2020年高考文科数学考前选择填空专项练习 (36)

合集下载

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2020文科高考备考数学选择填空狂练00 专题合集-Word版含解析

2020文科高考备考数学选择填空狂练00 专题合集-Word版含解析

1.[2019·盱眙中学]已知全集{}1,2,3,4,5,6U =,集合{}235A =,,,集合{}1346B =,,,,则集合()U A B =I ð( ) A .{}3B .{}25,C .{}146,,D .{}235,, 2.[2019·洪都中学]已知全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或,则图中阴影部分表示的集合为( )A .{}0,1,2B .{}1,2C .{}3,4D .{}0,3,43.[2019·八一中学]集合{}26y y x x ∈=-+∈N N ,的真子集的个数是( ) A .9B .8C .7D .64.[2019·洪都中学]已知集合{}12A x x =-≤<,{}B x x a =<,若 A B ≠∅I ,则实数a 的取值范围为( ) A .12a -<≤B .1a >-C .2a >-D .2a ≥5.[2019·唐山摸底]命题“0x ∀>,1ln 1x x≥-”的否定是( ) A .00x ∃≤,01ln 1x x ≥- B .00x ∃>,01ln 1x x <- C .00x ∃>,01ln 1x x ≥-D .00x ∃≤,01ln 1x x <-6.[2019·静宁县一中]已知a 、b 都是实数,那么>是“ln ln a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.[2019·大同中学]已知a ,b ∈R ,下列四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >-B .1a b >+C .a b >D .22a b >8.[2019·静宁县一中]下列说法错误的是( )A .对于命题:p x ∀∈R ,210x x ++>,则0:p x ⌝∃∈R ,2010x x ++≤ B .“1x =”是“2320x x -+=”的充分不必要条件 C .若命题p q ∧为假命题,则p ,q 都是假命题疯狂专练1集合与简易逻辑一、选择题D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” 9.[2019·甘肃模拟]{}1381x A x =≤≤,(){}22log 1B x x x -=>,则A B =I ( ) A .(]2,4B .[]2,4C .()(],00,4-∞UD .()[],10,4-∞-U10.[2019·辽宁联考]已知集合{}12A x a x a =-≤≤+,{}35B x x =<<,则能使A B ⊇成立的实数a 的取值范围是( ) A .{}34a a <≤B .{}34a a <<C .{}34a a ≤≤D .∅11.[2019·曲靖一中]命题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数12log y =()221x x -+的单调递增区间是(],1-∞”,则下列复合命题是真命题的是( ) A .()()p q ⌝∨⌝B .p q ∧C .()p q ⌝∨D .()()p q ∧⌝12.[2019·长春外国语]已知集合(){} 43120,B x y x y x y **=+-<∈∈N N ,,,则B 的子集个数为( )A .3B .4C .7D .813.[2019·哈尔滨期末]{}221A x y x x ==-+,{}221B y y x x ==-+则A B =I ____________. 14.[2019·浦东三模]已知集合205x A xx ⎧-⎫=<⎨⎬+⎩⎭,{}2230,B x x x x =--≥∈R ,则A B =I _________. 15.[2019·甘谷县一中]已知集合{}121P x a x a =+≤≤+,{}2310Q x x x -=≤.若P Q Q =U ,求实数a 的取值范围__________. 16.[2019·清江中学] “2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的__________条件(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”).二、填空题1.【答案】B【解析】∵{}1,2,3,4,5,6U =,{}1346B =,,,,∴{}25U B =,ð, ∵{}235A =,,,则(){}25U A B =I ,ð;故选B . 2.【答案】A【解析】∵全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或, ∴{}02U B x x =≤≤ð,∴图中阴影部分表示的集合为{}012U A B =I ,,ð,故选A . 3.【答案】C【解析】0x =时,6y =;1x =时,5y =;2x =时,2y =;3x =时,3y =-; ∵函数26y x =-+在[)0+∞,上是减函数,∴当3x ≥时,0y <;{}{}262,5,6y y x x ∈=-+∈=N N ,,共3个元素, 根据公式可得其真子集的个数为3217-=个,故选C . 4.【答案】B【解析】∵{}12A x x =-≤<,{}B x x a =<, A B ≠∅I , 作出图形如下:∴1a >-,故选B . 5.【答案】B【解析】由全称命题与存在性命题的关系,可得命题“0x ∀>,1ln 1x x≥-”的否定是“00x ∃>,01ln 1x x <-”,故选B .6.【答案】B,b 有可能为0,故不能推出ln ln a b >,反过来,ln ln a b >则a b >成立, 故为必要不充分条件.故选B .答案与解析一、选择题7.【答案】A【解析】“a b >”能推出“1a b >-”,故选项A 是“a b >”的必要条件, 但“1a b >-”不能推出“a b >”,不是充分条件,满足题意;“a b >”不能推出“1a b >+”,故选项B 不是“a b >”的必要条件,不满足题意; “a b >”不能推出“a b >”,故选项C 不是“a b >”的必要条件,不满足题意; “a b >”能推出“22a b >”,且“22a b >”能推出“a b >”,故是充要条件,不满足题意; 故选A . 8.【答案】C【解析】根据全称命题的否定是特称命题知A 正确;由于1x =可得2320x x -+=,而由2320x x -+=得1x =或2x =, ∴“1x =”是“2320x x -+=”的充分不必要条件正确; 命题p q ∧为假命题,则p ,q 不一定都是假命题,故C 错; 根据逆否命题的定义可知D 正确,故选C . 9.【答案】A【解析】{}{}138104x A x x x =≤≤=≤≤,(){}{}22log 112B x x x x x x =><--=>或, 则{}24A B x x =<≤I .故选A . 10.【答案】C【解析】∵A B ⊇,∴1325a a -≤⎧⎨+≥⎩,∴34a ≤≤,故选C .11.【答案】A【解析】由题意,命题p :“0a ∀>,不等式22log a a >成立”; 根据指数函数与对数函数的图象可知是不正确的,∴命题p 为假命题;命题q :“函数()212log 21y x x =-+的单调递增区间应为()1-∞,”,∴为假命题, ∴()()p q ⌝∨⌝为真命题,故选A . 12.【答案】D 【解析】∵集合(){} 43120,B x y x y x y **=+-<∈∈N N ,,,∴()()(){}1,1,1,2,2,1B =,∴B 中含有3个元素,集合B 的子集个数有328=,故选D .13.【答案】[)0,+∞【解析】{}221A x y x x ==-+=R ,{}[)2210,B y y x x ==-+=+∞, ∴[)0,A B =+∞I . 14.【答案】(]51--,【解析】∵集合{}20525x A xx x x ⎧-⎫=<=-<<⎨⎬+⎩⎭, {}{}2230,13B x x x x x x x =--≥∈=≤-≥R 或, ∴{}51A B x x =-<≤-I ,故答案为(]51--,.15.【答案】(]2-∞,【解析】{}{}231025Q x x x x x =≤=-≤≤-, ∵P Q Q =U ,∴P Q ⊆,(1) P =∅,即121a a +>+,解得0a <, (2) P ≠∅,即12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得02a ≤≤,综上所述,实数a 的取值范围为(]2-∞,. 故答案为(]2-∞,. 16.【答案】充分不必要【解析】若函数()sin y x ϕ=+的图象关于y 轴对称,则2k ϕπ=+π,k ∈Z . ∴必要性不成立, 若2ϕπ=,则函数()sin cos y x x ϕ=+=的图象关于y 轴对称∴充分性成立, ∴“2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的充分不必要条件; 故答案为充分不必要.二、填空题疯狂专练2复数1.[2019·唐山一摸]设()()123z i i =-+,则z =( ) A .5B C .D .2.[2019·温州九校]已知复数z 满足()12i z i -=+,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 3.[2019·辽宁联考]复数()212miA Bi m AB i -=+∈+R 、、,且0A B +=,则m 的值是( ) A .23-B .23C D .24.[2019·青岛调研]已知复数z 满足()3425i z +=(i 为虚数单位),则z =( ) A .34i +B .34i -C .34i --D .34i -+5.[2019·南昌测试]已知复数z 满足()22z i i ⋅+=-(i 为虚数单位),则复数z 所对应的点位于复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限6.[2019·胶州一中]若复数11iz ai+=+为纯虚数,则实数a 的值为( ) A .1-B .12-C .1D .27.[2019·南昌测试]已知复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1,则z =( ) A B C .2D8.[2019·莆田六中]设有下面四个命题,其中的真命题为( ) A .若复数12z z =,则12z z ∈RB .若复数1z ,2z 满足12z z =,则12z z =或12z z =-C .若复数z 满足2z ∈R ,则z ∈RD .若复数1z ,2z 满足12z z +∈R ,则1z ∈R ,2z ∈R9.[2019·信阳高级中学]复数()z a i a =+∈R 的共轭复数为z ,满足1z =,则复数z =( ) A .2i +B .2i -C .1i +D .i10.[2019·全国I 卷]设121iz i i-=++,则z =( ) 一、选择题A .0B .12C .1 D11.[2019·双流中学]已知i 为虚数单位,现有下面四个命题 1:p 若复数z 满足210z +=,则z i =;2:p 若复数z 满足()11i z i +=-,则 为纯虚数; 3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =;4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R ,在复平面内对应的点关于实轴对称.其中的真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p12.[2019·哈尔滨六中]若复数23201834134i z i i i i i-=++++⋯++-,则z 的共轭复数z 的虚部为( )A .15-B .95-C .95iD .9i 5-13.[2019·浦东三模]设复数z 满足()132i z i +=-+,则z =_________. 14.[2019·桃江县一中]若复数z 满足()125z i +=,则z ________. 15.[2019·大同中学]复数122ii-+的虚部为__________. 16.[2019·仪征中学]已知2a ib i i+=+(a ,b 是实数),其中i 是虚数单位,则ab =______.二、填空题1.【答案】C【解析】由题意,复数()()12355z i i i =-+=-,∴z C .2.【答案】B【解析】()12i z i -=+,∴()()()()1121i i z i i -+=++,化为213z i =+,∴1322z i =+. 则z 的共轭复数为1322i -,故选B . 3.【答案】A 【解析】因为212miA Bi i-=++,∴()()212mi A Bi i -=++,即()222mi A B A B i -=-++, 由此可得222A B A B m -=⎧⎨+=-⎩,结合0A B +=可解之得232323A B m ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩,故选A .4.【答案】B【解析】复数z 满足()3425i z +=,()()()25342534343434i z i i i i -===-++-,故选B . 5.【答案】D 【解析】由题得:()()()()2223434222555i i i i z i i i i ----====-++-, 故z 所对应的坐标为3455⎛⎫- ⎪⎝⎭,,为第四象限;故选D .6.【答案】A 【解析】复数()()()()221111111111i ai ia a z i ai ai ai a a +-++-===+++-++为纯虚数, ∴2101a a +=+且2101aa -≠+,解得1a =-,故选A .7.【答案】A【解析】∵复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1, ∴设复数z a i =+,则()()220a i a i b +-++=.∴()221220a a b a i --++-=,∴1a =,2b =,∴1z i =+,即z =A .答案与解析一、选择题8.【答案】A【解析】设()1,z a bi a b =+∈R ,则由12z z =,得()2z a bi a b =-∈R ,, 因此2212z z a b =+∈R ,从而A 正确;设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z =B 错误; 设()z a bi a b =+∈R ,,则由2z ∈R ,得22200a b abi ab a -+∈⇒=⇒=R 或0b =,因此C 错误; 设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z +∈R , 得()a c b d i +++∈R ,∴0b d +=,因此D 错误;故选A . 9.【答案】D【解析】根据题意可得z a i =-,∴1z ,解得0a =,∴复数z i =.故选D . 10.【答案】C【解析】∵()()()21122221112i i iz i i i i i i i ---=+=+=+=++-,∴1z =,故选C . 11.【答案】D【解析】对于1:p 由210z +=,得21z =-,则z i =±,故1p 是假命题;对于2:p 若复数z 满足()11i z i +=-,则()()()211111i iz i i i i --===-++-, 故z 为纯虚数,则2p 为真命题;对于3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =,是假命题,如1z i =,2z i =-; 对于4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R 的实部相等,虚部互为相反数, 则在复平面内对应的点关于实轴对称,故4p 是真命题.故选D . 12.【答案】B【解析】∵()201923201811345134134i i z i i i iiii⨯--=++++⋯++=+--- ()()()()50443153413439134341555i i i i i i ii i i -⋅+++=+=+=+--+-, ∴3955z i =-;则z 的共轭复数z 的虚部为95-.故选B .二、填空题13.【答案】13i -【解析】∵复数z 满足()132i z i +=-+,∴32123iz i i-++==+,∴13z i =+, 故而可得13z i =-,故答案为13i -.14.【解析】由题设有z =,故z =. 15.【答案】1-【解析】由复数的运算法则有:()()()()1221252225i i i i i i i i ----===-++-,则复数122ii-+的虚部为1-. 16.【答案】2- 【解析】∵()()2222a i i a i ai b i i i +-+==-=+-,∴21b a =⎧⎨-=⎩,即1a =-,2b =,∴2ab =-,故答案为2-.1.[2019·唐山一摸]已知程序框图如右图所示则该程序框图的功能是()A.求1111357+++的值B.求111113579++++的值C.求1111357-++的值D.求111113579-+++的值2.[2019·东师附中]执行如图所示的程序框图,如果输入的[]2,2x∈-,则输出的y值的取值范围是()A.52y≤-或0y≥B.223y-≤≤C.2y≤-或23y≤≤D.2y≤-或23y≥3.[2019·宝安区调研]定义某种运算:S m n⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=()疯狂专练3框图一、选择题A.3 B.1 C.4 D.0 4.[2019·南昌测试]某程序框图如图所示,若输出3S=,则判断框中M为()A.14?k>k≤D.15?k<B.14?k≤C.15?5.[2019·南昌联考]执行如图所示的程序框图,输出的值为()A.14 B.15 C.24 D.30 6.[2019·拉萨中学]执行如图所示的程序框图,输出的k值为()A .4B .5C .6D .77.[2019·南昌二模]执行如图所示的程序框图,输出S 的值为( )A .15B .16C .24D .258.[2019·南昌检测]根据某校10位高一同学的身高(单位:cm )画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用()1210i A i =L ,,,表示第 个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )A .iB B A =+B .2i B B A =+C .()2i B B A A =+-D .22i B B A =+9.[2019·南昌检测]执行如图所示的程序框图,则输出的结果为( )A .1-B .0C .1D .210.[2019·哈尔滨六中]《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的S 的值为350,则判断框中可填( )A .6?i >B .7?i >C .8?i >D .9?i >11.[2019·山东模拟]下面程序框图是为了求出满足321000n n ->的最小偶数n ,,那么在◇和□两个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+12.[2019·银川一中]我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .7i <,1S S i=-,2i i =B .7i ≤,1S S i=-,2i i =C .7i <,2SS =,1i i =+ D .7i ≤,2SS =,1i i =+13.[2019·南昌检测]某程序框图如图所示, 则输出的结果是__________.14.[2019·中原名校]如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a ,b ,i 的值分别为8,6,1,输出a 和i 的值,若正数x ,y 满足251x y+=,则ax iy +的最小值为__________.二、填空题15.[2019·宁德质检]我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即为方程组531003100z x y x y z ⎧++=⎪⎨⎪++=⎩的解.其解题过程可用框图表示如下图所示,则框图中正整数m 的值为 ______.16.[2019·湖北模拟]如图所示的茎叶图为高三某班54名学生的政治考试成绩,程序框图中输入的1a ,2a ,L ,54a 为茎叶图中的学生成绩,则输出的S 和n 的值分别是__________.1.【答案】C【解析】由题意,执行如图所示的程序框图可知:开始1a=,1n=,0S=;第一次循环:1S=,1a=-,3n=;第二次循环:113S=-,1a=,5n=;第三次循环:11135S=-+,1a=-,7n=;第四次循环:1111357S=-++,1a=,9n=;此时终止循环,输出结果,所以该程序框图是计算输出1111357S=-++的值,故选C.2.【答案】C【解析】由题意知,该程序的功能是求函数()021120xxxf xx xx⎧≤≤⎪⎪+=⎨⎪+-≤<⎪⎩,,的值域.①当02x≤≤时,()1111xf xx x==-++在区间[]0,2上单调递增,∴()()()02f f x f≤≤,即()23f x≤≤;②当20x-≤<时,()112f x x xx x⎛⎫=+=--+≤-⎪-⎝⎭,当且仅当1xx-=-,即1x=-时等号成立.综上输出的y值的取值范围是2y≤-或23y≤≤.故选C.3.【答案】A【解析】由流程图得()6565124⊗=⨯-=,()4774121⊗=⨯-=,∴654724213⊗-⊗=-=,故选A.4.【答案】B【解析】由框图程序可知S=++L,1S L∴13S=,解得15n=,即当15n=时程序退出,故选B.5.【答案】C【解析】结合流程图可知流程图运行过程如下:首先初始化数据:0S=,1i=,第一次循环,满足5i<,执行12i i=+=,此时不满足i为奇数,执行1222iS S S-=+=+=;第二次循环,满足5i<,执行13i i=+=,此时满足i为奇数,执行2157S S i S=+-=+=;第三次循环,满足5i<,执行14i i=+=,此时不满足i为奇数,执行12815iS S S-=+=+=;答案与解析一、选择题第四次循环,满足5i <,执行15i i =+=,此时满足i 为奇数,执行21924S S i S =+-=+=; 第五次循环,不满足5i <,跳出循环,输出S 的值为24. 故选C . 6.【答案】B【解析】模拟程序的运行,可得:1a =,1k =,不满足条件10a >,执行循环体,2a =,2k =;不满足条件10a >,执行循环体,4a =,3k =; 不满足条件10a >,执行循环体,8a =,4k =;不满足条件10a >,执行循环体,16a =,5k =; 满足条件10a >,退出循环体,输出k 的值为5,故选B . 7.【答案】B【解析】进入循环,当1i =时,15<,i 为奇数,1S =;当2i =时,25<,i 为偶数,123S =+=; 当3i =时,35<,i 为奇数,358S =+=;当4i =时,45<,i 为偶数,8816S =+=; 当5i =时,55≥,结束循环,输出16S =.故选B . 8.【答案】B 【解析】由()()()()222222212121222n n n x x x x x x x x x x x x x nx s nn-+-+⋅⋅⋅+-++⋅⋅⋅+-++⋅⋅⋅++==22222222212122n n x x x nx nx x x x x n n++⋅⋅⋅+-+++⋅⋅⋅+==-,循环退出时11i =,知221A x i ⎛⎫= ⎪-⎝⎭.∴2221210B A A A =++⋅⋅⋅+,故程序框图①中要补充的语句是2i B B A =+.故选B . 9.【答案】D【解析】由循环结构的计算原理,依次代入求得如下:1S =,1i =, ①2S =,2i =;②2S =,3i =;③1S =,4i =; ④1S =,5i =;⑤2S =,6i =;⑥2S =,7i =;⑦1S =,8i =;⑧1S =,9i =;⑨2S =,10i =;∴输出2S =.故选D . 10.【答案】B【解析】模拟程序的运行,可得0S =,1i =;执行循环体,290S =,2i =; 不满足判断框内的条件,执行循环体,300S =,3i =; 不满足判断框内的条件,执行循环体,310S =,4i =; 不满足判断框内的条件,执行循环体,320S =,5i =; 不满足判断框内的条件,执行循环体,330S =,6i =; 不满足判断框内的条件,执行循环体,340S =,7i =;不满足判断框内的条件,执行循环体,350S =,8i =;由题意,此时,应该满足判断框内的条件,退出循环,输出S 的值为350. 可得判断框中的条件为7?i >.故选B . 11.【答案】D【解析】本题考查程序框图问题.∵要求1000A >时输出,且框图中在“否”时输出,∴“◇”内不能输入“1000A >”, 又要求n 为偶数,且n 的初始值为0,∴“□”中n 依次加2可保证其为偶数, ∴D 选项满足要求,故选D . 12.【答案】D【解析】算法为循环结构,循环7次,每次对长度折半计算,也就是2S S =,因此②填2S S =, 又①填判断语句,需填7i ≤,③填1i i =+.故选D .13.【答案】3 【解析】由题意得0tan 0tan tan tan tan 21312643S ππππ=+++++=-+. 14.【答案】49【解析】输入a ,b ,i 的值分别为8,6,1;第一次循环,2i =,2a =;第二次循环,3i =,4b =;第三次循环,4i =,2b =;第四次循环,5i =,b a =; 退出循环,输出2a =,5i =,()2510102542549y xax iy x y x y x y ⎛⎫+=++=+++≥ ⎪⎝⎭, 当x y =时,等号成立,即ax iy +的最小值为49,故答案为49. 15.【答案】4【解析】由531003100z x y x y z ⎧++=⎪⎨⎪++=⎩得7254y x =-,故x 必为4的倍数, 当4x t =时,257y t =-,由2570y t =->得t 的最大值为3, 故判断框应填入的是4t <?,即4m =,故答案为4. 16.【答案】86,13【解析】S 为大于等于80分的学生的平均成绩,计算得86S =;n 表示60分以下的学生人数,由茎叶图可知13n =.二、填空题1.[2019·眉山一中]若01a <<,1b c >>,则正确的是( ) A .1ab c ⎛⎫< ⎪⎝⎭B .c a cb a b->- C .11a a c b --<D .log log c b a a <2.[2019·南昌测试]已知实数x 、y ,满足224x y +=,则xy 的取值范围是( ) A .2xy ≤B .2xy ≥C .4xy ≤D .22xy -≤≤3.[2019·张家界期末]下列不等式中,正确的是( ) A .若a b >,c d >,则a c b d +>+ B .若a b >,则a c b c +<+ C .若a b >,c d >,则ac bd > D .若a b >,c d >,则a b c d> 4.[2019·邢台二中]不等式121xx >-的解集为( ) A .1,12⎛⎫ ⎪⎝⎭B .(),1-∞C .()11,2⎛⎤-∞+∞ ⎥⎝⎦U ,D .1,22⎛⎫⎪⎝⎭5.[2019·邵阳期末]若关于x 的不等式1220x x a +--->的解集包含区间()0,1,则a 的取值范围为( ) A .7,2⎛⎤-∞ ⎥⎝⎦B .(),1-∞C .7,2⎛⎫-∞ ⎪⎝⎭D .(],1-∞6.[2019·鄂尔多斯一中]关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且2115x x -=,则a =( ) A .154B .72C .52D .1527.[2019·东师属中]直线l 过抛物线24y x =的焦点F 且与抛物线交于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则4m n +的最小值是( ) A .10B .9C .8D .78.[2019·河南一模]设函数()21f x mx mx =--,若对于[]1,3x ∈,()4f x m <-+恒成立,则实数m 的取值范围为( )A .(],0-∞B .50,7⎡⎫⎪⎢⎣⎭C .()5,00,7⎛⎫-∞ ⎪⎝⎭UD .5,7⎛⎫-∞ ⎪⎝⎭9.[2019·胶州一中]若两个正实数x ,y 满足211x y+=,且222x y m m +>+恒成立,则实数m 的取值范围是( )A .()[),24,-∞-+∞UB .][(),42,-∞-+∞UC .()4,2-D .()2,4-疯狂专练4不等式一、选择题10.[2019·上高二中]若关于x 的不等式210x kx +->在[]1,2区间上有解,则k 的取值范围是( ) A .(),0-∞B .3,02⎛⎫- ⎪⎝⎭C .3,2⎡⎫-+∞⎪⎢⎣⎭D .3,2⎛⎫-+∞ ⎪⎝⎭11.[2019·黑龙江模拟]在ABC △中,E 为AC 上一点,3AC AE =uuu r uu u r,P 为BE 上任一点,若()0,0AP mAB nAC m n =+>>uu u r uu u r uuu r ,则31m n+的最小值是( )A .9B .10C .11D .1212.[2019·衡水金卷]已知点E ,F 分别在正方形ABCD 的边BC ,CD上运动,且AB =u u u r,设CE x =,CF y =,若AF AE AB -=uu u r uu u r uu u r,则x y +的最大值为( )A .2B .4C.D.13.[2019·七宝中学]若25x y -<<<,则x y -的取值范围是________. 14.[2019·铜仁一中]已知0ab >,5a b +=,则2111a b +++的最小值为__________. 15.[2019·东北四市一模]已知角α,β满足22αβππ-<-<,0αβ<+<π,则3αβ-的取值范围是__________. 16.[2019·涟水中学]若不等式31322>-axax 对一切实数x 恒成立,则实数a 的取值范围是 .二、填空题1.【答案】D【解析】对于A ,∵1b c >>,∴1b c >,∵01a <<,则1ab c ⎛⎫> ⎪⎝⎭,故错误,对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误, 对于C ,∵01a <<,∴10a -<,∵1b c >>,则11a a c b -->,故错误, 对于D ,∵1b c >>,∴log log c b a a <,故正确.故选D . 2.【答案】D【解析】由2242x y xy +=≥,知22xy -≤≤,故选D . 3.【答案】A【解析】若a b >,则a c b c +>+,故B 错, 设3a =,1b =,1c =-,2d =-,则ac bd <,a bc d<,∴C 、D 错,故选A . 4.【答案】A【解析】原不等式等价于1021x x ->-,即()21021x x x -->-,整理得1021x x -<-,不等式等价于()()2110x x --<,解得112x <<.故选A .5.【答案】D【解析】原不等式等价于1min 122x x a +⎛⎫≤- ⎪⎝⎭,由于函数1122x x y +=-在区间()0,1上为增函数,当0x =,1y =,故1a ≤.故选D . 6.【答案】C【解析】∵()222800x ax a a --<>,∴()()()2400x a x a a +-<>,即24a x a -<<, 又1215x x -=,∴615a =,解得52a =.故选C . 7.【答案】B【解析】由抛物线焦点弦的性质可知:1121m n p +==, 则()11444559m n m n m n m n n m ⎛⎫+=++=++≥+= ⎪⎝⎭, 答案与解析一、选择题当且仅当32m =,3n =时等号成立.即4m n +的最小值是9.故选B . 8.【答案】D【解析】由题意,()4f x m <-+,可得()215m x x -+<, ∵当[]1,3x ∈时,[]211,7x x -+∈,∴不等式()0f x <等价于251m x x <-+, ∵当3x =时,251x x -+的最小值为57,∴若要不等式251m x x <-+恒成立,则必须57m <, 因此,实数m 的取值范围为5,7⎛⎫-∞ ⎪⎝⎭,故选D .9.【答案】C【解析】∵正实数x ,y 满足211x y+=,∴()212142448y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭, 当且仅当4y xx y=时,即4x =,2y =时取得最小值8, ∵222x y m m +>+恒成立,∴282m m >+, 即2280m m +-<,解得42m -<<,故选C . 10.【答案】D【解析】关于x 的不等式210x kx +->在[]1,2区间上有解, ∴21kx x >-在[]1,2x ∈上有解,即1k x x>-在[]1,2x ∈上成立; 设函数()1f x x x =-,[]1,2x ∈,∴()2110f x x'=--<恒成立,∴()f x 在[]1,2x ∈上是单调减函数,且()f x 的值域为3,02⎡⎤-⎢⎥⎣⎦,要1k x x >-在[]1,2x ∈上有解,则32k >-, 即实数k 的取值范围为3,2⎛⎫-+∞ ⎪⎝⎭.故选D .11.【答案】D【解析】由题意可知:3AP mAB nAC mAB nAE =+=+uu u r uu u r uu u r uu u r uu u r,A ,B ,E ,三点共线,则31m n +=,据此有()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+ ⎪⎝⎭, 当且仅当12m =,16n =时等号成立.综上可得31m n +的最小值是12.故选D . 12.【答案】C【解析】2AB ==uu u r ,AF AE AB -=uu u r uu u r uu u r,∵2AF AE EF -==uu u r uu u r uu u r,∴224x y +=,()()22222228x y x y xy x y +=++≤+=,当且仅当x y =时取等号,∴x y +≤x y +的最大值为C .13.【答案】()7,0-【解析】∵25x y -<<<,∴25x -<<,52y -<-<,∴77x y -<-<, 又∵x y <,∴0x y -<,∴x y -的取值范围是70x y -<-<. 14. 【解析】∵0ab >,5a b +=知0a >,0b >, 又117a b +++=,∴()11117a b +++=, 而()()(21211211111133117117117b a a b a b a b a b +⎛⎫+⎛⎫+=++++=++≥+ ⎪ ⎪++++++⎝⎭⎝⎭, . 15.【答案】(),2-ππ【解析】结合题意可知:()()32αβαβαβ-=-++, 且()()2,αβ-∈-ππ,()()0,αβ+∈π,利用不等式的性质可知:3αβ-的取值范围是(),2-ππ. 16.【答案】01a ≤<【解析】根据题意,∵不等式31322>-axax对一切实数x 恒成立, 那么可知221ax ax ->-恒成立即可,即当0a =时,显然01>-恒成立, 当0a ≠时,由于二次函数开口向上,判别式小于零能满足题意, 故可知为0a >,2440a a -< ,解得01a <<, 那么综上可知满足题意的a 的范围是01a ≤<.二、填空题1.[2019·柳州高级中学]已知变量x,y满足约束条件40221x yxy--≤-≤<⎧⎪⎨⎪⎩≤,若2z x y=-,则z的取值范围是()A.[)5,6-B.[]5,6-C.()2,9D.[]5,9-2.[2019·和诚高中]实数x,y满足22202y xx yx≤++-≥⎧⎪⎨⎪⎩≤,则z x y=-的最大值是()A.2 B.4 C.6 D.83.[2019·北京一轮]由直线10x y-+=,50x y+-=和1x=所围成的三角形区域(包括边界),用不等式组可表示为()A.10501x yx yx-+≤+-≤≥⎧⎪⎨⎪⎩B.10501x yx yx-+≥+-≤≥⎧⎪⎨⎪⎩C.10501x yx yx-+≥+-≥≤⎧⎪⎨⎪⎩D.10501x yx yx-+≤+-≤≤⎧⎪⎨⎪⎩4.[2019·和诚高中]已知实数x,y满足22021020x yx yx y-+≥-+≤+-≤⎧⎪⎨⎪⎩,则()()2211z x y=-++的取值范围为()A.⎡⎣B.⎣C.16,105⎡⎤⎢⎥⎣⎦D.[]4,105.[2019·咸阳联考]已知实数x,y满足4030x yyx y+-≥-≤-≤⎧⎪⎨⎪⎩,则11yzx-=+的最大值为()A.1 B.12C.13D.26.[2019·宜昌一中]若实数x,y满足不等式组1010240x yx yx y+-≥-⎧+≥+-≤⎪⎨⎪⎩,则目标函数23x yzx-+=-的最大值是()A.1 B.13-C.12-D.35疯狂专练5线性规划一、选择题7.[2019·黑龙江模拟]已知实数x ,y 满足103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩,若z k x y =-的最小值为5-,则实数k 的值为( ) A .3- B .3或5- C .3-或5- D .3±8.[2019·名校联盟]设2z x y =+,其中x ,y 满足2000x y x y y k +≥-≤≤≤⎧⎪⎨⎪⎩,若z 的最小值是9-,则z 的最大值为( )A .9-B .9C .2D .69.[2019·莆田九中]设关于x ,y 的不等式组21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y ,满足0022x y -=,求得m 取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭10.[2019·皖江八校]已知x ,y 满足202080x y x y -≥-≥+-≤⎧⎪⎨⎪⎩时,()0z ax by a b =+≥>的最大值为2,则直线10ax by +-=过定点( ) A .()3,1B .()1,3-C .()1,3D .()3,1-11.[2019·齐鲁名校]在满足条件210310 70x y x y x y --≥+-≥-≤⎧⎪⎨⎪⎩+的区域内任取一点(),M x y ,则点(),M x y 满足不等式()2211x y -+<的概率为( )A .π60B .π120C .π160-D .π1120-12.[2019·江南十校]已知x ,y 满足02323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩,z xy =的最小值、最大值分别为a ,b ,且210x kx -+≥对[],x a b ∈上恒成立,则k 的取值范围为( ) A .22k -≤≤ B .2k ≤C .2k ≥-D .14572k ≤二、填空题13.[2019·哈尔滨六中]已知实数x 、y 满足约束条件2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-,若使得目标函数ax y +取最大值时有唯一最优解()1,3,则实数a 的取值范围是_______________(答案用区间表示).14.[2019·衡水金卷]某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.15.[2019·吉安一中]若点(),P x y 满足202340 0x y x y y ⎧⎪⎨-≤+≥≥⎪⎩-,点()3,1A ,O 为坐标原点,则OA OP ⋅的最大值为__________.16.[2019·宜昌一中]已知函数()2f x x ax b =-++,若a ,b 都是从区间[]0,3内任取的实数,则不等式()20f >成立的概率是__________.1.【答案】A【解析】变量x,y满足约束条件40221x yxy--≤-≤<⎧⎪⎨⎪⎩≤,不等式组表示的平面区域如图所示,当直线2z x y=-过点A时,z取得最小值,由21xy=-=⎧⎨⎩,可得()2,1A-时,在y轴上截距最大,此时z取得最小值5-.当直线2z x y=-过点C时,z取得最大值,由240xx y=--=⎧⎨⎩,可得()2,2C-时,因为C不在可行域内,所以2z x y=-的最大值小于426+=,则z的取值范围是[)5,6-,故答案为A.2.【答案】B【解析】依题意画出可行域如图中阴影部分所示,令m y x=-,则m为直线:l y x m=+在y轴上的截距,由图知在点()2,6A处m取最大值4,在()2,0C处取最小值2-,所以[]2,4m∈-,所以z的最大值是4.故选B.答案与解析一、选择题3.【答案】A【解析】作出对应的三角形区域,则区域在直线10x -=的右侧,满足1x ≥,在10x y -+=的上方,满足10x y -+≤, 在50x y +-=的下方,满足50x y +-≤,故对应的不等式组为10501x y x y x -+≤+-≤≥⎧⎪⎨⎪⎩,故选A .4.【答案】C【解析】画出不等式组22021020x y x y x y -+≥-+≤+-≤⎧⎪⎨⎪⎩表示的可行域,如图阴影部分所示.由题意得,目标函数()()2211z x y =-++,可看作可行域内的点(),x y 与()1,1P -的距离的平方.结合图形可得,点()1,1P -到直线210x y -+=的距离的平方, 就是可行域内的点与()1,1P -的距离的平方的最小值,且为2165=, 点()1,1P -到()0,2C 距离的平方,就是可行域内的点与()1,1P -的距离的平方的最大值,为21310+=,所以()()2211z x y =-++的取值范围为16,105⎡⎤⎢⎥⎣⎦.故选C .5.【答案】A【解析】作出不等式组对应的平面区域如图,z 的几何意义是区域内的点到定点()1,1P -的斜率,由图象知当直线过()1,3B 时,直线斜率最大,此时直线斜率为1, 则11y z x -=+的最大值为1,故选A . 6.【答案】B【解析】画出约束条件1010240x y x y x y +-≥-⎧+≥+-≤⎪⎨⎪⎩表示的可行域,如图,由1010x y x y -+=+-=⎧⎨⎩,可得01x y ==⎧⎨⎩,即()0,1P ,将23x y z x -+=-变形为513y z x -=--,53y x --表示可行域内的点与()3,5A 连线的斜率, 由图知PA k 最小,z 最大,最大值为0121033z -+==--,故答案为13-.故选B . 7.【答案】D【解析】由103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩作出可行域如图:联立110x x y =-+=⎧⎨⎩,解得()1,2A ,联立31010x y x y --=-+=⎧⎨⎩,解得()2,1B --,化z kx y =-为y kx z =-,由图可知,当0k <时,直线过A 时在y 轴上的截距最大,z 有最小值为25k -=-,即3k =-, 当0k >时,直线过B 时在y 轴上的截距最大,z 有最小值为215k -+=-,即3k =, 综上所述,实数k 的值为3±,故选D . 8.【答案】B【解析】满足条件的点(),x y 的可行域如图,平移直线2z x y =+,由图可知,目标函数2z x y =+在点()2,k k -处取到最小值9-, 即49k k -+=-,解得3k =,平移直线2z x y =+,目标函数在(),k k ,即()3,3,处取到最大值2339⨯+=,故选B . 9.【答案】B【解析】先根据约束条件21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,画出可行域,要使可行域存在,必有21m m <-+,平面区域内存在点()00,P x y ,满足0022x y -=, 等价于可行域包含直线112y x =-上的点,只要边界点(),12m m --在直线112y x =-的上方, 且(),m m -在直线112y x =-下方,故得不等式组2111212112m m m m m m <-+->--<-⎧⎪⎪⎪⎨-⎪⎪⎪⎩,解之得23m <-,m 取值范围是2,3⎛⎫-∞- ⎪⎝⎭,故选B .10.【答案】A【解析】由()0z ax by a b =+≥>,得1a z a y x b b b ⎛⎫=-+-≤- ⎪⎝⎭,画出可行域,如图所示,由数形结合可知,在点()6,2B 处取得最大值,622a b +=,即:31a b +=,直线10ax by +-=过定点()3,1.故选A . 11.【答案】B【解析】作平面区域,如图所示,()1,0A ,()5,2B ,()10,3C -,()4,2AB =,()9,3AC =-,25AB =,310AC =所以cos 22AB AC BAC AB AC∠===⋅⋅π4BAC ∠=. 可行域的面积为11sin 1522AB AC BAC ⋅⋅∠=⨯=, π4BAC ∠=,所以落在圆内的阴影部分面积为π8,易知ππ815120P ==,故选B . 12.【答案】B【解析】作出2323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩表示的平面区域(如图所示),显然z xy =的最小值为0,当点(),x y 在线段()2301x y x +=≤≤上时,231312222x z xy x x x ⎛⎫==-=-+≤ ⎪⎝⎭;当点(),x y 在线段()2301x y x +=≤≤上时,()2932238z xy x x x x ==-=-+≤; 即0a =,98b =; 当0x =时,不等式2110x kx -+=≥恒成立,若210x kx -+≥对90,8x ⎛⎤∈ ⎥⎝⎦上恒成立,则1k x x ≤+在90,8⎛⎤ ⎥⎝⎦上恒成立,又1x x +在(]0,1单调递减,在91,8⎛⎤ ⎥⎝⎦上单调递增,即min 12x x ⎛⎫+= ⎪⎝⎭,即2k ≤.13.【答案】(),1-∞-【解析】作出不等式组2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-表示的可行域,如图所示,令z ax y =+,则可得y ax z =-+,当z 最大时,直线的纵截距最大,画出直线y ax z =-+将a 变化,二、填空题结合图象得到当1a ->时,直线经过()1,3时纵截距最大, 1a ∴<-,故答案为(),1-∞-.14.【答案】5000【解析】依题得,实数x ,y 满足线性约束条件()101283032030000x y x y x y x y ++--≤--≥⎪≥≥⎧⎪⎨⎩,,目标函数为()16018012030z x y x y =++--,化简得2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,40603600z x y =++,作出不等式组2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,表示的可行域(如图所示):作直线02:603l y x =--,将直线0l 向右上方平移过点P 时,直线在y 轴上的截距最大,由24030x y x y +=+=⎧⎨⎩,得2010x y ==⎧⎨⎩,所以()20,10P ,此时max 4020601036005000z =⨯+⨯+=(元),故答案为5000. 15.【答案】5【解析】因为3OA OP x y =⋅+,所以设3z x y =+,则z 的几何意义为动直线3y x z =-+在y 轴上的截距, 作出约束条件202340 0x y x y y ⎧⎪⎨-≤+≥≥⎪⎩-所表示的平面区域,如图中阴影部分所示.当动直线3y x z =-+经过点C 时,z 取得最大值.由202340x y x y -=-+=⎧⎨⎩,解得()1,2A ,则3125max z =⨯+=,即OA OP ⋅的最大值为5. 16.【答案】712【解析】(),a b 所在区域是边长为3的正方形,正方形面积为239=,()2420f a b =-++>, 满足()2420f a b =-++>的区域是梯形,()2,0A ,()3,0B ,()3,3C ,1,32D ⎛⎫⎪⎝⎭,152113224ABCD S ⎛⎫=+⨯= ⎪⎝⎭梯形,由几何概型概率公式可得不等式()20f >成立的概率是2174912=,故答案为712.1.[2019·阜阳三中]{}n a 为等差数列,且7421a a -=-,30a =,则公差d =( ) A .2-B .12-C .12D .22.[2019·阜阳三中]在等比数列{}n a 中,若37a =,前3项和321S =,则公比q 的值为( ) A .1B .12-C .1或12-D .1-或12-3.[2019·阜阳调研]已知等比数列{}n a 中有31174a a a =,数列{}n b 是等差数列,且77a b =,则59b b +=( ) A .2B .4C .8D .164.[2019·南海中学]已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-5.[2019·长春实验]已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( ) A .29B .30C .31D .326.[2019·琼海模拟]朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发大米( ) A .192升B .213升C .234升D .255升7.[2019·长寿中学]在等差数列{}n a 中,满足4737a a =,且10a >,n S 是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7B .8C .9D .108.[2019·潮南冲刺]已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S =( ) A .3 B .9 C .10 D .139.[2019·诸暨适应]等差数列{}n a 的前n 项和是n S ,公差d 不等于零,若2a ,3a ,6a 成等比,则( )疯狂专练6 等差、等比数列一、选择题。

2020年全国统一高考数学试卷(文科)(新课标I)【含详答】

2020年全国统一高考数学试卷(文科)(新课标I)【含详答】

2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},故选D.24.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 2【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:z=1+2i−i=1+i,则|z|=√12+12=√2,故选C.25.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+12【答案】C【解析】【分析】根据题意列出a,ℎ′,ℎ的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,解得ℎ′a =√5+14.故答案选C.26.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 45【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则p=210=15.故选A.27.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.故答案选D.28.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8弦长,故选B.29.设函数f(x)=cos(ωx+π6)在[−π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π2【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(−4π9)=0得到w =−3+9k 4(k ∈Z),由T <2π<2T ,可得,由w =−3+9k 4(k ∈Z)可得k 的值,w 的值可得,即可求解.【解析】 解:由图可知f(−4π9)=cos(−4π9w +π6)=0,所以−4π9w +π6=π2+kπ(k ∈Z),化简可得w =−3+9k 4(k ∈Z),又因为T <2π<2T ,即2π|w |<2π<4π|w |,所以,当且仅当k =−1时,所以w =32,最小正周期T =2π|w |=4π3.故答案选C .30. 设alog 34=2,则4−a =( )A. 116B. 19C. 18D. 16【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题. 【解答】解:由alog 34=log 34a =2,可得4a =32=9, ∴4−a =(4a )−1=9−1=19, 故选B .31. 执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.故选C.32.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 32【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据a1+a2+a3=1,a2+a3+a4=2,结合等比数列的通项公式可求得等比数列的公比q,因为a6+a7+a8=q5(a1+a2+a3),从而得到答案.【解答】解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,故选D33.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合|OP|=2,可确定点P在以F1F2为直径的圆上,得到|PF1|2+|PF2|2=16,结合双曲线的定义可得|PF1|⋅|PF2|的值,从而得到答案.【解答】解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|= 4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为3,故选B.34.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.二、填空题(本大题共4小题,共20.0分)35.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.36.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由a⃗⊥b⃗ 可得a⃗⋅b⃗ =0,再把两向量坐标代入运算可得答案.【解答】解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.故答案为:537.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.【答案】2x−y=0【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】+1解:∵y=lnx+x+1,∴y′=1x+1=2,故x0=1,设切点坐标为(x0,y0),因为切线斜率为2,所以1x此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.故答案为:2x−y=0.38.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对n取偶数,再结合条件可求得前16项中所有奇数项的和,对n取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8= 17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13= 102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.故答案为7.三、解答题(本大题共7小题,共82.0分)39.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.40.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=4,所以a=4√3,所以S△ABC=12acsinB=12×4√3×4×12=4√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.41.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P−ABC的高,从而可求得体积.42.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x>−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e,当x <−2时,g(x)<0,当x >−2时,g(x)>0, 所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞). 【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度. (1)先求导,可直接得出函数的单调性;(2)先分离参数得a =e x x+2,再构造函数,利用导数研究函数的性质,即可得出a 的取值范围.43. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点. 【答案】解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ), 则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1⇒(9+m2)x2+6m2x+9m2−81=0,由韦达定理−3x C=9m2−819+m2⇒x C=−3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(−3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m 1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.44.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ−16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.【答案】【答案】(1)当k =1时,曲线C 1的参数方程为{x =costy =sint ,化为直角坐标方程为x 2+y 2=1, 表示以原点为圆心,半径为1的圆.(2)当k =4时,曲线C 1的参数方程为{x =cos 4ty =sin 4t ,化为直角坐标方程为√x +√y =1,曲线C 2化为直角坐标方程为4x −16y +3=0,联立{√x +√y =14x −16y +3=0,解得{x =14y =14, 所以曲线C 1与曲线C 2的公共点的直角坐标为(14,14).【解析】本题考查简单曲线的参数方程、极坐标方程,参数方程、极坐标方程与直角坐标方程的互化等知识,考查运算求解能力,难度一般.45. [选修4—5:不等式选讲]已知函数f(x)=│3x +1│−2│x −1│.(1)画出y =f(x)的图像;(2)求不等式f(x)>f(x +1)的解集.【答案】(1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:第21页,共21页(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图,联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.【解析】本题考查解绝对值不等式,考查了运算求解能力及数形结合的思想,难度一般.。

2020年高考文科数学考前选择填空专项练习-(

2020年高考文科数学考前选择填空专项练习-(

高考选择填空练习(十一)一、选择题:1.设全集{}0,1,2,3,4,5,6U =,集合{}0 2.5A x x =∈<<Z ,集合()(){}150B x x x =∈--<Z ,则()UA B =( ).A.{}0,1,2,3,6B.{}0,5,6C.{}1,2,4D.{}045,6,,2.若复数21iz =-,其中i 为虚数单位,则z =( ). A.1i + B.1i - C.1i -- D. 1i -- 3.已知命题:0p x ∀>,总有()1e 1x x +,则p ⌝为 ( ).A.00x ∃,使得()001e 1x x +B. 00x ∃>,使得()001e 1xx +C.00x ∃>,使得()001e 1x x +<D. 0x ∀,总有()001e 1xx +4.已知()()320f x ax bx ab =++≠,若()2017f k =,则()2017f -=( ).A.kB.k -C.4k -D. 2k - 5.将函数()()sin 2f x x ϕ=+的图像向右平移8π个单位长度,得到的图像关于原点对称,则ϕ的一个可能取值为( ).A.34π B.4π C.0 D. 4π- 6.若圆()()()221,x a y b a b -+-=∈∈R R 关于直线1y x =+对称的圆的方程是()()22131x y -+-=,则a b +=( ).A.4B.2C.6D.87.设α,β是两个不同的平面, l ,m 是两条不同的直线,且l α⊂,m β⊂,下列命题正确的是( ).A.若//l β,则//αβB. 若αβ⊥,则l m ⊥C.若l β⊥,则αβ⊥D. 若//αβ,则//l m8.如图所示,程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“MOD m n ”表示m 除以n 的余数),若输入的,m n 分别为2016,612,则输出的m =( ). A .0B .36C .72D .1809.的直线与双曲线22221x y a b-=恒有两个公共点,则双曲线离心率的取值范围是( ).A.[)2+∞,B. ()2+∞,C. (D.)+∞10.已知()f x 是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()0f x xf x '+<成立,若()a f =ππ,()()22b f =--,()1c f =,则,,a b c 的大小关系是( ).A.a b c >>B. c b a >>C. c a b >>D. a c b >>11.已知,x y 满足22110x y x y y ⎧+⎪+-⎨⎪⎩,则z x y =-的取值范围是( ).A.⎡⎤⎣⎦B. []1,1-C. ⎡⎣D. ⎡-⎣12.已知函数()21e 1xx f x x -=+,若()()12f x f x =,且12x x <,关于下列命题:()()()121f x f x >-;()()()212f x f x >-;()()()113f x f x >-;()()()224f x f x >-.正确的个数为( ).A.1个B.2个C.3个D.4个 二、填空题:13. 已知向量a 与b 的夹角为3π,1=a ,2=b ,则2-=a b . 14.数列{}n a 满足()*113n n n n a a a a n ++-=∈N ,数列{}n b 满足1n nb a =,且129+...+90b b b +=,则46______.b b ⋅= 15.已知函数()()322,f x x ax bx a a b =+++∈R 且函数()f x 在1x =处有极值10,则实数b 的值为_______.16.已知函数()y f x =是定义在R 上的偶函数,对于x ∈R ,都有()()()42f x f x f +=+成立,当[]12,0,2x x ∈且12x x ≠时,都有()()12120f x f x x x -<-,给出下列四个命题:①()20f -=;②直线4x =-是函数()y f x =的图像的一条对称轴;③函数()y f x =在[]4,6上为减函数;④函数()y f x =在(]8,6-上有四个零点. 其中所有正确命题的序号为_______.高考选择填空练习(十二)一、选择题:1.已知命题:,221xp x x ∀∈>+R ,则p ⌝( ).A.,221xx x ∀∈+R B. ,221x x x ∀∈<+R C. ,221xx x ∃∈+R D.,221x x x ∃∈>+R2.已知集合103x A x x ⎧+⎫=∈⎨⎬-⎩⎭Z,{}2|1,B y y x x A ==+∈,则集合B 的含有元素1的子集个数为( ).A. 5B. 4C. 3D. 23.若,x y 满足3040x y x y x -⎧⎪+⎨⎪⎩,则3x y +的最大值为( ).A. 0B. 2C. 4D. 64.复数()2i 3i =-( ).A.13i 5- B. 13i 5+ C. 3i 5+ D.3i5-5.已知定义在区间[]3,3-上的函数()2xf x m =+满足()26f =,在[]3,3-上随机取一个实数x ,则使得()f x 的值不小于4的概率为( ). A.56 B. 12 C. 13 D.166.执行右图所示的程序框图,如果输出a 的值大于2017,那么判断框内的条件是( ). A. 9?k >B. 9?kC. 10?k <D.11?k7.在等差数列{}n a 中,已知37,a a 是函数()243f x x x =-+的两个零点,则{}n a 的前9项和等于( ). A. 18- B. 9 C. 18 D.368.函数()133,1log ,1x x f x x x ⎧⎪=⎨>⎪⎩,则()1y f x =-的图像是( ).9.曲线()()22110x y x +-=上的点到直线10x y --=的距离的最大值为a ,最小值为b ,则a b -的值是( ).A.B. 2C.12+1 10. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则此几何体的表面积为( ).A. 42+B.62+C. 10D. 1211.设12,F F 是椭圆()2221024x y b b+=<<的左、右焦点,过1F 的直线l 交椭圆于A,B 两点,若22AF BF +的最大值为5,则椭圆的离心率为( ).A.D.A.12 B. C.12.已知函数()()2e 31x f x a x a x =--+,若函数()f x 在区间()0,ln3上有极值,则实数a 的取值范围是( ).A.1,2⎛⎫-∞-⎪⎝⎭ B. (),1-∞- C. 11,2⎛⎫-- ⎪⎝⎭D. ()(),20,1-∞-二、填空题:13.已知向量()()2,0,1,2==a b ,若λ-a b 与()1,2=-c 垂直,则实数λ的值为 .14.若1sin 33απ⎛⎫-=⎪⎝⎭,则cos 23απ⎛⎫+= ⎪⎝⎭.15.,则该三棱锥外接球的直径为 . 16.数列{}n a 的前n 项和为21n S n n =++,()()()*12nn n b a n =--∈N ,则数列{}n b 的前50项的和为 .限时训练(四十六)答案部分一、选择题二、填空题 13.2 14.91 15. 11- 16. ①②③④解析部分1.解析 由题意知{}1,2A =,{}2,3,4B =,{}1,2,3,4A B =,则(){}0,5,6UA B =.故选B.2.解析 ()()()21i 21i 1i 1i 1i z +===+-+-,1i z =-.故选B. 3.解析 易知0:0p x ⌝∃>,()001e 1xx +<.故选C.4.解析 由题知()()33224f x f x ax bx ax bx +-=++--+=,即()()4f x f x +-=,则()()4f x f x -=-,所以()()2017420174f f k -=-=-.故选C.5.解析 将函数()f x 的图像向右平移π8个单位长度后的函数()ππsin 284g x f x x ϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,所以π4k ϕ-=π,即π4k ϕ=+π.故选B. 6.解析 由题知31122311b a b a ++⎧=+⎪⎪⎨-⎪=-⎪-⎩,解得22a b =⎧⎨=⎩,则4a b +=.故选A.7.解析 对于A ,若//l β,不一定得到//αβ;对于B ,由αβ⊥,不一定得到l m ⊥;对于C ,若l β⊥,又l α⊂,所以αβ⊥,所以C 选项正确;对于D ,由//αβ不一定得到//l m .故选C.8.解析 第一次循环:180r =,612m =,180n =,继续循环; 第二次循环:72r =,180m =,72n =,继续循环; 第三次循环:36r =,72m =,36n =,继续循环; 第四次循环:0r =,36m =,0n =,继续循环; 输出36m =.故选B.9.解析由题意知b a >2222c a a ->,得c e a=>.故选D. 10.解析 构造函数()()G x xf x =,由()f x 为奇函数,则()G x 为偶函数,()()()G x f x xf x ''=+,当(),0x ∈-∞时,()0G x '<,()G x 单调递减,所以()0,x ∈+∞时,()G x 单调递增.由()a G =π,()()22b G G =-=,()1c G =,12<<π,所以c b a <<.故选A. 11.解析 由题作出x ,y 满足的可行域,如图所示.由图知,当z x y =-与圆相切时,截距最小,z最大,max z =;当z x y =-过点A 时,截距最大,z 最小,min 1z =-.故选D.12.解析 ()21e 1xx f x x -=+,()()()22223e 1x x x x f x x --+'=+,当0x >时,()0f x '<,()f x 单调递减;当0x <时,()0f x '>,()f x 单调递增.作出()f x 的图像如图所示.设()()12f x f x c ==,120x x <<,当0c →时,由图知必有12x x >,即120x x ->>,所以()()12f x f x -<,即(2)正确,(1)不正确,又()()12f x f x =,所以()()11f x f x >-,即(3)正确;由120x x ->>,所以120x x <-<,即()()12f x f x <-,即()()22f x f x <-,所以(4)正确.故选B.13.解析 由2222π24444cos44443-=-⋅+=+-=+-=a b a a b b a b a b , 可得22-=a b .故填2.14.解析 将()*113n n n n a a a a n ++-=∈N 变形为1113n n a a +-=,因为1n nb a =,所以可知数列{}n b 为等差数列. 又12990b b b +++=,所以91198939108902S b b ⨯=+⨯=+=,得12b =-, 所以4137b b d =+=,61513b b d =+=,则4671391b b ⋅=⨯=.故填91.15.解析 已知()322f x x ax bx a =+++在1x =处由极值10,所以()232f x x ax b '=++,则()1320f a b '=++=,()21110f a b a =+++=,联立以上两式,可得212032a a b a ⎧--=⎨=--⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩. ①当4a =,11b =-时,()23811f x x x '=+-,可知11,13x ⎛⎫∈-⎪⎝⎭时,()0f x '<,()1,x ∈+∞时,()0f x '>,则()f x 在1x =处有极小值成立;②当3a =-,3b =时,()2363f x x x '=-+,可知x ∈R 时,()0f x '恒成立,所以()f x 在1x =处无极值.综上可知,实数b 的值为11-,故填11-.16.解析 已知()()()42f x f x f +=+,所以()()()2422f f f -+=-+,则()20f -=,故①正确;因为()f x 为偶函数,且()20f -=,所以()20f =,则()()4f x f x +=,可知()f x 是以4为周期的周期函数,则()()4f x f x +=-,()()44f x f x +=-+,()()4f x f x -=--,所以()()44f x f x -+=--,所以直线4x =-是函数()y f x =的图像的一条对称轴故②正确;又[]12,0,2x x ∈,且12x x ≠时,都有()()12120f x f x x x -<-,所以()f x 在[]0,2上单调递减,因为()f x 为偶函数,所以()f x 在[]2,0-上单调递增,因为()f x 周期为4,则()f x 在[]4,6上单调递减,故②正确;可知函数()f x 在(]8,6-上有四个零点()2,0,()6,0,()2,0-,()6,0-.故④正确.故填①②③④.限时训练(四十二)答案部分一、选择题二、填空题13. 23- 14.79- 15. 16. 49解析部分1.解析 命题:,221xp x x ∀∈>+R ,则命题:,221xp x x ⌝∃∈+R .故选C .2.解析 由{}{}13,1,0,1,2A x x x =-<∈=-Z , 得{}1,2,5B =,则集合B 的含有元素1的子集有{}1,{}1,2,{}1,5,{}1,2,5,共4种.故选B .3.解析 画出可行域如图所示.设3z x y =+,得3y z x =-,平移直线3y z x =-.由图可知,当直线3y z x =-经过点B 时,直线3y z x =-的截距最大.由304x y x y -=⎧⎨+=⎩,得()1,3B ,此时z 最大, 3136z =⨯+=,所以3x y +的最大值为6.故选D.4.解析 复数()()()()213i 2213ii 3i 13i 13i 13i 5--===-++-.故选A. 5.解析 由已知, ()2226f m =+=,得2m =.要使得()f x 的值不小于4,则()24xf x m =+,得1x,又[]3,3x ∈-,所以[]1,3x ∈.故()f x 的值不小于4的概率为()31213363P -===--.故选C.6.解析 模拟程序框图的运行过程.已知1,1k a ==,满足循环条件,执行循环体, 6a =,3k =; 满足循环条件,执行循环体, 33a =,5k =; 满足循环条件,执行循环体, 170a =,7k =;满足循环条件,执行循环体, 857a =,9k =; 满足循环条件,执行循环体, 4294a =,11k =;由题意,此时应该不满足循环条件.退出循环.输出4294a =. 由此可根据选项知判断框内的条件为10?k <.故选C.7.解析 已知37,a a 是函数()243f x x x =-+的两个零点,所以374a a +=.又数列{}n a 为等差数列,所以{}n a 的前9项和()()19379991822a a a a S ++===.故选C . 8.解析 由已知,得()()1133,01log 1,0x x f x x x -⎧⎪-=⎨-<⎪⎩.当0x =时, 3y =.故排除选项A ,D ;可得()()13ln 3,011,01ln 3x x f x x x -⎧-⎪'-=⎨<⎪-⎩,则函数()1f x -在()0,+∞上单调递减, 在(),0-∞上单调递增.故选C.9.解析 曲线()()22110x y x +-=表示以()0,1为圆心,以1为半径的左半圆.因为圆心到直线10x y --=的距离d ==所以圆上的点到直线10x y --=的最大距离1a =,最小距离为()0,0到直线10x y --=的距离,即2b ==,则1122a b -=-=+.故选C .10.解析 如图所示,还原该几何体为四棱锥A BCDE -,将四棱锥A BCDE -放入一个棱长为2的正方体内,可知AB AC ==3AE AD ==.则此几何体的表面积21112222226222⨯+⨯+⨯⨯=+.故选B .11.解析 由题意,得22112248AB AF BF AF BF AF BF a ++=+++==,若22AF BF +的最大值为5,则AB 的最小值为3.可知当AB 过点1F 且垂直x 轴时AB 最小,为22b a,即223b a =,得23b =.又1c ===,所以离心率12c e a ==.故选A. 12.解析 已知()()2e 31xf x a x a x =--+.令()()()e 231xf x a x ag x '=--+=.由函数()f x 在区间()0,ln3上有极值,等价于在()g x 在区间()0,ln3上单调且有零点,则()()0ln30g g <,即()()3132ln3310a a a a -----<,可得210a +<,解得12a <-. 此时()e 20xg x a '=-<,所以()g x 在区间()0,ln3上单调递减,所以a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.故选A.13.解析 因为λ-a b 与c 垂直,所以()0λ-⋅=a b c ,即()()()2,01,21,2230λλ-⋅-=--=⎡⎤⎣⎦,解得23λ=-.故填23-.14.解析 由ππ1sin sin cos 32663αααπ⎡π⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 得22π17cos 22cos 1213639ααπ⎛⎫⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故填79-.15.解析 ,则可知它一定可以放在棱长为1的正方体内,则该三棱锥的外接球即为此正方体的外接球, 故该三棱锥外接球的直径即为正方体的体对角线,..16.解析 由题知, 113a S ==,且21n S n n =++,()2211111n S n n n n -=-+-+=-+,以上两式相减,得()*122,n n n a S S n n n -=-=∈N ,则()11321b =-⨯-=-,()()()*1222,nn b n n n =--∈N ,所以5012501249698S b b b =+++=-+-+-+=()121234474849-+-+-++-+=()12244949-+-+=.故填49.。

2020高考数学(文科)专题复习通用版(跟踪检测):选填题特训选择、填空题特训6含答案

2020高考数学(文科)专题复习通用版(跟踪检测):选填题特训选择、填空题特训6含答案
A.-1B.1
C.-7D.7
B解析根据题意、作出满足条件的平面区域、如图所示、由 解得 则A(k、k+3).由图知、当目标函数z=2x+y经过点A(k、k+3)时、z最大、故2k+k+3=6、解得k=1.故选B项.
11.如图1为某省20xx年1~4月份快递业务量统计图、图2为该省20xx年1~4月份快递业务收入统计图、对统计图理解错误的是( )
C.100D.110
B解析由题意可知“三角垛”从上向下、每层果子数构成一个数列{an}、其中a1=1、a2=3、a3=6、a4=10、可变形为a1= 、a2= 、a3= 、a4= 、由此得数列{an}的通项an= 、则a10= =55.故选B项.
9.(20xx·河南名校联盟联考)榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫、凹进去的部分叫卯、榫和卯咬合、起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿、山西悬空寺等、如图是一种榫卯构件中榫的三视图、则该榫的体积为( )
A.2+8πB.8+2π
C.4+8πD.8+4π
A解析由三视图知该榫头是由上下两部分构成、上方为长方体(底面是边长为1的正方形、高为2)、下方为圆柱(底面圆半径为2、高为2).其体积为圆柱与长方体体积之和、所以V=(π×22)×2+1×1×2=8π+2.故选A项.
10.若x、y满足 且z=2x+y的最大值为6、则k的值为( )
8.(20xx·甘肃兰州诊断)朱世杰是元代著名数学家、他所著的《算学启蒙》中提到一些堆垛问题、如“三角垛果子”、就是将同样大小的果子堆垛成正三棱锥、每层皆堆成正三角形、从上向下数、每层果子数分别为1,3,6,10、….现有一个“三角垛果子”、其最底层每边果子数为10、则该层果子数为( )
A.50B.55

2020高考数学艺考生冲刺选择填空综合训练十套精品

2020高考数学艺考生冲刺选择填空综合训练十套精品

B. 3
C. 1
2
A 【解析】 k 1, S 3;
k 2, S 1 ; 2
k 3, S 1 ; 3
k 4, S 2, 以4为周期,所以k 2016, S 2,故选A.
() D. 1
3
10.某几何体的三视图如下图,其正视图中的曲线部分为半圆,则
该几何体的表面积为
()
z
A.-1-i
B.1+i
C.1-i
D.-1+i
B 【解析】 由复数计算得 2 z2 1 i 2i 1 i,故选B. z
4.△ABC中,a= 7,b=3,c=2,则∠A= ( )
A.30°
B.45°
C.60°
C 【解析】 由余弦定理直接得
b2 c2 a2 9 4 7 1
A. 10
B. 10 2
C. 2
D. 2 2
C 【解析】 依题意得, (x 1) 21 0,得x 3, 又a b (2, 2) (1, 1) (1,1),
所以 | a b | 2,故选C.
6.等比数列{an}的各项为正数,且a5a6+a4a7=18,则
同理根据QB

PB,可得m a


ny xa
, 两式相乘可得m2
a2

n2 y2 x2 a2
,
Q 点P(m, n)为双曲线M 上除A、B外的一个动点,
m2 n2 1, 整理得n2 b2 (m2 a2 ), x2 b2 y2 1,故选C.
a2 b2
a2
a2 a4
cos A

,
2bc

2020届高考数学陕西省文数试题含解析

2020届高考数学陕西省文数试题含解析

陕西省高考文科数试模拟题一一、选择题(每题一个选项,每题5分共60分)1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D2.设z是复数z的共轭复数,且(1﹣2i)z=5i,则|z|=()A.3 B.5 C.√3D.√53.一个体积可忽略不计的小球在边长为2的正方形区域内随机滚动,则它在离4个顶点距离都大于1的区域内的概率为()A.π4B.1−π4C.π2−1D.2π4.在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2b cos C”是“△ABC是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.如图,在底面边长为1,高为2的正四棱柱ABCD﹣A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P﹣BCD的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.56.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.12D.17.已知两个非零单位向量e1→,e2→的夹角为θ,则下列结论不正确的是()A.∀θ∈R,(e1→+e2→)⊥(e1→−e2→)B.e1→在e2→方向上的投影为sinθC.e1→2=e2→2D.不存在θ,使e1→•e2→=√28.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q)C.(非p)∧q D.p∧(非q)9.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是()A.(x﹣2)2+(y﹣1)2=1 B.(x﹣2)2+(y+1)2=1C.(x+2)2+(y﹣1)2=1 D.(x﹣3)2+(y﹣1)2=110.抛物线y2=ax(a>0)的准线与双曲线C:x28−y24=1的两条渐近线所围成的三角形面积为2√2,则a的值为()A.8 B.6 C.4 D.211.函数y=sin(2x+π3)的图象经下列怎样的平移后所得的图象关于点(−π12,0)中心对称()A.向左平移π12B.向右平移π12C.向左平移π6D.向右平移π612.已知定义在R上的函数f(x)满足f(3﹣x)=f(3+x),且对任意x1,x2∈(0,3)都有f(x2)−f(x1)x2−x1<0,若a=2−√3,b=log23,c=e ln4,则下面结论正确的是()A.f(a)<f(b)<f(c)B.f(c)<f(a)<f(b)C.f(c)<f(b)<f(a)D.f(a)<f(c)<f(b)二、填空题(每小题5分,每题5分共20分)13.若sin(π2+α)=−35,α∈(0,π),则sinα=.14.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为.15.已知正方体内切球的体积为36π,则正方体的体对角线长为.16.已知椭圆x2a12+y2b12=1(a1>b1>0)与双曲线x2a22−y2b22=1(a2>0,b2>0)有公共的左、右焦点F1,F2,它们在第一象限交于点P,其离心率分别为e1,e2,以F1,F2为直径的圆恰好过点P,则1e12+1e22=.三.解答题:(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项等比数列{a n}满足a1+a2=6,a3﹣a2=4.(1)求数列{a n}的通项公式;(2)记b n=1log2a n log2a n+1,求数列{b n}的前n项和T n.18.(12分)销售某种活海鲜,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为Y元.(Ⅰ)求Y关于x的函数关系式;(Ⅱ)结合直方图估计利润Y不小于800元的概率.19.(12分)如图1,在平面多边形BCDEF中,四边形ABCD为正方形,EF∥AB,AB=2EF=2,沿着AB 将图形折成图2,其中∠AED=90°,AE=ED,H为AD的中点.(1)求证:EH⊥BD;(2)求四棱锥D﹣ABFE的体积.20.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)上的点到两个焦点的距离之和为23,短轴长为12,直线l与椭圆C交于M、N两点.(I)求椭圆C的方程;(II)若直线l与圆O:x2+y2=125相切,证明:∠MON为定值.21.(12分)已知函数f(x)=lnx+a(1﹣x).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:{x =tcosαy =1+tsinα(t 为参数,α∈[0,π)),曲线C 的极坐标方程为:ρ=4sinα. (1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于P ,Q 两点,若|PQ|=√15,求直线l 的斜率. [选修4-5:不等式选讲]23.设函数f (x )=|x +1|+|x ﹣2|. (1)求不等式f (x )≤3 的解集;(2)当x ∈[2,3]时,f (x )≥﹣x 2+2x +m 恒成立,求m 的取值范围.一、选择题(每题一个选项,每题5分共60分)1.【详解详析】因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B . 故选:B .2.【详解详析】由(1﹣2i )z =5i ,得z =5i1−2i =5i(1+2i)(1−2i)(1+2i)=−2+i , ∴|z |=|z |=√5. 故选:D .3.【详解详析】以四个顶点为圆心,1为半径作圆,当小球在边长为2的正方形区域内随机滚动,离顶点的距离不大于1,其面积为π, ∵边长为2的正方形的面积为4,∴它在离4个顶点距离都大于1的区域内的概率为P =4−π4=1−π4.故选:B .4.【详解详析】∵当a =2b cos C 时, ∴cos C =a2b ∵cos C =a 2+b 2−c 22ab∴a2b =a 2+b 2−c 22ab,化简整理得b =c∴△ABC 为等腰三角形.反之,“△ABC 是等腰三角形,不一定有b =c , 从而a =2b cos C 不一定成立.则“a =2b cos C ”是“△ABC 是等腰三角形”的充分不必要条件. 故选:A .5.【详解详析】三棱锥P ﹣BCD 的正视图是底面边长为1,高为2的三角形,面积为:1; 三棱锥P ﹣BCD 的假视图也是底面边长为1,高为2的三角形,面积为:1; 故三棱锥P ﹣BCD 的正视图与侧视图的面积之和为2, 故选:A .6.【详解详析】由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,∴这组样本数据完全正相关,故其相关系数为1, 故选:D .7.【详解详析】∵|e 1→|=|e 2→|=1,∴(e 1→+e 2→)⋅(e 1→−e 2→)=e 1→2−e 2→2=1−1=0,∴(e 1→+e 2→)⊥(e 1→−e 2→),∴A 正确;e 1→在e 2→方向上的投影为|e 1→|cosθ=cosθ,∴B 错误;显然e 1→2=e 2→2,∴C正确;e 1→⋅e 2→=cosθ<√2,∴不存在θ,使e 1→•e 2→=√2,∴D 正确. 故选:B .8.【详解详析】根据线面平行的判定,我们易得命题p :若直线a ∥b ,直线b ⊂平面α,则直线a ∥平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题q :若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题;故:A 命题“p ∧q ”为假命题; B 命题“p ∨(¬q )”为假命题; C 命题“(¬p )∧q ”为真命题; D 命题“p ∧(¬q )”为假命题.故选:C .9.【详解详析】设圆心坐标为(a ,b )(a >0,b >0), 由圆与直线4x ﹣3y =0相切,可得圆心到直线的距离d =|4a−3b|5=r =1,化简得:|4a ﹣3b |=5①,又圆与x 轴相切,可得|b |=r =1,解得b =1或b =﹣1(舍去),把b =1代入①得:4a ﹣3=5或4a ﹣3=﹣5,解得a =2或a =−12(舍去), ∴圆心坐标为(2,1),则圆的标准方程为:(x ﹣2)2+(y ﹣1)2=1. 故选:A .10.【详解详析】抛物线y 2=ax 的准线为x =−a4, 双曲线C :x 28−y 24=1的两条渐近线为y =±√22x ,可得两交点为(−a 4,√28a ),(−a 4,−√28a ), 即有三角形的面积为12•a 4•√24a =2√2, 解得a =8, 故选:A .11.【详解详析】假设将函数y =sin (2x +π3)的图象平移ρ个单位得到:y =sin (2x +2ρ+π3)关于点(−π12,0)中心对称∴将x =−π12代入得到:sin (−π6+2ρ+π3)=sin (π6+2ρ)=0 ∴π6+2ρ=k π,∴ρ=−π12+kπ2,当k =0时,ρ=−π12 故选:B .12.【详解详析】根据题意,定义在R 上的函数f (x )满足f (3﹣x )=f (3+x ),则函数f (x )关于直线x =3对称,c =e ln 4=4,f (c )=f (4)=f (2), 又由对任意x 1,x 2∈(0,3)都有f(x 2)−f(x 1)x 2−x 1<0,则函数f (x )在(0,3)上为减函数,若a =2−√3=3,b =log 23,则有0<a <1<b <2,则f (c )<f (b )<f (a ),。

2020届高考数学选择题填空题专项练习(文理通用)10 函数零点01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)10 函数零点01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)10函数零点01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·河北高三期末(文))函数131()2x f x x =-的零点所在的区间为( ) A .1(0,)4B .11(,)43C .11(,)32D .1(,1)2【答案】C 【解析】【分析】先判断出函数的单调性,结合零点存在定理即可判断出零点所在区间. 【详解】函数131()2x f x x =-,所以函数在R 上单调递增,因为1113331311111033322f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1113321211111022222f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以函数零点在11,32⎛⎫ ⎪⎝⎭故选:C【点睛】本题考查了根据零点存在定理判断零点所在区间,注意需判断函数的单调性,说明零点的唯一性,属于基础题.2.(2020·江西高三(文))方程()3sin =f x x 零点的个数是( )A .3B .4C .5D .6【答案】C【解析】大致图形如图所示,接下来比较与在处的切线斜率,,时,,即在处的切线方程为轴,又,在,因此在轴右侧图象较缓,由图象可知,共有个交点,故选C .【点晴】本题考查的是两个函数的交点个数问题.首先运用函数与方程的思想,把给定方程转化成为两个基本函数的交点问题,再通过函数的性质与比较函数在相同自变量处的函数值的大小关系画出两个基本函数图象,需要注意的是,两个函数都过点,而轴右侧的高低情况需要比较两个函数在处的切线斜率得到,为本题的易错点.3.(2019·四川高三月考(理))函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点之和为()A .-1B .1C .-2D .2【答案】A 【解析】【分析】由函数零点与方程的根的关系可得函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点即方程320x -=,3log 60x +=的根,解方程后再将两根相加即可得解.【详解】令320x -=,解得3log 2x =,令3log 60x +=,解得3log 6x =-,则函数()f x 的零点之和为3331log 2log 6log 13-==-,故选A. 【点睛】本题考查了分段函数零点的求解,重点考查了对数的运算,属基础题.4.(2020·河南高三期末(理))已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0ff x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93xf x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以令()()0f f x =,得()32log 93x f x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.5.(2020·山东枣庄八中高三月考)已知()f x 是定义在[10,10]-上的奇函数,且()(4)f x f x =-,则函数()f x 的零点个数是( )A .3B .4C .5D .6【答案】C 【解析】【分析】由定义在[10,10]-上的奇函数可知(0)0f =且零点关于原点对称,利用(0)0f =,由()(4)f x f x =-可得到部分零点【详解】()f x Q 是定义在[10,10]-上的奇函数,(0)0f ∴=,且零点关于原点对称,∴零点个数为奇数,又()(4)f x f x =-Q ,(0)(4)0f f ∴==,(4)(4)0f f -=-=,(4)(44)(8)0f f f ∴-=+==,(8)(8)0f f -=-=,()f x ∴的零点至少有0,4,±8±这5个,【点睛】本题主要考查函数的零点、函数奇偶性的应用以及抽象函数的解析式,意在考查综合应用所学知识解答问题的能力,属于中档题.6. (2020·江西高三(理))已知函数()ln(||1)cos 2f x x a x =+++只有一个零点,则a =( )A .2B .4C .3D .2-【答案】D 【解析】【分析】判断函数为偶函数,根据偶函数的对称性即可求解.【详解】因为()ln(||1)cos()2()f x x a x f x -=-++-+=,所以函数()f x 为偶函数,又函数()f x 只有一个零点, 故(0)0f =,所以2a =-.故答案为:2- 【点睛】本题主要考查了函数的奇偶性,函数的零点,属于容易题.7.(2020·湖北高三月考(理))已知函数23()123x x f x x =+-+,若()(2020)h x f x =-的零点都在(),a b 内,其中a ,b 均为整数,当b a -取最小值时,则b a +的值为( )A .4038B .2019C .4037D .4039【答案】D 【解析】【分析】求导分析23()123x x f x x =+-+的单调性,再根据零点存在定理与函数的平移分析即可.【详解】因为2'()10f x x x =-+>恒成立.故23()123x x f x x =+-+为增函数.所以()f x 有且仅有一个零点.又(0)10=>f ,115(1)110236f -=---=-<,故()f x 零点在区间()1,0-之间.又()(2020)h x f x =-为函数()f x 往右平移2020个单位,所以()(2020)h x f x =-的零点落在()2019,2020上.由题意可知, b a -取最小值时2020,2019b a ==,所以4039b a +=.故答案为:4039【点睛】本题主要考查了函数的零点存在性定理与函数平移的问题,属于基础题.8.(2020·河南南阳中学高三月考(理))已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>≤ ⎪⎝⎭,其图象与直线1y =-相邻两个交点的距离为π,若()1f x >对于任意的,123x ππ⎛⎫∈-⎪⎝⎭恒成立,则ϕ的取值范围是( ) A .,63ππ⎡⎤⎢⎥⎣⎦B .,122ππ⎡⎤⎢⎥⎣⎦C .,123ππ⎡⎤⎢⎥⎣⎦D .,62ππ⎛⎤ ⎥⎝⎦【答案】A【解析】由题意可得相邻最低点距离1个周期,T π=,2ω=,()1f x >,即()sin 20x ϕ+>,222,k x k k Z πϕππ≤+≤+∈,即,,222x k k k Z ϕϕπππ⎡⎤∈-+-++∈⎢⎥⎣⎦所以,123ππ⎛⎫- ⎪⎝⎭⊆,,222k k k Z ϕϕπππ⎡⎤-+-++∈⎢⎥⎣⎦,包含0,所以k=0, ,,222k Z ϕϕπ⎡⎤--+∈⎢⎥⎣⎦,122223πϕϕππ⎧-≥-⎪⎪⎨⎪-+≥⎪⎩,63ππϕ≤≤. 【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k 为几个特殊值,再与已知集合做运算.9.(2020·天津南开中学高三月考)已知函数22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,函数()3(2)g x f x =--,则函数()()y f x g x =-的零点的个数为( )A .2B .3C .4D .5【答案】A【解析】由22,2()(2),2⎧-≤=⎨->⎩x x f x x x ,()3(2)g x f x =--,所以2222231,0()()231,0244155,2⎧+-+=+-≤⎪=-=--+=-<≤⎨⎪-+-+=-+>⎩x x x x x y f x g x x x x x x x x x x 所以当0x ≤时,零点为x =一个,当02x <≤时,无零点,当2x >以零点个数为2个,故选A . 考点:函数的零点个数的判断.【方法点睛】该题属于考查函数的零点个数的问题,在解题的过程中,需要先确定出函数解析式,根据题中所给的函数()f x 的解析式求得函数()g x 的解析式,从而得到()()f x g x -关于x 的分段函数,通过对每一段上的解析式进行分析,求得相应的函数的零点,注意结合自变量的取值范围进行相应的取舍,最后确定出该题的答案.10.(2020·河南鹤壁高中高三月考(文))已知函数2()cos2cos 1(0)222xxxf x ωωωω=+->的周期为π,当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()f x m =恰有两个不同的实数解1x ,2x ,则()12f x x +=( ) A .2 B .1C .﹣1D .﹣2【答案】B 【解析】【分析】对()f x 进行化简,利用周期为π,求出2ω=,根据()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,得到12x x +的值,再求出()12f x x +的值.【详解】2()cos2cos 1222xxxf x ωωω=+-cos 2sin 6x x x πωωω⎛⎫=+=+ ⎪⎝⎭由2T ππω== ,得2ω=.()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.作出函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知,123x x π+=,()1212sin 221362f x x ππ⎛⎫∴+=⨯+=⨯= ⎪⎝⎭.故选B 项. 【点睛】本题考查正弦型函数的化简及其图像与性质,属于简单题.11. (2020·河北工业大学附属红桥中学高三月考)已知函数32,0(),0x x x f x lnx x ⎧-=⎨->⎩…,若函数()()g x f x x a=--有3个零点,则实数a 的取值范围是( )A .[0,2)B .[0,1)C .(-∞,2]D .(-∞,1]【答案】A 【解析】【分析】本道题先绘制()f x 图像,然后将零点问题转化为交点问题,数形结合,计算a 的范围,即可. 【详解】绘制出()f x 的图像,()f x x a =+有3个零点,令()h x x a =+与()f x 有三个交点,则()h x 介于1号和2号之间,2号过原点,则0a =,1号与()f x 相切,则()2'321,1f x x x =-==-,1y =,代入()h x 中,计算出2a =,所以a 的范围为[)0,2,故选A .【点睛】本道题考查了数形结合思想和函数与函数交点个数问题,难度中等.12.(2020·湖南长沙一中高三月考(理))已知偶函数()y f x =的定义域为R ,当0x ≥时,()23sin ,01221,1x x x f x x π-⎧≤≤⎪=⎨⎪+>⎩函数()()2221g x x ax a a R =-+-∈,若函数()()y g f x =有且仅有6个零点,则实数a 的取值范围为( )A .(]1,2B .()1,2C .(]2,3D .()2,3【答案】B 【解析】【分析】画出()f x 的图像,先求解()22210g x x ax a =-+-=,再数形结合列出关于a 的不等式求解即可.【详解】由题意画出()f x 的图像如图所示,由()22210g x x ax a =-+-=解得11x a =+,21x a =-,由函数()()y g f x =有且仅有6个零点知113011a a <+<⎧⎨<-≤⎩,解得12a <<,【点睛】本题主要考查了数形结合解决函数零点个数的问题,需要根据函数图像与带参数的方程交点的个数,列出对应的不等式进行求解.属于中等题型.第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020届高考数学选择题填空题专项练习(文理通用)06 数列02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)06 数列02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)06数列02第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·广东高三期末)记n S 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为( )A .36B .32C .28D .24【答案】A 【解析】【分析】利用等差数列的求和公式及其性质即可得出. 【详解】16256256()6()3()22a a a a S a a ++===+=36. 【点睛】本题考查了等差数列的求和公式及其性质,还考查了推理能力与计算能力.2.(2020·陕西高三)设数列{a n }是正项等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则公比q =( )A .13B .3C .12D .2【答案】C 【解析】【分析】结合等比数列的通项公式及求和公式即可求解.【详解】由a 2a 4=1,S 3=7,可知公比q ≠1,则()241311171a q a q q⎧=⎪-⎨=⎪-⎩,联立方程可得,q =12或a =﹣13 (舍),【点睛】本题主要考查等比数列的通项公式及求和公式,还考查了运算求解的能力,属于基础题. 3.(2020·福建高三模拟)已知等差数列{}n a 的前n 项和为n S ,公差为-2,且7a 是3a 与9a 的等比中项,则10S 的值为( )A .-110B .-90C .90D .110【答案】D 【解析】【分析】根据等比中项的定义得2739a a a =,结合公差可求出首项,从而可得答案.【详解】∵7a 是3a 与9a 的等比中项,∴2739a a a =,又数列{}n a 的公差为2-,∴2111(12)(4)(16)a a a -=--,解得120a =,∴20(1)(2)222n a n n =+-⨯-=-,∴1101010()5(202)1102a a S +==⨯+=,故选:D .【点睛】本题主要考查等差数列的前n 项和,考查等比中项的应用,属于基础题.4.(2020·定远县育才学校高三)在等比数列{}n a 中,182n a a +=,3281n a a -=,且前n 项和121n S =,则此数列的项数n 等于( )A .4B .5C .6D .7【答案】B 【解析】【分析】由等比数列的性质得出181n a a =,结合182n a a +=,得出1a 和n a 的值,并设等比数列{}n a 的公比为q ,由11211n n a a qS q-==-,求出q 的值,然后利用等比数列的通项公式可求出n 的值.【详解】设等比数列{}n a 的公比为q ,由等比数列的性质可得:13281n n a a a a -==,又182n a a +=,1a ∴和n a 是方程282810x x -+=的两根,解方程得1x =或81x =.若等比数列{}n a 递增,则11a =,81n a =, 121n S =Q ,118112111n a a q qq q--==--,解得3q =,18113n -∴=⨯,解得5n =;若等比数列{}n a 递减,则181a =,1n a =,121n S =Q ,18112111n a a q q q q --==--,解得13q =,118113n -⎛⎫∴=⨯ ⎪⎝⎭,解得5n =. 则此数列的项数n 等于5,选:B.【点睛】本题考查等比数列项数的计算,涉及等比数列性质和等比数列前n 项和的计算,解题的关键就是求出等比数列的公比,考查运算求解能力,属于中等题.5.(2020·四川高三月考)已知等差数列}{n a 满足1592a a a π++=,则28cos()a a +=( )A .12-B .C .12D .2【答案】A 【解析】【分析】利用等差数列的性质求得28a a +的值,由此求得28cos()a a +的值.【详解】由于等差数列}{n a 满足15955232,3a a a a a ππ++===,所以28cos()a a +=()541cos 2coscos cos 3332a ππππ⎛⎫==+=-=- ⎪⎝⎭. 【点睛】本小题主要考查等差数列的性质,考查诱导公式,属于基础题.6.(2020·山西高三开学考试)已知数列{}n a 的通项公式为()370.9nn a n =+⨯,则数列{}n a 的最大项是( )A .5aB .6aC .7aD .8a【答案】C 【解析】【分析】先讨论出数列{}n a 的单调性,根据单调性得出答案.【详解】由1310913710n n a n a n ++=⨯>+,解得203n <,又*n N ∈,所以6n ≤.于是127a a a <<<L , 当7n ≥时,11n na a +<,故78a a >>L ,因此最大项为7a .故选:C 【点睛】本题考查求数列的最大项和数列的单调性,属于中档题. 7.(2020·山西高三月考)公差不为零的等差数列{}n a 中,367,,a a a 成等比数列,则46a a =( ) A .72- B .73C .213-D .137【答案】B 【解析】【分析】设{}n a 的公差为()d d ≠0,根据367,,a a a 成等比数列,可得2637a a a =,化简求得1a d ,的关系再求解.【详解】设{}n a 的公差为()d d ≠0,由367,,a a a 成等比数列,可得2637a a a =,即2111(5)(2)(6)a d a d a d +=++,即1213a d =-,故4613+6713103a d d a d d -==-+.故选:B【点睛】本题主要考查等差数列与等比数列的基本运算,还考查运算求解的能力,属于基础题.8. (2020·福建高三月考)已知等差数列{}n a 的前n 项和为n S ,且1310a a +=,972S =.数列{}n b 的首项为3,且13n n b b +=-,则210020a b =( )A .3-B .13C .3D .13-【答案】D 【解析】【分析】由等差数列可得132195122210993672a a a a d S a a d +==+=⎧⎨==+=⎩,解得141a d =⎧⎨=⎩,即可求得10a ,再由13n n b b +=-可得数列{}n b 是周期数列,求得2020b ,即可求解.【详解】由题,因为132195122210993672a a a a d S a a d +==+=⎧⎨==+=⎩,所以141a d =⎧⎨=⎩,即()413n a n n =+-=+,所以1013a =, 又13b =,且13n n b b +=-,则21b =-,33b =,所以数列{}n b 是周期为2的数列,则202021b b ==-,所以20201013a b =-,故答案为:13-【点睛】本题考查等差数列的通项公式的应用,考查数列的周期性的应用,考查运算能力. 9. (2020·四川省泸县第二中学高三)设等比数列{}n a 的前n 项和为n S .若637S S =-,则4332a a a a +=+( )A .2-B .2C .1 或2-D .3【答案】A 【解析】【分析】先根据637S S =-求出等比数列{}n a 的公比q ,然后化简4332a a a a ++可得结果.【详解】设等比数列{}n a 的公比为q .①当1q =时,637S S =-不成立.②当1q ≠时,由637S S =-得61317(1)(1)11a a q q q q =--⨯---,整理得317q +=-,即38q =-,解得2q =-.所以43333222(1)2(1)q q a a a a q a a a a ++===+=-+.【点睛】利用公式求等比数列的前n 项和时,在公比q 不确定的情况下,一定要注意对公比取值的分类讨论,即解题时分为1q =和1q ≠两种情况求解,考查计算能力,属于基础题.10. (2020·江苏高三开学考试)已知等差数列{}n a 的前n 项和为S n ,若366,8S S ==-,则9S =____.A .42B .24C . 42-D .24-【答案】C【解析】【分析】由3S ,63S S -,96S S -成等差数列,代入366,8S S ==-可得9S 的值.【详解】由等差数列的性质可得:3S ,63S S -,96S S -成等差数列,可得:633962()S S S S S -=+-,代入366,8S S ==-,可得:942S =-。

2020届高考数学选择题填空题专项练习(文理通用)04 数学文化01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)04 数学文化01(含解析)

2020届高考数学选择题填空题专项练习(文理通用)04数学文化01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·安徽六安一中高三月考(理))《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( )A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸【答案】B 【解析】【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解.【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==,所以410.5a =,所以公差541d a a =-=-,所以1257 2.5a a d =+=尺。

故选:B .【点睛】本题考查等差数列应用问题,考查等差数列的前n 项和与通项公式的基本量运算,属于中档题. 2.(2019·湖南长沙一中高三月考(理))公元263年左右,我国数学家刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 的值为( )( 1.732≈,sin150.2588︒≈,sin7.50.1305︒≈)A .12B .24C .48D .96【答案】B 【解析】【分析】列出循环过程中S 与n 的数值,满足判断框的条件即可结束循环. 【详解】模拟执行程序,可得336,3sin 602n S ︒===,不满足条件 3.10,12,6sin 303S n S ︒≥==⨯=, 不满足条件 3.10,24,12sin15120.2588 3.1056S n S ︒≥==⨯=⨯=,满足条件 3.10S ≥,退出循环,输出n 的值为24.故选:B.【点睛】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.3.(2020·江西高三(理))中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( )A .15B .14C .13D .12【答案】D 【解析】【分析】总共有10种结果,其中相生的有5种,由古典概型的计算公式计算出概率即可【详解】从五种不同属性的物质中随机抽取2种,共2510C =种,而相生的有5种,则抽到的两种物质不相生的概率511102P =-=故选:D 【点睛】本题考查的是计算古典概型的概率,较简单.4.(2020·江西高三(理))太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗⋯⋯,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为()()()2222224,11110x y A x y x y x y x ⎧⎫⎧+≤⎪⎪⎪⎪⎪⎪=+-≤++≥⎨⎨⎬⎪⎪⎪≤⎪⎪⎪⎩⎩⎭或,设点(,)∈x y A ,则2z x y =+的取值范围是( )A .[25--,25]B .[25-,25]C .[25-,25]+D .[4-,25]+ 【答案】C 【解析】【分析】结合图形,平移直线2z x y =+,当直线与阴影部分在上方相切时取得最大值.【详解】如图,作直线20x y +=,当直线上移与圆22(1)1y x +-=相切时,2z x y =+取最大值,此时,圆心(0,1)到直线2z x y =+的距离等于1,即15=,解得z 的最大值为:25+,当下移与圆224x y +=相切时,2x y +取最小值,同理25=,即z 的最小值为:25-,所以[25,25]z ∈-+.故选:C .【点睛】本题考查线性规划的数据应用,考查转化思想以及计算能力;考查分析问题解决问题的能力. 5.(2020宁夏银川一中高三月考(理))《张丘建算经》是中国古代的数学著作,书中有一道题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺布”,则第30天织布( )A .7尺B .14尺C .21尺D .28尺【答案】C 【解析】【详解】依题意可知,织布数量是首项为15a =,公差5d =的等差数列,且13030303902a a S +=⨯=,即()30155390a ⨯+=,解得3021a =(尺).故选:C【点睛】本小题主要考查等差数列的前n 项和公式,考查中国古代数学文化,属于基础题.6. (2019·湖南长沙一中高三月考(文))南宋数学家秦九韶在《数书九章》中提出的秦九韶算法至今仍是多项式求值比较先进的算法.已知201720162018201721f x x x x =++⋅⋅⋅++()),下列程序框图设计的是求0f x ()的值,在“”和“”中应填入的执行语句分别是 ( )A .2016i ≤和n i =B .2017i ≤和1n i =+C .2016i ≤?和2017n i =-D .2017i ≤?和2018n i =-【答案】D 【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】初始值1i =,2018=n .2018S =,该程序的计算方式:第一步:计算020182017S x =+,中的结果应为2017n =;第二步:计算20000201820172016201820172016S x x x x =++=++(),中的结果应为2016n =;…;故处可填2017i ≤?,处应填2018n i =一,故选D.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.2020·山西高三月考(文))《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )A .47尺 B .16 29尺C .8 15尺D .16 31尺【答案】B【解析】由题可知女子每天织布尺数呈等差数列,设为{}n a ,首项为15a =,30390S =,可得30295303902d ⨯⨯+=,解之得1629d =. 8. (2019·安徽高三月考(文))长方、堑堵、阳马、鳖臑这些名词出自中国古代数学名著《九章算术·商功》,其中阳马和鳖臑是我国古代对一些特殊椎体的称呼.取一长方,如图长方体1111ABCD A B C D -,按平面11ABC D 斜切一分为二,得到两个一模一样的三棱柱,称该三棱柱为堑堵,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个,其中与矩形为底另有一棱与底面垂直的三棱锥1D ABCD -称为阳马,余下的三棱锥11D BCC -是由四个直角三角形组成的四面体称为鳖臑,已知长方体1111ABCD A B C D -中2AB =,3BC =,14AA =,按以上操作得到阳马,则阳马的最长棱长为( )A.B .5 CD.【答案】C 【解析】【分析】阳马的最长棱长为长方体的体对角线,计算得到答案.【详解】根据题意知阳马的最长棱长为长方体的体对角线,∴= C. 【点睛】本题考查了立体几何中线段的最值问题,意在考查学生的空间想象能力.9.(2020·福建高三(理))中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法一二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):函数()y f x =在1x x =,2x x =,()3123x x x x x =<<处的函数值分别为()11y f x =,()22y f x =,()33y f x =则在区间[]3,i x x 上()f x 可以用二次函数来近似代替:()()()111212()f x y k x x k x x x x =+-+--,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-,若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π是( ) A .35B .1625C .1725D .2425【答案】D【解析】【分析】先阅读题意,再结合过两点的直线的斜率公式求解即可.【详解】函数()sin y f x x ==在0x =,2x π=,x π=处的函数值分别为1(0)0y f ==,212y f π⎛⎫== ⎪⎝⎭,3()0y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--.故2222444()2f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭,即2244sin x x x ππ≈-+,22224(2)4224sin 55525πππππ≈-⨯+⨯=,【点睛】本题考查了斜率公式,重点考查了阅读理解能力,属中档题.10. (2020·四川省泸县第一中学高三月考(文))2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为( )A .13B .25C .23D .35【答案】C 【解析】【分析】先设这6位外国人分别记为a ,A ,B ,C ,D ,E ,其中a 未关注此次大阅兵,列举出从这6位外国人中任意选取2位的基本事件总数,再选出2位都关注大阅兵的基本事件数,代入古典概型公式即可求得概率. 【详解】这6位外国人分别记为a ,A ,B ,C ,D ,E ,其中a 未关注此次大阅兵,则基本事件有(),a A ,(),a B ,(),a C ,(),a D ,(),a E ,(),A B ,(),A C ,(),A D ,(),A E ,(),B C ,(),B D ,(),B E ,(),C D ,(),C E ,(),D E ,共15个,其中被采访者都关注了此次大阅兵的基本事件有10个,故所求概率为102153=.故选:C 【点睛】本题考查古典概型,考查运算求解能力.11.(2020·河南高三期末(理))“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )A .56383B .57171C .59189D .61242【答案】C 【解析】【分析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前n 项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为5735⨯=的等差数列,记数列{}n a 则()233513512n a n n =+-=- ,令35122020n a n =-≤,解得25835n ≤.,故该数列各项之和为5857582335591892⨯⨯+⨯=.故选:C. 【点睛】本题考查等差数列的应用,属基础题。

2020年高考文科数学选择、填空40个小考点满分冲刺

2020年高考文科数学选择、填空40个小考点满分冲刺

2020年高考文科数学选择、填空40个小考点满分冲刺考点1 集合的运算1.(2019资阳模拟)已知集合A ={﹣2,﹣1,0,1},A ={x |1+=x y },则A ∩B =( D )A .{-2,-1,0,1}B .{-2,-1,0}C .{0,1}D .{-1,0,1}2.(2019柳州一模)已知集合A ={0,2,4},B ={y |xy 2=,x ∈A},则A ∩B =( B ) A .{0,2,4}B .{4}C .{2,4}D .{0,1,2,4}3.(2019南宁二模)设集合A ={x |042<-x x },B ={﹣1,0,1,2},则A ∩B =( C ) A .{-1,0}B .{0,1}C .{1,2}D .{0,1,2}4.(2019贵阳、安顺二模)已知A ={x |012≤-x },B ={x ∈Z |x <2},则A ∩B =( A ) A .{-1,0,1}B .{0,1}C .{1}D .{0,1,2}5.(2019桂林一模)已知集合A ={x |a x ≥},B ={0,1,2},若A ∩B =∅,则a 的取值范围是( D ) A .(-∞,0) B .(0,+∞) C .(-∞,2) D .(2,+∞)6.(2019南宁一模)设全集U =R ,集合A ={x |1-<x },B ={x |5327<+<-x },则∁U (A ∪B )=( C ) A .{x |-3<x <-1} B .{x |x ≤-3或x ≥-1| C .{x |x ≥1} D .{x |x ≥-3}考点2 复数的运算1.(2019桂林、崇左二模)若复数z 1=1+3i ,z 2=2+i ,则=( A )A .1+iB .3+3iC .﹣1+7iD .3+4i2.(2019柳州一模)设i 为虚数单位,则复数123-=i i z 的虚部为( D )A .iB .i -C .﹣1D .13.(2019南宁二模)复数z 满足z •i =1+i (i 是虚数单位),则|z|=( B ) A .lB .C .2D .44.(2019南宁一模)已知复数z =+2i ﹣1,则它的共轭复数在复平面内对应的点的坐标为( D )A .(1,﹣3)B .(﹣1,3)C .(1,3)D .(﹣1,﹣3) 5.(2019梧州一模)i 是虚数单位,R 是实数集,a ∈R ,若,则a =( B ) A .B .C .2D .﹣26.(2019山东模拟)若复数z =,其中i 为虚数单位,则下列结论正确的是( C )A.z的虚部为﹣i B.|z|=2C.z2为纯虚数D.z的共轭复数为﹣1﹣i考点3 统计图1.(2019南宁二模)去年年底甲、乙、丙、丁四个县人口总数为m万,各县人口占比如图,其中丙县人口为70万,则去年年底甲县的人口为( C )A.162万B.176万C.182万D.186万2.(2019辽阳一模)某市教体局将从甲、乙、丙、丁四人中选一人参加全省100米仰泳比赛,现将他们最近集训的10次成绩(单位:秒)的平均数与方差制成如下表格:根据表中的数据,应选哪位选手参加全省的比赛( D )A.甲B.乙C.丙D.丁3.(2019柳州一模)传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,如图的茎叶图是两位选手在个人追逐赛中比赛得分,则下列说法正确的是( D )A.甲的平均数大于乙的平均数 B.甲的中位数大于乙的中位数C.甲的方差小于乙的方差 D.甲的方差大于乙的方差4.(2019资阳模拟)空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:如图是某市10月1日﹣20日AQI指数变化趋势:下列叙述错误的是( C )A.这20天中AQI指数值的中位数略高于1001B.这20天中的中度污染及以上的天数占4C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好5.(2019山东模拟)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是( D )A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个6.(2019桂林模拟)某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:°C)数据,绘制如下折线图,那么,下列叙述错误的是( D )A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10℃的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势考点4 简单的随机抽样1.(2019北京西城区模拟)一个年级有10个班,每个班有50名同学,随机编为01至50号.为了解他们的学习情况,要求每个班的30号同学留下来进行问卷调查,这里运用的抽样方法是( D )A.分层抽样法B.抽签法C.随机数表法D.系统抽样法2.(2019四川模拟)成都市某区A,B,C三所学校进行高三联考后,准备用分层抽样的方法从所有参考的高三理科学生中抽取容量为120的样本进行成绩分析,已知A,B,C三所学校参考的理科学生分别有300人,400人,500人,则应从C校中抽取的学生人数为50 .3.(2019湖北龙泉中学、荆州中学、宜昌一中模拟)我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三乡中共抽出500人服役,则西乡比南乡多抽出的人数为( C )A.20 B.60 C.80 D.200解:北乡8100人,西乡9000人,南乡5400人,对应的人数比为8100:9000:5400=9:10:6,则西乡抽取的人数为×500=200,南乡抽取人数为×500=120,则西乡比南乡多200﹣120=80人.4.(2019成都模拟)某单位有男女职工共600人,现用分层抽样的方法,从所有职工中抽取容量为50的样本,已知从女职工中抽取的人数为15,那么该单位的女职工人数为180 .5.(2019张掖模拟)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为 6 .6.(2019唐山三模)为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验先将500件产品编号为000,001,0020,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读(为了便于说明,下面摘取了随机数表,附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是( D )16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 75A.548 B.443 C.379 D.217考点5 概率的计算1.(2019桂林一模)如图,是3世纪汉代赵爽在注解《周髀算经》时给出的弦图,它也被2002年在北京召开的国际数学家大会选定为会徽,正方形ABCD内有四个全等的直角三角形,在正方形内随机取一点,则此点取自中间小正方形部分的概率是( B )A.B.C.D.2.(2019梧州一模)游戏《王者荣耀》对青少年的不良影响巨大,被戏称为“王者农药”.某车间20名青年工人都有着不低的游戏段位等级,其中白银段位11人,其余人都是黄金或铂金段位.从该车间随机抽取一名工人,若抽得黄金段位的概率是0.2,则抽得铂金段位的概率是( C )A.0.20 B.0.22 C.0.25 D.0.42解:黄金段位的人数是0.2×20=4,则抽得铂金段位的概率是p==0.25.3.(2019贵阳、安顺二模)如图,在边长为a的正方形内随机投掷1000个点,若曲线C的方程为x2+y2=a2,(x ≥0,y≥0,a>0),则落入阴影部分的点的个数估计值为( D )A.600 B.667 C.750 D.785解:由几何概型中的面积型公式可得:落入阴影部分的点的个数估计值为1000×=250π≈785.4.(2019保山一模)某省新高考实施“3+1+2”模式,语文、数学、英语三科必考,在物理、化学、生物、政治、历史、地理六学科中,物理与历史必须选考一科,再从剩下的五个学科中选考两科,该省全体考生中选考物理没有选考历史的概率等于0.5,选考历史而没有选考物理的概率等于0.3,那么同时选考物理和历史的概率等于( B )A.0.30 B.0.20 C.0.15 D.0.10解:某省新高考实施“3+1+2”模式,语文、数学、英语三科必考,在物理、化学、生物、政治、历史、地理六学科中,物理与历史必须选考一科,再从剩下的五个学科中选考两科,该省全体考生中选考物理没有选考历史的概率等于0.5,选考历史而没有选考物理的概率等于0.3,∴同时选考物理和历史的概率p=1﹣0.5﹣0.3=0.2.5.(2019南宁一模)不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为.6.(2019资阳模拟)从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为.考点6 线性回归方程1.(2019四川名校联考)已知变量x与y线性相关,由观测数据算得样本的平均数,,线性回归方程中的系数b,a满足b﹣a=2,则线性回归方程为( D )A.B.C.D.2.(2019江西重点中学联考)如表是某个体商户月份x与营业利润y(万元)的统计数据:由散点图可得回归方程y=﹣0.7x+a,据此模型预测,该商户在5月份的营业利润为( B )A.1.5万元B.1.75万元C.2万元D.2.25万元3.(2019广州名校冲刺)已知某种商品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如表对应数据根据表中数据可得回归方程,其中,据此估计,当投入6万元广告费时,销售额约为( B )万元A.60 B.63 C.65 D.694.(2019甘肃模拟)根据如下样本数据:得到的回归方程为.样本点的中心为(3,0.1),当x增加1个单位,则y近似( A )A.增加0.8个单位B.减少0.8个单位C.增加2.3个单位D.减少2.3个单位5.(2019湖北七市联考)为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:(x1,y1)((x2,y2)(x3,y3),(x4,y4)(x5,y5)根据收集到的数据可知x1+x2+x3+x4+x5=100,由最小二乘法求得回归直线方程为y=0.67x+54.8,则y1+y2+y3+y4+y5的值为( B )A.68.2 B.341 C.355 D.366.26.(2019峨眉山市模拟)如表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中m值为( D )A.4 B.3.15 C.4.5 D.3考点7 简单空间图形的三视图1.(2019成都七中一模)“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为( B )A. B. C. D.2.(2018桂林、百色、梧州等联考)如图,正方体ABCD﹣A1B1C1D1中,E为棱BB1中点,用平面AEC1截去该正方体的上半部分,则剩余几何体的正(主)视图为( B )A. B. C. D.3.(2019山东模拟)如图正方体AC1,点M为线段BB1的中点,现用一个过点M,C,D的平面去截正方体,得到上下两部分,用如图的角度去观察上半部分几何体,所得的左视图为( B )A.B. C. D.4.(2019长沙模拟)如图,在正方体AC1中,E,F,G,H分别是AA1,BB1,CD,C1D1的中点,则四面体EFGH在平面CC1D1D上的正投影是( C )A.B. C. D.5.(2018淮南二模)如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是( A )A.①④B.②③C.②④D.①②6.(2018资阳模拟)如图所示,在正方体ABCD﹣A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各面上的投影不可能是( B )A.三角形B.正方形 C.四边形 D.等腰三角形解:光线由上向下照射可以得到的投影如下:,光线有面ABB1A1照射,可以得到的投影如下:,光线由侧面照射可以得到的投影如下:.考点8 简单逻辑用语1.(2019桂林一模)“k<4”是“0<k<4”的( B )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(2019梧州一模)命题“若x2<1,则﹣1<x<1”的逆否命题是( D )A.若x2≥1,则x≥1且x≤﹣1 B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1 D.若x≥1或x≤﹣1,则x2≥13.(2019成都七中模拟)已知p:“∀x∈R,x2﹣2mx+m2﹣4=0”,则¬p为( B )A.∀x∈R,x2﹣2mx+m2﹣4=0 B.∃x0∈R,C.不存在x∈R,x2﹣2mx+m2﹣4=0 D.∀x∈R,x2﹣2mx+m2﹣4≠04.(2019桂林、崇左二模)已知a,b∈R,则“”是“a<b”的( D )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2019贵州模拟)设θ∈R,则“0<θ<”是“0<sinθ<”的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.(2019凉山州模拟)命题p:是的充分不必要条件;命题q:x>1是的充要条件,则以下为真命题的是( B )A.p∧q B.p∧(¬q) C.(¬p)∧(¬q) D.(¬p)∧q考点9 平面向量1.(2019资阳模拟)已知向量=(2,1),=(m,2),若⊥,则实数m的值为( B )A.﹣4 B.﹣1 C.1 D.42.(2019南宁二模)若向量=(2,3),=(﹣1,2),则•()=( A )A.5 B.6 C.7 D.83.(2019梧州一模)平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为 1 .4.(2019桂林、崇左二模)已知向量=(1,1),=(2,﹣1),=(m,3),若⊥(),则m=( B )A.2 B.1 C.0 D.﹣15.(2019贵阳一模)向量,是相互垂直的单位向量,若向量=2+3,=﹣m(m∈R),•=1,则m=.6.(2019贵州模拟)在直角梯形ABCD中,AB=4,CD=2,AB∥CD,AB⊥AD,E是BC的中点,则•()=( D )A.8 B.12 C.16 D.20解:建立坐标系如图:则A(0,0),B(4,0),D(0,2),C(2,2),E(3,1);所以=(5,3),=(4,0),则•()=20.考点10 函数的值与分段函数1.(2019山东模拟)已知函数f(x)=,则f(f(2))=( B )A.2 B.﹣2 C.1 D.﹣12.(2019资阳模拟)已知,则f(f(﹣1))=.3.(2019贵阳、安顺二模)已知f(x)=e ax﹣e﹣ax+2(a∈R),若f(3)=1,则f(﹣3)=( D )A.﹣1 B.1 C.2 D.34.(2019贵阳、安顺二模)函数f(x)=,则 f[f(0)] .5.(2019贵州模拟)函数f(x)=则f(﹣1)+f(1)=( C )A.0 B.1 C.2 D.e26.(2019桂林一模)已知函数,若f(a)=2,则实数a=( D )A.﹣1 B.4 C.或1 D.﹣1或4考点11 简单线性规划1.(2019资阳模拟)已知实数x,y满足,则x+2y的最大值为 5 .2.(2019桂林、崇左二模)若x,y满足,则的最大值为 5 .3.(2019遂宁模拟)已知点P的坐标(x,y)满足,则的最大值( A )A.2 B.C.D.84.(2019南宁一模)已知实数x,y满足,则目标函数z=4x﹣3y的最小值为( B )A.﹣24 B.﹣22 C.﹣17 D.﹣75.(2019南宁二模)已知x,y满足条件,若z=x+2y的最小值为0,则m=( B )A.1 B.2 C.3 D.46.(2019云南名校联考)已知a>0,实数x,y满足,若z=3x+y的最小值是2,则a=( C )A.B.C.D.1考点12 推理与证明1.(2019广元二模)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .2.(2019桂林一模)在学校举行的一次年级排球赛比赛中,李明、张华、王强三位同学分别对比赛结果的前三名进行预测:李明预测:甲队第一,乙队第三.张华预测:甲队第三,丙队第一.王强预测:丙队第二,乙队第三.如果三人的预测都对了一半、则名次为第一、第二、第三的依次是( A )A.丙、甲、乙B.甲、丙、乙C.丙、乙、甲D.乙、丙、甲3.(2018柳州一模)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.甲、乙、丙、丁、戊、已、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2014年是“干支纪年法”中的甲午年,那么2021年是“干支纪年法”中的( C )A.壬子年B.辛子年C.辛丑年D.庚丑年4.(2018百色模拟)甲、乙、丙、丁四支足球队举行足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负.若甲、乙、丙队的比赛成绩分别是两胜一负、三负、一胜两负,则丁队的比赛成绩是( D )A.两胜一负B.一胜两负C.三负D.三胜解:由题意可得,甲、乙、丙、丁四支足球队举行足球友谊赛,每支球队都要与其它三支球队进行比赛,且比赛要分出胜负,则共需进行=6场,∵每场都会产生胜方和负方,∴比赛共产生6胜6负,∵甲、乙、丙队的比赛成绩分别是两胜一负、全败、一胜两负,已有3胜6负,∴丁队的比赛成绩是全胜,即3胜.5.(2018东北三省四市联考)中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行计算,算筹的摆放形式有横纵两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如3266用算筹表示就是,则8771用算筹可表示为( C )A.B.C.D.6.(2019雅安模拟)设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r=.将此结论类比到空间四面体:设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=( C )A.B.C.D.解:设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r=.设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:V=(S1+S2+S3+S4)r,∴r=.考点13 直线方程1.(2019浙江西湖区模拟)若直线ax+2y+1=0与直线x+y﹣2=0互相垂直,则实数a=( B )A.1 B.﹣2 C.﹣D.﹣2.(2018曲靖一模)已知直线l1:ax+2y﹣1=0与直线l2:(a+1)x﹣ay+4=0垂直,则a为( D )A.1 B.0 C.﹣1 D.0或13.(2019重庆一中模拟)已知直线l1:mx+(m﹣3)y+1=0,直线l2:(m+1)x+my﹣1=0为,若l1⊥l2则m=( A )A.m=0或m=1 B.m=1 C.m=﹣D.m=0或m=﹣4.(2019宝鸡二模)若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为( A )A.1 B.﹣2 C.1或﹣2 D.5.(2019珠海二模)若直线y=2x与直线(a2﹣a)x﹣y+a+1=0平行,则a=( B )A.a=﹣1 B.a=2 C.a=﹣1或2 D.a=1或﹣26.(2018兰州模拟)已知直线3x+4y+3=0与直线6x+my﹣14=0平行,则它们之间的距离是( A )A.2 B.8 C.D.考点14 由三视图求面积、体积1.(2019佛山模拟)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( B )A.8 B.6 C.4 D.22.(2019泸州模拟)某几何体的三视图如图所示,则该几何体的体积是( A )A.16π﹣16 B.8π﹣8 C.16π﹣8 D.8π﹣163.(2019峨眉山市模拟)某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的体积是( B )A.B.C.D.32解:由已知中的三视图,四边形都是边长为4的正方形,两条虚线互相垂直,可知该几何体是一个正方体的上面挖去了一个底面为正方形,边长为4,高为2的四棱锥.正方体的体积减去挖去的四棱锥,∴正方体体积V=43=64,四棱锥=.那么:该几何体为:64﹣=.4.(2019南宁二模)一个几何体的三视图如图所示,则该几何体的体积为( C )A.3 B.4 C.5 D.6解:由已知三视图得到几何体如图:由团长时间得到体积为=5.5.(2019宜宾模拟)一个四棱柱的底面是正方形,且侧棱与底面垂直,其正(主)视图如图所示,则其表面积等于( D )A.16 B.8 C.D.6.(2019雅安模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( C )A.2+B.4+C.2+2D.5考点15 球的有关问题1.(2019曲靖一模)一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( B )A.8πcm2B.12πcm2C.16πcm2D.20πcm22.(2019贵阳一模)三棱锥S﹣ABC中,SA,SB,SC两两垂直,且SA=3,SB=4,SC=5,其顶点都在球O的球面上,则球O的表面积为50π.3.(2019贵州模拟)已知某几何体三视图如图所示,其中正视图和侧视图都是矩形,俯视图为直角三角形,则该几何体的外接球表面积为29π.解:由三视图还原原几何体如图,该几何体为正三棱柱,底面为直角三角形,两直角边长分别为2,3,侧棱长为4,把该几何体变形为长方体,则长方体的对角线长为.则其外接球的半径为,其外接球表面积为.4.(2019成都双流中学一模)一个几何体的三视图如图所示,则该几何体的外接球的表面积为( A )A.20πB.16πC.12D.8解:根据几何体的三视图,转换为几何体是:故几何体的外接球半径R满足:4R2=4+4+12=20,解得:,故:S=4.5.(2019四川名校联考)已知三棱锥D﹣ABC的每个顶点都在球O的表面上,AB⊥AC,AB=6,,顶点D 在平面ABC上的投影E为BC的中点,且DE=5,则球O的表面积为( D )A.16πB.17π C.60π D.64π解:如图,在△ABC中,AB⊥AC,AB=6,,∴,.设球O的半径为R,则15+(5﹣R)2=R2,∴R=4.∴球O的表面积为4πR2=64π.6.(2019攀枝花模拟)三棱锥P﹣ABC的各顶点都在同一球面上,PC⊥底面ABC,若PC=AC=1,AB=2,且∠BAC =60°,则此球的表面积等于( D )A.28πB.20πC.7πD.5π解:如图,在底面三角形ABC中,由AC=1,AB=2,∠BAC=60°,利用余弦定理可得:,∴AC2+BC2=AB2,即AC⊥BC,取D为AB中点,则D为△BAC的外心,可得三角形ABC外接圆的半径为1,设三棱锥P﹣ABC的外接球的球心为O,连接OP,则OP=.即三棱锥P﹣ABC的外接球的半径为R =.∴三棱锥球的外接球的表面积等于.考点16 直线、平面之间的位置关系1.(2019柳州一模)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是( C )A.若m∥α,m∥β,则α∥βB.若m∥α,α∥β,则m∥βC.若m⊂α,m⊥β,则α⊥βD.若m⊂α,α⊥β,则m⊥β2.(2019河南名校联考)已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是( C )A.若c⊂平面α,则a⊥α B.若c⊥平面α,则a∥α,b∥αC.存在平面α,使得c⊥α,a⊂α,b∥α D.存在平面α,使得c∥α,a⊥α,b⊥α3.(2018曲靖一模)在空间中,a、b是两条不同的直线,α、β是两个不同的平面,下列说法正确的是( D )A.若a∥α,b∥a,则b∥α B.若a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥β D.若α∥β,a⊂α,则a∥β4.(2019南宁一模)如图,长方体ABCD﹣A1B1C1D1的棱AB和A1D1的中点分别为E,F,AB=6,AD=8,AA1=7,则异面直线EF与AA1所成角的正切值为( A )A.B.C.D.5.(2019桂林、崇左二模)在正方体ABCD﹣A1B1C1D1中,直线A1C1与平面ABC1D1所成角的正弦值为( D )A.1 B. C. D.6.(2019广元二模)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM 与AN所成角的余弦值为( C )A.B.C.D.考点17 同角三角函数间的基本关系与诱导公式1.(2019自贡模拟)sin(﹣675°)=.2.(2019攀枝花模拟)已知角的终边经过点,则x的值为( C )A.±2 B.2 C.﹣2 D.﹣43.(2018南充模拟)已知tanα=2,则的值为( A )A.﹣3 B.3 C.D.﹣4.(2019桂林、崇左二模)已知α是第一象限的角,且tanα=,则cosα=( D )A.B.C.D.5.(2018呼和浩特二模)若sinα=,且α为第二象限角,则tanα的值等于( D )A.B.﹣C.D.﹣6.(2019甘肃天水一中七模)已知sinα﹣cosα=0,则cos(2)=﹣1 .解:因为sinα﹣cosα=0,所以(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣sin2α=0,即有sin2α=1,则cos(2)=﹣sin2α=﹣1.考点18 两角和与差的三角函数1.(2019柳州一模)定义:=ad﹣bc,如=1×4﹣2×3=﹣2,则=( C )A.0 B. C. D.12.(2019内江三模)已知,,则=( C )A.﹣7 B.7 C.D.3.(2019成都模拟)若,且,,则sin(α+β)=( B )A.B.C.D.4.(2019宜宾模拟)已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,点P(1,),在角α的终边上,则=.5.(2019南宁一模)已知α∈(﹣),tanα=sin76°cos46°﹣cos76°sin46°,则sinα=( A )A.B.C.D.解:由tanα=sin76°cos46°﹣cos76°sin46°=sin(76°﹣46°)=sin30°=,且α∈(﹣),∴α∈(0,),联立,解得sinα=.6.(2019广元模拟)已知cosα+2cos(α+)=0,则tan(α+)=( C )A.B.C.3D.考点19 二倍角公式1.(2019桂林模拟)已知2sin(+α)=,则sin2α=( A )A.B.C.﹣D.﹣2.(2019资阳模拟)在直角坐标系xOy中,角α的始边为x轴的非负半轴,其终边上的一点P的坐标为(2m,m)(其中m<0),则cos2α=( B )A.B.C.D.3.(2019遂宁模拟)已知角α在第二象限,若,则tan2α=( C )A.B.C.D.4.(2019内江市、眉山市等六市联考)若,则cos2α=.5.(2019凉山州模拟)若,则cos4θ=( B )A .B .C .D .6.(2019成都双流中学一模)已知直线1l :x •sin α+y ﹣1=0,直线2l :x ﹣3y •cos α+1=0,若1l ⊥2l ,则sin2α=( D ) A .B .C .﹣D .解:因为l 1⊥l 2,所以sin α﹣3cos α=0,所以tan α=3,所以sin2α=2sin αcos α===.考点20 三角函数的图象与性质 1.(2018广西模拟)函数的图象的对称轴方程为( C ) A . B . C .D .2.(2019雅安模拟)函数y =cos (2x+)的图象的对称轴方程可能是( B )A .x =﹣B .x =﹣C .x =D .x =3.(2019四川模拟)函数f (x )=sin (ωx+)的最小正周期为π,则f (x )的图象的一条对称轴方程是( B ) A .x =﹣B .x =C .x =D .x =4.(2019保山一模)函数y =2019sin ()(0≤x ≤2π)的单调递增区间是 [0,π] . 5.(2019曲靖一模)函数f (x )=sin (ωx+)(ω>0)的最小正周期为π,则该函数图象( D ) A .关于直线x =对称B .关于直线x =对称C .关于点(,0)对称 D .关于点(,0)对称6.(2019宜宾模拟)已知函数y =sin3x ,则下列说法正确的是( B ) A .函数图象关于y 轴对称 B .函数图象关于原点对称 C .函数在上是减函数 D .函数在上是增函数考点21 函数()ϕω+=x A y sin 的图象变换1.(2019黔东南州一模)将函数f (x )=cos (4x ﹣)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的最小正周期是( B ) A .B .πC .2πD .4π2.(2019南宁二模)已知将函数f (x )=sin (2x+φ)(0<φ<)的图象向左平移φ个单位长度后,得到函数g (x )的图象.若g (x )是偶函数,则f ()=( A ) A .B .C .D .13.(2019遂宁模拟)将函数f (x )=2cos (2x+)的图象向左平移t (t >0)个单位长度,所得图象对应的函数为奇函数,则t 的最小值为 .4.(2019四川名校联考)将函数的图象向右平移个周期后得到的函数为g (x ),则g (x )的图象的一条对称轴可以是( A ) A .B .C .D .5.(2019峨眉山市模拟)将函数的图象上所有的点向右平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( C ) A . B . C .D .6.(2019桂林、崇左二模)将函数的图象向右平移个单位,得到函数g (x )的图象,则下列说法不正确的是( C )A .g (x )的周期为πB .C .是g (x )的一条对称轴 D .g (x )为奇函数考点22 由()ϕω+=x A y sin 的部分图象确定其解析式1.(2019南宁一模)已知P (,1),Q (,﹣1)分别是函数f (x )=sin (ωx+φ)(ω>0,|φ|<)图象上相邻的最高点和最低点,则ωφ=( C ) A .B .C .D .2.(2019乐山三模)已知函数f (x )=Asin ωx (A >0,ω>0)与g (x )=cos ωx 的部分图象如图所示,则( B )A.A=1,ω=B.A=2,ω=C.A=1,ω=D.A=2,ω=3.(2019成都双流中学一模)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin3x的图象,只需将f(x)的图象( B )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位4.(2019攀枝花模拟)函数f(x)=Asin(ωx+φ)()的部分图象如图所示,现将此图象向右平移个单位长度得到函数g(x)的图象,则函数g(x)的解析式为( D )A.g(x)=2sin2x B.C.D.5.(2019梧州一模)若函数f(x)=sin(ωx+φ)的部分图象如图所示,则f(x)的单调递增区间是( A )A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ,2kπ+](k∈Z)6.(2019内江市、眉山市等六市联考)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,点(0,),(,0),()在图象上,若x1,x2∈(),x1≠x2,且f(x1)=f(x2),则f(x1+x2)=( D )A.3 B.C.0 D.﹣考点23 辅助角公式1.(2019贵阳、安顺二模)函数y=3sinx+4cosx,x∈R的值域是( B )A.[﹣7,7] B.[﹣5,5] C.[﹣4,4] D.[﹣3,3]2.(2019桂林一模)函数f(x)=sinx﹣cosx(0<x<π)的值域是(﹣1,] .3.(2019南宁二模)函数y=2sin xcosx﹣cos 2x的单调增区间是( D )A.[kπ﹣,k](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ,kπ+](k∈Z)D.[k,kπ+](k∈Z)4.(2018桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为( A )A.3 B.2 C.0 D.﹣25.(2019资阳模拟)若函数f(x)=asinx+cosx在[﹣]为增函数,则实数a的取值范围是( A )A.[1,+∞)B.(﹣∞,﹣1]C.[﹣1,1] D.(﹣∞,﹣1]∪[1,+∞)6.(2019成都市石室中学一模)已知函数f(x)=sinx+3cosx,且f(x)分别在x1,x2处取得最大值和最小值,则|x1+x2|的最小值为( B )A.B.C.πD.解:∵f(x)=2sin(x+),∴x1+=2k1π+,即x1=2k1π+(k1∈Z)x2+=2k2π﹣,即x2=2k2π﹣(k2∈Z)∴|x1+x2|=|2(k1+k2)π﹣|(k1,k2∈Z)当k 1+k 2=0时,|x 1+x 2|取得最小值.考点24 程序框图1.(2019柳州一模)如图所示的程序框图,运行程序后,输出的结果等于( B )A .6B .5C .4D .32.(2019资阳模拟)定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则式子(4tan π)⊗(32cosπ)的值是( D )A .﹣1B .21 C .1 D .23 3.(2019桂林、崇左二模)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为12,18,则输出的a 的值为( D )A.1 B.2 C.3 D.64.(2019贵阳、安顺二模)运行如图所示框图的相应程序,若输入a,b的值分别为log3e和ln3则输出M的值是( C )A.2 B.1 C.0 D.﹣15.(2019梧州一模)执行如图所示的程序框图,若输出的结果为2,则输入的正整数a的可能取值的集合是( C )A.{1,2,3,4,5} B.{1,2,3,4,5,6}C.{2,3,4,5} D.{2,3,4,5,6}解:输入a值,此时i=0,执行循环体后,a=2a+3,i=1,不应该退出;再次执行循环体后,a=2(2a+3)+3=4a+9,i=2,应该退出;故,解得:1<a≤5,故输入的正整数a的可能取值的集合是{2,3,4,5}.6.(2019海口模拟)元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示若将“没了壶中酒”改为“剩余原壶中的酒量”即输出值是输入值的,则输入的x=( C )A.B.C.D.解:i=1时.x=2x﹣1,i=2时,x=2(2x﹣1)﹣1=4x﹣3,i=3时,x=2(4x﹣3)﹣1=8x﹣7,i=4时,退出循环,此时8x﹣7=x,解得x=.考点25 正弦定理与余弦定理1.(2019内江三模)已知△ABC的一个内角为120°,并且三边长构成公差为2的等差数列,则△ABC的周长为( A )A.15 B.18 C.21 D.242.(2019贵阳、安顺二模)△ABC的内角A,B,C的对边分别为a,b,c,且acosB﹣bcosA+2c=0,则=﹣.解:由题意结合正弦定理有:sinAcosB﹣sinBcosA+2sinC=0,即sinAcosB﹣sinBcosA+2sin(A+B)=0,整理变形可得:3sinAcosB=﹣cosAsinB,可得:=﹣,即=﹣.3.(2019贵阳一模)平行四边形ABCD中,AB=2,AD=3,AC=4,则BD=( B )A.4 B.C.D.4.(2019成都七中模拟)已知△ABC的内角A,B,C的对边分别为a,b,c,AD为角A的角平分线,交BC于D,,,BD=2,则b=( A )A.B.C.D.5.(2019四川模拟)三角形ABC中,∠BAC=30°,,,则三角形ABC的面积为.6.(2019桂林一模)在△ABC中,角A,B,C的对边分别是a,b,c,若a=2,C=,tanB=,则△ABC的面积等于( A )A.B.C.2 D.解:根据题意,在△ABC中,tanB=,则=且0<B<,又由sin2B+cos2B=1,则sinB=,cosB=,又由C=,则sinA=sin(B+C)=sinBcosC+sinCcosB=,又由=,则b===,则△ABC的面积S=absinC=×2××=.考点26 等差数列1.(2019桂林、崇左二模)在等差数列{a n}中,a3=5,a5=9,若S n=25,则n=( C )A.3 B.4 C.5 D.62.(2019柳州一模)等差数列{a n}中,若a4+a6+a13+a15=20,则a10﹣a12的值是( A )A.4 B.5 C.6 D.83.(2019南宁二模)已知等差数列{a n}的前n项和为S n,若a5=7,则S9=63 .4.(2019贵州模拟)等差数列{a n}中,a2与a4是方程x2﹣4x+3=0的两根,则a1+a2+a3+a4+a5=( C )A.6 B.8 C.10 D.125.(2019山东模拟)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( A )A.15.5尺B.12.5尺C.10.5尺D.9.5尺解:设此等差数列{a n}的公差为d,则a1+a4+a7=3a1+9d=37.5,a1+11d=4.5,解得:d=﹣1,a1=15.5.6.(2019南宁一模)已知数列{a n}的前n项和为S n,若a n+2﹣a n+1=a n+1﹣a n,a1=2,a3=8,则S4=26 .考点27 等比数列1.(2019南宁一模)在等比数列{a n}中,若a2=3,a5=﹣24,则a1=( C )A.B.C.D.2.(2019资阳模拟)已知各项为正数的等比数列{a n}中,a2=1,a4a6=64,则公比q=( C )。

2020高考高三数学选择填空专项训练含答案

2020高考高三数学选择填空专项训练含答案

利用多出来的一个月,多多练习,提升自己,加油!1.设全集}7,5,3,1{=U ,集合,},5,1{U M a M ⊆-= C U M={5,7},则a 的值为( )A .2B .8C .-2D .-82.已知θ是第二象限角,则θθ42sin sin -可化简为 ( )A .θθcos sinB .-θθcos sinC .θ2sinD .-θ2sin3.命题p :不等式1|1|->-x xx x 的解集为}10|{<<x x 命题q :“A=B”是“B A sin sin =”成立的必要非充分条件,则 ( )A .p 真q 假B .“p 且q”为真C .“p 或q”为假 D .p 假q 真4.已知双曲线)0(1222>=-a y ax 的一条渐近线与直线032=+-y x 垂直,则该双曲线的准线方程是( )A .23±=x B .25±=x C .334±=x D .554±=x 5.设函数)3()3(24)(-≥++=x x x f ,则其反函数)(1x f -的图象是( )A B CD6.已知1,0=+<<b a b a 且,下列不等式正确的是 ( ) A .1log 2>aB .2log log 22->+b aC .0)(log 2<-a bD .1)(log 2<+ba ab7.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α//平面β,则平面α内任意一条直线m//平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β;④若点P 到三角形三条边的距离相等,则点P 在该三角形内部的射影是该三角形的内心.其中正确命题的个数为 ( )A .1个B .2个C .3个D .4个8.计算αααcos 2)60cos()30sin(οο+++= .9.函数2x y =的图象F 按向量)2,3(-=a 平移到F′,则F′的函数解析式为 .10.如图,在正方体ABCD —A 1B 1C 1D 1中,CC 1中点为E ,则AE 与BC 1所在的两条直线的位置关系是 ,它们所成的角的大小为 .11.已知数列则为正偶数为正奇数中⎩⎨⎧-=-),(12,)(2,}{1n n n a a n n n9a = (用数字作答),设数列{n a }的前n项和为S n ,则S 9= (用数字作答).12.已知函数),(13)(23+∞-∞+-+=在区间x x ax x f 上是减函数,则a 的取值范围是 .8 9 .10 11、 . 12.高三数学小题专项训练(7)8.2; 9. 762+-=x x y ; 10.异面直线,4; 11.256,377; 12. ]3,(--∞高三数学选择填空专项训练(8)班级 学号 姓名 得分1.若集合M={y|y=-2-x },P={y|y=1-x },则M∩P=( )A .{y|y<0}B .{y|y≥1}C .{y|y≥0}D .φ2.下列函数中,既是偶函数,又在(0,π)内单调递增的函数是 ( )A .y=tan|x|B .y=cos(-x)C .y=sin(x -2π)D .y=|cot 2x|3.若实数a 、b 满足ab<0,则有 ( )A .|a -b|<|a|-|b|B .|a -b|<|a|+|b|C .|a+b|>|a -b|D .|a+b|<|a -b|4.图中阴影部分可用哪一组二元一次不等式表示 ( ) A .⎩⎨⎧≥+--≥0221y x yB .⎩⎨⎧≤+--≥0221y x yC .⎪⎩⎪⎨⎧≥+--≥≤02210y x y xD .⎪⎩⎪⎨⎧≤+--≥≤02210y x y x5.生物学指出:生态系统中,在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级.在H 1→H 2→H 3这个生物链中,若能使H 3获得10kj 的能量,则需H 1提供的能 量为( )A .105kjB .104kjC .103kjD .102kj6.给定两个向量)()(),1,2(),4,3(b a b x a b a -⊥+==若,则x 的等于( )A .-3B .23C .3D .-237.若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n项和S n 中也为确定的常数的是( )A .S 17B .S 15C .S 8D .S 7 8. 将一张画了直角坐标系且两轴的长度单位相同的纸折叠一次,使点(2,0)与点(-2, 4)重合,若点(7,3)与点(m ,n )重合,则m+n 的值为 A .4B .-4C .10D .-109.方程0)1lg(122=-+-y x x 所表示的曲线图形是 ( )10.已知=++=-)1(),1lg()(12f x x x f 则 .11.在一个水平放置的底面半径为3的圆柱形量杯中装有适量的水,现放入下个半径为R 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升R ,则R= .12.设函数⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,则方程)()12(1x f x x -=+的解为 .10、 . 11、 . 12.高三数学小题专项训练(8)10.2099 11.2312.X=0,2或-4171+高三数学选择填空专项训练(9)班级学号 姓名 得分 1.设),2(,53sin ππαα∈=,则αtan 的值为( ) A .43B .-43C .34D .-342.设条件A :几何体的各个面都是三角形,条件B :几何体是三棱锥,则条件A 是条件B 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.设),1(32)1(2≤+-=-x x x x f ,则函数)(1x f -的图象为 ( )4.设集合M={a ,b ,c},N={0,1},映射f :M→N 满足)()()(c f b f a f =+,则映射f :M→N 的个数为( ) A .1B .2C .3D .45.圆心在抛物线)0(212<=x x y 上,并且与抛物线的准线及y 轴都相切的圆的方程为( ) A .041222=+--+y x y xB .01222=+-++y x y xC .041222=+-++y x y xD .01222=++-+y x y x6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E.若,0,,≠==xy y x 则yx 11+的值为( ) A .4B .3C .2D .17.给出下列命题: ①);()()1()()(R d c a b d a c b a ∈++++=++++λλλλλ②把正方形ABCD 平移向量m 到A′B′C′D′的轨迹形成的几何体叫做正方体;③a =“从济南往正比平移3km”,b =“从济南向正北平移6km”,则b =2a . 其中正确的命题是( )A .①②B .②③C .①②③D .①③8.设三棱锥的三个侧面两两互相垂直,且侧棱长均为32,则其外接球的表面积为( )A .48πB .36πC .32πD .12π9.设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数F(x )的单调递增区间,将F(x )的图象按a )0,(π=平移得到一个新的函数G(x )的图象,则G(x )的单调递减区间必定是( )A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ10.若双曲线14222=-y ax 过点)2,23(-,则该双曲线的焦距为 .11.某地区预计2004年的前x 个月内对某种商品的需求总量)(x f (万件)与月份x 的近似关系式是121*,),19)(1(751)(≤≤∈-+=x N x x x x x f ,则2004年的第x 月的需求量g(x )(万件)与月份x 的函数关系式是 . 12.若直线y=x是曲线ax x x y +-=233的切线,则a = .10、 . 11、 . 12.高三数学小题专项训练(9)1. B2. B3. C4. C5. C6. B7. D8. B9. D10.132 11.*,121),13(251)(N x x x x x g ∈≤≤-=(注:未写x 的取值范围可视作正确) 12.1或413高三数学选择填空专项训练(10)班级 学号 姓名 得分1.下列各组中,M 是N 的充要条件的是 ( )A .M :|x|+|y|≤1,N :x 2+y 2≤1,B .M :实数a 、b ,a+b>2,且ab>1,N :a>1且b>1C .M :集合E 、F 和P ,PE 且PF ,N :PE∩FD .M :-3≤t≤32,N :曲线y=29x -(y≠0)与直线y=x+t 有公共点2.设3a =4,3b =12,3c =36,那么数列a ,b ,cA.是等差数列但不是等比数列 B .是等比数列但不是等差数列C.既是等差数列也是等比数列 D.既不是等差数列也不是等比数列3.函数f (x )=sin(2x+φ)+3cos(2x +φ)的图像关于原点对称的充要条件是A .φ=2k π-π6 ,k ∈ZB .φ=k π-π6,k∈ZC .φ=2k π-π3 ,k ∈ZD .φ=k π-π3 ,k∈Z4.将棱长为3的正四面体的各棱长三等份,经过分点将原正四面体各顶点附近均截去一个棱长为1的小正四面体,则剩下的多面体的棱数E 为A .16B .17C .18D .195.设f(x )= x 2+ax+b ,且1≤f (-1)≤2,2≤f (1)≤4,则点(a ,b )在积是A.12B.1 C.2D.926.已知向量OP=(2,1),OA=(1,7),OB=(5,1),设X是直线OP 上的一点(O为坐标原点),那么XBXA 的最小值是A.-16B.-8 C.0 D.47.直线x4+y3=1与椭圆x216+y29=1相交于A、B两点,椭圆上的点P使△PAB的面积等于12.这样的点P共有A.1个B.2个 C 3个D.4个8.函数y=f(x)与y=g(x)有相同的定义域,且都不是常数函数,对定义域中任何x,有f(x)+f(-x)=0,g(x)·g(-x)=1,且当x≠0时,g(x) ≠1,则()F x=2f(x)g(x)-1+()f xA.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数9.当x∈[0,2]时,函数f(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是A.[-21,+∞) B.[0,+∞)C.[1, +∞)D.[32,+∞)10.已知直线ax+by+1=0中的a,b是取自集合{-3,-2,-1,0,1,2}中的2个不同的元素,并且直线的倾斜角大于60°,那么符合这些条件的直线的共有A.8条B.11条C.13条D.16条11.不等式(x-2)x2-2x-3 ≥0的解集是.12.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有唯一的一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;其中正确的命题序号为(请把所有正确命题的序号都填上).11、 . 12.高三数学小题专项训练(10)1.D.2.A 3.D 4.C 5.B 6.B 7.B 8.B 9.D 10.D11{x|x=-1或x≥3},12 (2)、(4)。

2020年普通高等学校招生全国统一考试文科数学冲刺试题参考答案(新课标全国1卷)

2020年普通高等学校招生全国统一考试文科数学冲刺试题参考答案(新课标全国1卷)

2020年普通高等学校招生全国统一考试·冲刺试题 参考答案文科数学(新课标全国Ⅰ卷)一、选择题1~5 CADCB 6~10 DCAAB 11~12 BD二、填空题13、40x y -+= 14、1611 15、10 16、316 三、解答题 17、解:(I )法1:由正弦定理得33sin sin 77c C B b ===又,,,02ABC b c C B C π∆>∴<∴<<Q 在中23cos 1sin 177C C ∴=-=-=()()cos cos cos BAC B C B C π∴∠=--=-+(cos cos sin sin )B C B C =-- 14772217323=⨯-⨯= 法2:在ABC ∆中,由余弦定理得ABC BC AB BC AB AC ∠⋅-+=cos 22222174222a a ∴=+-⨯⨯⨯ ()()310a a ∴-+= 解得3a =(1a =-已舍去)AC AB BC AC AB BAC ⋅-+=∠∴2cos 222147722974=⨯⨯-+= (II )法1:()AC AB AD +=21Θ()⎪⎭⎫ ⎝⎛⋅++=+=∴AC AB AC AB AC AB AD 241412222 ⎪⎪⎭⎫ ⎝⎛⨯⨯⨯++=1477227441413=213=∴AD 法2:在ABC ∆中,由余弦定理得BAC AC AB AC AB BC ∠⋅-+=cos 2222 914772274=⨯⨯⨯-+= 3=∴BC 23=∴BD 在ABD ∆中,由余弦定理得 ABD BD AB BD AB AD ∠⋅⋅-+=cos 22224132********=⨯⨯⨯-+= 213=∴AD 法3:设E 为AC 的中点,连结DE ,则 1AB 21E ==D , 721AC 21AE == 在ADE ∆中,由余弦定理得AED DE AE DE AE AD ∠⋅⋅-+=cos 22224131471272147=⨯⨯⨯++= 213=∴AD 18、解:(Ⅰ)依题意可得,使用A 款订餐软件的50个商家的 “平均送达时间”的众数为55(分钟).使用A 款订餐软件的50个商家的“平均送达时间”的平均数:150.06250.34350.12450.04550.4650.0440⨯+⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅰ)(Ⅰ)使用B 款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可认为使用B 款订餐软件“平均送达时间”不超过40分钟的商家达到75%. (Ⅰ)使用B 款订餐软件的50个商家的 “平均送达时间”的平均数: 150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=<,所以选B 款订餐软件.注:本小题答案开放,只要能够按照统计知识合理作答,即给满分。

2020高考数学(文科)专题复习通用版(跟踪检测):选填题特训选择、填空题特训2

2020高考数学(文科)专题复习通用版(跟踪检测):选填题特训选择、填空题特训2

故选 B 项.
4.(2020·江西新余检测)已知向量 a=(cos α,-2),b=(sin α,1),且 a∥b,则 tan
( )π
α- 4 =( )
A.3
B.-3
1 C.3
1 D.-3
B 解析
由于 a∥b,则 cos
α+2sin
α=0,所以 tan
α- tan 4 =1+tan α=-3.故选 B 项.
3i,所以-z =-1+
3i,所以共轭复数的虚部为
3.
故选 C 项.
2.设集合 M={x|0<x≤3},N={x|1<x≤2},那么“a∈M”是“a∈N”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
B 解析 由于集合 N 是集合 M 的真子集,故“a∈M”是“a∈N”的必要不充分条
1 不相等的正根,那么有 Δ=4-8(a-3)>0,x1+x2=1>0,x1x2=2(a-3)>0,联立求解可得
7 3<a<2.
( )7
3, 答案 2
1 MN=2CB1= 2.四边形 AA1C1C 为矩形且 AC=2 3,AA1=2,所以 MC1= 7.△A1B1C1 为等 腰三角形,且 A1B1=B1C1=2,A1C1=2 3,所以 C1P= 7.在 Rt△C1PN 中,可知 NC1= 8,
MN2+MC21-NC21 2+7-8 14 在△C1MN 中,由余弦定理可知 cos∠C1MN= 2·MN·MC1 = 2 14 = 28 ,故异面直
( ) kπ π
π
π
- ,1
x= 2 -6(k∈Z),则 k=0 时,x=-6,故对称中心可以为 6 .故选 D 项.

2020高考文科数学模拟试卷(含两套,解析版)

2020高考文科数学模拟试卷(含两套,解析版)

模拟试卷一(满分:150分 时间:120分钟)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合U ={x |4x 2-4x +1≥0},B ={x |x -2≥0},则∁U B =( ) A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫12,2D.⎝⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,2 A [由4x 2-4x +1≥0,得x ∈R ,所以U =R .又B ={x |x -2≥0}={x |x ≥2},所以∁U B =(-∞,2).故选A.]2.已知复数z =2+i 1+i ,则|z |=( )A.52B.10C.102D.5C [z =2+i 1+i =(2+i )(1-i )1-i 2=3-i 2,所以|z |=102,故选C.] 3.已知向量a =(1,2-λ),b =(-2,3),a∥b ,则实数λ=( ) A .3 B.72 C .4D.92B [由a∥b 得,1×3=(2-λ)×(-2),解得λ=72,故选B.]4.已知函数f (x )=⎩⎪⎨⎪⎧1x(x <e ),ln x (x ≥e ),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e =( ) A.1e B .e C .1D .-1C [由题意可知f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e =f (e)=ln e =1,故选C.] 5.“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,作为求圆周率的一种方法.刘徽把圆内接正多边形的面积一直算到了3 072边形,并由此而求得了圆周率为3.141 5和3.141 6这两个近似值.我国南北朝时期的数学家祖冲之继承并发展了刘徽的“割圆术”,求得π的范围为(3.141 592 6,3.141 592 7).如果按π=3.142计算,那么当分割到圆内接正六边形时,如图,向圆内随机投掷一点,那么落在图中阴影部分的概率为(3≈1.732,精确到小数点后两位)( )A .0.16B .0.17C .0.18D .0.19B [设圆的半径为r ,则圆的面积为πr 2,正六边形的面积为6×12×r ×32r =332r 2,故所求概率为1-332r 2πr 2=1-332π≈0.17,故选B.] 6.执行如图所示的程序框图,则输出的结果为( )A .-2B .2 C.12D .-1D [执行程序框图,n =1,a =f (2)=1-12=12,n =2,a =f ⎝ ⎛⎭⎪⎫12=1-112=-1,n =3,a =f (-1)=1-1-1=2,n =4,a =f (2)=12,…,易知a 的取值以3为周期,所以当n =8时,a =-1,当n =9时,退出循环.输出的a =-1,故选D.]7.已知x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,2x +y ≥0,x +y -1≤0,则目标函数z =-2x +y 的取值范围为( )A.⎣⎢⎡⎦⎥⎤15,4B .[1,4]C.⎣⎢⎡⎦⎥⎤55,2 D.⎣⎢⎡⎦⎥⎤-12,4D [作出不等式组表示的平面区域如图中阴影部分所示,其中A ⎝ ⎛⎭⎪⎫12,12,B (-1,2),作出直线y =2x ,平移该直线,当直线经过点A ⎝ ⎛⎭⎪⎫12,12时,目标函数取得最小值,z min =-2×12+12=-12,当直线经过点B (-1,2)时,目标函数取得最大值,z max =-2×(-1)+2=4,所以目标函数的取值范围是⎣⎢⎡⎦⎥⎤-12,4,故选D.]8.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32D .-32A [如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]9.先将函数f (x )的图象向右平移2π5个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的14,得到函数g (x )=A sin(ωx +φ)(A >0,|φ|<π2)的图象.已知函数g (x )的部分图象如图所示,则函数f (x )的图象的对称轴方程是( )A .x =4k π+2π5,k ∈ZB .x =4k π+7π10,k ∈ZC .x =2k π+2π5,k ∈ZD .x =2k π+7π5,k ∈ZD [法一:设g (x )的最小正周期为T ,由题意和题图可知A =2,T 4=9π20-π5=π4,∴T=π,∴ω=2,∴g (x )=2sin(2x +φ),∵g (x )的图象过点⎝⎛⎭⎪⎫9π20,2,∴9π10+φ=2k π+π2,k ∈Z ,∴φ=2k π-2π5,k ∈Z .又|φ|<π2,∴φ=-2π5,∴g (x )=2sin ⎝⎛⎭⎪⎫2x -2π5.将函数g (x )=2sin ⎝⎛⎭⎪⎫2x -2π5的图象上的所有点的横坐标伸长到原来的4倍,得到y =2sin ⎝ ⎛⎭⎪⎫12x -2π5的图象,再将y =2sin ⎝ ⎛⎭⎪⎫12x -2π5的图象向左平移2π5个单位长度,得到f (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +2π5-2π5=2sin ⎝ ⎛⎭⎪⎫12x -π5的图象.令12x -π5=k π+π2,k ∈Z ,则x =2k π+7π5,k ∈Z .∴函数f (x )的图象的对称轴方程为x =2k π+7π5,k ∈Z .故选D. 法二:由题图可知,函数g (x )的图象的对称轴方程为x =9π20+k π2(k ∈Z ),将函数g (x )的图象上的所有点的横坐标伸长到原来的4倍,再向左平移2π5个单位长度后得到f (x )的图象,故f (x )的图象的对称轴方程为x =⎝⎛⎭⎪⎫9π20+k π2×4-2π5=7π5+2k π,k ∈Z .]10.设函数f (x )=ln x +1-ax x,其中x ∈⎣⎢⎡⎦⎥⎤a ,1a ,若函数f (x )的极小值不大于a ,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎦⎥⎤0,12 D.⎝⎛⎦⎥⎤-∞,12 B [易知函数f (x )的定义域为{x |x >0},则1a >a >0,得0<a <1.由f ′(x )=1x -1x2=0,得x =1,当x ∈(a,1)时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎪⎫1,1a 时,f ′(x )>0,f (x )单调递增.所以f (x )的极小值为f (1)=1-a ,由题可知1-a ≤a ,所以a ≥12,又0<a <1,所以12≤a <1,故选B.] 11.已知经过原点O 的直线与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于M ,N 两点(M 在第二象限),A ,F 分别是该椭圆的右顶点和右焦点,若直线MF 平分线段AN ,且|AF |=4,则该椭圆的方程为( )A.x 29+y 25=1 B.x 236+y 24=1C.x 236+y 232=1 D.x 225+y 224=1 C [法一:由|AF |=4得a -c =4,设M (m ,n ),则N (-m ,-n ),又A (a,0),所以线段AN 的中点为P ⎝⎛⎭⎪⎫a -m 2,-n 2,F (a -4,0).因为点M ,F ,P 在一条直线上,所以k MF =k FP ,即n -0m -(a -4)=-n2-0a -m 2-(a -4),化简得a =6,所以c =2,b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.法二:如图,取AN 的中点P ,连接MA ,OP ,因为O 是MN 的中点,P 是AN 的中点,所以OP ∥MA ,且|OP |=12|MA |,因此△OFP ∽△AFM ,所以|OF ||AF |=|OP ||AM |=12,即c 4=12,因此c =2,从而a =c +|AF |=2+4=6,故b 2=62-22=32,故该椭圆的方程为x 236+y 232=1.]12.已知△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,已知a 2+b 2=c 2+2ac cos C ,a cos C +3c cos A =0,则角A 为( )A .30°B .60°C .90°D .120°D [由余弦定理c 2=a 2+b 2-2ab cos C ,可得a 2+b 2=a 2+b 2-2ab cos C +2ac cos C ,可得b =c 或cos C =0.易知cos C ≠0,从而B =C .由正弦定理得,sin A cos C +3sin C cos A =0,则sin(A +C )+2sin C cos A =0,从而sin(π-B )+2sin B cos A =0,所以cos A =-12,所以在△ABC 中,A =120°,故选D.]第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分,共20分,将答案填在横线上)13.设函数f (x )=sin x +x cos xax2(a ∈R ,a ≠0),若f (-2 018)=2,则f (2 018)=________. -2 [易知函数f (x )=sin x +x cos x ax2的定义域为(-∞,0)∪(0,+∞),因为f (-x )=sin (-x )+(-x )cos (-x )a (-x )2=-sin x +x cos xax 2=-f (x ),所以函数f (x )是定义域上的奇函数,所以f (2 018)=-f (-2 018)=-2.]14.如图是某几何体的三视图,则该几何体的体积为________.73[在正方体中作出该几何体的直观图如图所示,不妨将其记为棱台ABC ­A 1B 1C 1,易知AC =BC =1,A 1C 1=B 1C 1=CC 1=2.因为CC 1⊥平面ABC ,CC 1⊥平面A 1B 1C 1,AC ⊥BC ,A 1C 1⊥B 1C 1,所以V 棱台ABC ­A 1B 1C 1=13CC 1·(S △ABC +S △A 1B 1C 1+S △ABC ·S △A 1B 1C 1)=13×2×⎝ ⎛⎭⎪⎫12+2+12×2=73.] 15.桌上共有8个球,甲、乙两人轮流取球,取到最后一球者胜利.规则:第一次取球至少1个,至多不超过总数的一半,每次取球的个数不超过前面一次取球的个数,且不少于前面一次取球个数的一半.如第一次甲取3个球,接着乙取球的个数为2或3.若甲先取球,为了有必胜的把握,第一次取球的个数应为________.3 [若甲取1个球,则乙取1个球,易知最终是乙胜.若甲取2个球,则乙可取2个球,然后,甲只能取2个球或1个球,无论如何都是乙胜.若甲取3个球,则乙只能取2个球或3个球,当乙取2个球时,接下来甲取1个球,乙取1个球,甲再取1个球,甲胜;当乙取3个球时,甲取完剩下的球,甲胜.若甲取4个球,则乙可取完剩下的球,乙胜.综上可知,甲第一次取3个球时有必胜的把握.]16.已知直线l :x +2y -5=0与定点A (1,2),动点P 到点A 距离与到直线l 的距离相等,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,Q 是动点P 轨迹上的一点,|FQ |的最小值恰为双曲线C 的虚半轴长,则双曲线C 的离心率为________.5 [由题可知点A 在直线l 上,因而动点P 的轨迹为过点A 与直线l 垂直的直线,则点P 的轨迹方程为y -2=2(x -1),即y =2x ,|FQ |的最小值即点F 到直线y =2x 的距离,由题知|FQ |的最小值恰为b ,那么直线y =2x 为双曲线的一条渐近线,从而ba=2,则e =1+⎝ ⎛⎭⎪⎫b a 2= 5.]三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知递增数列{a n }的前n 项和为S n ,a 1=38,21(a 1-a 2)+22(a 2-a 3)+…+2n (a n -a n +1)=-a 2n +1,n ∈N *.(1)求a 2,并证明n ≥2时,a n +a n +1=2n; (2)求S 2 019.[解] (1)令n =1,则2(a 1-a 2)=-a 22,即a 22-2a 2+34=0,解得a 2=12或a 2=32,均符合题意.由21(a 1-a 2)+22(a 2-a 3)+…+2n (a n -a n +1)=-a 2n +1,得21(a 1-a 2)+22(a 2-a 3)+…+2n -1(a n -1-a n )=-a 2n ,n ≥2.两式相减得2n(a n -a n +1)=a 2n -a 2n +1, ∵a n -a n +1≠0,∴a n +a n +1=2n,n ≥2.(2)由(1)得S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=38+22+24+…+22 018=38+4×1-41 0091-4=41 0103-2324.18.(本小题满分12分)2018年世界女排锦标赛于9月29日至10月20日在日本举行,为了解同学们观看现场直播的情况,对高一、高二年级各10个班级的同学进行问卷调查,各班观看人数统计结果如茎叶图所示.(1)①根据图中的数据,估计哪个年级平均观看人数较多? ②计算高一年级观看人数的样本方差.(2)从高一年级观看人数不足20人的班级中随机抽取2个班,求这2个班分别是观看人数在10人以下与10人以上的概率.[解] (1)①设高一年级、高二年级观看人数的平均数分别为x ,y , 那么x =8+6+12+14+16+23+25+33+33+3210=20.2,y =9+11+15+14+16+22+26+28+33+3510=20.9,所以高二年级平均观看人数较多.②由①知x =20.2,则高一年级观看人数的样本方差s 2=110×[(20.2-8)2+(20.2-6)2+(20.2-12)2+(20.2-14)2+(20.2-16)2+(20.2-23)2+(20.2-25)2+(20.2-33)2+(20.2-33)2+(20.2-32)2]=97.16.(2)由茎叶图可知,高一年级观看人数不足20人的班级有5个,其中观看人数在10人以下的班级有2个,分别记为a ,b ,观看人数在10人以上且不足20人的班级有3个,分别记为C ,D ,E .从高一年级观看人数不足20人的班级中抽取2个班,抽取的结果有(a ,b ),(a ,C ),(a ,D ),(a ,E ),(b ,C ),(b ,D ),(b ,E ),(C ,D ),(C ,E ),(D ,E ),共10种,设所求事件为事件A ,则事件A 包含(a ,C ),(a ,D ),(a ,E ),(b ,C ),(b ,D ),(b ,E ),共6种不同的结果, 由古典概型概率计算公式得,P (A )=610=35.19.(本小题满分12分)如图所示的几何体B ­ACDE 中,△ABC 为等腰直角三角形,AB ⊥AC ,AB =AC =2,DC ⊥平面ABC ,DC =1,EA ⊥平面ABC ,EA = 2.(1)若在EB 上存在点F ,使得BE ⊥平面AFC ,试探究点F 的位置; (2)在(1)的条件下,求三棱锥F ­BCD 的体积.[解] (1)由AB ⊥AC ,EA ⊥平面ABC ,得AC ⊥平面EAB ,所以AC ⊥BE , 若BE ⊥平面AFC ,只需BE ⊥AF , 在直角△ABE 中,EB =AB 2+AE 2=6,由射影定理AB 2=BF ·BE ,可知BF =46=263=23BE ,所以点F 在BE 上靠近E 的三等分点处.(2)由题可知S 四边形AEDC =12×(1+2)×2=1+2,则V B ­AEDC =13×S 四边形AEDC ×AB =2+223,由(1)知,F 在BE 上靠近E 的三等分点处,因而V F ­AEDC =13V B ­AEDC =2+229,又S △ABC =12×2×2=2,所以V F ­ABC =13×S △ABC ×23EA =13×2×223=429,所以V F ­BCD =V B ­AEDC -V F ­AEDC -V F ­ABC =49.20.(本小题满分12分)已知定点N (6,8)与圆O :x 2+y 2=4,动点M 在圆O 上,MN 的中点为P .(1)若点P 的轨迹为圆C ,求圆C 的方程;(2)在(1)的条件下,线段OC 的垂直平分线上,是否存在点Q ,过点Q 分别作圆O 与圆C 的切线(切点分别为A ,B ),使得|QA |=|QB |,若存在,求出点Q 的坐标,若不存在,请说明理由.[解] (1)由已知,设P (x ,y ),则M (2x -6,2y -8),因为点M 在圆O :x 2+y 2=4上, 所以(2x -6)2+(2y -8)2=4,从而可得圆C 的方程为(x -3)2+(y -4)2=1. (2)假设存在,设Q (x ,y ),若|QA |=|QB |,则QC 2-1=QO 2-4,即QO 2-QC 2=3, 从而x 2+y 2-(x -3)2-(y -4)2=3,整理得,3x +4y -14=0,故点Q 在直线3x +4y -14=0上,而OC 的中点坐标为⎝ ⎛⎭⎪⎫32,2,k OC =43,因而OC 的垂直平分线的方程为y -2=-34⎝ ⎛⎭⎪⎫x -32,整理得,6x +8y -25=0,易知直线3x +4y -14=0与直线6x +8y -25=0平行, 因此不存在满足题意的点Q .21.(本小题满分12分)已知函数f (x )=e x-12ax 2+b (a >0),函数f (x )的图象在x =0处的切线方程为y =x +1.(1)当a =1时,求函数f (x )在[0,2]上的最小值与最大值; (2)若函数f (x )有两个零点,求a 的值.[解] (1)由题可知f (0)=1+b ,f ′(x )=e x-ax ,f ′(0)=1,则函数f (x )的图象在x =0处的切线方程为y -1-b =x ,即y =x +1+b ,由已知条件可得b =0,当a =1时,在[0,2]上,f ′(x )=e x-x >0,函数f (x )在[0,2]上单调递增, 从而函数f (x )在[0,2]上的最小值为f (0)=1,最大值为f (2)=e 2-2.(2)法一:由(1)知f (x )=e x-12ax 2,设g (x )=f ′(x )=e x-ax ,则g ′(x )=e x-a ,令g ′(x )=0,可得x =ln a ,当x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减;当x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.因而g (x )的最小值为g (ln a )=a -a ln a ,若a -a ln a ≥0,则f ′(x )≥0,f (x )单调递增,f (x )不会有两个零点,不合题意,因而a -a ln a <0,即a >e.因为g (0)=1>0,g (1)=e -a <0,所以f ′(x )=0在(0,1)内有解,即存在x 1∈(0,1)使f ′(x 1)=0,同时存在x 2∈(1,+∞),使得f ′(x 2)=0,即0<x 1<1<x 2,e x 1=ax 1,e x 2=ax 2,当x ∈(-∞,x 1)时f (x )单调递增,当x ∈(x 1,x 2)时f (x )单调递减,当x ∈(x 2,+∞)时f (x )单调递增,f (x )的大致图象如图所示.由于f (x 1)=e x 1-12ax 21=ax 1-12ax 21=12ax 1(2-x 1)>0,所以,若函数f (x )有两个零点,则函数f (x )的极小值f (x 2)=0,f (x 2)=e x 2-12ax 22=ax 2-12ax 22=12ax 2(2-x 2)=0,得x 2=2.由e x 2-12ax 22=0,即e 2-12a ×22=0,得a =e 22.法二:由(1)知,b =0,则函数f (x )=e x-12ax 2,显然x =0不是零点,令f (x )=0,分离参数,则a =2exx2,设h (x )=2e x x 2(x ≠0),则h ′(x )=2e x(x -2)x3,令h ′(x )=0,则x =2. 易知当x ∈(0,2)时h (x )单调递减,当x ∈(-∞,0)及x ∈(2,+∞)时h (x )单调递增, 则h (x )的极小值为h (2)=e 22,而当x ∈(-∞,0)时,h (x )=2e xx 2>0,数形结合可知,当a =e22时函数f (x )有两个零点.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫π3-θ= 3.(1)写出曲线C 的普通方程以及直线l 的直线坐标方程; (2)已知直线l 与曲线C 交于A ,B 两点,求△OAB 的面积. [解] (1)消去参数α,得曲线C 的普通方程为x 24+y 23=1,2ρsin ⎝⎛⎭⎪⎫π3-θ=3可化为3ρcos θ-ρsin θ=3, 由极坐标与直角坐标的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得,直线l 的直角坐标方程为3x -y-3=0.(2)易知原点O 到直线l 的距离d =32, 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧3x -y -3=0,x 24+y 23=1整理得,5x 2-8x =0,解得x =0或85,不妨令x 1=0,x 2=85,从而得A (0,-3),B ⎝ ⎛⎭⎪⎫85,335,由两点间距离公式得|AB |=165,所以S △OAB =12×|AB |×d =12×165×32=435.23.(本小题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|2x -1|. (1)解不等式f (x )≤|x |+1;(2)若存在实数m ,使得f (x )-f ⎝ ⎛⎭⎪⎫x 2<m 有解,求m 的取值范围.[解] (1)由已知得,f (x )≤|x |+1,即|2x -1|≤|x |+1, 所以当x <0时,1-2x ≤-x +1,得x ≥0,此时无解; 当0≤x <12时,1-2x ≤x +1,得x ≥0,此时0≤x <12;当x ≥12时,2x -1≤x +1,得x ≤2,此时12≤x ≤2.从而不等式的解集为{x |0≤x ≤2}.(2)设g (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 2,则g (x )=|2x -1|-|x -1|=⎩⎪⎨⎪⎧-x ,x ≤12,3x -2,12<x <1,x ,x ≥1,作出函数g (x )的大致图象(图略),数形结合可知,g (x )的最小值为-12,从而m >-12.所以m 的取值范围是⎝ ⎛⎭⎪⎫-12,+∞.模拟试卷二(满分:150分 时间:120分钟)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |x 3=x },B ={x |x 2-3x +2≤0},则A ∩B =( ) A .{1} B .{0,1} C .{-1,1} D .{0,1,-1}A [法一:因为集合A ={x |x 3=x }={0,1,-1},B ={x |x 2-3x +2≤0}={x |(x -1)(x -2)≤0}={x |1≤x ≤2},所以A ∩B ={1},故选A.法二:当x =-1时,(-1)2-3×(-1)+2>0,不满足集合B ,排除选项C ,D ;当x =0时,02-3×0+2>0,不满足集合B ,排除选项B ,故选A.]2.已知复数z 满足(1+2i)z =(1+i)(2-i),则z 的虚部为( ) A .-2 B .2 C .-1 D .1C [由题意得,z =(1+i )(2-i )1+2i =(3+i )(1-2i )(1+2i )(1-2i )=1-i ,所以z 的虚部为-1,故选C.]3.已知函数f (x )=x e x(e 为自然对数的底数)的图象的一条切线的方程为y =x -2a ,则实数a 的值为( )A .0B .-1C .1D .2A [由f (x )=x e x 得,f ′(x )=(x +1)e x,∵直线y =x -2a 为函数f (x )图象的一条切线,且f ′(0)=1,f (0)=0,∴2a =0,∴a =0.]4.随着生活水平的提高,进入健身房锻炼的人数日益增加,同时对健身房的服务要求也越来越高,某健身房为更具竞争力,对各项服务都进行了改善,投入经费由原来的200万元增加到400万元,已知改善前的资金投入比例为:健身设施∶健身培训∶安全保障∶其他服务=10∶5∶3∶2.改善后的经费条形统计图如图所示.则下列结论正确的是( )A .改善后的健身设施经费投入变少了B .改善后健身培训的经费投入是改善前的2.8倍C .改善后安全保障的经费投入所占比例变大了D .改善后其他服务的经费投入所占比例变小了B [A 项,改善前健身设施的经费投入为1020×200=100(万元),改善后为160万元,故A项错误.B 项,改善前健身培训的经费投入为520×200=50(万元),140÷50=2.8,故B 项正确.C 项,改善后安全保障的经费投入所占比例为60400=15%,改善前所占比例为320=15%,改善前后安全保障的经费投入所占比例一样,故C 项错误.D 项,改善后其他服务的经费投入所占比例为40400=10%,改善前所占比例为220=10%,改善前后其所占比例没有变化,故D 项错误.故选B.]5.已知圆C 1:x 2-8x +y 2+7=0的圆心是双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线C 2的渐近线与圆C 1相切,则双曲线C 2的虚轴长为( )A .3B .6C .7D .27B [因为圆C 1:x 2-8x +y 2+7=0的标准方程为(x -4)2+y 2=9,所以圆C 1的圆心C 1(4,0),半径为3.因为双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =bax ,双曲线C 2的渐近线与圆C 1相切,所以|4b |a 2+b2=3,即7b 2=9a 2.又c 2=a 2+b 2,c =4,所以b =3,所以双曲线C 2的虚轴长为2b =6.故选B.]6.甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是教师,乙是医生,丙是记者B .甲是医生,乙是记者,丙是教师C .甲是医生,乙是教师,丙是记者D .甲是记者,乙是医生,丙是教师C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙的年龄比医生大,可知甲是医生,故乙是教师.故选C.]7.设公差不为零的等差数列{a n }的前n 项和为S n ,若a 6=3(a 3+a 5),则S 11S 7=( ) A.117 B.227 C.337 D.667D [法一:设数列{a n }的公差为d ,d ≠0,由a 6=3(a 3+a 5)得,a 1+5d =3(a 1+2d +a 1+4d )=6a 1+18d ,所以a 1=-135d ,所以S 11S 7=11×⎝ ⎛⎭⎪⎫-135d +55d7×⎝ ⎛⎭⎪⎫-135d +21d=667.故选D.法二:因为a 6=3(a 3+a 5)=3(a 1+a 7),所以S 11S 7=11(a 1+a 11)27(a 1+a 7)2=11×2a 67×a 63=667(易知a 6≠0),故选D.]8.执行如图所示的程序框图,则输出S 的值为()A .126B .62C .30D .14C [执行程序框图,S =0,S =0+21=2,(1-1)2+(1-1)2<16,n =1+1=2,x =1+1=2,y =1+1=2;S =2+22=6,(2-1)2+(2-1)2<16,n =2+1=3,x =2+1=3,y =2+1=3;S =6+23=14,(3-1)2+(3-1)2<16,n =3+1=4,x =3+1=4,y =3+1=4;S =14+24=30,(4-1)2+(4-1)2>16,退出循环.故输出S 的值为30.故选C.]9.将函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π4的图象先向右平移π6个单位长度,再将所得图象上所有点的横坐标缩小为原来的12,得到函数g (x )的图象,则g (x )在⎣⎢⎡⎦⎥⎤-π8,π3上的最小值为( )A .0B .-12C .-32D .-3D [将函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π4的图象先向右平移π6个单位长度,得y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π4=3sin ⎝ ⎛⎭⎪⎫2x -π12的图象,再将所得图象上所有点的横坐标缩小为原来的12,得g (x )=3sin ⎝ ⎛⎭⎪⎫4x -π12的图象.当x ∈⎣⎢⎡⎦⎥⎤-π8,π3时,4x -π12∈⎣⎢⎡⎦⎥⎤-7π12,5π4,因此当4x -π12=-π2,即x =-5π48时,g (x )在⎣⎢⎡⎦⎥⎤-π8,π3上取得最小值- 3.]10.已知不等式组⎩⎪⎨⎪⎧2x ≤y +1,x +1≥0,y ≤m 构成平面区域Ω,若∃(x ,y )∈Ω,3x -y <-5,则实数m 的值不可能为( )A. 3B. 5 C .3 D .23A [画出平面区域Ω如图中的阴影部分所示,因为∃(x ,y )∈Ω,3x -y <-5,所以应考虑目标函数z =3x -y +5的最大值,即图中交点P (-1,m )在直线3x -y +5=0的上方,所以-3-m +5<0,解得m >2.故选A.]11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan Atan B =2cb,则C =( )A.π4 B.π3 C.π6 D.3π4A [由1+tan A tanB =2c b ,得1+sin A cos B cos A sin B =2sinC sin B,即cos A sin B +sin A cos B =2sin C cosA ,即sin(A +B )=2sinC cos A ,又sin(A +B )=sin(π-C )=sin C ≠0,所以2cos A =1,cos A =12,所以A =π3.因为a =23,c =22,所以a >c ,所以A >C .由正弦定理a sin A =csin C 得23sinπ3=22sin C ,所以sin C =22.又A >C ,所以C =π4.] 12.已知抛物线C :y 2=8x ,F 为其焦点,其准线l 与x 轴的交点为H ,过点H 作直线m 与抛物线C 交于A ,B 两点,线段AB 的中点E 到准线l 的距离为16,P 为直线m 上的动点,则点P 到点F 与点D (3,0)距离和的最小值为( )A .3 B.14 C .4 D.17D [由题意知,H (-2,0),可设直线m 的方程为y =k (x +2)(k ≠0),联立⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0,Δ=(4k 2-8)2-16k 4>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 2-8k 2,所以x E =-2+4k 2,从而-2+4k 2+2=16,解得k 2=14,满足Δ>0.由抛物线的对称性知k 的正负不影响结果,故可取k =12,则直线m 的方程为y =12(x +2).设点D (3,0)关于直线m 的对称点为D ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0-3=-2,y 02=12⎝ ⎛⎭⎪⎫x 0+32+2,解得⎩⎪⎨⎪⎧x 0=1,y 0=4,则D ′(1,4),连接FD ′,PD ′,则|PF |+|PD |=|PF |+|PD ′|≥|FD ′|=(1-2)2+(4-0)2=17.故选D.]第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分,共20分,将答案填在横线上) 13.已知向量a =(1,2),b =(k ,-6),若a⊥(b -a ),则k =________.17 [由题意知,b -a =(k -1,-8),a·(b -a )=0,即k -1+2×(-8)=0,解得k =17.]14.已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤3,x +1,x >3,则使不等式f (x )<f ⎝ ⎛⎭⎪⎫12成立的x 的取值范围为________.⎝ ⎛⎦⎥⎤12,3 [f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪log 212-1=2,由f (x )<f ⎝ ⎛⎭⎪⎫12得,当0<x ≤3时,|log 2x -1|<2,得12<x ≤3;当x >3时,x +1<2,此时无解.综上所述,不等式f (x )<f ⎝ ⎛⎭⎪⎫12的解集为⎝ ⎛⎦⎥⎤12,3.]15.设轴截面为正三角形的圆锥的体积为V 1,它的外接球的体积为V 2,则V 1V 2=________. 932[如图,设球O 的半径为R ,则由△ABC 是正三角形可得圆锥的底面圆半径r =BO 1=32R ,高h =AO 1=32R ,所以V 1=13πr 2h =13π×⎝ ⎛⎭⎪⎫32R 2×32R =38πR 3,V 2=43πR 3,所以V 1V 2=932.] 16.数列{a n }的前n 项和为S n ,a n ≠0,a n S n +1-a n +1S n =2n -1a n +1a n .设数列⎩⎨⎧⎭⎬⎫2a n +1-a n a n +1的前n 项和为T n ,则2n -1T n +12n -1=________. 2 [∵a n S n +1-a n +1S n =2n -1a n +1a n ,a n ≠0,∴S n +1a n +1-S n a n =2n -1,则S 2a 2-S 1a 1=1,S 3a 3-S 2a 2=2,…,S n a n -S n -1a n -1=2n -2(n ≥2,n ∈N *).以上各式相加,得S n a n -S 1a 1=1+2+…+2n -2.∵S 1a 1=1,∴S n a n-1=2n -1-1,∴S n =2n -1a n (n ≥2,n ∈N *).∵n =1时上式也成立,∴S n =2n -1a n (n ∈N *),∴S n +1=2n a n+1.两式相减,得a n +1=2na n +1-2n -1a n ,即(2n -1)a n +1=2n -1a n ,∴2a n +1-a n a n +1=12n -1,∴T n =1+12+122+…+12n -1=2-12n -1, ∴2n -1T n +12n -1=T n +12n -1=2.]三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos C =23.(1)若△ABC 是以角C 为顶角的等腰三角形,求sin A 的值; (2)若b cos A +a cos B =2,a +b =6,求△ABC 的面积.[解] (1)法一:因为△ABC 是以角C 为顶角的等腰三角形,所以A =B , 则cos(A +B )=cos 2A =-cos C =-23.又cos 2A =1-2sin 2A ,所以1-2sin 2A =-23,得sin A =306.法二:因为△ABC 是以角C 为顶角的等腰三角形,所以A =B .因为cos C =2cos 2C 2-1=23,所以cos C 2=306, 易知A +C 2=90°,所以sin A =cos C 2=306.(2)因为b cos A +a cos B =2,所以由余弦定理可得b ×b 2+c 2-a 22bc +a ×a 2+c 2-b 22ac =2,即b 2+c 2-a 2+a 2+c 2-b 22c=2,整理得c =2.所以c 2=a 2+b 2-2ab cos C =a 2+b 2-43ab =(a +b )2-103ab =4.又a +b =6,所以ab =485.因为cos C =23,所以sin C =53,所以△ABC 的面积S =12ab sin C =12×485×53=855.18.(本小题满分12分)某市爱心人士举办宠物领养活动,为流浪猫、狗寻找归宿,共有560人参加了此次活动,该市宠物收留中心统计了其中70名参加活动的市民的领养意愿,得到如下的统计表.12(1)求出n 1,n 2的值,并以此样本的频率估计总体的概率,试估计此次参加活动的人中两种流浪宠物都愿意领养的人数;(2)在此次参加活动并有领养意愿的市民中,按分层抽样的方法选取6名市民,在这6名市民中随机抽取2名当场讲解宠物饲养经验,求抽取的2人恰为仅愿意领养一种流浪宠物的市民的概率.[解] (1)由题意可得,n 1+n 2=40,结合已知条件n 1∶n 2=1∶3,可得n 1=10,n 2=30.用样本的频率估计总体的概率,可知两种流浪宠物都愿意领养的人数为3070×560=240.(2)由(1)可知,n 1∶20∶n 2=1∶2∶3,由分层抽样的方法可得,6名市民中仅愿意领养流浪狗的市民有6×11+2+3=1(名),仅愿意领养流浪猫的市民有6×21+2+3=2(名),两种流浪宠物都愿意领养的市民有6×31+2+3=3(名).这6名市民中,仅愿意领养流浪狗的1名市民记为A ,仅愿意领养流浪猫的2名市民分别记为B ,C ,两种流浪宠物都愿意领养的3名市民分别记为D ,E ,F .从这6名市民中随机抽取2名的结果有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种,其中恰为仅愿意领养一种流浪宠物的情况有AB ,AC ,BC ,共3种, 故所求的概率为315=15.19.(本小题满分12分)如图,四棱锥P ­ABCD 中,底面四边形ABCD 是梯形,AD ∥BC ,AD ⊥AB ,AB =BC =2AD =4,△PAB 是等边三角形,且平面PAB ⊥平面ABCD ,E 是PB 的中点,点M 在棱PC 上.(1)求证:AE ⊥BM ;(2)若三棱锥C ­MDB 的体积为1639,且PM =λPC ,求实数λ的值.[解] (1)因为四边形ABCD 是梯形,AD ∥BC 且AD ⊥AB ,所以BC ⊥AB . 又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,所以BC ⊥平面PAB , 又AE ⊂平面PAB ,所以BC ⊥AE .因为△PAB 是等边三角形,E 是PB 的中点,所以AE ⊥PB . 又AE ⊥BC ,BC ∩PB =B ,所以AE ⊥平面PBC , 又BM ⊂平面PBC ,所以AE ⊥BM .(2)过点P 作PF ⊥AB 于点F ,连接CF (图略), 易知PF ⊥平面ABCD ,则PF ⊥CF .因为△PAB 是等边三角形,AB =4,所以PF =2 3. 过点M 作MN ⊥CF 于点N (图略),易知MN ∥PF ,CM CP =MNPF. 因为V 三棱锥P ­BCD =13×12×4×4×23=1633,V 三棱锥C ­MDB =1639=V 三棱锥M ­BCD ,所以V 三棱锥M ­BCD V 三棱锥P ­BCD =16391633=13.又V 三棱锥M ­BCD V 三棱锥P ­BCD =MN PF =13,所以CM CP =MN PF =13,PM CP =23,所以λ=PM PC =23.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点E (2,1),其左、右顶点分别为A ,B ,且离心率e =22. (1)求椭圆C 的方程;(2)设M (x 0,y 0)为椭圆C 上异于A ,B 两点的任意一点,MN ⊥AB 于点N ,直线l :x 0x +2y 0y -4=0.①证明:直线l 与椭圆C 有且只有一个公共点;②设过点A 且与x 轴垂直的直线与直线l 交于点P ,证明:直线BP 经过线段MN 的中点.[解] (1)由题意,得⎩⎪⎨⎪⎧(2)2a 2+12b 2=1,c a =22,a 2=b 2+c 2,得⎩⎨⎧a =2,b =2,c =2,故椭圆C 的方程为x 24+y 22=1.(2)①由题意知y 0≠0,由⎩⎪⎨⎪⎧x 24+y 22=1,x 0x +2y 0y -4=0得(x 20+2y 20)x 2-8x 0x +16-8y 20=0.因为点M (x 0,y 0)在椭圆上,所以x 20+2y 20=4,则x 2-2x 0x +x 20=0,即(x -x 0)2=0, 得x =x 0,y =y 0.所以直线l 与椭圆C 有且只有一个公共点,即点M . ②由(1)知,A (-2,0),B (2,0),过点A 且与x 轴垂直的直线的方程为x =-2, 结合方程x 0x +2y 0y -4=0,得点P ⎝⎛⎭⎪⎫-2,x 0+2y 0. 直线PB 的斜率k =x 0+2y 0-0-2-2=-x 0+24y 0, 则直线PB 的方程为y =-x 0+24y 0(x -2). 因为MN ⊥AB 于点N ,所以N (x 0,0),线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0,y 02. 令x =x 0,得y =-x 0+24y 0(x 0-2)=4-x 24y 0.因为x 20+2y 20=4,所以y =4-x 204y 0=2y 204y 0=y 02,所以直线PB 经过线段MN 的中点⎝⎛⎭⎪⎫x 0,y 02.21.(本小题满分12分)已知函数f (x )=a ln x -x +1. (1)当a =1时,求证:f (x )≤12x -12;(2)若不等式f (x )≤0在[1,e]上恒成立,求实数a 的取值范围.[解] (1)当a =1时,f (x )=ln x -x +1,函数f (x )的定义域为(0,+∞). 设g (x )=f (x )-⎝ ⎛⎭⎪⎫12x -12=ln x -x +1-⎝ ⎛⎭⎪⎫12x -12=ln x -x -12x +32,则g ′(x )=1x -12x -12=-x +x -22x =-(x -1)(x +2)2x .所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以g (x )≤g (1)=0, 所以f (x )≤12x -12.(2)因为f (x )=a ln x -x +1,所以f ′(x )=a x -12x =-x -2a2x.①当a ≤0时,因为x ∈[1,e],所以f ′(x )<0, 所以f (x )在[1,e]上单调递减,所以f (x )≤f (1)=0,所以a ≤0满足题意. ②当a >0时,令f ′(x )=0,得x =4a 2,所以当x ∈(0,4a 2)时,f ′(x )>0,当x ∈(4a 2,+∞)时,f ′(x )<0, 所以f (x )在(0,4a 2)上单调递增,在(4a 2,+∞)上单调递减. 当4a 2≥e ,即a ≥e2时,f (x )在[1,e]上单调递增, 所以f (x )≤f (e)=a -e +1≤0,所以a ≤e -1,此时无解. 当1<4a 2<e ,即12<a <e 2时,f (x )在(1,4a 2)上单调递增,在(4a 2,e)上单调递减,所以f (x )≤f (4a 2)=a ln 4a 2-2a +1=2a ln 2a -2a +1≤0. 设h (x )=2x ln 2x -2x +1,则h ′(x )=2ln 2x .当x ∈⎝ ⎛⎭⎪⎫12,e 2时,h ′(x )>0,所以h (x )在⎝ ⎛⎭⎪⎫12,e 2上单调递增,则当x ∈⎝ ⎛⎭⎪⎫12,e 2时,h (x )>h ⎝ ⎛⎭⎪⎫12=0,不满足题意.当0<4a 2≤1,即0<a ≤12时,f (x )在[1,e]上单调递减,所以f (x )≤f (1)=0,所以0<a ≤12满足题意.综上所述,实数a 的取值范围为⎝⎛⎦⎥⎤-∞,12. 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 在平面直角坐标系xOy 中,已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3+2cos φ,y =2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2.(1)设点M ,N 分别为曲线C 1与曲线C 2上的任意一点,求|MN |的最大值;(2)设直线l :⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数)与曲线C 1交于P ,Q 两点,且|PQ |=1,求直线l 的普通方程.[解] (1)曲线C 1的普通方程为(x -3)2+y 2=4,圆心C 1(3,0),半径r 1=2. 曲线C 2的直角坐标方程为x 2+y 2=4,圆心C 2(0,0),半径r 2=2, ∴|MN |max =|C 1C 2|+r 1+r 2=3+2+2=7.(2)将直线l 的参数方程代入(x -3)2+y 2=4中,得(t cos α-4)2+(t sin α)2=4,整理得t 2-8t cos α+12=0,Δ>0,设P ,Q 对应的参数分别为t 1,t 2,∴t 1+t 2=8cos α,t 1t 2=12,又|PQ |=1,∴|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(8cos α)2-4×12=1,解得cos α=±78,满足Δ>0,∴直线l 的斜率为tan α=±157, ∴直线l 的普通方程为y =±157(x +1). 23.(本小题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|2x -5|-|x +1|. (1)解不等式:f (x )<3x ;(2)当x ∈[1,2]时,f (x )≤ax 2-x +3恒成立,求实数a 的取值范围. [解] (1)法一:原不等式等价于⎩⎪⎨⎪⎧x >52,x -6<3x或⎩⎪⎨⎪⎧-1≤x ≤52,4-3x <3x或⎩⎪⎨⎪⎧x <-1,6-x <3x ,解得x >23,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >23.法二:如图,作出函数f (x )的图象,利用f (x )的图象解不等式,由4-3x =3x ,解得x =23,由图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >23. (2)法一:当x ∈[1,2]时,f (x )=4-3x ,则不等式f (x )≤ax 2-x +3可化为ax 2+2x -1≥0,令g (x )=ax 2+2x -1,易知函数g (x )=ax 2+2x -1的图象恒过点(0,-1),由函数g (x )=ax 2+2x -1的图象可知,要使x ∈[1,2]时,f (x )≤ax 2-x +3恒成立,需a =0或⎩⎪⎨⎪⎧a >0,g (1)≥0或⎩⎪⎨⎪⎧a <0,g (1)≥0,g (2)≥0,解得a ≥-34,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-34,+∞. 法二:当x ∈[1,2]时,f (x )=4-3x ,则不等式f (x )≤ax 2-x +3可化为a ≥1x 2-2x,因为x ∈[1,2],1x ∈⎣⎢⎡⎦⎥⎤12,1,所以1x 2-2x =⎝ ⎛⎭⎪⎫1x -12-1≤-34,所以a ≥-34,故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-34,+∞.。

2020届高考数学选择题填空题专项练习(文理通用)02 解三角形02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)02 解三角形02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)02解三角形02第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三期中(理))ABC ∆中,60C AC AB =︒==,A =( )A .ο35 B .ο45C .ο60D .ο75【答案】D 【解析】【分析】根据正弦定理求解角B ,进而利用内角和为180︒求解A 即可.【详解】由正弦定理有sin sin sin sin 2AC AB B B C B=⇒=⇒=.又AC AB <,故B C <,所以45B =︒.故180456075A ︒-︒-︒==︒.【点睛】本题主要考查了正弦定理的运用,属于基础题.2.(2020·四川省金堂中学校高三(文))小王同学骑电动自行车以24/km h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75︒方向上,则电动车在点B 时与电视塔S 的距离是( )A .4km B.C.kmD .23km【答案】C【解析】依题意有20248,30,1807510560AB BAS ABS o o o o =⋅=∠=∠=-=,45ASB ∠=o ,由正弦定理得sin 30sin 45BS AB=o o,解得BS =3.(2020·河北高三月考(文))在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若b =3c =,2B C =,则cos 2C 的值为( )A .37 B .75 C .97 D .95 【答案】D 【解析】【分析】根据正弦定理、二倍角的正弦公式、余弦公式直接进行求解即可.【详解】由正弦定理可得:sin sin b c B C=,即sin sin 22sin cos 2cos cos sin sin sin b B C C C C C c C C C =====⇒=∴275cos22cos 12199C C =-=⨯-=.故答案为:59【点睛】本题考查了正弦定理的应用,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力. 4.(2020·宁夏贺兰县景博中学高三(文))已知ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2,7,3C c ABC π==∆,则ABC ∆的周长为( ) A.8B .12C .15D .7【答案】C 【解析】【分析】根据142,3ABC C S π∆==,解得15ab =,再由余弦定理得()22222cos 49c a b ab C a b ab =+-=+-=,求得+a b 即可.【详解】因为2,3C ABC π=∆的面积为4,所以1sin 142ab C =,解得15ab =.由余弦定理得()22222cos 49c a b ab C a b ab =+-=+-=,所以8a b +=,又因为7c =,所以1sin 142ab C =,解得15ab =.由余弦定理得()22222cos 49c a b ab C a b ab =+-=+-=,所以8a b +=,所以ABC ∆的周长为15.故选:C【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.5.(2020·湖南明达中学高三(理))设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac ,sinAsinC ,则角C =( ) A .C =15°或C =45°B .C =15°或C =30°C .C =60°或C =45°D .C =30°或C =60°【答案】A 【解析】【分析】直接利用关系式的恒等变换,把关系式变形成余弦定理的形式,求出B 的值.对sinAsinC 行变换,最后求出结果.【详解】因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-. 由余弦定理得2221cos 22a cb B ac +-==-,因此120B =︒. 所以60A C +=︒,所以cos()cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+ cos()2sin sin A C A C =++ 122=+=, 故30A C -=︒或030A C -=-,因此,15=︒C 或45C =︒. 故选:A【点睛】本题主要考查三角函数关系式的恒等变换,考查余弦定理的应用,意在考查学生对这些知识的理解掌握水平,属于基础题型.6.(2019·安徽省怀宁中学高三月考(文))在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为( )A .9B .7C .5D .13【答案】A 【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.(2020·江苏金陵中学高三开学考试)在锐角ABC ∆中,已知sin 4cos cos C A B =,则tan tan A B 的最大值为( )A .4B .3C .6D .7【答案】A 【解析】【分析】根据三角形内角和以及两角和的正弦展开整理得tan tan 4A B +=,再代入基本不等式即可求解. 【详解】在锐角ABC ∆中,已知sin 4cos cos C A B =,则tan 0A >,tan 0B >,()sin sin sin cos cos sin 4cos cos C A B A B A B A B =+=+=,所以,tan tan 4A B +=,由基本不等式可得4tan tan A B =+≥tan tan 4A B ≤.当且仅当tan tan 2A B ==时,等号成立,因此,tan tan A B 的最大值为4.故答案为:4.【点睛】本题考查的知识点是两角和与差的正弦公式以及三角形内角和,基本不等式,难度不大,属于中等题.8.(2020·山西高三月考(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a c b -=cosCcosB,b=4,则△ABC 的面积的最大值为( )A .B .C .D 【答案】A 【解析】【分析】由已知式子和正弦定理可得3B π=,再由余弦定理可得16ac ≤,由三角形的面积公式可得所求.【详解】∵在△ABC 中2a c b -=cos cos CB,∴()2cos cos a c B b C -=,由正弦定理得()2sin sin cos sin cos A C B B C -=,∴()2sin cos sin cos sin cos sin sin A B C B B C B C A =+=+=.又sin 0A ≠,∴1cos 2B =,∵0B π<<,∴3B π=.在△ABC 中,由余弦定理得 22222b 162cos 2a c ac B a c ac ac ac ac ==+-=+--=…,∴16ac ≤,当且仅当a c =时等号成立.∴△ABC 的面积1sin 2S ac B ==≤故选A . 【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化变;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.9.(2020·宜宾市叙州区第二中学校高三月考(文))ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为() A .3 B .33C .36D .312【答案】C 【解析】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-,所以2a c ==,11sin 22ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.10.(2020·黑龙江高三期末(文))已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,且满足2sin 1cos A C B =-.若2,a c ==b =( )A .2B .C .D .3【答案】B 【解析】2sin 1cos A C B =-2sin sin A C B =,再利用正弦定理将角化成边,代入数值,即可求解.22sin 1cos sin A C B B =-=2b =,因为2,a c ==所以b =b =B【点睛】本题考查三角恒等变换和正弦定理的应用,属于基础题.11.(2020·湖北高三(文))已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为( )A .5B .5C .5D .3【答案】B【解析】【分析】根据a 2+b 2+2c 2=8,得到22282a b c +=-,由余弦定理得到22cos 83ab C c =-,由正弦定理得到2sin 4ab C S =,两式平方相加得()()()22224834ab c S =-+,而222822a b c ab +=-≥,两式结合有()()()()222222248283165S cc c c≤---=-,再用基本不等式求解.【详解】因为a 2+b 2+2c 2=8,所以22282a b c +=-,由余弦定理得222283cos 22a b c c C ab ab+--==,即22cos 83ab C c =-①,由正弦定理得in 12s S ab C =,即2sin 4ab C S =②,由①,②平方相加得()()()()()222222222483482ab cS abc =-+≤+=-,所以()()()()2222222222116556448283165525c c S cc c c ⎛⎫-+≤---=-≤= ⎪⎝⎭,即245S ≤,所以S ≤,当且仅当22a b =且221655c c -=即222128,55a b c ===时,取等号.故选:B 【点睛】本题主要考查了正弦定理和余弦定理及基本不等式的应用,还考查了运算求解的能力,属于中档题.12.(2020·汕头市潮阳实验学校高三月考(理))如图,在平面四边形ABCD 中,1AD =,BD =AB AC ⊥,2AC AB =,则CD 的最小值为( )A .5B .33C .5D .53【答案】 C 【解析】【分析】设ADB θ∠=,在ABD ∆中,利用正弦定理得sin AB BAD θ⋅∠=,利用余弦定理得26AB θ=-,从而得到θ与BAD ∠的关系,再由2BAD DAC π∠=+∠可得θ与DAC ∠之间的关系,利用余弦定理可得22520sin()CD θϕ=-+,再利用三角函数的有界性可得答案.【详解】设ADB θ∠=,在ABD ∆中,由正弦定理得sin sin AB BD BAD θ=∠,即sin sin A BA B Dθ=⇒∠sin AB BAD θ⋅∠=,由余弦定理得2222cos 6AB AD BD AD BD θθ=+-⋅⋅⋅=-,∵AB AC ⊥,∴2BAD DAC π∠=+∠,在ACD ∆中,由余弦定理得2222cos CD AD AC AD AC DAC =+-⋅∠2144sin AB AB BAD =-+∠25θθ=--2520sin()θϕ=-+,∴当sin()1θϕ+=时,min CD =【点睛】本题考查正余弦定理在解三角形中的综合运用,考查函数与方程思想、转化与化归思想、考查逻辑推理能力和运算求解能力,求解时注意确定以什么为变量,建立函数关系.二、填空题:本大题共4小题,每小题5分,共20分。

2020高考文科数学专用题型练:择、填空综合练:(一)含解析

2020高考文科数学专用题型练:择、填空综合练:(一)含解析

A.第一象限
B.第二象限
C.第三象限
D.第四象限
18.已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面 α 和平
面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
19.某算法的程序框图如图,若输出的 y=12,则输入的 x 的值可能为( )
学生,
则第一组应为 6 号学生,
所以每组抽取的学生号构成等差数列{an}, 所以 an=10n-4,n∈N*, 若 10n-4=8,则 n=1.2,不合题意;
若 10n-4=200,则 n=20.4,不合题意;
若 10n-4=616,则 n=62,符合题意;
若 10n-4=815,则 n=81.9,不合题意.
C.①④
D.③④
21.设集合 A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )
A.对任意实数 a,(2,1)∈A
B.对任意实数 a,(2,1)∉A
C.当且仅当 a<0 时,(2,1)∉A
D.当且仅当 a≤32时,(2,1)∉A 22.已知椭圆 G 的中心在坐标原点,长轴在 x 轴上,离心率为√23,且椭圆 G 上一点到其两个 焦点的距离之和为 12,则椭圆 G 的方程为( )
6/9
又|���⃗⃗���⃗⃗���⃗���|+|���⃗⃗���⃗⃗���⃗���|=|���⃗⃗���⃗⃗���⃗���|=3≥2√|���⃗⃗���⃗⃗���⃗���|·|���⃗⃗���⃗⃗���⃗���|⇒|P⃗⃗⃗⃗O⃗ |·|P⃗⃗⃗C⃗ |≤9,
4
∴(P⃗⃗⃗⃗A⃗ + P⃗⃗⃗⃗B⃗ )·P⃗⃗⃗C⃗ ≥-29.故答案为-29.

2020高考数学选择填空题强化训练含答案

2020高考数学选择填空题强化训练含答案

2020高考虽然延迟,但是练习一定要跟上,加油,少年!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使函数y=x2-2ax+1在[1,2]上存在反函数,则a 的取值范围是CA .a≤1B .a≥2C .a≤1或a≥2D .1≤a≤22.已知α-β=3π且cosα-cosβ=31,则cos(α+β)等于CA .31 B .32 C .97 D .98 3.先作与函数y=lgx-21的图象关于原点对称的图象,再将所得图象向右平移2个单位得图象C1,又y=f(x)的图象C 2与C 1关于y=x 对称,则y=f(x)的解析式是 AA.y=10xB.y=10x-2C.y=lgxD.y=lg(x-2)4.两个复数z1=a1+b1i,z2=a2+b2i(a1、a2、b1、b2都是实数且z1≠0,z2≠0),对应的向量21OZ OZ 和在同一直线上的充要条件是D A.12211-=⋅a b a b B.02121=+b b a a C.2121b ba a = D.1221b a b a =5.已知x,y∈R+,且111=+yx ,则x+4y的取值范围是B A.[8,+∞] B.[9,+∞] C.(0,1)∪[9,+∞] D.[1,9)6.函数y=sin(kπx)+2cos(kπx)的最小正周期T =1,则实数k 的值可以等于DA.πB.2πC.1D.27.已知数列{an}为等差数列,前n 项和为S n,数列{bn}为等差数列,前n 项和为T n,且==∞→∞→nn n n n n T Sb a lim ,32lim则,B A.-32 B.32 C.-94 D. 948.直线⎪⎩⎪⎨⎧+=-=ty tx 4322(t为参数)的倾角是DA.arctg(-21) B.arctg(-2)C.π-arctg21D.π-arctg29.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率e 为A A.1010 B.1717 C.13132 D.3737 10.长方体ABCD —A 1B 1C 1D 1中,E 、F 分别为C 1B1,D1B1的中点,且AB=BC,AA1=2AB,则CE 与BF 所成角的余弦值是D A.1010 B. 10103 C. 3434 D. 3434511.双曲线的渐近线方程为y=±2(x-1),一焦点坐标为(1+25,0),则该双曲线的方程是B A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(422=--y x 12.若一个圆锥有三条母线两两成60°角,则此圆锥侧面展开图所成扇形的圆心角为BA.πB.π332 C.π362 D.π3 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.(1-3a+2b)5展开式中不含b 的项系数之和是 -32 .14.已知f (x )=|log3x|当0<a<2时,有f(a)>f(2),则a 的取值范围是 0<a<1/2 .15.直线l 过点A (0,-1),且点B (-2,1)到l 距离是点C (1,2)到l 的距离的两倍,则直线l 的方程是 y = x - 1 或x=0 .一、 选择题:每小题5分,共60分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时训练(四十二)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:,221xp x x ∀∈>+R ,则p ⌝( ).A.,221xx x ∀∈+R … B. ,221xx x ∀∈<+R C. ,221xx x ∃∈+R … D.,221xx x ∃∈>+R 2.已知集合103x A x x ⎧+⎫=∈⎨⎬-⎩⎭Z…,{}2|1,B y y x x A ==+∈,则集合B 的含有元素1的子集个数为( ).A. 5B. 4C. 3D. 23.若,x y 满足3040x y x y x -⎧⎪+⎨⎪⎩………,则3x y +的最大值为( ).A. 0B. 2C. 4D. 6 4.复数()2i 3i =-( ).A.13i 5- B. 13i 5+ C. 3i 5+ D.3i5-5.已知定义在区间[]3,3-上的函数()2xf x m =+满足()26f =,在[]3,3-上随机取一个实数x ,则使得()f x 的值不小于4的概率为( ). A.56 B. 12 C. 13 D.166.执行右图所示的程序框图,如果输出a 的值大于2017,那么判断框内的条件是( ). A. 9?k >B. 9?k …C. 10?k <D.11?k …7.在等差数列{}n a 中,已知37,a a 是函数()243f x x x =-+的两个零点,则{}n a 的前9项和等于( ).A. 18-B. 9C. 18D.368.函数()133,1log ,1x x f x x x ⎧⎪=⎨>⎪⎩…,则()1y f x =-的图像是( ).9.曲线()()22110x y x +-=…上的点到直线10x y --=的距离的最大值为a ,最小值为b ,则a b -的值是( ).A.B. 2C.12+1 10. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则此几何体的表面积为( ).A. 42+B.62+C. 10D. 1211.设12,F F 是椭圆()2221024x y b b +=<<的左、右焦点,过1F 的直线l 交椭圆于A,B 两点,若22AF BF +的最大值为5,则椭圆的离心率为( ).A.12B.C.12.已知函数()()2e 31xf x a x a x =--+,若函数()f x 在区间()0,ln3上有极值,则实数a 的取值范围是( ). A.1,2⎛⎫-∞-⎪⎝⎭ B. (),1-∞- C. 11,2⎛⎫-- ⎪⎝⎭D. ()(),20,1-∞-U二、填空题:本大题共4小题,每小题5分,共20分.A.D.13.已知向量()()2,0,1,2==a b ,若λ-a b 与()1,2=-c 垂直,则实数λ的值为 . 14.若1sin 33απ⎛⎫-=⎪⎝⎭,则cos 23απ⎛⎫+= ⎪⎝⎭.15.,则该三棱锥外接球的直径为 .16.数列{}n a 的前n 项和为21n S n n =++,()()()*12nn n b a n =--∈N ,则数列{}n b 的前50项的和为 .限时训练(四十二)答案部分一、选择题二、填空题 13. 23- 14.79- 15. 16. 49解析部分1.解析 命题:,221xp x x ∀∈>+R ,则命题:,221xp x x ⌝∃∈+R ….故选C .2.解析 由{}{}13,1,0,1,2A x x x =-<∈=-Z …, 得{}1,2,5B =,则集合B 的含有元素1的子集有{}1,{}1,2,{}1,5,{}1,2,5,共4种.故选B .3.解析 画出可行域如图所示.设3z x y =+,得3y z x =-,平移直线3y z x =-.由图可知,当直线3y z x =-经过点B 时,直线3y z x =-的截距最大.由304x y x y -=⎧⎨+=⎩=,得()1,3B ,此时z 最大, 3136z =⨯+=,所以3x y +的最大值为6. 故选D.4.解析 复数()()()()213i 2213ii 3i 13i 13i 13i 5--===-++-.故选A. 5.解析 由已知,()2226f m =+=,得2m =.要使得()f x 的值不小于4,则()24xf x m =+…,得1x …,又[]3,3x ∈-,所以[]1,3x ∈.故()f x 的值不小于4的概率为()31213363P -===--.故选C.6.解析 模拟程序框图的运行过程.已知1,1k a ==,满足循环条件,执行循环体, 6a =,3k =; 满足循环条件,执行循环体, 33a =,5k =; 满足循环条件,执行循环体, 170a =,7k =; 满足循环条件,执行循环体, 857a =,9k =; 满足循环条件,执行循环体, 4294a =,11k =;由题意,此时应该不满足循环条件.退出循环.输出4294a =. 由此可根据选项知判断框内的条件为10?k <.故选C.7.解析 已知37,a a 是函数()243f x x x =-+的两个零点,所以374a a +=.又数列{}n a 为等差数列,所以{}n a 的前9项和()()19379991822a a a a S ++===.故选C . 8.解析 由已知,得()()1133,01log 1,0x x f x x x -⎧⎪-=⎨-<⎪⎩….当0x =时, 3y =.故排除选项A ,D ;可得()()13ln 3,011,01ln 3x x f x x x -⎧-⎪'-=⎨<⎪-⎩…,则函数()1f x -在()0,+∞上单调递减, 在(),0-∞上单调递增.故选C.9.解析 曲线()()22110x y x +-=…表示以()0,1为圆心,以1为半径的左半圆.因为圆心到直线10x y --=的距离d ==所以圆上的点到直线10x y --=的最大距离1a =,最小距离为()0,0到直线10x y --=的距离,即2b==,则1122a b-=-=+.故选C.10.解析如图所示,还原该几何体为四棱锥A BCDE-,将四棱锥A BCDE-放入一个棱长为2的正方体内,可知AB AC===,3AE AD==.则此几何体的表面积21112222226222⨯+⨯+⨯⨯=+.故选B.11.解析由题意,得22112248AB AF BF AF BF AF BF a++=+++==,若22AF BF+的最大值为5,则AB的最小值为3.可知当AB过点1F且垂直x轴时AB最小,为22ba,即223ba=,得23b=.又1c===,所以离心率12cea==.故选A.12.解析已知()()2e31xf x a x a x=--+.令()()()e231xf x a x ag x'=--+=.由函数()f x在区间()0,ln3上有极值,等价于在()g x在区间()0,ln3上单调且有零点,则()()0ln30g g<,即()()3132ln3310a a a a-----<,可得210a+<,解得12a<-.此时()e20xg x a'=-<,所以()g x在区间()0,ln3上单调递减,所以a的取值范围是1,2⎛⎫-∞-⎪⎝⎭.故选A.13.解析 因为λ-a b 与c 垂直,所以()0λ-⋅=a b c , 即()()()2,01,21,2230λλ-⋅-=--=⎡⎤⎣⎦,解得23λ=-.故填23-. 14.解析 由ππ1sin sin cos 32663αααπ⎡π⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 得22π17cos 22cos 1213639ααπ⎛⎫⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故填79-.15.解析 ,则可知它一定可以放在棱长为1的正方体内,则该三棱锥的外接球即为此正方体的外接球, 故该三棱锥外接球的直径即为正方体的体对角线,.16.解析 由题知, 113a S ==,且21n S n n =++,()2211111n S n n n n -=-+-+=-+,以上两式相减,得()*122,n n n a S S n n n -=-=∈N …, 则()11321b =-⨯-=-,()()()*1222,nn b n n n =--∈N …, 所以5012501249698S b b b =+++=-+-+-+=L L ()121234474849-+-+-++-+=L ()12244949-+-+=.故填49.。

相关文档
最新文档