高三数学理科
数学公式高中理科
数学公式高中理科在高中理科学习中,数学公式是必不可少的重要内容之一。
数学公式的掌握对于理科学生来说至关重要,因为它们是解决数学问题的关键工具。
下面将介绍一些高中理科中常见的数学公式及其应用。
1. 三角函数公式三角函数是高中数学中重要的内容之一,常见的三角函数包括正弦函数、余弦函数、正切函数等。
它们之间的关系可以用以下公式表示:•正弦函数公式:sin2A+cos2A=1;•余弦函数公式:cos2A=1−sin2A;•正切函数公式:tanA=sinA。
cosA这些三角函数公式在解决三角形相关问题时具有重要的作用,例如计算三角形的边长、角度等。
2. 初等代数公式在代数学习中,初等代数公式是基础而重要的内容。
常见的初等代数公式包括:•二次方程求根公式:x=−b±√b2−4ac;2a•因式分解公式:a2−b2=(a−b)(a+b);•完全平方公式:a2+2ab+b2=(a+b)2。
这些代数公式在解决方程、因式分解等代数问题时非常有效。
3. 几何公式几何学是高中数学中的另一个重要分支,而几何公式在解决空间和平面几何问题时起着至关重要的作用。
常见的几何公式包括:•长方形面积公式:S=l×w,其中S表示面积,l表示长,w表示宽;•圆的周长公式:C=2πr,其中C表示周长,r表示半径;•三角形面积公式:S=1bℎ,其中S表示面积,b表示底边长,ℎ表示高。
2这些几何公式在计算几何图形的周长、面积等方面具有重要意义。
综上所述,数学公式在高中理科学习中扮演着不可或缺的角色。
掌握各种数学公式,熟练运用它们解决各类数学问题,对于提高学生的数学素养和解题能力具有重要意义。
希望同学们能够深入学习各种数学公式,并在实际问题中灵活运用,进一步提升数学水平。
理科高三数学知识点总结(最新)
理科高三数学知识点总结等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:(1)a>bb(2)a>b,b>ca>c(传递性)(3)a>ba+c>b+c(c∈R)(4)c>0时,a>bac>bcc<0时,a>bac运算性质有:(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学集合复习知识点任一A,B,记做ABAB,BA,A=BAB={|A|,且|B|}AB={|A|,或|B|}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高中数学集合知识点归纳1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
【高三数学试题】高三数学试题1(理科)及参考答案
高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题
甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题
学校:___________姓名:___________班级:___________考号:___________
.π3
.函数cos
y=
二、填空题
三、解答题
17.记n S 为等差数列{}n a 的前n 项和,已知17a =-,3
15S =-.
(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.
18.某工厂采购了一批新的生产设备.经统计,设备正常状态下,生产的产品正品率为0.98.为监控设备生产过程,检验员每天从该设备生产的产品中随机抽取10件产品,并检测质量.规定:抽检的10件产品中,若至少出现2件次品,则认为设备生产过程出现了异常情况,需对设备进行检测及修理.
(1)假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求(2)P X ≥,并说明上述监控生产过程规定的合理性;
(2)该设备由甲、乙两个部件构成,若两个部件同时出现故障,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概
率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用1000元,修理费用5000元,乙部件的检测费用2000元,修理费
.C
【分析】根据函数的自变量的性质与图象,根据选项即【详解】依题意,cos y x =×。
河南省2023届高三上学期第一次考试数学理科试题(解析版)
“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
长郡十八校联盟2023届高三第一次联考(全国卷)理科数学试题
长郡十八校联盟2023届高三第一次联考(全国卷)理科数学试题一、单选题 1.已知集合{}21,0,430A y y x xB xx x x ⎧⎫==+>=-+<⎨⎬⎩⎭,则AB =( )A .(1,)+∞B .[2,3)C .(1,2]D .[2,)+∞2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数(2i)i z a =+(其中a ∈R )为“等部复数”,则复数iz a +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若x ,y 满足约束条件201030? x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23zx y=-的最大值为( )A .2B .4C .8D .124.已知1x <-,那么在下列不等式中,不成立的是A .210x -> B .12x x+<- C .sinx x -> D .co s 0x x +>5.希尔伯特在1990年提出了孪生素数猜想,其内容是:在自然数集中,孪生素数对有无穷多个.其中孪生素数就是指相差2的素数对,即若p 和2p+均是素数,素数对(),2p p +称为孪生素数.从16以内的素数中任取两个,其中能构成孪生素数的概率为( ) A .13B .15C .17D .3286.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.已知该数列{}n a 的前10项依次是0,2,4,8,12,18,24,32,40,50,记(1)nn nb a =-⋅,n *∈N ,则数列{}n b 的前20项和是( ) A .110B .100C .90D .807.某几何体的三视图如图所示,则该几何体的体积是( )A .64B .128C .256D .3848.八一广场是南昌市的心脏地带,江西省最大的城市中心广场,八一南昌起义纪念塔为八一广场标志性建筑,塔座正面携刻“八一南昌起义简介”碑文,东、南、西三面各有一幅反映武装起义的人物浮雕.塔身正面为“八一南昌起义纪念塔”铜胎鎏金大字,塔顶由一支直立的巨型“汉阳造”步枪和一面八一军旗组成.八一南昌起义纪念塔的建成,表达了亿万人民永远缅怀老一辈无产阶级革命家创建和培育解放军的丰功伟绩,鼓励国人进行新的长征.现某兴趣小组准备在八一广场上对八一南昌起义纪念塔的高度进行测量,并绘制出测量方案示意图,A 为纪念塔最顶端,B 为纪念塔的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C 、D 两点,测得C D 的长为m .兴趣小组成员利用测角仪可测得的角有.A C B∠、A C D∠、B C D ∠、A D C∠、B D C ∠,则根据下列各组中的测量数据,不能计算出纪念塔高度A B 的是( )A .m A CB BCD B D C ∠∠∠、、、 B .m A C B B C D A C D ∠∠∠、、、 C .m A C B A C D A D C ∠∠∠、、、 D .m A C B B C D A D C ∠∠∠、、、9.将函数()c o s 2f x x=的图象向右平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度后得到函数()g x 的图象,若对满足()()122fx g x -=的12,xx ,总有12x x -的最小值等于π6,则ϕ=( )A .π12B .π6C .π3D .5π1210.已知R λ∈,函数21,0,()()412lg ,0,x x f x g x x x x x λ⎧+<==-++⎨>⎩,若关于x 的方程(())f g x λ=有6个解,则λ的取值范围为( )A .10,2⎛⎤ ⎥⎝⎦B .20,3⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .12,23⎛⎫⎪⎝⎭11.双曲线22:13xCy-=的左焦点为F ,过点F 的直线l 与双曲线C 交于A ,B 两点,若过A ,B和点0)M 的圆的圆心在y 轴上,则直线l 的斜率为( )A.2±B.C .1± D .32±12.《九章算术》卷五《商功》中描述几何体“阳马”为“底面为矩形,一棱垂直于底面的四棱锥”,现有阳马P A B C D -(如图),P A ⊥平面,1,2,3A B C D P A A B A D ===,点E ,F 分别在,A B B C 上,当空间四边形P E F D 的周长最小时,三棱锥P A D F-外接球的表面积为( )A .9πB .11πC .12πD .16π二、填空题13.已知7280128(1)(21)x x a a x a x a x-+=++++,则2a 等于___________.14.已知向量()2,1a =r ,()1,0b=,()1,2c=,若()ca mb ⊥+,则m=___________.15.已知ππ,s in 2c o s 2s in c o s 122βαβααβ-<-<+=-=,则πc o s 3α⎛⎫+=⎪⎝⎭___________. 16.设函数1()ln ()f x x a x a x=-+∈R 的两个极值点分别为12,xx .若()()2124124e2e 1fx fx a x x -≤---恒成立,则实数a 的取值范围是___________.三、解答题17.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N在直线30x y -+=上.(1)求数列{}n a 的通项公式; (2)若2nnnb a =,求数列{}n b 的前n 项和nT .18.基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x )和物理成绩(y ),绘制成如图散点图:根据散点图可以看出y 与x 之间有线性相关关系,但图中有两个异常点A ,B .经调查得知,A 考生由于重感冒导致物理考试发挥失常,B 考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:5015800i i x ==∑,5013900i i y ==∑,501462770i i i x y ==∑,()502128540ii x x=-=∑,()502118930ii y y=-=∑,其中,i i x y 分别表示这50名考生的数学成绩、物理成绩,1i =,2,…,50,y 与x 的相关系数0.45r≈.(1)若不剔除A ,B 两名考生的数据,用52组数据作回归分析,设此时y 与x 的相关系数为0r .试判断0r 与r 的大小关系(不必说明理由);(2)求y 关于x 的线性回归方程(系数精确到0.01),并估计如果B 考生加了这次物理考试(已知B 考生的数学成绩为125分),物理成绩是多少?(精确到0.1)附:线性回归方程ˆˆˆyab x =+中:()()()121ˆˆˆ,niii nii xxy yb ay b x xx==--==--∑∑.19.如图,在四棱锥P A B C D-中,E 为棱A D 上一点,,P E A D P A P C⊥⊥,四边形B C D E为矩形,且13,,//4B CP E B E P F P C P A ====平面B E F .(1)求证:P A⊥平面P C D ;(2)求二面角FA B D--的大小.20.如图,在平面直角坐标系x O y 中,已知直线5y =与椭圆2222:1(0)x y Ca b ab+=>>交于,P Q 两点(P 在x 轴上方),且65P Q a=,设点P 在x 轴上的射影为点N ,P Q N V 的5抛物线2:2(0)Eyp x p =>的焦点与椭圆C的焦点重合,斜率为k 的直线l 过抛物线E 的焦点与椭圆C 交于,A B 两,点,与抛物线E 交于,C D 两点.(1)求椭圆C 及抛物线E 的标准方程;(2)是否存在常数λ||||A B C D λ为常数?若存在,求λ的值;若不存在,说明理由.21.设函数311()s in c o s 0,()()s in 222f x x x x x g x f x x a x π⎛⎫=-<<=+- ⎪⎝⎭.(1)证明:当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 有唯一零点;(2)若任意[0,)x ∈+∞,不等式()0g x ≤恒成立,求实数a 的取值范围.22.在直角坐标系x O y中,直线l 的参数方程为,x y ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点O为极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222c o s 2s in 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点. (1)求||||F A F B +的值; (2)若点P 是椭圆上任意一点,求P A B的面积最大值.23.已知函数()|21||3|f x x x =---.(1)求()f x 的最小值m ;(2)若a ,b 为正实数,且20a b m ++=,证明不等式225abba+≥.参考答案:1.B【分析】根据基本不等式求得集合A ,解一元二次不等式得集合B ,即可得集合的交集.【详解】∵10,2x y x x >=+≥=,当且仅当1x =时,等号成立,∴[2,)A =+∞,又∵{}{}()2430|131,3Bxx x x x =-+<=<<=,∴[2,3)AB =.故选:B. 2.D【分析】根据“等部复数”得a 的值,即可得22iz =+,从而得iza +,从而可确定其复平面内对应的点所对应的象限. 【详解】∵(2i)i 2iz a a =+=-+,又∵“等部复数”的实部和虚部相等,复数z 为“等部复数”,∴2a -=,解得2a =-, ∴22i z=+,∴22iz=-,即24iza i +=-,∴复数iza +在复平面内对应的点是(2,4)-,位于第四象限.故选:D. 3.D【分析】如图所示,画出可行域,233z y x =-,3z-表示直线与y 轴的截距,截距最小时,z最大,根据图像得到答案. 【详解】画出可行域,如图所示:23z x y=-,则233z yx =-,3z-表示直线与y 轴的截距,截距最小时,z 最大,当直线过交点,310x x y =⎧⎨+-=⎩,即()3,2-时,6612z=+=.故选:D4.D【分析】利用作差法可判断A 、B 选项的正误,利用正弦、余弦值的有界性可判断C 、D 选项的正误.综合可得出结论. 【详解】1x <-Q,则()()21110x x x -=-+>,()22112120x x x x xxx+++++==<,又sin x、[]c o s 1,1x ∈-,sinx x ∴->,co s 0x x +<.可得:ABC 成立,D 不成立. 故选:D.【点睛】本题考查不等式正误的判断,一般利用作差法来进行判断,同时也要注意正弦、余弦有界性的应用,考查推理能力,属于中等题. 5.B【分析】先分析20以内的素数,再分析其中孪生素数的对数,再分别求解所以可能的情况种数以及孪生素数的对数求概率即可.【详解】20以内的素数有2,3,5,7,11,13共6个,从中任取两个共有15种可能,其中构成孪生素数的有3和5,5和7,11和13共3对,∴16以内的素数中任取两个,其中能构成孪生素数的概率31155P ==.故选:B【点睛】本题主要考查了古典概型的问题,需要根据题意分析总的情况数以及满足条件的基本事件数.属于基础题. 6.A【分析】根据所给数列的项归纳出通项公式,利用分组求和法求和即可. 【详解】观察此数列可知,当n为偶数时,22nna =,当n为奇数时,212nn a -=,因为221,2(1)2nn n n n b a nn ⎧--⎪⎪=-⋅=⎨⎪⎪⎩为奇数,为偶数,所以数列{}n b 的前20项和为:(02)++2219120(48)(1218)()22--++-+++-+10(220)246201102⨯+=++++==,故选:A 7.B【分析】根据三视图得到该几何体是一个四棱锥求解. 【详解】解:如图所示:由三视图知:该几何体是一个四棱锥, 其底面积为8864S=⨯=,高为6h=,所以其体积为11283V S h ==,故选:B 8.B【分析】依据解三角形的条件,逐项判断可解三角形求出塔高度A B 的选项即可. 【详解】对于A :由m ,B C D ∠、B D C ∠可以解B C D △,又tan A B B C A C B=⋅∠,可求塔高度A B ;对于B :在B C D △中,由,C D m B C D=∠无法解三角形,在A C D中,由,C Dm A C D=∠无法解三角形,在B C A V 中,已知两角A C B A B C ∠∠、无法解三角形,所以无法解出任意三角形,故不能求塔高度A B ; 对于C :由C Dm=,∠∠A C D A D C 、可以解A C D,可求A C ,又sin A BA C A C B=⋅∠,即可求塔高度A B ;对于D :如图,过点B 作B EC D⊥于点E ,连接A E ,由c o s ,c o s B C E C A C B B C D A CB C∠=∠=,c o s E C A C E A C∠=,知co s c o s c o s A C E A C B B C D∠=∠⋅∠,故可知A C D∠的大小,由A C D∠、A D C∠、m 可解A C D,可求A C ,又s i n AB A CA C B=⋅∠,可求塔高度A B . 故选:B. 9.C【分析】根据函数图象平移规律可得函数()g x 的图象,由()()122fx g x -=、12m inπ6x x -=设1x=,则2π6=±x ,分别利用πc o s 2216ϕ⎛⎫⨯-=- ⎪⎝⎭、πc o s 2216ϕ⎡⎤⎛⎫⨯--=- ⎪⎢⎥⎝⎭⎣⎦,求出ϕ可得答案. 【详解】函数()c o s 2f x x=的周期为π,将函数的图象向右平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度后得到函数()g x 的图象,可得()c o s(22)g x x ϕ=-,由()()122fx g x -=可知,两个函数的最大值与最小值的差为2,且12m inπ6x x -=,不妨设1x=,则2π6=±x ,即()g x 在2π6=±x 时取得最小值,由于πc o s 2216ϕ⎛⎫⨯-=- ⎪⎝⎭,此时ππ,3ϕ=--∈k k Z ,不合题意;πc o s 2216ϕ⎡⎤⎛⎫⨯--=- ⎪⎢⎥⎝⎭⎣⎦,此时2ππ,3ϕ=--∈k k Z,当1k=-时,π3ϕ=满足题意.故选:C. 10.B【分析】数形结合法,令()g x t =,可得方程()f t λ=的解有3个,对应的一元二次方程各有2个不相等的实数根,利用判别式求解λ的范围. 【详解】令()g x t =,则方程()f t λ=的解有3个,由图象可得,01λ<<,且三个解分别为1231,1,10t t t λλλ=--=-+=,则24121x x λλ-++=--,24121x x λλ-++=-+,241210x x λλ-++=,均有两个不相等的实根, 则1∆>,且2∆>,且3∆>,即164(23)0λ-+>且164(2)0λ-+>,解得203λ<<,当203λ<<时,()316412104(3210)λλλλ∆=-+-=-+,因为203λ<<,所以4203λ-<-<,所以53233λ<-<,且100λ>,所以32100λλ-+>,即3∆>恒成立,故λ的取值范围为20,3⎛⎫ ⎪⎝⎭.故选:B. 11.A【分析】利用韦达定理结合P GA B⊥可得283m tm=-,再根据弦长公式表示得A B,结合2221||2rdA B ⎛⎫=+ ⎪⎝⎭即可求直线l 的斜率.【详解】由题意可知:(2,0)F -,设()11,A x y ,()22,B x y ,A B 的中点为P , 过点A ,B ,M 的圆的圆心坐标为(0,)G t,则||G Mr==,由题意知:直线A B 的斜率存在且不为0,设直线A B 的方程为:2xm y =-,联立方程组222,1,3x m y x y =-⎧⎪⎨-=⎪⎩化简整理可得,()223410m y m y --+=,则230m -≠,()222164312120mmm∆=--=+>,12122241,33m y y y y mm+==--,故A B 的中点P 的纵坐标122223p y y m y m+==-,横坐标2623pp x m y m=-=-,则2262,33mP mm⎛⎫⎪--⎝⎭,由圆的性质可知:圆心与弦中点连线的斜率垂直于弦所在的直线,所以222363P Gmtm k m m--==---,化简整理可得:283m tm=-①,则圆心(0,)G t 到直线A B的距离d=)221||3m A B m+===-,2221||2rdA B ⎛⎫=+ ⎪⎝⎭,即()()222222231(2)713mm t tmm+-+=++-,将①代入可得:()()()2222222222282313647133m mm mmmm⎛⎫- ⎪+-⎝⎭+=++--,即()()()()2222222222316436367333mmm mmm+++=+---,整理可得:42560m m -+=,则()()22230m m--=,因为230m -≠,所以220m-=,解得m=∴12km ==±.故选:A. 12.B【分析】把,A P P B 剪开,使得P A B与矩形A B C D 在同一个平面内.延长D C 到M ,使得C MD C=,则四点P ,E ,F ,M 在同一条直线上时,P EE F F D++取得最小值,即空间四边形P E F D 的周长取得最小值.可得122C F PD ==,∴1B F =.∴点E 为A B 的中点.设A F D △的外心为1O ,外接圆的半径为r ,则2s in 45︒=A F r,利用勾股定理进而得出结论. 【详解】如图所示,把,A P P B 剪开,使得P A B与矩形A B C D 在同一个平面内.延长D C 到M ,使得C MD C=,则四点P ,E ,F ,M 在同一条直线上时,P EE F F D++取得最小值,即空间四边形P E F D 的周长取得最小值.可得122C F PD ==,∴1B F=.∴点E 为A B的中点.如图所示,设A F D △的外心为1O ,外接圆的半径为r ,易得45F D A ∠=,则2s in 45==︒A F r设三棱锥PA D F-外接球的半径为R ,球心为O ,连接1O O ,则11122O O P A ==,则222111224R⎛⎛⎫=+= ⎪⎝⎭⎝⎭.∴三棱锥PA D F-外接球的表面积24π11π==R.故选:B. 13.70-【分析】要求2a ,即求展开式中2x 项的系数,进而根据二项式定理求解即可; 【详解】解:因为777(1)(21)(21)(21)x x x x x -+=+-+,对于7(21)x +,其展开式通项为()777177C 22C kkkkkk T x x---+==.所以,7(1)(21)x x -+中含2x 的项为6252772C 2C x x x⋅-,所以展开式中含2x 的项系数为625772C 2C 70⨯-=-.故答案为:70-. 14.4-【分析】用向量的坐标运算即可. 【详解】依题意:()()211211200ca mb ca m cb m +=+=⨯+⨯+⨯+⨯= ,解得m =-4, 故答案为:-4.15.3-【分析】根据已知等式平方后相加可得()1sin 2βα-=-,即()1sin 2αβ-=,根据已知角度范围即可得6παβ-=,从而可得s in3β=πs in 63α⎛⎫-= ⎪⎝⎭得所求.【详解】等式sin 2c o s 2sin c o s 1βααβ+=-=,两边同时平方得22s in 4c o s 4s in c o s 2βαβα++=,24s in c o s 4s in c o s 1αβαβ+-=,两式相加,得414sin c o s 4sin c o s 3βααβ++-=,,整理得()1sin 2βα-=-,即1s i n()2αβ-=,因为ππ22βα-<-<,所以6παβ-=,得π6αβ=+,代入2sin c o s 1αβ-=,得2sin c o s 16πββ⎛⎫+-= ⎪⎝⎭,即s in3β=πs in 63α⎛⎫-= ⎪⎝⎭则ππππc o s c o s s in 36263ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:3-16.221e,e ⎡⎫++∞⎪⎢⎣⎭【分析】由函数()f x 有两个极值点分别为12,xx ,可知()f x 不单调,利用导数求得a 的范围,运用韦达定理可得122212ax x x x =+=+>,作差()()12f x fx -,再由条件,结合恒成立思想,运用函数的单调性,构造函数421e 1()ln (1)2eF x x x x x-=-+>,通过求导,判断单调性可得22ex ≥,即可得到a 的范围.【详解】∵函数1()ln ()f x x a x a x=-+∈R 有两个极值点分别为12,x x ,()f x 的定义域为221(0,),()x a x f x x-'++∞=-,令2()1g x x a x =-+,其判别式2Δ4a =-,当22a -≤≤时,Δ0,()0,()f x f x '≤≤在(0,)+∞上单调递减,不合题意.当2a <-时,Δ0,()0g x >=的两根都小于零,在(0,)+∞上,()0f x '<,则()f x 在(0,)+∞上单调递减,不合题意. 当2a>时,Δ0>,设()0g x =的两个根12,xx 都大于零,令1212122x x x x =<==,当10x x <<时,()0f x '<,当12xx x <<时,()0f x '>,当2xx >时,()0f x '<,故()f x 分别在区间()10,x ,()2,x +∞上单调递减,在区间()12,x x 上单调递增,则122212a x x x x =+=+>,∴a 的取值范围是(2,)+∞.∵()()1211221211ln ln ⎛⎫-=-+--+=⎪⎝⎭f x fx x a x x a x x x ()()21211212ln ln x x x x a x x x x -+-+-,∴()()121212121212121ln ln ln ln 12fx fx x x x x aax x x x x x x x ---=--+=-+---,若()()2124124e2e 1fx fx a x x -≤---恒成立,则212412ln ln 4e22e 1x x aa x x --+≤---,∴212412ln ln 4ee 1x x x x -≤--,由12x x <,则()412122e 1lnln 4ex x x x --≤-.又121x x =,∴()422221e 12ln4ex x x --≤-,∴()4222221e 1ln 012ex x x x --+≤>①恒成立,记421e 1()ln (1)2eF x x x x x-=-+>,4221e 1()12e F x xx-=--+',记()0F x '=的两根为4121e 122e x ⎡-⎢=-⎢'⎣,4221e 122e x ⎡-⎢=+⎢'⎣,()F x 在区间()21,x '上单调递增,在区间()2,x '+∞上单调递减,且易知2121e x x <<<<''.又()2(1)0,e0F F ==,∴当()2ex ∈1,时,()0F x >;当)2,e x ⎡∈+∞⎣时,()0F x ≤.故由①式可得,22ex ≥,代入方程()222210g x x a x =-+=,得222211e ea x x =+≥+.又2a>, ∴a 的取值范围是221e,e ⎡⎫++∞⎪⎢⎣⎭.故答案为:221e,e ⎡⎫++∞⎪⎢⎣⎭.【点睛】关键点点睛:本题考查利用导数求单调区间、极值,主要考查极值的运用,运用分类讨论的思想方法是解题的关键,同时考查函数的单调性的运用和基本不等式的运用,考查运算能力,属于难题. 17.(1)32n a n =-;(2)1(35)210n n T n +=-⋅+.【分析】(1)根据给定条件,结合等差数列定义判断求解作答. (2)利用(1)的结论,利用错位相减法求和作答. 【详解】(1)依题意,130n n a a +-+=,即13n na a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32na a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2nn b n =-⋅,则1321242(342)22nnT n =⨯+⨯⨯+⋅⋅⋅-⨯++,于是23121242(35)2(32)2nn nT n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得1231122()23(222(32)2(3212)22)123n n n n nT n n +-+-=+++⋅⋅⋅⋅+--⋅--⋅-=+-1(53)210n n +⋅=--,所以1(35)210n nT n +=-⋅+.18.(1)0r r<(2)0.36 6.4ˆ32yx =+,估计B 考生的物理成绩约为81.2分【分析】(1)根据已知条件,结合散点图,即可求解.(2)根据已知条件,结合最小二乘法,以及线性回归方程的公式,求出线性回归方程,再将125x =代入,即可求解.【详解】(1)0r r<理由如下:由图可知,y 与x 成正相关关系, ①异常点A ,B 会降低变量之间的线性相关程度,②52个数据点与其回归直线的总偏差更大,回归效果更差,所以相关系数更小, ③50个数据点与其回归直线的总偏差更小,回归效果更好,所以相关系数更大, ④50个数据点更贴近其回归直线l , ⑤52个数据点与其回归直线更离散. (2)由题中数据可得:50501111116,785050i i i i xx y y ======∑∑,所以()()5050115010370iii i i i x xy yx y x y ==--=-=∑∑,所以()()()501502110370ˆ0.3628540iii ii xxy ybxx==--==≈-∑∑,780.36ˆˆ11636.24a y b x =-=-⨯=,所以0.36 6.4ˆ32y x =+,将125x =代入,得0.3612536.2481.2481.2y =⨯+=≈,所以估计B 考生的物理成绩约为81.2分. 19.(1)证明见解析 (2)π4【分析】(1)连接A C 交B E 于点G ,连接F G ,利用线面平行的性质得//P A F G ,利用平行线分线段成比例可得线段长度,从而由勾股定理得线线垂直,再利用线面垂直的判定定理证明线面垂直;(2)利用线面关系,证明线线垂直,建立空间直角坐标系,根据空间向量的坐标运算分别确定平面A B F 与平面A B D 的法向量,根据坐标运算得二面角的余弦值,即可确定二面角大小.【详解】(1)连接A C 交B E 于点G ,连接F G ,因为//P A 平面B E F ,平面P A C 平面B E FF G=,P A⊂平面P A C ,所以//P A F G ,又//B E C D,所以13A F A F A G P F D EB CG CF C====,又3D E=,所以1,4A EA D ==.因为P E A D⊥,所以2P A==,P D==所以222P A P D A D+=,所以P A P D⊥,又,,,P AP C P D P C P P D P C ⊥⋂=⊂平面P C D ,所以P A ⊥平面P C D . (2)因为P A ⊥平面P C D ,C D⊂平面P C D ,所以P AC D⊥,又,A D C D P A A D A ⊥⋂=,,P A A D⊂平面P A D ,所以C D⊥平面P A D ,又P E⊂平面P A D ,所以P EC D⊥,又P E A D⊥,A DC D D =,A D C D ⊂平面A B C D所以P E ⊥平面A B C D .如图建系,则3(1,0,0),(0,0),(3,0,0),,444A B D F ⎛-- ⎝⎭,7333,,,(1,3,0)444A F A B ⎛⎫=-- ⎝⎭,设平面A B F 的一个法向量为(,,)mx y z=,则720044400z y A F m x y z x A B m x ⎧⎧=⎧⋅=-++=⎪⎪⎪⇒⇒⎨⎨⎨=⎪⋅=⎪⎩⎪⎩-+=⎩,取1y =,得2)m =,又平面A B D的一个法向量为(0,0,1)n=,所以2c o s ,2||||22m n m n m n ⋅〈〉===FA B D--为锐角,故二面角F A B D--的大小为π4.20.(1)2215xy+=,28yx=(2)存在,16λ=-【分析】(1)设()00005P xx ⎛⎫> ⎪⎝⎭,由2P Q N P O NS S =△△解得1,5⎛⎫⎪ ⎪⎝⎭P ,利用13525O P P Q a====可得a=,再求得b 的值,即可得椭圆C 方程,由抛物线2:2(0)E yp x p =>的焦点与椭圆C 的焦点重合,即可得抛物线E 的标准方程;(2)设直线l 的方程为(2)yk x =-,()()()()11223344,,,,,,,A x yB x yC x yD x y ,分别让直线l 与椭圆、抛物线联立,得交点坐标关系,从而得弦长,即可求得λ的值. 【详解】(1)由题意可设()00005P x x⎛⎫> ⎪⎝⎭,可得2P Q N P O N S S =△△,所以001255P O NS x x =⋅⋅=△,所以01x =,1,5⎛ ⎝⎭P ,所以13525O PP Q a====,所以a=,点P 坐标代入椭圆方程得1b =,所以椭圆C 方程为2215xy+=,所以2c=,即4p=,所以抛物线E 方程为28y x=.(2)设()()()()11223344,,,,,,,A x y B x y C x y D x y .直线l 的方程为(2)yk x =-,与椭圆C 的方程联立()22152x y y k x ⎧+=⎪⎨⎪=-⎩得()222215202050k xk x k+-+-=,则()()()4222Δ4002051412010kkkk=-+-=+>恒成立,所以2212122220205,1515kk x x x x kk-+==++则)221||15kA Bk+==+.直线l 的方程为(2)y k x =-,与抛物线E 的方程联立28,(2),y x y k x ⎧=⎨=-⎩得()22224840k x k x k -++=.()223434228148,||4kkx x C D x x kk+++==++=.()()()22222215(20)4||||218181k kk A B C D kkkλλλ+++=+=+++.||||A B C D λ+为常数,则204λ+=,得16λ=-.故存在16λ=-||||A B C D λ为常数.21.(1)证明见解析 (2)13a ≥【分析】(1)求导,根据导函数判断函数()f x 的单调性,再根据零点存在法则求解; (2)求导,根据导函数的结构,对a 分类讨论. 【详解】(1)π110,,()s in c o s ,()s in c o s 222x f x x x x f x x x x ⎛⎫∈=-=-' ⎪⎝⎭ ,令'()()h x f x = ,则'3()sin co s 02h x x x x =+> ,则π0,,()2x f x '⎛⎫∈ ⎪⎝⎭单调递增,且''1ππ(0),222f f ⎛⎫=-= ⎪⎝⎭,∴'π0,,()02t f t ⎛⎫∃∈= ⎪⎝⎭ ,'(0,),()0,()x t f x f x ∈<单调递减,'π,,()0,()2x t f x f x ⎛⎫∈> ⎪⎝⎭单调递增,且π1(0)0,022f f ⎛⎫==> ⎪⎝⎭,则()0<f t ,∴存在唯一零点0π,2x t ⎛⎫∈ ⎪⎝⎭,使得()00f x =,即()f x 有唯一零点;(2)3()s in c o s g x x x x a x=--,则'()(s in 3)g x x x a x =- ,又令'()s in 3,()c o s 3h x x a x h x x a=-=- ,①当31a≤-,即13a ≤-时,()0h x '≥ 恒成立,∴()h x 在区间[0,)+∞上单调递增,∴()(0)0h x h ≥=,∴'()0g x ≥ ,∴()g x 在区间[0,)+∞上单调递增, ∴()(0)0g x g ≥=(不合题意);②当31a≥即13a ≥时,'()0,()h x h x ≤在区间[0,)+∞上单调递减,∴()(0)0h x h ≤=,∴'()0g x ≤ ,∴()g x 在区间[0,)+∞上单调递减, ∴()(0)0g x g ≤=(符合题意);③当131a -<<,即1133a -<<时,由''(0)130,(π)130h a h a =->=--< ,∴0(0,π)x ∃∈ ,使()'00h x = ,且()00,x x ∈时,''()0,()(0)0,()0h x h x h g x >>=> ,∴()g x 在()00,x x ∈上单调递增,∴()(0)0g x g >=(不符合题意);综上,a 的取值范围是13a≥;【点睛】本题的函数类型是三角函数与非三角函数组合成的,对于这一类函数往往是在一个周期()2π 内讨论或半个周期()π内讨论 ;如果一次求导不能判断清楚导函数的符号,则需要多次求导,而且每次求导后都要研究导函数的解析式能否判断清楚导函数的符号,直至能判断清楚导函数的符号为止.22.(1)83(2)41)3【分析】(1)根据极坐标方程可得椭圆C 的标准方程,又直线l 经过点椭圆焦点F ,将直线参数方程代入椭圆方程,得坐标关系,即可得||||F A F B +的值;(2)设点P 坐标为(2c o s in )θθ,直线l 的直角坐标方程为0x y --=,由点到直线的距离,结合三角函数的图象性质求得距离最大值,即可求得P A B的面积最大值.【详解】(1)由2222c o s 2s in 4ρθρθ+=得椭圆C 的方程为22142xy+=,其焦点F坐标为答案第16页,共16页0),由题意得直线l 经过点F,其参数方程为x y ⎧=⎪⎨=⎪⎩(t 为参数),代入椭圆C 的方程整理得23210t t +-=,所以121221,33t t t t +=-=-,所以121282223F A F B t t t t +==+=-===(2)由椭圆方程22142xy+=,可设点P 坐标为(2c o s ,in )θθ,又直线l 的直角坐标方程为0x y --=,∴点P 到直线l的距离d ==ta n 2φ=,所以m a x 1d =+,因为18||,||||||23P A BS A B d A B F A F B =⋅=+=△,所以P A B323.(1)52m=-(2)证明见解析【分析】(1)讨论去绝对值可得()f x 的解析式及最小值;(2)由(1)可得5a b +=,利用基本不等式可得答案.【详解】(1)当12x <时,5()21322=-++-=--≥-f x x x x ,当132x ≤≤时,5()21334,52⎡⎤=-+-=-∈-⎢⎥⎣⎦f x x x x ,当3x >时,()21325=--+=+>f x x x x ,综上,12,21()34,322,3x x f x x x x x ⎧--<⎪⎪⎪=-≤≤⎨⎪+>⎪⎪⎩,可知当12x=时,()f x 有最小值52-,所以52m=-;(2)由(1)可得5a b +=,因为a ,b 为正实数,所以222,2abb a a bba+≥+≥,所以225aba b b a+≥+=.。
河南省洛阳市2022届高三第三次统一考试数学(理科)试题
一、单选题二、多选题1. 已知复数z 满足z i=2+i ,i 是虚数单位,则|z |=( )A.B.C .2D.2. 已知命题,命题,则是成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知函数部分图象如图所示,则函数的解析式可能为()A.B.C.D.4. 已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A.B.C.D.5.如果是实数,那么“”是“”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6. 已知为正实数,则的最大值为A.B.C.D.7. 17世纪中叶,人们认为同时掷两枚骰子时,若不给两枚骰子标记号,两枚骰子的点数和为6或7的可能结果数相同,则出现的概率就应该相同.然而有人发现,多次的试验结果和人们的预想不一致,这个问题最终被伽利略解决.则( )A .当不给两枚骰子标记号时,出现点数和为6的结果有5种B .当给两枚骰子标记号时,出现点数和为7的结果有3种C .出现点数和为7的概率为D .出现点数和为6的概率比出现点数和为7的概率更大8. 已知全集,集合,,则( )A.B.C.D.9. 计算下列各式的值,其结果为2的有( )A.B.C.D.10.已知函数,则下列说法正确的是( )A .在上单调递增B.在上的值域为C.将函数的图像向右平移个单位长度后,再将横坐标拉伸为原来的2倍,得到函数的图像,则河南省洛阳市2022届高三第三次统一考试数学(理科)试题河南省洛阳市2022届高三第三次统一考试数学(理科)试题三、填空题四、解答题D .函数在处取得最大值11. 已知棱长为的正方体中,是的中点,点在正方体的表面上运动,且总满足,则下列结论中正确的是( )A .点的轨迹中包含的中点B.点的轨迹与侧面的交线长为C.的最大值为D .直线与直线所成角的余弦值的最大值为12. 已知椭圆的左、右焦点分别为,,半焦距为c .在椭圆上存在点P 使得,O 为原点,则椭圆离心率的可能取值是( )A.B.C.D.13. 如图是由两个有一条公共边的边长为2的正六边形构成的平面图形.设,则___________;是线段上的动点,则的最小值是___________.14.在中,、、分别为角的对边,且满足,则角A 的大小是______.15. 已知等差数列的公差不为零,且,,成等比数列,则________.16. 如图,在四棱锥中,底面是边长为4的菱形,,,点E 在线段上,,平面平面.(1)求;(2)求直线与平面所成角的正弦值.17. 为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以表示这2人中团体赛获奖的人数,求的分布列和数学期望;18. 甲、乙两选手进行象棋比赛,设各局比赛的结果相互独立,每局比赛甲获胜的概率为,乙获胜的概率为.(1)若采用5局3胜制比采用3局2胜制对甲更有利,求的取值范围;(2)若,已知甲乙进行了局比赛且甲胜了13局,试给出的估计值(表示局比赛中甲胜的局数,以使得最大的的值作为的估计值).19.在①,②,③,这三个条件中任选一个,补充在下面问题中,并完成解答.问题:锐角的内角A,B,C的对边分别为a,b,c,已知________.(1)求A;(2)若,为AB的中点,求CD的取值范围.20. 已知数列的首项,前n项和为,且(Ⅰ)求证数列为等比数列;(Ⅱ)设数列{ }的前n项和为,求证:.(Ⅲ)设函数,令,求数列的通项公式,并判断其单调性.21. 设函数,().(1)若在处的切线平行于直线,求实数的值;(2)设函数,判断的零点的个数;(3)设是的极值点,是的一个零点,且,求证:.。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高三好分数理科数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列函数中,在其定义域内单调递增的是()A. y = x^2 - 2x + 3B. y = -x^3 + 2x^2 - xC. y = 2^x - x^2D. y = log2(x + 1)2. 已知等差数列{an}的前n项和为Sn,若a1 = 3,S5 = 55,则公差d为()A. 4B. 5C. 6D. 73. 下列不等式中,恒成立的是()A. x^2 + 2x + 1 > 0B. x^2 - 2x + 1 > 0C. x^2 + 2x - 1 > 0D. x^2 - 2x - 1 > 04. 已知向量a = (2, 3),向量b = (1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/25. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,f(3) = 6,则a、b、c的值分别为()A. a = 1, b = 2, c = 1B. a = 1, b = 1, c = 2C. a = 2, b = 1, c = 1D. a = 2, b = 2, c = 26. 在直角坐标系中,若点P(2, 3)到直线y = kx + b的距离为2,则k的值为()A. 1B. -1C. 2D. -27. 已知函数f(x) = x^3 - 3x^2 + 2x,若f(x)的图像在x轴上的截距为1,则f(x)的极值点为()A. x = 1B. x = 2C. x = 3D. x = -18. 已知等比数列{an}的前n项和为Sn,若a1 = 2,S5 = 62,则公比q为()A. 2B. 3C. 4D. 59. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则角A的正弦值为()A. 3/5B. 4/5C. 5/4D. 4/310. 已知函数f(x) = x^2 - 4x + 3,若f(x)在区间[1, 3]上的最大值为5,则f(x)的对称轴方程为()A. x = 2B. x = 3C. x = 1D. x = 4二、填空题(本大题共10小题,每小题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 1,公差d = 2,则S10 =________。
四川省攀枝花市2023届高三第三次统一考试理科数学试题
中该金属含量低于最原始的 5%时,至少需要循环使用该技术的次数为( )(参考数
据: lg2 » 0.301)
A.12
B.13
C.14
D.15
10.已知函数
f
(
x)
=
sin
æ çè
w
x
+
π 3
ö ÷ø
(w
>
0)
对任意
x
Î
æ çè
0,
3π 8
ö ÷ø
都有
f
(
x)
>
1 2
w ,则当
取
到最大值时, f ( x) 图象的一条对称轴为( )
7
天的最高气温的平均数为
28 ´
2
+
29 ´3 7
+
30
+
31
=
204 7
>
29
,D
错.
故选:D. 4.B
【分析】根据程序框图,明确该程序的功能是求分段函数
f
(x)
=
ìíîlxo-g12 ,xx,
x > 1的值,由此根 £1
据该函数值域,可求得答案. 【详解】由程序框图可知:运行该程序是计算分段函数的值,
(2)若射线q
=
π 6
(r
³
0) 分别与曲线 C1 , C2 相交于 A,B
两点,求△C2 AB
的面积.
23.已知函数 f ( x) = x -1 + x - 3 .
(1)解不等式 f ( x) £ x +1;
(2)设函数
f
(x)
的最小值为
c,正实数
宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案
银川一中2024届高三年级第一次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,{}20B x x a =-<,若A B ⊆,则实数a 的取值范围是A .()2,+∞B .[)2,+∞C .(),2-∞D .(],2-∞2.已知复数z 满足i zz =+-112,则复数z 的虚部是A.-1B.iC.1D.-i3.如图,可以表示函数()f x 的图象的是A .B .C .D .4.已知a ,b 为实数,则使得“0a b >>”成立的一个充分不必要条件为A .11a b>B .ln(1)ln(1)a b +>+C .33a b >D 11a b ->-5.函数()214log 2y x x =--的单调递增区间为A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞6.的大小关系为则,,设c b a c b a ,,,21(31log 2log 3.02131===A .b c a <<B .cb a <<C .ca b <<D .ac b <<7.已知函数ay x=,xy b=,log cy x=的图象如图所示,则A.e e ea c b<<B.e e eb a c<<C.e e ea b c<<D.e e eb c a<<8.若命题“[]()21,3,2130a ax a x a∃∈---+-<”为假命题,则实数x的取值范围为A.[]1,4-B.50,3⎡⎤⎢⎥⎣⎦C.[]51,0,43⎡⎤⎢⎥⎣-⎦D.[)51,0,43⎛⎤- ⎥⎝⎦9.已知函数则函数2,0,()()()1,0,x xf xg x f xxx⎧≥⎪==-⎨<⎪⎩,则函数()g x的图象大致是A.B.C.D.10.已知函数()()()314(1)1a x a xf x axx⎧-+<⎪=⎨≥⎪⎩,满足对任意的实数1x,2x且12x x≠,都有[]1212()()()0f x f x x x--<,则实数a的取值范围为A.1,17⎡⎫⎪⎢⎣⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,63⎡⎫⎪⎢⎣⎭D.1,16⎡⎫⎪⎢⎣⎭11.已知定义在R上的函数()f x在(],2-∞上单调递减,且()2f x+为偶函数,则不等式()()12f x f x->的解集为A.()5,6,3⎛⎫-∞-+∞⎪⎝⎭B.()5,1,3⎛⎫-∞-+∞⎪⎝⎭C.5,13⎛⎫- ⎪⎝⎭D.51,3⎛⎫- ⎪⎝⎭12.已知函数()ln1af x xx=++.若对任意1x,(]20,2x∈,且12x x≠,都有()()21211f x f xx x->--,则实数a的取值范围是A.27,4⎛⎤-∞⎥⎝⎦B.(],2-∞C.27,2⎛⎫-∞⎪⎝⎭D.(],8∞-二、填空题(本大题共4小题,每小题5分.共20分)13.已知lg 2a b +=-,10b a =,则=a ______.14.已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是.15.若函数()21x mf x x +=+在区间[]0,1上的最大值为3,则实数=m _______.16.已知函数()e e 21x x f x x -=--+,则不等式(23)()2f x f x -+>的解集为____________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
高三数学试题(理科)
高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。
2024届高三第一次统一考试(全国乙卷)理科数学试题
一、单选题1.如图,该几何体为两个底面半径为1,高为1的相同的圆锥形成的组合体,设它的体积为,它的内切球的体积为,则()A.B.C.D.2. 已知函数且存在三个不同的实数,使得,则的取值范围为( )A.B.C.D.3. 已知:,:,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知双曲线:的右焦点为,左顶点为,以为圆心,为半径的圆交的右支于,两点,且线段的垂直平分线经过点,则的离心率为A .2B.C.D.5.已知函数,若,则的取值范围是( )A.B.C.D.6. 的展开式中所有有理项的系数和为( )A .85B .29C.D.7.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得分,未击中目标得分.若甲、乙两人射击的命中率分别为和,且甲、乙两人各射击一次得分之和为的概率为.假设甲、乙两人射击互不影响,则值为( )A.B.C.D.8. 在如图所示的空间几何体中,下面的长方体的三条棱长,,上面的四棱锥中,,,则过五点、、、、的外接球的表面积为2024届高三第一次统一考试(全国乙卷)理科数学试题2024届高三第一次统一考试(全国乙卷)理科数学试题二、多选题三、填空题四、解答题A.B.C.D.9. 关于函数,则( )A .是的极大值点B .函数有且只有1个零点C .存在正实数,使得恒成立D.对任意两个正实数,,且,若,则10. 在正方体中,分别为的中点,若过点且与直线垂直的平面截正方体所得截面图形为三角形,则直线可以是( )A.B .CEC.D.11. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )A.B.C.D.12. 某科技攻关青年团队有人,他们年龄分布的茎叶图如图所示,已知这人年龄的极差为,则()A.B .人年龄的平均数为C .人年龄的分位数为D .人年龄的方差为13. 抛物线上一点到焦点F 的距离|MF |=5,则抛物线的方程为_______________..14.若数列满足,则称数列为“差半递增”数列.若数列为“差半递增”数列,且其通项与前项和满足,则实数的取值范围是______.15. 已知函数,其中为自然对数的底数.若函数有个不同的零点,则实数的取值范围是__________________.16. 已知函数的图象在处的切线经过点.(1)求的值及函数的单调区间;(2)若关于的不等式在区间上恒成立,求正实数的取值范围.17. 已知抛物线的焦点为,点在抛物线上,且.(1)求抛物线的方程;(2)设是抛物线上异于原点的一点,过点作圆的两条切线与抛物线分别交于异于点的,两点,若切线互相垂直,求的面积.18. 已知,证明:(1);(2).19. 如图所示,在平行四边形中,有:.(1)求的大小;(2)若,求平行四边形的面积.20.如图所示,设有底面半径为的圆锥.已知圆锥的侧面积为,为中点,.(1)求圆锥的体积;(2)求异面直线与所成角.21.如图,三棱锥的平面展开图中,,,,,为的中点.(1)在三棱锥中,证明:;(2)求平面与平面夹角的余弦值.。
高三数学综合测试题(含答案)
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
2023 年高三 2 月大联考(全国乙卷)理科数学参考答案
2023年高三2月大联考(全国乙卷) 理科数学·全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B 【解析】由(2i)8i z ,得8i 1510i32i 2i 5z ,所以32i z .故选B . 2.A 【解析】由103x x ,得(1)(3)0x x 且30x ,解得13x ,所以{|13}M x x . 由22y x ,得2y ,所以{|2}N y y ,所以[2,3)M N .故选A .3.B 【解析】根据全称命题的否定为特称命题,可知p 为“1x ,(1)0x x ”,故选B .4.C 【解析】A :a 可能在平面 内,所以A 错误;B :a 与m 可能平行,从而 与 可能相交,所以B 错误;C :a ∥且b ∥ ∥ m ∥ ,所以C 正确;D :如图,考虑正方形沿对角线折叠,另一条对角线折起后形成的两条直线,以及折痕和一条半平面内与折痕平行的直线,它们符合垂直关系,但两个半平面不一定垂直,所以D 错误.故选C .5.D 【解析】因为(,)42 ,所以2(,)2 .又4sin 25 ,所以3cos 25 ,所以2312sin 5 ,解得sin (负值舍去).故选D .6.B 【解析】由函数的值域,可以排除A.由函数的奇偶性,可以排除D.C:2cos sin ()x x xf x x,令()cos sin g x x x x ,则()sin g x x x .当(0,)x 时,()0g x 恒成立,所以()g x 在(0,) 上单调递减.因为(0)0g ,所以()(0)0g x g 在(0,) 上恒成立,所以当(0,)x 时,()0f x 恒成立,所以()f x 在(0,) 上单调递减,所以排除C .故选B .7.C 【解析】(1)若“糕点制作”安排1名女教师,有12C 种不同的安排方法,后续项目分两类:①若“自行车修理”安排1名男教师,则余下4人安排到另两个项目,每个项目2人,有122442C C C 种不同的安排方法;②若“自行车修理”安排2名男教师,则余下3人,1人安排到“绿植修剪”,2人安排到“蔬菜种植”,有212432C C C种不同的安排方法.(2)若“糕点制作”安排2名女教师,则“自行车修理”只能安排1名男教师,余下3人,1人安排到“绿植修剪”,2人安排到“蔬菜种植”,有21122432C C C C 种不同的安排方法,所以,一共有1122212211224424322432C (C C C C C C )C C C C 96 种不同的安排方法.故选C .8.C【解析】2()2sin (cos sin )1sin 22sin 1sin 2cos 24f x x x x x x x x x,所以()f x 的,将8x代入())4f x x,得884f (,故A 和D 错误;将2y x 的图象向右平移4个单位长度得到2(242y x x x的图象,所以B 错误;由2224k x k kZ ,得5()88k x k k Z ,所以5[ 88,是()f x 的一个单调递减区间,所以()f x 在3( 48,上单调递减.故选C . 9.A 【解析】由题意,知x ,y 满足约束条件0,0113x y x y x y x y,作出不等式组表示的平面区域,如图中阴影部分所示(五边形OEBCD (包含边界)),作出直线24x y ,易得52(,)33A ,(2,1)B ,(1,2)C ,(0,1)D ,(1,0)E ,连接DE ,则非负数x ,y对应的可行域的面积为151122ODE BCDE S S△正方形,事件“24x y ”对应的可行域的面积为1112233ABC S AB BC △,所以所求概率为1235152P .故选A .10.D 【解析】由题图(2)得,.设截得的四边形木板为ABCD ,A ,AB c ,,,,BD a AD b BC n CD m ,如图.由3cos 5得4sin 5 .在ABD △中,由正弦定理,得2sin 2a ,解得a 在ABD △中,由余弦定理,得2222cos abc bc , ∴226805b c bc ,配方,得216()805b c bc (*).∵2()2b c bc ,∴(*)式可化为22161()()55b c bc b c , ∴21()805b c ,∴20b c ,当且仅当10b c 时等号成立. 同理,在CBD △中,得10m n ,当且仅当5m n 时等号成立, ∴这块四边形木板周长的最大值为30.故选D .11.A 【解析】设1||MF m ,2||MF n ,椭圆C 的半焦距为c ,则2m n a ,24mn c ,所以224a c22()()22m n m n mn 2()m a .因为a c m a c ,所以22224()[0,]a c m a c ,即224c a25c ,则21154e ,所以152e .故选A . 12.B 【解析】(1)先比较,a b :∵0.40.40.40.6e e (1ln e )a ,2ln 42(1ln 2)b , ∴可以构造函数()(1ln )f x x x ,则0.4(e )a f ,(2)b f . 对()f x 求导,得()ln f x x ,当(1)x ,时,()0f x , ∴()f x 在(1) ,上单调递减. ∵00.40.51e e e 2 ,∴0.4(e )(2)f f ,即a b . (2)再比较,b c :∵4ln 4e 42ln 2e b c .∴可以构造函数()2ln e g x x x x ,则()1ln g x x , 当(0,e)x 时,()0g x ;当(e,)x 时,()0g x ,∴()g x 在(0e),上单调递增,在(e ) ,上单调递减,∴max ()(e)0g x g ,∴(2)0g ,∴0b c ,即b c . (3)最后比较,a c : ∵0.4(10.4)e e 2a c ,∴可以构造函数()(1)e e 2x h x x ,则()e x h x x ,当(0,1)x 时,()0h x , ∴()h x 在(0,1)上单调递减.又∵0.5(0.5)0.5e e 2h ,且0.5e 1.6 ,∴(0.5)0h , ∴(0.4)(0.5)0h h ,∴0a c ,即a c . 综上得,a c b .故选B .二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三自评试题
数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:
1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.
3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
第Ⅰ卷(选择题 共50分)
一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若集合{|02},{|||1}A y y B x x =≤<=>,则R ()A
B =
A .{|01}x x ≤≤
B .{|12}x x ≤<
C .{|10}x x -<≤
D .{|12}x x << 2. 已知
1i
i 12i
b a -=++(,R a b ∈)
,其中i 为虚数单位,则a b += A .4- B .4 C .10- D .10
3. 数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a = A .5 B .1- C .0 D .1
4. 函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4
f π
的值为
A
B .0
C .1 D
5. 在平面直角坐标系中,O 为坐标原点,直线:10l x ky -+=与圆2
2
:4C x y +=相交于
, A B 两点,OM OA OB =+.若点M 在圆C 上,则实数k =
A .2-
B .1-
C .0
D .1
6. 如图是一个算法的流程图.若输入x 的值为2,则输出y 的值是 A .0 B .1- C .2- D .3-
7. 设
2 0
(4sin cos ),n x x dx π
=
+⎰
则二项式1
()n x x
-的展开式中x 的系数为
A .4
B .10
C .5
D .6
8. 已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且
0, 0a b >>, 则
1
a b
-的取值范围是 A .(,3)-∞- B .1(,0)3- C .(3,)+∞ D .1
(0,)3
9. 已知三棱锥D ABC -中,1AB BC ==,2AD =
,BD =
,
AC =,BC AD ⊥,则三棱锥的外接球的表面积为
B. 6π
C. 5π
D. 8π
10. 已知偶函数()f x 满足(1)(1)f x f x +=-,且当[0,1]x ∈时,2
()f x x =,则关于x 的
方程||
()10
x f x -=在1010
[,]33
-
上根的个数是 A. 4个 B. 6个 C. 8个 D. 10
第Ⅱ卷(非选择题 共100分)
二、填空题:本大题共5小题,每小题5分,共25分. 11. 抛物线2
14
y x =
的焦点坐标为 ; 12. 已知y 与x 之间具有很强的线性相关关系,现观测得到),(y x 的四组观测值并制作了右边的
对照表,由表中数据粗略地得到线性回归直线方程
为60y bx =+,其中b 的值没有写上.当x 不小于5-时,预测y 最大为
; 13. 已知||2, ||4a b ==,以, a b 为邻边的平行四边形的面积为a 和b 的夹角为 ;
14. 在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为 ;
15. 对于下列命题:①函数()12f x ax a =+-在区间(0,1)内有零点的充分不必要条件是
12
23
a <<;②已知,,,E F G H 是空间四点,命题甲:,,,E F G H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的充分不必要条件;③“2a <”是“对任意的实数x ,
|1||1|x x a ++-≥恒成立”的充要条件;④“01m <<”是“方程22(1)1mx m y +-=表
示双曲线”的充分必要条件.其中所有真命题的序号是 .
三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)
已知函数3cos 32cos sin 2)(2
-+=x x x x f ,R ∈x .
(Ⅰ)求函数(3)1y f x =-+的最小正周期和单调递减区间;
(Ⅱ)已知ABC ∆中的三个内角,,A B C 所对的边分别为,,a b c ,若锐角A
满足
(
)26
A f π
-=7a =
,sin sin 14B C +=,求ABC ∆的面积. 17.(本小题满分12分)
某大型公益活动从一所名牌大学的四个学院中选出了18名学生作为志愿者,参加相关的活
(Ⅰ)若从这18名学生中随机选出两名,求两名学生来自同一学院的概率;
(Ⅱ)现要从这18名学生中随机选出两名学生向观众宣讲此次公益活动的主题.设其中来自外语学院的人数为ξ,令21ηξ=+,求随机变量η的分布列及数学期望()E η.
18.(本小题满分12分)
如图,在四棱锥ABCD E -中,底面ABCD 为正方形,
⊥AE 平面CDE ,已知2AE DE ==,F 为线段DE 的中点. (Ⅰ)求证://BE 平面ACF ;
(Ⅱ)求二面角C BF E --的平面角的余弦值.
A
C
B
E F
19.(本小题满分12分)
已知数列{}n a 中,11a =,11()2
n
n n a a +⋅=,记2n T 为{}n a 的前2n 项的和,221n n n b a a -=+,
N n *∈.
(Ⅰ)判断数列{}n b 是否为等比数列,并求出n b ; (Ⅱ)求2n T .
20.(本小题满分13分)
已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P
的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;
(Ⅱ)试探究||MN 和2
||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请
说明理由;
(Ⅲ)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值. 21.(本小题满分14分)
已知函数3
2
()(R)f x x x x =-+∈,()g x 满足()(R,>0)a
g x a x x
'=∈,且()g e a =,e 为自然对数的底数. (Ⅰ)已知1()()x h x e
f x -=,求()h x 在(1,(1))h 处的切线方程;
(Ⅱ)若存在[1,]x e ∈,使得()g x ≥2
(2)x a x -++成立,求a 的取值范围; (Ⅲ)设函数(),1
()(),1f x x F x g x x <⎧=⎨
≥⎩
,O 为坐标原点,若对于()y F x =在1x ≤-时的图象上
的任一点P ,在曲线()y F x =(R)x ∈上总存在一点Q ,使得0OP OQ ⋅<,且PQ 的中点在y 轴上,求a 的取值范围.。