修一期末模拟试卷(带答案)

2021-2022高中数学必修一期末模拟试卷(带答案)

一、选择题1.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 2.一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( ) A .6B .5C .4D .33.已知函数21,0()log ,0x x f x x x ⎧+≤=⎨>⎩,若123123()()(),(,,f x f x f x x x x ==互不相等),则123x x x ++的取值范围是( )A .(2,0]-B .(1,0)-C .(1,0]-D .(2,0)-4.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>5.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<6.函数32ln ||()x x f x x-=的图象大致为( )A .B .C .D .7.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11288.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .19.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,10.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,311.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R12.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<二、填空题13.若函数244y ax a x =+-存在零点,则实数a 的取值范围是______.14.某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费P (万元)与仓库到停车库的距离x (公里)成反比,而每月库存货物的运费K (万元)与仓库到停车库的距离x (公里)成正比.如果在距停车库18公里处建仓库,这两项费用P 和K 分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x = ________ 公里. 15.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 16.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x =+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.17.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.18.已知定义在R 上的偶函数()f x 满足:()()14f x f x +=,当(]0,2x ∈时,()2x f x =,则()2019f =_____.19.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.20.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.三、解答题21.宜城市流水镇是全国闻名的西瓜基地,流水西瓜含糖量高,口感好,多次入选全国农博会并获金奖,畅销全国12省百余个大中城市.实践证明西瓜的产量和品质与施肥关系极大,现研究发现该镇礼品瓜“金皇后”的每亩产量L (单位:百斤)与施用肥料x (单位:百斤)满足如下关系:238(2),02()603,312x x L x x x x ⎧+<≤⎪⎪=⎨⎪<≤⎪+⎩,肥料成本投入为5x (单位:百元),其它成本投入为10x (单位:百元).已知“金皇后”的市场批发价为2元/斤,且销路畅通供不应求,记每亩“金皇后”的利润为()f x (单位:百元). (1)求()f x 的函数关系式;(2)当施用肥料为多少斤时,每亩“金皇后”的利润最大,最大利润是多少元?1.414≈).22.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围(3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围23.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 24.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()232f x ax ax =-+,(a R ∈).(1)求()f x 的函数解析式:(2)当1a =时,求满足不等式()21log f x >的实数x 的取值范围.25.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.26.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.2.C解析:C 【分析】设这种放射性物质最初的质量为1,经过x ()x N ∈年后,剩留量是y ,则有1()4xy =,然后根据物质的剩留量不超过原来的1%,建立不等关系,利用对数运算性质进行求解即可. 【详解】设这种放射性物质最初的质量为1,经过x ()x N ∈年后,剩留量是y , 则有1()4xy =,依题意得11()4100x≤,整理得22100x ≥, 解得4x ≥,所以至少需要的年数是4, 故选C. 【点睛】该题考查的是有关放射性物质的剩留量的求解问题,在解题的过程中,注意根据条件,列出相应的关系式,之后将其转化为指数不等式,结合指数函数的性质,求得结果,属于简单题目.3.C解析:C 【分析】做出函数图像,由图象得出三个交点的横坐标关系,以及交点横坐标的取值范围,即可求解. 【详解】做出函数()f x 的图象如图,设()()()123===f x f x f x a ,则01a <≤, 因此12232(1)2,0log 1+=⨯-=-<≤x x x ,得312<≤x 于是12310-<++≤x x x , 故选:C.【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题.4.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,利用数形结合法求解.【详解】函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点, 即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.5.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<.故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.6.A解析:A 【分析】判断奇偶性可排除两个选项,再确定函数值的变化趋势排除一个,得出正确选项. 【详解】解:函数的定义域为{0}xx ≠∣, 因为3322()ln ||ln ||()()()x x x x f x f x x x-----===-,所以()f x 为偶函数,所以排除C ,D,又因为当0x >时,322ln ln ()x x xf x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A. 【点睛】本题考查由函数解析式选择函数图象,解题方法是排除法,即通过判断函数的性质,特殊的函数值或函数值的变化趋势等,排除错误选项,得出正确答案.7.D解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n n f f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 8.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.9.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围.【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.10.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.12.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.二、填空题13.【分析】将函数存在零点转化为与图像有交点作出图像观察图像得出实数的取值范围【详解】解:设则函数存在零点等价于与图像有交点如图:函数的图像恒过点当其和函数的图像相切时有解得由图像可知所以所以与的图像有解析:30,⎡⎤⎢⎥⎣⎦【分析】将函数244y ax a x =+--存在零点转化为()()4f x a x =+与2()4g x x =-图像有交点,作出图像,观察图像得出实数a 的取值范围. 【详解】解:设()()4f x a x =+,2()4g x x =-,则函数244y ax a x =+--存在零点等价于()()4f x a x =+与2()4g x x =-图像有交点, 如图:函数()()4f x a x =+的图像恒过点(4,0)-,当其和函数2()4g x x =-2421aa =+,解得33a =±,由图像可知,0a >,所以33a =,所以()()4f x a x =+与2()4g x x =-303a ≤≤. 故答案为:3⎡⎢⎣⎦.【点睛】本题考查函数零点问题的研究,关键是将零点问题转化为函数图像的交点问题,考查数形结合的思想,是中档题.14.3【分析】由条件设将条件代入可解得的值可以得到两项费用之和的表达式利用均值不等式可求得答案【详解】设由和分别为万元和万元即时可得则两项费用之和为:所以当且仅当即时取得等号故答案为:3【点睛】本题考查解析:3 【分析】由条件设,nP K mx x==,将条件4,144P K ==代入,可解得,m n 的值,可以得到两项费用之和的表达式,利用均值不等式可求得答案. 【详解】设,nP K mx x==,由P 和K 分别为4万元和144万元. 即18x =时4P =,144K =,可得,72,8n m ==.则两项费用之和为:()7280y P K x x x=+=+>.所以72848x x +≥=,当且仅当728x x =,即3x =时取得等号. 故答案为:3 【点睛】本题考查了实际问题转化为数学问题的能力及基本不等式求最值,属于中档题.15.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2.【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.16.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x =+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a ≤<. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.17.【分析】用赋值法由已知得到把转化为即再用定义法证明在上为减函数利用单调性可得答案【详解】因为对任意有令得所以令则所以可等价转化为即设当时则所以所以在上为减函数故由得得又所以原不等式的解集为故答案为:解析:()13, 【分析】用赋值法由已知得到()()()9332f f f =+=-,把()()612f x f x <--转化为()()61(9)f x f x f <-+,即()()699f x f x <-,再用定义法证明()f x 在(0,)+∞上为减函数,利用单调性可得答案. 【详解】因为对任意12,(0,)x x ∈+∞,有()()()f xy f x f y =+,令x y ==fff=+,得()231ff ==-,所以12f =-,令3x y ==,则()()()9332f f f =+=-,所以()()612f x f x <--可等价转化为()()61(9)f x f x f <-+, 即()()699f x f x <-,设120x x <<,12,(0,)x x ∈+∞,当1x > 时 ()0f x <,则()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭, 所以()12()f x f x >,所以()f x 在(0,)+∞上为减函数,故由()()699f x f x <-, 得699x x >-,得3x <,又1x >,所以原不等式的解集为(1,3). 故答案为:(1,3) 【点睛】 思路点睛:确定抽象函数单调性解函数不等式的基本思路: 第一步(定性)确定函数在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为不等式类似()()f M f N <等形式;第三步(去)运用函数的单调性“去掉”函数的抽象符号f “”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集.18.【分析】根据条件判断函数的周期性利用函数周期性和奇偶性的关系进行转化求解即可【详解】得即函数是周期为8的周期函数故答案为【点睛】本题主要考查函数值的计算结合条件求出函数的周期是解决本题的关键形如或的解析:12【分析】根据条件判断函数的周期性,利用函数周期性和奇偶性的关系进行转化求解即可. 【详解】()()14f x f x +=得()()()184f x f x f x +==+,即函数()f x 是周期为8的周期函数,()()()()()()111201925283314112f f f f f f =⨯+==-+===-, 故答案为12. 【点睛】本题主要考查函数值的计算,结合条件求出函数的周期是解决本题的关键.形如()()f a x f a x +=-,或()()2f x f x a -=+的条件,说明的都是函数()f x 图像关于x a =对称.形如()()f x a f x a +=-,或()()f x a f x +=-的条件,说明的是函数()f x 是周期为2a 的周期函数.19.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.20.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂. 【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-.故答案为(]1,1-. 【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.三、解答题21.(1)()f x 23161532,02120315,312x x x x x x x⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩;(2)182.8斤,最大利润为5016元.【分析】(1)由()()215f x L x x =-以及()L x 的解析式可得结果; (2)分段求出最大值,再取更大的函数值即可得解. 【详解】(1)()()215f x L x x =-23161532,02120315,312x x x x x x x⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩,(2)①当302x <≤时,对称轴3015323224x +=<=, ∴当32x =时,()max 45.5f x =百元,②当332x <≤时,()()12013515113513550.161f x x x ⎡⎤=-++≤-=-≈⎢⎥+⎣⎦百元,当且仅当()1201511x x =++即1 1.828x =≈百斤, 由①②可知: 1.828x =时,()max 50.16f x ≈百元.∴当施用肥料为182.8斤时,每亩“金皇后”的利润最大,最大利润为5016元.【点睛】本题考查了分段函数的最值,考查了基本不等式求最值,考查了二次函数求最值,属于中档题.22.(1)2()34f x x x =-+;(2)(2,)+∞;(3)(,1)(3,)-∞+∞【分析】(1)根据题意,设出()f x 的解析式,根据题中条件,求得对应的参数,得到结果; (2)利用一元二次方程根的分布,列出对应的不等式,求得结果; (3)根据题中所给的条件,列出对应的不等式,求得结果. 【详解】(1)由已知可设2()(0)f x ax bx c a =++≠,因为()04f =,所以4c =,因为()20f x -<,即220ax bx ++<的解集为{}12x x <<,所以1x =与2x =是方程220ax bx ++=的两根,则由韦达定理可知12212b aa ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=-⎩,所以2()34f x x x =-+;(2)令234()()h x f x m x x m --=+=-,若()0h x =有一实根大于1,一实根小于1, 则(1)20h m =-<,解得2m >, 故实数m 的取值范围是:(2,)+∞;(3)若存在x 使()y f x =的图象在()y g x =图象的上方, 则存在x 使()()f x g x >,即2341x x x -+>+, 即2430x x -+>,所以(1)(3)0x x -->, 解得1x <或3x >,故满足条件的实数x 的取值范围是:(,1)(3,)-∞+∞.【点睛】该题考查的是有关二次函数以及一元二次不等式的问题,在解题的过程中,涉及到的知识点有二次函数解析式的求法,一元二次方程根的分布,一元二次不等式的解法,属于简单题目.23.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m m t t f t t t++==-+-,所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由110x x -<<⎧⎨>⎩得01x <<,又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】 易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称; (2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件.24.(1)()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩;(2)()()()()3,21,00,12,3---.【分析】(1)根据已知和函数的奇偶性可得0x <的解析式从而求得()f x ; (2)当1a =时,分别解每一段小于1的不等式,最后求两段的并集可得答案. 【详解】(1)设0x <,0x ->,()232f x ax ax -=++,又∵()f x 为偶函数,()()f x f x -=,∴()232f x ax ax =++. 综上:()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩. (2)当1a =时,可知:0x >,()2232log 1x x -<+,原不等式等价于22320322x x x x ⎧-+>⎨-+<⎩,解得()()0,12,3x ∈,同理可知:0x <,()2232log 1x x +<+,原不等式等价于22320322x x x x ⎧++>⎨++<⎩,解得()()1,03,2x ∈---,综上:实数x 的取值范围为()()()()3,21,00,12,3---.【点睛】求分段函数的解析式,要根据函数的奇偶性、对称性、周期性等结合已知条件进行求解,要注意定义域.25.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥ 【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果. 【详解】 (1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈, 又()0f x ≥,所以()2]f x ∈. (2)()h x ==令t =2]∈,则22t =-,所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或,所以1m ≤-或1m ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 26.(1)m=4;(2) m >6,或m <﹣4. 【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4; (2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}. (1)∵A∩B=[1,3] ∴∴, ∴m=4;(2)∵p 是¬q 的充分条件,∴A ⊆C R B , 而C R B=x|x <m ﹣3,或x >m+3} ∴m ﹣3>3,或m+3<﹣1, ∴m >6,或m <﹣4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年度高一年级期末考试模拟试卷(一)
一、单选题
.哥伦布航行到古巴附近时明确向土著居民表示:“远征军司令来此目的乃寻找黄金”,然而在给西班牙国王信中他又说:“这里的一切都应置于其(基督教)统治之下因为发扬光
大基督教乃吾人此行之初衷和目的。

”关于哥伦布远航的背景和目的,下列说法正确的是
.对外殖民与传播宗教并行不悖.文化侵略的初衷多于经济掠夺
.宗教改革刺激人们远洋探险.工业革命促进开辟海外市场
.“新航路开辟后,欧洲社会的价值观念、风尚习俗全都变了:水手成了最令人羡慕和尊敬
的职业;各种游记成为畅销书;商业精神大大加强。

而这些观念、习俗变化的轨迹都强调了
人的价值作用。

”对该现象本质原因的分析最准确是()
.新航路开辟导致欧洲价值观念、风尚习俗巨变
.文艺复兴为探险家提供精神动力——人文主义
.宗教改革与启蒙运动,改变了人们的价值观念
.资本主义萌芽引起欧洲社会广泛变化
.如图为西欧某国早期殖民扩张示意图。

该国
.派遣哥伦布发现美洲新大陆.世纪成为商业殖民帝国
.最早发现直通印度的新航路.世纪成为世界殖民帝国
.阿萨·勃里格斯说:“(英国)当时总共有条运河计划修建,需耗资万英镑。

年,被当时的
人们形容为运河狂热的年份,人们的投机热情像瘟疫般地传播。

运河的股票为当地商人、工厂主和土地所有者踊跃争购,虽然它们直到年才在证券交易所报价。

”该狂热现象的出现是
由于
.价格革命出现,股票投资活动的狂热.商业革命扩展,商业丰厚利润的刺激
.工业革命进行,科技创新的日益发展.电气时代到来,生产社会化趋势加强
.纪录片《公司的力量》讲到:“从年月日到月日,短短天,洛克菲勒一口气吞并了个竞争
对手,他还曾在小时内,连续买下了家炼油厂。

年时,它(洛克菲勒美孚石油公司)
控制了近的石油运输。

”以上材料反映了世纪后期出现了新的经济现象,该现象的实质是
.交通运输工具的变革.世界市场的形成
.资本主义生产关系的局部调整.财富资源的猎取
.如表是中国近代民族资本主义发展简表,此状况的出现主要得益于
新办民族工业总新增民族工业资平均每年设厂数平均每年新增年份
数家金总额万元家资本万元


.“抵制日货”运动开展.政府经济政策调整
.“实业救国”思朝高涨.列强侵华方式改变
.叶圣陶《开明国语课本》(年初版)中记载某乡村的婆婆的回忆“我年轻时候,纺纱织布,
利息(收益)倒不少。

到了现在,厂里出的纱和布,又细又好,价钱又便宜。

还有外国运来
的纱和布,大乡小镇都有得卖。

我的利息就远不如从前了。

”下列关于材料的分析不正确的是
.中国被卷入资本主义世界市场.自然经济逐渐瓦解
.中国的传统生产模式退出历史.中国经济逐渐近代化
.下表反映了建国后某时期连续年的经济建设情况,为此我国政府
年份粮食产量(万吨)国家职工人数(万人)国家财政收支(亿元)
第年
第年—
第年—
第年—
.优先发展重工业.开展农业集体化运动
.着手调整国民经济.调整农村土地所有制
.年底,社会主义经济体系在我国基本建立,得出这一结论的主要依据是
.第一届全国人民代表大会的召开.社会主义政治制度确立
.第一个五年计划基本完.公有制经济占主导地位
.邓小平在年指出:“社会主义以计划经济为主,但也结合市场经济,这就是社会主义的市
场经济。

”年十二届三中全会正式提出“社会主义经济是在公有制基础上的有计划的商品经
济”。

年邓小平在南方谈话中明确指出“计划和市场非社会主义与资本主义的本质区别”。

这表明
.党对社会主义本质认识有了质的突破.计划经济必须以市场经济为依托
.社会主义制度建立的基础是市场经济.社会主义市场经济体系已经确立
.下图是—年中国城乡收入差距变化趋势(来源于《中国劳动统计年鉴》),关于图中曲线变化的主要背景,以下解读正确的是
.年代初期下降与家庭联产承包有关.年代后期增高与经济体制改革无关
.年波动是因为“南方谈话”影响.年后下降是因为贯彻十五大精神
.如图是改革开放以来某地人口增长示意图,据图判断该地最有可能是
.深圳.上海.香港.北京
.改革开放以来,国企改革经历了几个阶段。

年至年为第一阶段,改革的核心内容是放权让利,扩大国企自主权;年至年为第二阶段,核心内容是实行国企承包制;从年起,国企进入
第三个阶段,即转换经营机制和建立现代企业制度阶段,以适应市场经济发展要求。

对此理解正确的是
.经济体制改革从城市开始.国企改革未突破原有体制
.市场取向是国企改革方向.国企改革进程已基本完成
.下列世纪初国际贸易状况示意图紧扣某研究性学习的主题。

该研究主题应是
.资本输出的历程.黑奴贸易的兴衰.世界工厂的出现.世界物产的交流
.这一时期“中国的资本主义进入以民间力量为主导的自由发展阶段,不仅呈现出较快的发展势头,而且新的产业相继产生,企业集团开始形成,使中国的资本主义经济登上了一个新
的台阶。

”“新的台阶”出现的原因是
.受到了外商企业利润的刺激.清政府放宽民间办厂的限制
.辛亥革命推翻了清王朝统治.欧美列强暂时放松经济侵略
.据民国初年农商部总务厅统计科所编《第一次全国农商统计表》年月日的统计,全国在年开设的公司有家,工厂家,这是我国有史以来举办工商实业最多的年份。

上述现象出现的主要原因在于
.国民政府开展国民经济建设运动.辛亥革命改变民族工业发展环境
.清政府放宽了对民间设厂的限制.欧美列强暂时放松对中国的侵略
.下表是及中国机器纱线产额及消费量统计表(单位:磅)。

它说明当时中国
年年
本国纱线产额
进口纱线额
出口纱线额
机器织机消费量
手工织机消费量
.机器纺纱业获得长足发展.自然经济完全解体
.纺织业处于国际领先地位.传统手工业的衰落
.下图是世纪初期中国民营工业新增厂矿及资本额示意图。

该图反映的状况得益于
.资产阶级革命运动高涨.维新派措施逐步实行
.列强放松对华经济侵略.清政府经济政策调整
.年月,李富春同志在研究年国民经济计划时,提出要以“调整、巩固、提高”为基本精神。

月底,周恩来总理采纳了这一建议,提出在“调整、巩固”后面加上“充实”二字。

年月,
中共八届九中全会正式通过这一方针。

强调“充实”意味着国家
.改善企业管理以提高产品的质量.开始调整国民经济各部门的比例
.压缩基本战线规模以充实轻工业.充实“大跃进”取得的经济建设成果
.导致下下图年至年中国市场化指数变化的主要原因是
.家庭联产承包责任制全面推行.城市经济体制改革的全面展开
.中国已经加入世界贸易组织.社会主义市场经济体制推动
.年宪法通过后,全国人大对宪法进行了五次修正,其中涉及市场经济的修改内容如下表。

从中可以看出
.国家重点扶持非公有制经济的发展.改革开放有利于非公经济地位上升
.频繁修宪不利于市场经济理论完善.非公有制经济成为市场经济的主体
.以下是年世界出口经济数据统计,据此可以推断
.欧美发达国家的制造业开始衰落.我国的工业产业结构趋向于合理
.世界制造业中心实现向中国转移.改革开放加快中国的工业化进程
.面对经济危机,当时的美国总统胡佛认为,我们决不开动印刷机印制货币和债券,决不采
纳顽固的破产主义者的意见,要通过严格减少政府开支和增加税收,通过有利可图的建设工程来增加就业。

由此可见,这一时期美国政府
.奉行凯恩斯主义.有限干预经济
.完全地自由放任.有效缓解危机
.世纪末世纪初,美国工人获得的工资占他们所生产商品总价值的。

在个人收入方
面,年,占美国人口总数%的最高收入人群的平均可自由支配的年收入从美元提高
到美元. 上述现象
.有利于增加对工业企业的投资.是凯恩斯主义发展的必然结果
.能够促进美国经济的持续繁荣.反映了美国经济存在潜在危机
.~年一场席卷整个资本主义世界的经济危机, 当时人们最有可能的体验是
.“牛奶面包价格都涨到天上去了”.“找工作比买彩票中奖还要难”
.“整个西方世界像一潭死水般平静”.“为共渡难关各国变得亲如兄弟
.年,美国公共舆论研究所曾做过一项民意调查,的受访者认为“救济计划和公共事业振兴署”是最不受欢迎的新政措施,的受访者认为“救济计划和公共事业振兴署”是最受欢迎的
新政措施。

据此,下列判断最可靠的是
.前面的数据较为可信.前后两个数据都不可信。

相关文档
最新文档