低压配电系统防雷设计方案
低压电房防雷接地施工方案

低压电房防雷接地施工方案1、低压电房接地系统利用基础接地、防雷系统在变配电房内的引出点,用L40x4镀锌扁钢搭接。
防雷接地系统在变配电房应有不少于两个接地引出点,从柱位内主筋焊接引出。
防雷接地在焊接之前应进行接地电阻测试,用专用的接地电阻测试仪对接地引出点的对地电阻进行测量,接地电阻不大于设计要求。
经测试合格后方可进行焊接施工。
若测试接地电阻不满足设计要求,应加装接地极(板)进行处理,接地极制作安装方法如下文所述。
2、接地极制作安装:按设计利用桩及地梁、承台作接地,若不能满足设计接地电阻则增设人工地极,人工接地极利用Φ50镀锌钢管,一端封口焊接,一端加工成锥形,打入地层,与地层紧密结合。
若附近地层为电导率低的回填土,应进行换土或添加化学试剂处理,以增加土层的电导率,然后方可进行接地极预埋。
接地体之间应确保焊牢,接地线之间或接地线与电气装置之间在搭焊时,除应在其接触两侧进行焊接外,还应焊上由钢带弯成的弧形(或直角形)与钢管(或角钢)焊接。
钢带距钢管(或角钢)顶部应有100mm的距离。
明敷的接地体应先涂上防锈漆,待防锈漆干后再涂上黑色油漆。
3、接地干线跨接:接地干线利用L40x4镀锌扁钢焊接而成。
在变压器室、高、低压配电室四周墙壁敷设接地干线,用非焊接支持件固定,支持件的间距水平部分0.5至1.5米,垂直部分为1.5至3米,弯曲部分0.3至0.5米;安装高度250至300mm,与建筑物间隔为10至15mm,同一室内应装于同一高度。
接地干线的跨接应采用三面焊接,满焊,搭接长度应为扁钢宽度的两倍以上。
焊接完成后支持件镀锌扁钢俯视图主视图接地干线过伸缩或沉降缝作法接地线支持件双面焊接伸缩或沉降缝对焊口应进行除渣及腐处理。
水平转角及分支应利用弧形转角件,不得用扁钢直接垂直搭接。
接地线通过建筑物的伸缩缝时,如采用焊接固定,应将地线通过伸缩缝的一段做成弧形。
如图所示:明敷接地干线搭接完成之后,在其表面沿长度方向,每段15至100mm分别涂以黄绿相间条纹。
低压配电系统防雷设计方案

根 据 《 筑 物 电 子 信 息 系 统 防雷 技 术 规 范 》 建
G 5 3 3中 有 关 防 雷 分 区 的 划 分 .低 压 配 电 系 统 防 B 04
雷 应分 为 3个 区域 ( 一 防 护 区 L Z 、 一 防护 区 第 P 1第 L Z 、 续 防护 区 L Z ) P 2后 P n 分别加 以考 虑 , 个分 区界 各
长 度 成 正 比。
等:- 二 ;c } U … s L l 2 U
图 l 浪涌 保 护 器 的 导线 连 接
器 , 由外 部线 路可 能 引入 的雷 击高 电压 引至大 地 将 泄放, 以确 保后接 设备 的安全 。
对 于第 一级 电源 防雷 . 相 进线 的 每 条线路 应 三
4 5
处. 做直 击雷 和传 导雷 的保 护 。此 级 电源 浪 涌保 护
安 装 1 k 1/ 5 s 以上通 流 容量 的 电源浪涌 保 5 A(0 3 0 )
护器 。 可将 数万 甚至 数 十万伏 的 过 电压 限制 到几 千
伏 以 内 . 涌ຫໍສະໝຸດ 护器 应并 联安 装 在总 配 电室 进线端 浪
20 0 8年第 5期
内 蒙 古 气 象 求 , 安装适 配 的直 流 电源浪涌保 护器 。 宜
( ) 涌保护 器的布 置原理 1浪 浪涌保 护器 的布 置应依 据 《 建筑 物防 雷设计 规
范 ) B 0 5-9 20 ) 5 0 7- 4(0 0版 ) 《 电 电磁 脉 冲 的 防 G 和 雷 护 )E 6 3 2的标 准而设 计 。通 过多 级 浪涌 保 护器 IC 11 使雷 电流逐 级 减少 ,这为安 装浪 涌保 护器 的施 工提 供 了方便 条件 。 图 1 如 所示 , 我们 在安装 浪涌保 护器 时 总会使 用导线 进行连 接 .而导 线 的电感 在雷 电波 的频 率下 是不 能忽略不 计 的 .而 且导 线 的电感 与其
低压供电系统防雷设计方案

低压供电系统防雷设计方案一、概述低压供电系统是指电力系统中额定电压为380V及以下的供电系统。
在现代化的社会生活中,低压供电系统的可靠性和稳定性非常重要。
由于雷击现象的频发,低压供电系统防雷设计显得尤为重要。
本文将从低压供电系统防雷的必要性、分析雷电威胁、设计原则、主要措施等方面进行阐述。
二、低压供电系统防雷的必要性1.人身安全:雷电是一种高能量的自然现象,会对人们的生命安全产生严重威胁。
低压供电系统的设备和线路存在被雷击的风险,必须采取相应的防雷措施来保护人员的安全。
2.供电可靠性:雷击可能导致供电系统发生短路、故障和停电等问题,给用户的正常用电和生活带来困扰。
通过科学合理的防雷设计,可以提高供电系统的可靠性,减少因雷击而导致的停电情况。
3.设备保护:雷击会对供电系统的设备造成电弧击穿等损坏,导致设备故障、更换和维修的成本。
通过防雷措施的实施,可以降低设备受雷击的概率,延长设备的使用寿命。
三、分析雷电威胁1.雷电直接击中:当雷电直接击中供电系统的设备或线路时,会产生极大的电流和电压冲击,可能导致供电系统短路、设备损坏甚至起火。
2.感应雷击:雷电在地面上产生的电磁场会感应到供电系统中的导线,导致电压和电流瞬变,对设备造成损坏。
3.雷电击中附近设备:当附近的设备或建筑被雷击时,会产生电磁波传播,可能引发供电系统中的过电压或过电流。
四、设计原则1.综合考虑:根据供电系统的特点和实际情况,综合考虑雷电威胁、设备特性和经济因素进行防雷设计,保证设计的合理性和可行性。
2.多层次防护:采取多层次的防雷措施,包括外部防护和内部防护,确保从源头到终端的雷电保护。
3.科学选材:选择符合国家标准和防雷要求的防雷器材和设备,保证其性能和可靠性。
4.合理布置:根据供电系统的结构和布置,合理设置防雷装置和接地系统,最大程度地减少雷电对设备和线路的影响。
5.定期检测:建立定期的防雷设备和线路检测制度,及时发现并修复潜在的雷击风险,保证供电系统的正常运行。
低压配电线路的防雷技术措施

低压配电线路的防雷技术措施1.站桩接地:在低压配电线路的终端和转角处设置站桩,将接地装置埋入地下,确保配电线路和其他设备与地面保持良好的接地连接。
接地电阻不应大于4欧姆,以确保及时将雷击电流导入地下,并将地下的电荷快速进行分散。
站桩的选择和设计应符合相关国家和行业标准。
2.绝缘保护:低压配电线路的绝缘保护应符合相关的国家和行业标准。
在线路中使用绝缘良好的电缆和导线,以减少雷击产生的电流通过绝缘体的破坏。
绝缘材料的选择和使用应符合相应的标准要求。
3.避雷针/避雷网:在低压配电线路的起始点和高风险区域,设置合适的避雷针或避雷网。
避雷针或避雷网能够吸引雷击电流,将其引导到地下,减少对线路和设备的直接损害。
避雷针和避雷网的选择和设置应满足相关标准的要求。
4.高抗冲击电压设备:在低压配电线路中使用抗冲击电压的设备和器件,如避雷器、过压保护器等。
这些设备能够吸收或分散雷电电流,保护线路和设备不受雷击损害。
在设备选择和安装时,应严格按照相关的标准和规范进行操作。
5.绕风线圈:在低压配电线路的架空段和高风险区域,适当设置绕风线圈。
绕风线圈能够分散雷击电流,减少雷击对线路和设备的影响。
绕风线圈的安装和参数应根据具体情况选择,并符合相关标准的要求。
6.定期巡检和维护:定期对低压配电线路进行巡检和维护,及时发现和处理可能存在的雷击隐患。
清除线路周围的积水、杂草等引起雷击的物体,并检查线路和设备的绝缘状况,确保其正常运行和安全使用。
综上所述,低压配电线路的防雷技术措施包括站桩接地、绝缘保护、避雷针/避雷网、高抗冲击电压设备、绕风线圈以及定期巡检和维护等。
通过合理选择和使用这些技术措施,可以有效减少雷击对低压配电线路的影响,保障线路和设备的安全运行。
低压配电系统防雷

低压配电系统防雷[时间:2004-11-19 13:31:51 作者:本站原创]IEC电源三级防雷示意图图A.IEC CLASS-I 第一级电源防雷B.CLASS TO CLASS 级间协调电感C.IEC CLASS-II 第二级电源防雷(三相防雷)D.IEC CLASS-II 第二级电源防雷(单相防雷)E.IEC CLASS-III 第三级电源防雷F.被保护设备注意事项:电源防雷相关的注意事项SPD(防雷器)的安装注意安装位置、连接导线、失效保护装置以及级间安装距离等。
防雷熔断丝或空气开关的选择导线的选择和连接导线应该尽可能短,截面积应尽可能大地线问题应该采用综合接地网,如果因为设备独特的要求采用独立接地情形下,应在两个地网之间连接地电位均衡器级间安装距离应符合规定IEC CLASS-I 第一级电源防雷返回顶部适用于电源线从LPZ0 区进入LPZ1 区之电源线的防雷保护和等电位连接参照IEC防雷分区要求:<1>10/350us电流大于20KA (8/20us波电流约80 KA)<2>保护距离要求三相电源适用的防雷器型号PPS-I/3-140BA PPS-I/3-100BA - 电源防雷箱(内置ASafe 防雷模块、雷击计数、遥信触点、声光报警、零地保护NPE模式、差模保护模式)ASafe-25 (优选)ASafe-15 - ASafe 10/350us 一、二级电源防雷模块(B+C),适用于低压配电系统入户端的防雷保护AM1-40/4 AM1-40/3+NPE - AM系列防雷模块/零地保护模式NPE组合(遥信触点附加功能)单相电源适用的防雷器型号ASafe-25 ASafe-15 - ASafe 10/350一、二级电源防雷模块(遥信触点附加功能)AM1-40/2 AM1-40/1+NPE - AM系列防雷模块/零地保护模式NPE组合(遥信触点附加功能)相关产品:PPS-L 、PPS-I系列: PPS-L/3-200BA | PPS-L/3-160BA | PPS-L/3-100BA | PPS-I/3-140BA | PPS-I/3-100BA | PPS-I/3-100A | PPS-I/3N-100A | PPS-I/3-100 | PPS-I/3N-100 | PPS-I/3-60AM | PPS-I/3-60AASafe系列: ASafe-15 | ASafe-25 | ASafe-35 | ASafe-NPEAM1系列: AM1-40/1 | AM1-40/2 | AM1-40/1+NPE | AM1-40/3 | AM1-40/4 | AM1-40/3+NPE | AM1/0CLASS TO CLASS 级间协调电感返回顶部适用于两级电源防雷器安装的线路距离不足15米时,使两级防雷器能够最大限度发挥作用要求:级间协调电感的电流值应大于等于线路中空气开关的电流值适用的级间协调电感型号ADE-35 - 35A 级间协调电感代用方式将第一级防雷器到第二级防雷器或者第二级防雷器到第三级防雷器之间的电源线延长至10米以上,并卷绕在一起用3-4米线,缠绕9-12圈即可代用级间协调电感器IEC CLASS-II 第二级电源防雷(三相防雷)返回顶部适用于电源线从LPZ1 区进入LPZ2 区之电源线的防雷保护和等电位连接参照IEC防雷分区要求:<1> 8/20us电流大于20KA <2>保护距离要求适用的防雷器型号PPS-II/3-40AM - 电源防雷箱(ASP AM防雷模块、雷击计数、遥信触点声光报警附加功能)PPS-II/3-40A - 电源防雷箱(一体化MOV防雷模块、雷击计数、遥信触点声光报警附加功能)PPS-II/3-40 - 电源防雷箱PPS-II/3-20 - 电源防雷箱AM2-20/4 - ASP防雷模块(遥信触点附加功能后缀-S)(优选)AM2-20/3+NPE - ASP防雷模块零地保护模式NPE组合(共模/差模保护、遥信触点附加功能)相关产品:PPS-II系列: PPS-II/3-40A | PPS-II/3-40 | PPS-II/3-20 | PPS-II/1-40 | PPS-II/1-20 |AM2系列: AM2-20/1 | AM2-20/2 | AM2-20/1+NPE | AM2-20/3 | AM2-20/4 | AM2-20/3+NPE | AM2/0IEC CLASS-II 第二级电源防雷(单相防雷)返回顶部适用于电源线从LPZ1 区进入LPZ2 区之电源线的防雷参照IEC防雷分区要求8/20us电流大于20KA适用的防雷器型号PPS-II/1-40 - 电源防雷箱PPS-II/1-20 - 电源防雷箱AM2-20/2 - ASP防雷模块(遥信触点附加功能后缀-S)(优选)AM2-20/1+NPE - ASP防雷模块零地保护模式NPE组合(共模/差模保护、遥信触点附加功能)相关产品:PPS-II系列: PPS-II/3-40A | PPS-II/3-40 | PPS-II/3-20 | PPS-II/1-40 | PPS-II/1-20 |AM2系列: AM2-20/1 | AM2-20/2 | AM2-20/1+NPE | AM2-20/3 | AM2-20/4 | AM2-20/3+NPE | AM2/0IEC CLASS-III 第三级电源防雷返回顶部适用于电源线从LPZ2 区进入设备之电源线的防雷保护和等电位连接参照IEC防雷分区要求:<1> 8/20us电流大于10KA <2>保护距离10米适用的防雷器型号单相A6-420NS[A6-420NS-PRO] - 插座式电源防雷器(差模保护模式、地线错误指示、LED 光报警、过载断路保护、级间协调电感、EMI滤波)功率限制- 2000WAM3-10/2 AM3-10/1+AM-NPE - ASP防雷模块(遥信触点附加功能)- 功率不限三相AM3-10/4 AM3-10/3+AM-NPE - ASP防雷模块(遥信触点附加功能)- 功率不限相关产品:A6420系列A6421带射频保护系列A6422带电话保护系列A6423 带网络保护系列: LT A6-420 | LT A6-241 | LT A6-422 | LT A6-423 | LT A6-420NS | LT A6-241NS | LT A6-422NS | LTA6-423NS | LT A6-420NS-PROAM3系列: AM3-10/1 | AM3-10/2 | AM3-10/1+NPE | AM3-10/3 | AM3-10/4 | AM3-10/3+NPE | AM3/0被保护设备返回顶部被保护设备可以是任何一种使用[交流供电] 的设备注意保护距离,不要从防雷器接出过长的电源线,如果线路太长,则需要在设备的电源进入端增加防雷插座。
35KV变电站二次系统防雷设计方案

35KV变电站二次系统防雷工程设计方案防雷设计主要依据:GB 50057-94 《建筑物防雷设计规范》(2010版)GB 50343—2004《建筑物电子信息系统防雷技术规范》GB 50054-95 《低压配电设计规范》GB 50174-93 《电子计算机机房设计规范》GB 50169-92 《电气装置安装工程接地装置施工及验收规范》IEC 61024 《建筑物防雷》IEC 61312 《雷电电磁脉冲的防护》GB/T50311-2000 《建筑与建筑群综合布线系统工程设计规范》D 562 《建筑物、构筑物防雷设施安装》YD 5078 《通讯工程电源系统防雷技术规范》YD/T5098 《通信局(站)雷电过电压保护工程设计规范》YD/T1235.1-2002《通信局(站)低压配电系统用电涌保护器技术要求》变电站保证主控楼内弱电子设备的安全非常重要,因此,必须对主控室主控楼内二次设备进行全面完善的保护。
以下防雷措施是综合我公司多年防雷工程经验,完全参照相关标准规范的基础上,对供电局35KV变电站主控楼变电站二次设备存在雷电隐患的配电线路、信号线路进行过电压、电磁脉冲拦截、分流,继而对后端设备起到保护作用。
一般多级保护的作用是在第一级选择开关型或限压型避雷器,以泻放大的雷电流;第二级使用限压型避雷器保护敏感设备;当第二级避雷器钳制电压仍不够低时,用第三级避雷器进一步降低设备两端电位,使被保护设备承受的电压低于其冲击耐压。
由于信息设备越来越小型化,对雷电流越来越敏感,因此一定要按规程选择和配置避雷器。
规范(GB 50343-2004)对电源线路的浪涌保护器标称放电电流参数值做以下规定:保护分级LPZ0与LPZ1交界处LPZ1与LPZ2 、LPZ2与LPZ3交界处 直流电源 第一级放电电流第二级放电电流 第三级放电电流 第四级放电电流 标称放电电流10/350us8/20us 8/20us 8/20us 8/20us 8/20us A 级 ≥20 ≥80 ≥40 ≥20 ≥10 ≥10 B 级 ≥15 ≥60 ≥40 ≥20 直流配电系统中根据线路长度和工作电压选用标称放电电流≥10kA 适配的SPDC 级≥12.5≥50≥20D 级≥12.5≥50≥10注:以上的放电电流单位均为kA 。
低压电源系统防雷设计方案的审核要素

3审查方案中对低压电源系统防雷等 级的划分是否合理 . () 1低压 电源 系统 防雷属于内部防雷 , 是整个建筑物综合防雷系统 的一部分 。其 防雷类 别应与建筑物防雷类别相一致。建筑物防雷类别
的确 定 : 一是 ,建筑物应根据 其重要性 、 “ 使用性 质 、 发生雷 电事故的可 能性 和后果 , 防雷 要求分 为三类” 具体划分按 照 G 5 0 7 9 (0 0 按 , B 05-420 年版 ) 202 、..条 、.. 第 ..条 2 3 20 0 4条确定[ 2 1 。二是 , 依据气象服务机构对工 程施 工图纸 出具 的防雷装置设 计技术评价 书 , 中对 电气设 计部分涉 其
4 审查设计 内容是否达到规范要求 。 . 是否与防雷等级相适应 41 .提供低压 电源 系统防雷系统 图。 在整个系统 图中要标 注出需防护对象所 处的位置及功 能 , 反映 出 整个 低压配电系统安装电源电涌保护器 S D的情 况, P 在图纸 上标明 S D P 级数 、 位置 、 数量 、 标称 电流和产品型号“ 。浪涌保护器安装 的数量 , 应 根据被保护设 备的抗扰度和雷电防护分级确定 。 4 需要安 装 S D的配 电箱所处 的防雷分 区及 S D的选 型是否 符 . 2 P P
查以下几个要素 。 2审查 方案 中的现场勘 察部分是 否客观真 实 。 否还原 被保 护对 . 能
象 现 场 状 况
统 } B 04.04 G 5 3 3 2 0 中的电子信息 系统雷 电防护等级 A 、 级 、 级 、 - 级 B c D 级加 以确定 。 () 3 方案设计 引用的技术规 范是否全 面 、 合理 , 是否适 用本方案 的
科技信
低 压电源系统盼雷设计方案的审核要素
高压低压配电柜的防雷措施与防护装置

高压低压配电柜的防雷措施与防护装置高压低压配电柜在工业和商业领域中承担着重要的电力分配任务。
然而,由于电力系统中存在的雷电活动,配电柜的正常运行可能会受到严重影响甚至遭受损坏。
为了保护高压低压配电柜以及内部设备的安全稳定运行,必须采取合适的防雷措施和安装适当的防护装置。
本文将介绍高压低压配电柜的防雷措施与防护装置,并就其重要性进行讨论。
一、防雷措施1. 接地系统:高压低压配电柜应建立完善的接地系统,以便将雷电流引入地下并迅速消散。
接地系统应采用足够厚度和密度的铜排或铜线,并通过专业的接地装置连接到地下。
这样可以确保雷电接地的有效性,避免雷电对配电柜产生破坏。
2. 绝缘保护:高压低压配电柜的外壳应具备良好的绝缘性能,以避免外部雷电通过外壳进入配电柜内部。
合适的绝缘材料和绝缘设计可以有效保护电器元件和电源设备免受雷电侵害。
3. 避雷针:在高压低压配电柜周围设置避雷针也是一项重要的防雷措施。
避雷针能够吸引雷击,并将雷电流引入地下,起到保护配电柜的作用。
避雷针的数量和布局应根据配电柜所在区域的雷电活动性来确定。
二、防护装置1. 避雷器:避雷器是高压低压配电柜中重要的防护装置之一。
它们能够在雷电冲击时迅速引导和消散过电压,保护设备和电路不受损害。
常用的避雷器有气体放电管避雷器、金属氧化物避雷器等,选择适当的避雷器要考虑电源电压和设备负荷等因素。
2. 防护盒:防护盒用于防止雷电冲击引起的电弧蔓延和火灾。
防护盒可以安装在配电柜内部,作为防护装置的重要组成部分。
防护盒应具备良好的绝缘性能和抗冲击能力,以确保其在雷击事件中的有效保护作用。
3. 防雷保护器:防雷保护器可通过对电源和信号线路进行抑制和屏蔽,降低雷电对高压低压配电柜的影响。
根据不同的需求,可以选择适配的防雷保护器,如瞬态电压抑制器、防雷管等,以提供额外的保护功能。
高压低压配电柜的防雷措施和防护装置不仅有利于保护配电柜本身,还能够降低因雷电引起的故障和损失。
低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V/24V 防雷设计保护电路陶瓷气体放电管的应用背景:一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管 TVS,但是,由于压敏电阻 MOV在失效时会引起火灾,普通 600W 或者1500W 的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20卩S,如此一来,选择气体放电管 GDT作为防护器件才能满足市场需求。
可是常规气体放电管GDT又会带来续流问题,因此,选择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。
二、采用气体放电管保护的传统方案的问题:针对DC12/24V 和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端气体放电管GDT来作为保护器件,旧方案如下:上述图的陶瓷气体放电管老方案,四点的不足:(1 ) GDT的体积大:&F091MBJDO^OL(2 )气体放电管GDT的残压高:体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。
(4 )供电电源浮地时,气体放电管GDT容易误动作供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的是直流击穿电压90V的GDT),则会导致放电管 GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。
由此可见,选择90V的气体放电管,很容易发生误动作的危险。
四、解决方案:使用常规GDT用于低电压电源端口时,存在上述四点缺陷。
凯泰电子为此研制的新型气体放电管GDT:BC301N-D ,可弥补常规气体放电管的不足之处。
BC301N-D 的应用方案:----------- \ 1IU41新方棗〉DC12/J4V K301M-D Is^BJ 18/30C A Maxt circuit---------i--------------------------------------- =新方療陶瓷气体放电管 BC301N-D 有以下四个优势:(1 )体积小:BC301N-D(2)残压低BC301N-D (残压:552V)(3)弧光压高:弧光压比电源电压高,不会发生续流的危险(4 )供电电源浮地时,BC301N-D 不容易误动作 BC301N-D 的直流开启电压是300V , 常规的气体放电管是90V的,因此供电电源浮地时, BC301N-D相比不轻易发生误动作。
配电系统防雷规范[1]
![配电系统防雷规范[1]](https://img.taocdn.com/s3/m/fc473124482fb4daa58d4b21.png)
配电系统防雷规范雷电的危害,大家是有目共睹的。
然而,近几年随着电网的改造,特别是城网改造和变电所自动化系统的建设,大家可能对这些设备的防雷接地保护还是认识不足,以致造成了多起雷害事故,造成自动化系统的瘫痪和一些电网设备事故,损失是比较严重的。
因此,我们有必要探讨一下供、配电系统的防雷接地问题,为设计和施工人员提供一定的帮助。
1.电力线路的防雷与接地1.1 输电线路的防雷与接地输电线路的防雷,应根据线路的电压等级、负荷性质和系统运行方式,并结和当地地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等情况,通过技术经济比较,采用合理的防雷方式。
(1) 35kV线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器。
(2) 110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线。
(3) 220kV线路应全线架设避雷线,同时应采用双避雷线。
对于架设避雷线的线路,应注意杆塔上避雷线对边导线的保护角,一般采用20°~30°保护角,同时做好杆塔的接地。
根据土壤电阻率的不同,杆塔的工频接地电阻,不宜大于表1所列数值。
对于35kV线路装设的金属氧化物避雷器的技术参数,一般应满足以下条件:①持续运行电压(有效值)不小于40.8kV;②额定电压(有效值)不小于51kV;③直流1mA参考电压不小于73kV(范围在73~74kV之间);④标准放电电流5kA等级下残压(峰值)不大于:雷电冲击134kV、操作冲击114kV、陡波冲击154kV。
⑤2000μs方波电流(峰值)200A。
⑥对绝缘配置,根据线路污秽等级要求确定。
1.2 配电线路的防雷与接地与输电线路一样,配电线路的防雷也可采用避雷线或者避雷器,对于不同电压等级和不同线路采取的措施也不一样。
(1) 10kV裸导线线路。
低压防雷箱综合选型应用方案

低压防雷箱综合选型应用方案低压防雷箱是一种用于保护低压配电系统免受雷电过电压的影响的装置,它主要由防雷箱模块、浪涌保护器SPD、接地线等组成。
本文将介绍低压防雷箱的作用原理和行业应用解决方案,以及低压防雷箱的选型方法。
低压防雷箱的作用原理低压防雷箱的作用原理是利用浪涌保护器对输入断路器后面的电源线路进行过电压保护,当雷电释放时,电源线路中会产生高电压和大电流,这些过电压和过电流会对配电设备和信息网络系统造成严重的损害。
浪涌保护器是一种可变电阻器,它可以在极极短的时间内开启或关闭,从而将过大的过电压或过大的过电流限制在安全范围内,避免对配电设备造成成短路或火灾等危险。
浪涌保护器还可以与接地线相连,形成一个闭合回路,将多余的能量导入地面,减少对建筑物和人员造成伤害。
地凯科技智能低压防雷箱的行业应用解决方案低压防雷箱广泛应用于各种类型和规模的建筑物中,如居民住宅、商业办公、工业生产、交通运输、金金融服务等领域。
低压防雷箱可以有效地保障建筑物内部各种用电设备和信息网络系统的安全运行,提高用户满意度和信任度。
具体来说,低压防雷箱可以解决以下几个方面的问题:防止因为雷击引起的直接损坏或或短路事故。
例如,在居民楼房中,如果没有安装浪涌保护器或者安装不合格,则可能导致配电柜、插座、灯具等设备被击穿或或烧毁,造成火灾或人员伤亡。
防止因为感应雷引起的间接损坏或干扰事故。
例如,在商业办公中,如果没有安装浪涌保护器或者安装不合格,则可能导致计算机、打印机、电话等设备被感应到并损坏或失效。
防止因为谐振引起的的噪声或干扰事故。
例如,在工业生产中,如果没有安装浪涌保护器或者安装不合格,则可能导致变频器、传感器等设备被谐振到并产生生噪声或干扰信号。
防止因为过载引起的温升或老化事故。
例如,在交通运输中,如果没有安装浪涌保护器或者安装不合格,则可能导致变频调速系统被过载到并产生温升或老化现象。
地凯科技智能低压防雷箱的选型方法根据不同场所和需求选择合适类型和规格的低压防雷箱是非常重要的。
高压低压配电柜的防雷措施与防护方法

高压低压配电柜的防雷措施与防护方法为了确保电力系统的正常运行,高压低压配电柜的防雷措施与防护方法显得尤为重要。
本文将探讨一些有效的防雷措施和防护方法。
一、防雷措施之地面接地系统地面接地系统是高压低压配电柜中最基本的防雷措施之一。
合理的地面接地系统可以将雷电电流引入地下,以免伤害到电气设备。
为了确保防护效果,地面接地系统应符合相关标准,并采用良好的导电材料,如铜排。
此外,地面接地系统的电阻值也应符合规定范围,以确保有效的防护。
二、防雷措施之防雷装置高压低压配电柜中安装防雷装置是一种常见的防护方法。
防雷装置能够迅速将雷电引入地下,并分散到周围环境中,降低雷电对设备的影响。
防雷装置的选择应根据配电柜的具体要求和周围环境而定,常见的防雷装置包括避雷针、避雷网等。
在安装防雷装置时,需要考虑到避免与其他金属构件产生电位差,以免引发其他问题。
三、防护方法之接地保护接地保护是高压低压配电柜中常用的防护方法之一。
通过对电气设备进行良好的接地保护,可以减少雷电对设备的侵害。
接地保护包括对设备本体进行接地保护和对周围区域进行接地保护。
对设备本体进行接地保护时,需要确保接地电阻符合相关标准,并定期检测和维护接地系统。
对周围区域进行接地保护时,可以采用金属网罩等措施,以形成良好的保护环境。
四、防护方法之引导装置引导装置是高压低压配电柜中常用的防护方法之一。
引导装置能够迅速将雷电引导至地下,以免对设备造成损害。
常见的引导装置包括避雷针和避雷线。
在选择和安装引导装置时,需要考虑到设备的特点和需求,并确保其与其他金属构件之间的连接良好,以保证防护效果。
五、防护方法之绝缘保护绝缘保护是高压低压配电柜中重要的防护方法。
通过良好的绝缘保护,可以有效地防止雷电对设备的冲击。
绝缘保护包括对电气设备进行绝缘处理和对设备周围环境进行绝缘处理。
对电气设备进行绝缘处理时,需要使用符合规定的绝缘材料,并确保绝缘性能良好。
对设备周围环境进行绝缘处理时,可以采用绝缘垫等措施,以减少雷电对设备的侵害。
低压配电系统防雷设计方案

低压配电系统防雷设计方案
1.保护接地系统设计
(1)选择合适的接地方式,可以采用直接接地或间接接地(通过接
地电阻);
(2)合理选择接地电阻值,保证接地电阻能够满足系统的需求;
(3)合理布置接地电极,使电极之间的间距均匀、接地电极与外界
金属构件之间的距离应足够小;
(4)定期检测接地系统的接地电阻,确保其良好接地。
2.防雷装置设置
(1)合理选择防雷装置的位置和数量,安装在建筑物或设备的顶部,能够有效地吸引和引导雷电;
(2)防雷装置与接地系统的连接必须良好,确保雷电能够迅速地引
入地下;
(3)避雷网的网格尺寸应小于雷电火花通径,避免雷电绕过避雷网;
(4)避雷器的安装位置应考虑到系统的可靠性和使用便捷性。
3.电源及线路设计
(1)电源的选择应具有良好的防雷保护能力,如带有雷电冲击保护
装置的电源;
(2)电缆线路的敷设应考虑到雷电的影响,避免与雷电接触,可以
采取地下敷设或缆槽保护等措施;
(3)对于需要穿越建筑物外墙的电缆线路,应设置绝缘盖板,避免雷电通过电缆侵入建筑物内部。
4.防雷维护和检测
(1)定期检测接地系统的接地电阻,保证其在合理范围内;
(2)定期检测防雷装置的连接情况和工作状态,及时修理或更换损坏的设备;
(3)定期检测电源及线路的绝缘状况,确保其符合要求;
(4)定期进行雷电监测,及时了解雷电活动的情况,以便采取必要的防护措施。
综上所述,低压配电系统的防雷设计方案包括保护接地系统设计、防雷装置设置、电源及线路设计以及防雷维护和检测等多个方面,通过合理的设计和维护,可以有效地保护低压配电系统免受雷电的影响,确保系统的安全运行。
低压配电线路的防雷技术措施

低压配电线路的防雷技术措施低压配电线路的防雷技术措施之相关制度和职责,为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。1、电力线路发生雷电过电压的频率在特别广地区的低压配电网络上...为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。 1、电力线路发生雷电过电压的频率在特别广地区的低压配电网络上发生雷电过电压受到该地区的地形、气象条件雷雨日数、雷云的移动路径、雷击电流峰值的颁高低压配电线路的架设密度和对地雷击密度等的影响。在这些因素中,对在低压配电线路上发生雷电过电压峰值的频率颁发问的清晰统计是重要的。依据观测结果,计算出低压配电线路上发生的概率值。在争辩耐雷设计中,要有最基本的雷电过电压的频率分布曲线。在这项观测中,从2kv以上的雷电过电压中,担忧在低压配电设备的端子板或者设备内部会发生火花放电的雷电过电压假定为10kv限值,在超过10kv以上所观测到的累计频率为10%左右,而在5kv以下所观测到的累计频率为70%左右。还有另一个观测结果,在一个特别狭窄的面积范围内,在同样的低压配电线路上装了电涌计数器进行了187次累计观测。将这两次观测结果的雷电过电压累积频率颁进行比较,它们各自的频率分布双对数曲线都近似于一条直线。但是两条直线不是完全一致的。这是由于在电涌计数器上设定的雷电过电压的下限值有区分。2、雷电过电压的状况分析从配电线路上始终彩的防雷措施进行的争辩来看,已考虑到在低压配电线路上发生雷电过电压的因素有:①直击雷(挺直雷击到低压配电线路上);②感应雷(雷击到低压配电线路附近的地区时,对配电线路感应生成的感应雷);③高压侧的雷电过电压是侵入低压侧的雷电过电压的缘由,由于避雷器动作使大地(接地)电位上升,从柱上变压器的高压侧过渡到低压侧的雷电过电压。事实上,除了在低压配电线路上发生雷电过电压之外,还有雷击电流挺直侵入配电线路附近的建筑物上设置的避雷针,使得大地电位上升影响到配电设备的接地系统的场合应考虑这些是产生雷电过电压的合成缘由。2.1从高压侧过渡到低压侧的雷电过电压压配电线路上发生雷电过电压各种状况进行一般的争辩,将高压配电线路上的雷电过电压侵入低压配电线路上发生雷电过电压所产生的各种状况,进行一些试验性的争辩。这些争辩中,应在实际规模的高压配电线路上施加了雷电脉冲电压。由于配电用避雷器的放电使大地电位上升,通过柱上变压器的过渡电压,使低压配电线路上发生雷电过电压。 2.2感应雷过电压作为对象,对有关低压配电线路上发生雷电过电压的状况的试验进行争辩。为了模拟在近处有雷击时的配电线路和雷电通道,架设一条按现行配电线的1/4比例大小的模型线路,还从气球上吊下电线。这根电线有脉冲电流渡过,这时,测定在配电线路的导体上感应的电压波形。感应的电压波形,就有下列两种状况:①抑制低压配电线的架空地线和共用架空地线的雷电过电压效果,在接地电阻值是小的显著的。②由于高压配电线路的避雷器消逝适中动作,高压配电线处于接地状态,也同时有抑制低压电线的架空地线的雷电过电压的效果。3、配电设备的耐雷特性分析了雷电过电压烧坏低压配电设备的状况。作为雷电过电压烧坏对象的低压配电设备,连接到低压配电系统的电源端子之间的距离为5-10mm的空气间隙,是没有用耐雷元件疼惜的设备。①雷电过电压会击穿端子之间的空气间隙(产生火花放电)。火花放电时有大电流流过端子之间空气层,流过的时间特别短,约1μs~1ms左右,由于其电能量很小,这时设备端子上的火花放电处只有特别小的放电痕迹,不至于烧坏端子。②上述第①点的火花放电路径由于与低压配电系统的线间电压(100v或200v)有关,这时满意以后叙述的条件的场合会连续过渡为电弧放电。这个放电是工频电压下的适中电流。③在上述第(2)点时为线间短路状态。如有大电流(2000~3000a)流过时会烧坏低压配电设备。通常在数周波~10周波左右之后,熔断器等疼惜装置会动作,断开短路电流。但是,在烧坏配电设备或者熔断器熔断之前的电弧放电,许多场合会自然消弧,这时,可能认为配电设备不会受到雷击损害。3.1低压配电设备用材料的v-t特性从续流电弧的触发到达火花放电的性能,通过试验来调查低压配电线路上用的各种设备材料的v-t特性。再断时间为1~3μs左右的再断电压峰值为一亲热协作一的范围内,低压干线和dv进线大约为50kv,变压器二次测大约为30kv,低压配电设备上约为10kv。从这些结果值来看,电度表、低压进线箱等低压配电设备很简洁是受到雷电过电压损坏的设备。3.2其所长低压配电设备的电弧特性在模拟低压配电设备的电源端子的电极之间要施加工频电压,用设定可能的雷电脉冲电压重叠在任意的接通相位上的方法,对再现电弧我的试验进行调查。在单相供电系统中,侵入到模拟电极的雷电脉冲接通相位与电弧电流峰值的关系图。雷电过电压的接通相位对供电电源电压影响是大的。三相3线式供电系统,在三个线间电压之中至少有一个线间电压经常在其低压配电设备固有的最低电弧电压以上的场合,在任何相位时,雷电过电压的侵入会发生电弧续流的状况。4、防雷措施配电线路的防雷措施,到目前为止,还没有进行一般性的争辩。但是,在有关的配电线路的耐雷设计指南,由于在柱上变压器安装地点,低压配电线路的中性线进行了b种接地,由于有了这个合适的接地,就能防止危急的雷电过电压。作为低压配电线路的防雷措施,低压配电设备要有高的绝缘强度,在个别配电设备年安装耐雷元件,除此之外,进行多重接地系统也能抑制雷电过电压。如配电线路的架空地线的接地线,避雷器接地线柱上变压器的b种接地线的单独连接或者共用连接在一起的场合由于直击雷或者感应雷而产生的架空地线接地电流和避雷器放电电流使接地电位上升,由于雷电过电压会侵入那样的低压配电线路,务必要有抑制雷电过电压的防雷措施。架空共用地线的感应雷的效果,架空地线同样也能抑制由于相互的电磁感应在配电线路上发生的感应雷电过电压,就能解释架空共用地线可抑制低压配电线路的感应雷电过电压。当设计多重接地系统时,接地间隔、单独接地阻抗和合成接地阻抗等应当有所规定。假如考虑了这些规定值而设计好的接地系统,高压配电线路的耐雷效果是更高的,同时抑制在低压配电线路上发生的雷电过电压也是有贡献的。据上述方法已抑制的雷电过电压是在架空共用地线(接地用)与照明线路和电线路(电压相)之间发生的雷电过电压的对地电压成分关于线间电压成分是不成问题的。为用连接到这根接地相和各个电压相的进入线供电,不仅有雷电过电压的对地电压成分,而且其线间电压成分可能威逼低压配电系统和室内配线等点处还有务必抑制线间电位差的雷电过电压。压配电线路的防雷措施时,有必要充分考虑到目前为止已知道的发生雷击损害的机理、抑制低压配电线路的雷电过电压和限制续流电弧等,以及低压配电线路的主要防雷措施。配电设备的损坏进行完全防护是一项特别困难的技术。但是,配电设备的供电牢靠性,防雷措施要求的配电设备的性能增加,以及诊断设备才华的技术进步等方面均有提高。要连续面对今后的电气化生活和高度信息化的越来越多的进展,低压配电线路不用说在有关配电网络的整体可行性而且费用很低的耐雷设计和防雷措施等方面,有必要进行综合性的争辩。应急预案演练方案幼儿园平安责任书钳工平安操作规程车床平安操作规程电工平安操作规程粉尘防爆平安规程。
低压配电系统的防雷设计

中图分类号 :T U 8 5 6 文献标识 号:A 文章编 号
1 . 概述
2 . 1先 进 性
当今人类科 学技术 的发展 已经 进入 了高度 信息化 的阶段 ,但 是仍然 受 到能源 、环境和 安全这三 个因素 的困扰 ,特 别是环 境和安 全,我们 中 国的古训深切的告知我们 “ 福 莫大于平安”,安全是维持人们 正常 生活 、 工作的基本条件 ,造成 不安全 的因素很多,但不外乎 天灾和 人祸 两大类 。 在不考 虑人为 因素 的情 况下 ,自古至今我 们人类始 终 以积 极探索 的精 神 对 自然 灾害进 行着顽 强的抵抗 ,由雷 电引发的 自然 灾害也 是如此 ,现 代 的人们更加重视对雷 电的防护 。 联 合 国国际十年减灾 委员会 公布的对人 类造成最 严重危害 的十大 自 然 灾害 中,雷暴 由于其对 人类生命 、财产的 巨大侵害 ,被 列在 了显著 的 地 位。这 是基于近 些年来伴 随着 高新技术 的发展 ,尤 其是 电子 技术 的飞 速发展 ,各种先 进的测量 、保护监 控、 电信和 计算机 等 电子产 品正 目益 广泛 的应 用于各 行各业 中,特别是 计算机技 术与通 讯技术 的发展相 互结 合 ,从 两种独立 的技术单 元逐渐 成为推动 一个新 的技术发 展时代相 互有 机结 合的产物 一一计算机 通信技 术, 电子器件 的集 成化和 超大规模 集成 化及 新的 网络 通信技 术的发 展都为信 息时代 的主导技术 支撑产 品一一计 算机 通信 技术 的发 展起到 了极大 的推 动和促 进作用 ,但 另一方 面,这些 微 电子 仪 器设 备 普 遍 存 在 着 绝 缘 强 度 低 ,过 电压 耐 受 能 力 差 等 致 命 弱 点 , 旦遭受 雷击过 电压 的冲 击,轻则造 成这些 电子系 统的运行 中断,设备 永久性损 坏,重则 会使这 些系统所承 担 的那 些须实 时运行 的后 续工作 的 中断瘫痪 所造 成的不可估 量的直接 与间接 的 巨大经 济损失和 影响 ,对 于 工业企 业等 国家重要 关键 部 门,尤其是这样 ,而且这 样 的雷击 侵害 的程 度 已经越来越严重 。为此对雷 电电磁脉冲 ( L E M P )的防护 ,不但是必要的 , 而且是必须实施 的。 防护雷电电磁 脉冲是一个系统工程 ,它包括设计 、施工安装、测试 、 维 护等工作 和过程 。本文将重 点叙述 “ 3 8 0 / 2 2 0 V低 压配 电电源 ”的雷 电 防护设计 原则 。对 于雷 电防护设计 ,系统结 构愈合 理,系统 的各个部 分 之间 的有机结 合就越合 理,相互 之间 的作 用就愈协 调,从而 才能使整 个 系统在总体上达到最佳的运行状态 。 2 . 设计原则 雷 电防护设计 首先应 了解 和确认 雷 电侵入配 电系统 和计算机 系统各 种途径 ,在这个基础上,依 据系统雷电防护的原理和防雷设计安装经验 , 采取 相应 的防护措 施,进行有 针对性 的防护 ,从 而达到 在雷 电入 侵时能 够 保障 系统安全运 行的 目的。防雷 设计要 按照用户 的需求 ,本着先进 、 可靠 、实用 和经济等原则实施。
很全的很实用综合防雷实施方案(直击雷、感应雷、等电位连接、综合布线、共用接地、屏蔽、spd)

防雷工程设计方案四川中光防雷科技股份有限公司地址:成都市高新区西部园区天宇路19号邮编:611731联系部门:区拓部传真:(028)87843532目录二、现场情况 (3)三、设计依据 (4)四、设计方案 (5)4.1 直接雷击防护 (5)4.1.1概述 (5)4.1.2现状 (6)4.1.3解决方案 (6)4.2浪涌保护器防护 (10)4.2.1电源浪涌保护器防护 (10)4.2.2信号浪涌保护器防护 (12)4.2.4天馈浪涌保护器 (14)4.3综合布线 (16)4.3.1、“强、弱分开” (16)4.3.2、远离易受雷击的设施 (17)4.4屏蔽 (18)4.4.1、电磁干扰 (18)4.4.2、电磁屏蔽原理 (19)4.4.3屏蔽措施 (19)4.5等电位连接 (20)4.6公用接地系统 (22)4.6.1、概述 (22)4.6.2、现况 (24)4.6.3、解决方案 (24)五防雷工程(概)预算 (31)二、现场情况根据如下描述直击雷应该考察的内容如下:对于新建工程的防雷设计,应收集以下相关数据:被保护建筑物所在地区,被保护建筑物(或建筑物群体)的长、宽、高度及位置分布,相邻建筑物有哪些。
它的长、宽、高及位置分布。
在被保护建筑物的那个部分。
建筑物楼顶被保护的电子信息系统设备的分布状况。
对扩、改建工程,除应收集上述资料外,还应收集下列相关资料:防直击雷接闪装置(避雷针、带、网、线)的现状(高度如何、腐蚀度又如何覆盖面积又是如何、有没有新增加设备、防雷系统引下线的现状及其与电子信息设备接地线的安全距离。
)SPD防护应该考察的内容如下:对于新建工程的防雷设计,应收集以下相关数据:建筑物内各楼层及楼顶被保护的电子信息系统设备的分布状况。
配置于各楼层工作间或设备机房内被保护设备的类型、功能及性能参数(如工作频率、功率、工作电平、传输速率、特性阻抗、传输介质及接口形式等)。
电子信息系统的计算机网络和通信网路的结构。
防雷电路 开关电源防雷电路设计方案(优.选)

防雷电路开关电源防雷电路设计方案雷击浪涌分析最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。
一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。
浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论:1)电源浪涌电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。
当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。
美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V的就有300余次。
这样的浪涌电压完全有可能一次性将电子设备损坏。
2)信号系统浪涌信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。
金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。
排除这些干扰将会改善网络的传输状况。
基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。
防雷击浪涌电路的设计本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。
整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。
配电系统的防雷措施

(一)架空裸导线防雷
1、装设避雷线保护: 架空线路安装避雷线,沿线及设备均可 得到保护。由于线路绝缘薄弱,耐雷水平 低,所以10kV架空线路一般不装避雷线 (可以装设进线段保护),但特殊地段需 装避雷线时,混凝土电杆都要按设计要求 做接地处理。
2、装设避雷器保护: 对于10kV裸导线,采用避雷器进行防 雷保护的成本高,施工很不方便,目前基 本上是一些雷电活动频繁的线段安装避雷 器,同时按照要求做好杆塔的接地。但电 杆上装设柱上开关或电缆头时,均需要装 设避雷器来保护,设备的金属外壳和避雷 器共同接地。
1、配电网一般靠变电站出线侧和配电变压器高压侧 的避雷器保护,线路中缺少避雷线保护而易受雷 击,即使这些避雷器动作,较高的雷电过电压也 会使线路绝缘子击穿放电。目前6~10 kV电网所 用避雷器(包括新型氧化锌或老式碳化硅的、带 或不带间隙的)较杂,其额定电压、动作电压及 其残压差异较大。而配电网又极易由雷电过电压 引发弧光接地过电压(可达3.5 倍系统最大运行电 压,系统最大运行电压约为额定电压的1.05~1.1 倍;最高时可达到额定电压的1.15倍)和铁磁谐 振过电压(可达3倍最高运行电压),经常导致避雷 器爆炸。另外还有些避雷器因质量差而在运行中 受潮,或间隙动作后不能可靠熄弧而爆炸,造成 电网接地短路事故。
2、电网中避雷器接地存在较多问题: ①受场所限制。相当多配电型避雷器接地电 阻超标(达上百欧姆); ②接地引下线损坏。引下线有些用带绝缘外 皮的铝线,内部折断不易发现,两端头连 接头易氧化锈蚀;还有些在埋入土中与接 地体连接处产生电化学腐蚀甚至断裂(这在 环境污秽场所中较为严重),使避雷器等防 雷设备形同虚设。
这种接地法的目的: 一旦线路落雷时,避雷器放电,雷电流 经集中接地体流入大地的同时,有一部分 雷电流沿电缆金属外皮流入变电站内接地 网,这样在电缆外皮产生螺旋形磁场,相 当于增加电缆的电感使波阻抗加大,因此, 经电缆芯线侵入变电站的截断雷电波很快 衰减,使波幅和陡度都有所减小,有利于 保护变压器的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低压配电系统防雷设计方案探讨
摘要:在防雷设计时,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施,建立完善的雷电浪涌过电压保护措施,根据被保护建筑物的特点和低压电源系统的形式选择和安装电涌保
护器。
每年雷雨季节前应对运行中的防雷器进行一次检测,雷雨季节中要加强外观巡视,如检测发现异常应及时处理。
关键词:供电系统,防雷,设计方案
abstract: in the lightning protection design, except when the sings rem measures should be considered outside, still should consider lightning electromagnetic impulse protective measures, set up perfect lightning surge overvoltage relaying protection measures, according to the characteristics of the building to be protected and low voltage power supply system in the form of choice and installation surge protector. each year before the operation of the thunderstorm season to lightning protection device into line one test, the thunderstorm seasons to strengthen appearance patrol, such as the detection of abnormal should handle in time.
keywords: power supply system, lightning protection, design scheme
中图分类号:s611文献标识码:a 文章编号:
一、雷害分析
随着经济建的高速发展,电子信息设备的应用已深入至国民经济、国防建设和人民生活的各个领域,各种电子、微电子装备已在各行业大量使用。
由于这些系统和设备耐过电压能力低,雷电高电压以及雷电电磁脉冲侵入所产生的电磁效应、热效应都会对系统和设备造成干扰和永久性损坏。
而雷电对系统和设备的侵害,通常通过地电位反击、各种耦合机制(电流耦合、电感耦合、电容耦合)及电磁脉冲辐射等方式沿供电线路、通信线路、网络线路和金属管线进入设备,造成系统和设备的损坏。
因此在防雷设计时,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施,建立完善的雷电浪涌过电压保护措施,根据被保护建筑物的特点和低压电源系统的形式选择和安装电涌保护器。
二、设计依据
a、gb50057-2010《建筑物防雷设计规范》
b、gb50343-2004《建筑物电子信息系统防雷技术规范》
c、qx3-2000《气象信息系统雷击电磁脉冲防护规范》
d、gb18802《低压配电系统的电涌保护器(spd)》
e、iec61312-1、2、3《雷电电磁脉冲的防护》
f、gb50169-92《电气装置安装工程接地装置施工及验收规范》
g、gb50194-93《建设工程施工现场供用电安全规范》
三、低压供电系统防雷设计方案
根据gb50343-2004《建筑物电子信息系统防雷技术规范》中有
关防雷分区的划分,针对重要系统的防雷应分为三个区,分别加以考虑。
只做单级防雷可能会带来,因雷电流过大而导致的泄流后残压过大破坏设备或者保护能力不足引起的设备损坏。
电源系统多级保护,可防范从直击雷到工业浪涌的各级过电压的侵袭。
(1)第一级电源防雷设计:
根据国家有关低压防雷的有关规定,外接金属线路进入建筑物之前应埋地穿金属管槽15米以上的距离进入建筑物,且要在建筑物的线路进入端加装低压防雷器。
必须做到在电源的进入端安装低压端的总电源防雷器,将由外部线路可能引入的雷击高电压引至大地泄放,以确保后接设备的安全。
对于三相电源b级防雷器,三相进线的每条线路应有60ka以上的通流容量,可将数万甚至数十万伏的过电压限制到几千伏以内,防雷器并联安装在总配电室进线端处,做直击雷和传导雷的保护。
可选用箱式三相电源防雷器,型号为yf-x380b120,(或选用模块式三相电源防雷器,型号为yf-m380/120),此级防雷器并联安装,标称通流容量为60ka(8/20μs),对后接设备的功率不限,可以对通过线路传输的直击雷和高强度感应雷实施泄放保护。
(2)第二级电源防雷设计:
虽然已经在总电源进线端安装了第一级的防雷器,但是当较大雷电流进入时,第一级防雷器可将绝大部分雷电流由地线泄放,而剩余的雷电残压还是相当高,因此第一级防雷器的安装,可以减少大面积的雷击破坏事故,但是并不能确保后接设备的万无一失;假
设由配电室总电源拉至其它建筑物的电源线路全部为三相走线,也存在感应雷电流和雷电波的二次入侵的可能,需要在分电柜安装电源第二级防雷器。
第二级防雷器,作为次级防雷器,可将几千伏的过电压进一步限制到2千伏以内,雷电多发地带建筑物需要具有40ka的通流容量,将第一级防雷器泄放后出现的雷电残压以及电源线路中感应的雷电流给予再次泄放。
三相线路选用yf-x380b80箱式三相电源防雷器,标称通流容量为40ka;单相线路可选用yf-x220b80箱式单相电源防雷器,标称通流容量40k
a;此级防雷器并联安装,对后接设备的功率不限。
(3)第三级电源防雷设计:
这也是系统防雷中最容易被忽视的地方,现代的电子设备都使用很多的集成电路和精密的元件,这些器件的击穿电压往往只是几十伏,最大允许工作电源也只是ma级的,若不做第三级的防雷,由经过一、二级防雷而进入设备的雷击残压仍将有千伏之上,这将对后接设备造成很大的冲击,并导致设备的损坏。
作为第三级的防雷器,三相线路选用yf-x380b40箱式三相电源防雷器,标称通流容量20ka,此级防雷器并联安装,对后接设备的功率不限。
单相的用电设备,可以选用yf-x220b40箱式单相电源防雷器,标称通流容量20ka,作为第三级电源雷电防护。
(4)末级电源防雷设计:
针对一些较贵重的弱电设备,虽然前面已做好三级防雷,但仍
有一些雷击残压进入设备,为防止设备因雷电流的冲击而损坏,应在设备供电之插座采用翌丰系列的防雷插座,型号为yf-cz/6,最大通流容量10ka。
(5)注意事项:
电源线路防雷与接地应符合以下规定:
a、进、出电子信息系统机房的电源线路不宜采用架空线路。
b、电子信息系统设备由tn交流配电系统供电时,配电线路必须采用tn-s系统的接地方式。
c、配电线路设备的耐冲击过电压额定值应符合相关规定。
d、在直击雷非防护区(lpzoa )或直击雷防护区(lpzob )与第一防护区(lpz1)交界处应安装通过i经分类试验的浪涌保护器或限压型浪涌保护器作为第一级保护;第一防扩区之手的各分区(含lpz1区)交界处应安装限压型浪涌保护器。
使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源浪涌保护器。
e、浪涌保护器连接导线应平直,其长度不宜大于0.5m。
当电压开关型浪涌保护器到限压型浪涌保护器之间的线路长度小于10m、限压型浪涌保护器之间的线路长度小于5m时,在两级浪涌保护器之间应加装退耦装置。
当浪涌保护器具有能量自动配合功能时,浪涌保护器之间的线路长度不受限制。
浪涌保护器应有过电流保护装置,并宜有劣化显示功能。
f、浪涌保护器安装的数量,应根据被保护设备的抗扰度和雷电防护分级确定。
g、用于电源线路的浪涌保护器标称放电电流参数值宜符相关规定。
四、运行维护
(1)防雷器安装之后,应检查所有接线是否正确安装,然后运行测试,看系统和设备是否正常工作,有无异常情况,如有,应及时检查,直至整个系统均正常运作。
(2)每年雷雨季节前应对接地系统进行检查和维护。
主要检查连接处是否紧固、接触是否良好、接地引下线有无锈蚀、接地体附近地面有无异常,必要时应挖开地面抽查地下蔽部分锈蚀情况,如果发现问题应及时处理。
(3)接地网的接地电阻宜每年进行一次测量。
(4)每年雷雨季节前应对运行中的防雷器进行一次检测,雷雨季节中要加强外观巡视,如检测发现异常应及时处理。
注:文章内所有公式及图表请用pdf形式查看。