常用数的平方、立方、根值、π值

合集下载

数的开方知识点doc

数的开方知识点doc

第12章《数的开方》知识点一、知识点:1、平方根:如果一个数的平方等于a ,那么这个数叫做a 的 。

正数a 有 平方根,它们 ,记作 ,a 称为 .0的平方根只有 ,就是0,记作0=0.负数没有平方根。

2、算术平方根:正数a 的 ,叫做a 的算术平方根,记作 ,读作“根号a ”.3、开平方: 运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根.4、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 。

任何数(正数、负数或零)都有一个立方根.数a 的立方根,记作 ,读作“三次根号a ”,a 称为被开方数,3称为 。

5、开立方:求一个数的立方根的运算,叫做 。

6、无理数: 叫做无理数。

7、实数: 称为实数。

8、实数与数轴上的点 .二、知识点应用:1、49的平方根是 ,算术平方根是 .2、5是 的平方根,-9的平方根 .3、1是 的立方根,-1是 的立方根.4、-27的立方根是 ,0的立方根是 .5、若某数的一个平方根是2,则这个数是 ,它的另一个平方根是 .6、若某数的立方根是-3,则这个数是 .7、如果一个实数有且只有一个平方根,那么这个数是 .8、如果一个实数有且只有一个立方根,那么这个数是 .9、数轴上表示5-的点与原点的距离是________;10、2-的相反数是 ,3的倒数是 ,13-的相反数是 ;11、81的平方根是______,4的算术平方根是_______,210-的算术平方根是 ;12、计算:_______10_________,112561363=-=--,2224145-= ; 13、若一个数的平方根是8±,则这个数的立方根是 ;14、当______m 时,m -3有意义;当______m 时,33-m 有意义;15、若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;16、已知0)3(122=++-b a ,则=332ab;17、在实数0、3、6-、236.2、π、723、14.3中无理数的个数是( )A 、1B 、2C 、3D 、418、36的平方根是( )(A )6 (B )±6 (C )6 (D )6±19、一个数的平方根是它本身,则这个数的立方根是( ).(A ) 1 (B ) 0 (C ) -1 (D )1,-1或020、数3.14,2,π,0.323232…,71,9,21+中,无理数的个数为(). (A )2个 (B )3个 (C )4个 (D )5个21、下列等式:①81161=,②()2233-=-,③()222=-,④3388-=-⑤416±=,⑥24-=-;正确的有( )个.(A )4 (B )3 (C )2 (D )1三、计算题22.81.031-4162+2268101+; 23.3008.0-+481-532-38742-.四、求下列各式中x 的值24.3(x 21+1)2-108=0; 25.8(x -1)3=-64125.五、求值26.已知A =342--+b a a 是a +2的算术平方根,B =9232-+-b a b 是2-b 的立方根.求3A -2B 的立方根.27.已知y =12-x +x 21-+x -2.求y x +10的值.28.已知|x |=3,求代数式112-x +12+x -11-x 的值.六、(本题6分)29.一个长方体的木箱,它的底面是正方形,木箱高0.85米,体积为1.19米3,求这个木箱底面的边长(保留两个有效数字).。

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

第六章 实数6.4 《实数》章末复习(基础巩固)【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等; ②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题例1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( )A.2个B.3 个C.4 个D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列运算正确的是( )A 2=±B =2=- D .|2|2--= 【答案】C ;例210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、与实数有关的问题 例3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ };(4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式.举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;例4、计算(1)233)32(1000216-++(2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案与解析】解:(1)233)32(1000216-++=226101633++= (2)23)451(12726-+-23111112743412⎛⎫--=-+=- ⎪⎝⎭ (3)32)131)(951()31(--+=3314218121393327333⎛⎫⨯-=-=-=- ⎪⎝⎭.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根.举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=---- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-. 例5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示: 化简2a +∣a -b ∣= .【答案】 解:∵a <0<b , ∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ;-1a【答案】21a a a a<<<-; 类型三、实数综合应用例6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式, 15012.247≈ (米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米, 所以扩建后鱼池的面积为218.247≈333.0(平方米). 答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长. 【答案】解:设水池的底边长为x ,由题意得2 1.5486x ⨯=2324x =18x =答:这个水池的底边长为18m .【巩固练习】一.选择题1. 下列说法正确的是( ) A .数轴上任一点表示唯一的有理数 B .数轴上任一点表示唯一的无理数 C .两个无理数之和一定是无理数 D .数轴上任意两点之间都有无数个点2.的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b4. 3387=-a ,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( )A.3a 中的a 可以是正数、负数或零.B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个. 7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( ) A.0>+b a B. 0ab > C.0a b -> D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间 二.填空题9. 若2005的整数部分是a ,则其小数部分用a 表示为 . 10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 . 14.﹣64的立方根与的平方根之和是 .15. 2112- ,5- 22 , 33 216. 数轴上离原点距离是5的点表示的数是 . 三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18. 已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】 一.选择题 1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数. 2. 【答案】C 3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 4. 【答案】B ; 【解析】33378a a ⎛⎫-=-=-- ⎪⎝⎭.5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根. 7. 【答案】C ; 8. 【答案】B ;【解析】4195<<,61927<+<. 二.填空题9. 【答案】2005a -; 10.【答案】为任意实数 ; 【解析】任何实数都有立方根. 11.【答案】25.0-;【解析】3233(0.125)0.250.25--=-=-. 12.【答案】3;【解析】x -12=15, x =27,3273=. 13.【答案】7±;【解析】 3343=7,7的平方根是7±.14.【答案】﹣2或﹣6. 【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】5【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=- 20.【解析】解:∵11<10+3<12∴x =11,y =10+3-11=31∴()3111312x y y x --=-=-=.。

常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法

常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。

2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表A 列B列C列D列E列1 21 43 40.50.250.75183858780.1250.3750.6250.8751203207209200.050.150.350.451252253254250.040.080.120.1613251425162517250.520.560.640.681 52 53 54 50.20.40.60.81103107109100.10.30.70.911201320172019200.550.650.850.956257258259250.240.280.320.3618251925212522250.720.760.840.881 500.021160.062511250.4423250.921 1000.0112250.4824250.96除法常见的分数、小数及百分数的互化除不尽(按四舍五入计算)除法1÷2 1÷4 1÷5 2÷5 3÷5 4÷5比1:21:41:52:53:54:5分数1/21/41/52/53/54/5小数0.50.250.20.40.60.8百分50%25%20%40%60%80%除法1÷32÷31÷65÷61÷72÷7比1:32:31:65:61:72:7分数1/32/31/65/61/72/7小数0.330.670.170.830.140.29百分33%67%17%83%14%29%1÷8 3÷8 5÷8 7÷81:83:85:87:81/83/85/87/80.1250.3750.6250.87512.5% 3÷737.5% 4÷762.5% 5÷787.5% 6÷73:74:75:76:73/74/75/76/70.430.570.710.8643%57%71%86%1÷10 3÷10 7÷10 9÷10 3÷2 5÷4 7÷51:103:107:109:103:25:47:51/103/107/109/103/25/47/50.10.30.70.91.51.251.410%30%70%90%150%125%140%1÷92÷94÷95÷97÷98÷94÷31:92:94:95:97:98:94:31/92/94/95/97/98/94/30.110.220.440.560.780.891.3311%22%44%56%78%89%133%备注除尽是指除数(前项、分子)除以除数(后项、分母)得商不出现循环(或无限循环)小数;除不尽与除尽相反,是无限循环小数。

小学数学常用数据及公式换算大全

小学数学常用数据及公式换算大全

要熟记的数学常用数据归纳一、1 ~50的平方数1、*1=12*2=43*3=94*4=165*5=256*6=367*7=498*8=649*9=8110*10=10011*11=12112*12=14413*13=16914*14=19615*15=22516*16=25617*17=28918*18=32419*19=36120*20=40021*21=44122*22=48423*23=52924*24=57625*25=62526*26=67627*27=72928*28=78429*29=84130*30=90031*31=96132*32=1024 33*33=108934*34=115635*35=122536*36=129637*37=136938*38=144439*39=152140*40=160041*41=168142*42=176443*43=184944*44=193645*45=202546*46=211647*47=220948*48=230449*49=240150*50=2500二、1 ~15的立方数1*1*1=12*2*2=83*3*3=274*4*4=645*5*5=1256*6*6=2167*7*7=3438*8*8=5129*9*9=72910*10*10=100011*11*11=133112*12*12=172813*13*13=219714*14*14=274415*15*15=3375三、2n 3n (n 为1-12)四、特殊数的乘积 5×2=10 25×4=100 125×8=1000 625×16=1000075×4=300 25×8=200 375×8=3000五、常见勾股3-4-5 5-12-13 7-24-25 8-15-17 9-40-4111-60-6117-144-145 12-35-37 19-180-181 13-84-85 20-21–29 15-112-113 16-63-653分小百互化%505.01== %2525.01== %7575.03==%5.12125.0== %5.37375.0== %5.62625.0== %5.87875.0==%404.0== ⋯⋯==%808.0%202.0== ⋯⋯==%606.0%3.33333.0=≈%7.66667.0=≈%7.16167.0=≈%1.90909.011=≈ ⋯⋯=≈%2.181818.01110----20的平方数 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 252=6251----10π的数1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4一、分小百互化1/2=0.5=50% 1/4=0.25=25% 3/4=0.75=75%1/5=0.2=20% 2/5=0.4=40% 3/5=0.6=60% 4/5=0.8=80%1/8=0.125=12.5% 3/8=0.375=37.5% 5/8=0.625=62.5% 7/8=0.875=87.5%1/10=0.1=10% 3/10=0.3=30% 1/20=0.05=5% 3/20=0.15=15%1/25=0.04=4% 2/25=0.08=8% 1/50=0.02=2% 3/50=0.06=6% 1/100=0.01=1%1/125=0.008=0.8% 2/125=0.016=1.6% 1/3≈0.333=33.3% 2/3≈0.667=66.7%1/6≈0.167=16.7% 5/6≈0.833=83.3%1/9≈0.111=11.1%2/9≈0.222=22.2% 1/11≈0.0909=9.1% 2/11≈0.1818=18.2%二、10----20的平方数102=100 112=121 122=144 132=169142=196 152=225 162=256 172=289182=324 192=361 202=400 212=441252=625三、1----10π的数1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.76π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4四、100以内质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97五、常用计算结果2×50=100 4×50=200 ……4×25=100 6×25=150 8×25=200 ……8×125=1000 8×250=20007×11×13=1001 1089×9=9801 2178×4=8712142857×1=142857 142857×3=428571 142857×5=714285 142857×7=999999142857×2=285714 142857×4=571428142857×6=857142 12345679×9=111111111单位换算(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米(4)1吨=1000千克1千克= 1000克= 1公斤= 1市斤(5)1公顷=10000平方米1亩=666.666平方米(6)1升=1立方分米=1000毫升1毫升=1立方厘米4----------------------------------------------------------------------------------------------------------------------------------1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体5V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长6(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-17全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量8利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)小学定理公式1.加法交换律:两数相加交换加数的位置,和不变。

立方计算公式文

立方计算公式文

立方计算公式文立方计算公式。

立方计算公式是数学中常见的计算公式之一,它用来计算一个数的立方值。

立方计算公式的一般形式为,a^3 = a × a × a,其中a为任意实数。

在数学中,立方计算公式被广泛应用于代数、几何和物理等领域,它是许多数学问题的重要工具之一。

本文将介绍立方计算公式的基本概念、推导过程和应用示例,帮助读者更好地理解和运用立方计算公式。

一、立方计算公式的基本概念。

立方计算公式是指将一个数的立方值计算出来的公式。

在数学中,立方是指一个数的三次方,即这个数与自身相乘三次。

例如,数3的立方就是3 × 3 × 3 = 27。

因此,立方计算公式可以表示为,a^3 = a × a × a,其中a为任意实数。

这个公式告诉我们,要计算一个数的立方值,只需要将这个数与自身相乘三次即可。

立方计算公式是指数运算中的一种特殊情况,它与平方计算公式有一定的相似之处。

平方计算公式是指将一个数的平方值计算出来的公式,其一般形式为,a^2= a × a,其中a为任意实数。

可以看出,立方计算公式是平方计算公式的推广,它将一个数的平方值的概念扩展到了三次方,因此在数学中具有重要的地位和作用。

二、立方计算公式的推导过程。

立方计算公式的推导过程可以通过数学归纳法来进行。

首先,我们知道对于任意实数a,有a^1 = a。

这是立方计算公式的基础情况,即一个数的一次方等于它本身。

接下来,我们假设对于任意实数k,有k^3 = k × k × k成立,这里k是一个未知数。

然后,我们来推导(k+1)^3的表达式。

根据立方计算公式的定义,(k+1)^3 = (k+1) × (k+1) × (k+1)。

我们可以展开这个表达式,得到(k+1)^3 = k^3 + 3k^2 + 3k + 1。

这个表达式可以通过展开和合并同类项的方法得到,具体的推导过程略。

数学基础计算背诵(小数、分数、平方数、立方数、π)

数学基础计算背诵(小数、分数、平方数、立方数、π)
743×9.9=7430−74.3=7355.7
A×11型
A×11=A×10+A
743×11=7430+743=8173
A×101型
A×101=A×100+A
743×101=74300+743=75043
A×5型
A×5=10A÷2
8739.45×5=87394.5÷2=43697.25
A÷5型
A÷5=0.1A×2
A÷125=0.001A×8
4115÷125=4.115×8=32.92
A×1.5型
A×1.5=A+A÷2
3406×1.5=3406+3406÷2=3406+1703=5109
“首数相同尾数互补”型乘积
积的头=头×(头+1)
积的尾=尾×尾
23×27:首数均为2,尾数3+7=10互补;
积的头为2×(2+1)=6,尾为3×7=21,即621
432=1849
442=1936
452=2025
462=2116
472=2209
482=2304
492=2401
502=2500
完全平方数的记忆技巧:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab
五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=292
常用立方数
53=125
63=216
73=343
83=512
93=729
11³=1331
12³=1728
13³=2197
14³=2744

(完整版)常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法

(完整版)常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。

2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。

常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法

常见分数、小数及百分数互化-常用平方数、立方数及各种计算方法

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。

2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9.9=743×10-743÷10=7430-74.3=7355.7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739.45×5=8739.45×10÷2=87394.5÷2=43697.25A÷5型速算技巧:A÷5=0.1A×2;例:36.843÷5=36.843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0.001A×8;例:4115÷125=4115×0.001×8=4.115×8=32.92减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例:3406×1.5=3406+3406÷2=3406+1703=5109“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:23×27=首数均为2,尾数3与7的和是10,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621本方法适合11~99 所有平方的计算。

初中数学七年级数学第六章实数(全章节图文详解)

初中数学七年级数学第六章实数(全章节图文详解)
实数七年级数学第六章实数实数实数有理数无理数分数整数正整数0负整数正分数负分数自然数正无理数负无理数无限不循环小数有限小数及无限循环小数一般有三种情况1含的数??2开方开不尽的数3有规律但不循环的无限小数实数的分类
七年级数学第六章实数
实数
七年级数学第六章实数
目录:
1.算术平方根 2.平方根 3.立方根 4.有理数 5.无理数 6.实数定义 7.实数的运算 8.实数的大小比较
七年级数学第六章实数
1.算术平方根的定义: 一般地,如果一个正数x的平方等于 2 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是 0 。
记作:0 0
七年级数学第六章实数
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
注意:计算过程中要多保留一位!
七年级数学第六章实数
3.实数运算
当数从有理数扩充到实数以后,实数之
间不仅可以进行加 减 乘 除 乘方运算,
又增加了非负数的开平方运算,任意实数
可以进行开立方运算。进行实数运算时, 有理数的运算法则及性质等同样适用。
七年级数学第六章实数
练习:
2 3 3 2 5 3 3 2
不 要 遗 漏
解: (3 y ) 4 9 4 3 y 9
2
解:
2 3 27 ( x ) 125 3
2 3 125 (x ) 3 27 2 5 x 3 3
2 3 125 x 3 27
1 2 y 2 或y 3 3 3
2 y 3 3
x 1

数的开方平方根与立方根

数的开方平方根与立方根

总结
1、同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关 系,使用方法:在乘积中,幂的底数不变,指数相加。 4、 应用时可以拓展,例如,对含有三个或三个以上的同底数幂,
仍成立。底数和指数,它既可取一个或几个具体数,也可取单 项式或多项式。 5、 运用幂的的乘法运算性质注意不能与整式的加减混淆。
课后作业
教学反思
教师评语
圣儒教育教案
授课老师姓名:
学生姓名:
上课时间:
课题
幂的运算-幂的乘方;
教学内容
一、回顾 我们上节课讲了同底数幂的乘法,还回忆了初一的内容乘方的 概念,那么我们这节课继续讲新的内容,幂的乘方 我们看一下书本上的试一试,大家自己动手做一下,看看能不 能做的出来 二、 提出问题:大家发现了什么规律?
0 的平方根还是 0.负数没有平方根
3.平方根的表示法: a (a 0)
4.算术平方根的概念:正数 a 的正的平方根叫做 a 的算术平方根
课后作业
教学反思
教师评语
圣儒教育教案
授课老师姓名:
学生姓名:
上课时间:
课题
数的立方根
教学内容ห้องสมุดไป่ตู้
一、知识回顾 1.什么叫平方根?如何用符号表示数 a (a≥0)的平方根? 正数 a 的平方根是? 2.什么叫算术平方根?如何用符号表示数 a(a≥0)的算术 平方根?正数 a 的算术平方根是? 3.正数有几个平方根?它们之间的关系是什么?负数有没 有平方根?0 平方根是什么?
( 2 ) 53 54 = _______________ = 5 ( 3 ) a3 a5 =
______________ = a
提出问题:(1)这几道题目有什么共同特点? (2)请同学们看一看自己的计算结果,想一想,这些结

二次方根知识点总结

二次方根知识点总结

实数知识点总结平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

练习⑴ 一个数的平方等于它的本身的数是 ;⑵ 平方根等于它的本身的数是⑶ 算术平方根等于它的本身的数是 ;⑷ 立方根等于它的本身的数是⑸ 大于0且小于π的整数是 ;⑹ 满足21-<x <15-的整数x 是6.到原点的距离为34的点表示的数是 ;7.若32-=x ,则x = ,8. 实数与数轴上的点9.写出之间的所有的整数为____. 10.比较大小:____三、解答题11.1.3-,0,0.3,227,1.732-π2-,3+,0.1010010001整数{} ;分数{} ;正数{} ;负数{} ;有理数{} ;无理数{}四.计算(1) (221;(3)π2练习一 平方根1.如果2a = 3,那么a = ,如果3=a ,那么=a2.若一个正方形的面积为13,则正方形的边长为3.0.04的平方是 ,0.04的算术平方根是 ,平方根是4.若12是a 的一个平方根,则a 的另一个平方根是5.若414.12=,则=200 ,02.0=6.用“>”“<”填空:⑴ ⑵ 160 13 ⑶;9.若==x x 则,4942 ,若==-x x ,则025812 ;10.⑴ =25 , ⑵ ()=-22 ,⑶ =2a ;11.下列说法中不正确的是 ( )A 、2-是2的平方根B 、2是2的平方根C 、2的平方根是2D 、2的算术平方根是2 12.41的平方根是 ( ) A 、161 B 、81 C 、21 D 、21± 13. 下列各式中无意义的是 ( ) A 、7- B 、7 C 、7- D 、()27-- 14.下列各式中,正确的个数是( )① 3.09.0= ② 34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5 ⑤67±是36131 的平方根A 、1个B 、2个C 、3个D 、4个 15.“254的平方根是52±”,由数学式子可以表示为( ) A 、52254±= B 、52254±=± C 、52254= D 、52254-=-16.下列判断正确的是 ( ) A 、一个数的倒数等于它本身,这个数是1 B 、一个数的绝对值等于它本身,这个数是正数 C 、一个数的相反数等于它本身,这个数是0 D 、一个数的平方根等于它本身,这个数是1 17.若a 是()24-的平方根,b 的一个平方根是2,则代数式a +b 的值为 ( ) A 、8 B 、0 C 、8或0 D 、4或-4 18.求下列各数的平方根与算术平方根 ⑴ 169 ⑵ 0.0256 ⑶ 25242 ⑷ ()22-19.16的算术平方根是 ,()22-的平方根是 ; 20.若m 、n 满足()0312=++-n m ,则=+n m ;23. 有一个正数的两个平方根分别是32-a 与a -5,你知道a 是多少?这个正数又是多少?24. 若a 的两个平方根是方程223=+y x 的一组解,⑴ 求a 的值 ⑵ 求2a 的算术平方根。

数学符号及读法大全

数学符号及读法大全

数学符号及读法大全数学,这门古老而精深的学科,以其独特的语言和符号系统,描绘出世界的规律与秩序。

在这门科学中,符号与标记如同密码,维系着数学世界的沟通与交流。

下面,我们将一起探索这些数学符号的读法及意义。

1、阿拉伯数字:这是我们日常生活中最为熟悉的数学符号。

从1到9,这些数字在数学中有着广泛的应用。

它们的读法与我们的日常用语基本一致,例如:1读作“一”,2读作“二”,以此类推。

2、十进制位值制:在数学中,我们用逗号或短横线将数字分隔开,表示其十进制位值。

例如,123表示为“一百二十三”。

3、小数:小数点左边的数字表示整数部分,右边的数字表示小数部分。

例如,1.23读作“一点二三”。

4、百分数:百分数是一种方便的表示比率的方式。

例如,50%读作“百分之五十”。

5、加号与减号:加号(+)表示增加或合并,减号(-)表示减少或排除。

例如,1+2读作“一加上二”,2-1读作“二减去一”。

6、乘号与除号:乘号(×)表示相乘,除号(÷)表示相除。

例如,2×3读作“二乘以三”,4÷2读作“二除以四”。

7等于号:等于号(=)表示两个数量相等或等价。

例如,2=2读作“二等于二”。

8、大于号与小于号:大于号(>)表示左边的数大于右边的数,小于号(<)表示左边的数小于右边的数。

例如,3>2读作“三大于二”,2<3读作“二小于三”。

9等价符号:等价符号(≌)表示两个形状、大小完全相同的图形或物体。

例如,△ABC≌△DEF读作“三角形ABC全等于三角形DEF”。

10、不等号:不等号(≠)表示两个数量不相等或不等价。

例如,2≠3读作“二不等于三”。

11、约等于号:约等于号(≈)表示两个数量近似相等。

例如,π≈3.14读作“π约等于三点一四”。

12、根号:根号(√)表示一个数的算术平方根。

例如,√4读作“根号四”。

13、对称轴:对称轴(l)表示一个图形关于某一条直线对称。

八年级上册数学实数知识总结

八年级上册数学实数知识总结

实数一、实数的概念及分类1.实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2.无理数: 无限不循环小数叫做无理数。

在理解无理数时, 要抓住“无限不循环”这一时之, 归纳起来有四类:(1)开方开不尽的数, 如等;(2)有特定意义的数, 如圆周率π, 或化简后含有π的数, 如+8等;(3)有特定结构的数, 如0.1010010001…等;(4)某些三角函数值, 如sin60o等二、实数的倒数、相反数和绝对值1.相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b, 反之亦成立。

2.绝对值在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a≥0;若|a|=-a, 则a≤0。

3.倒数如果a与b互为倒数, 则有ab=1, 反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4.数轴规定了原点、正方向和单位长度的直线叫做数轴解题时要真正掌握数形结合的思想, 理解实数与数轴的点是一一对应的, 并能灵活运用。

5.估算三、平方根、算数平方根和立方根1.算术平方根: 一般地, 如果一个正数x的平方等于a, 即x2=a, 那么这个正数x就叫做a的算术平方根。

特别地, 0的算术平方根是0。

表示方法: 记作“”, 读作根号a。

性质: 正数和零的算术平方根都只有一个, 零的算术平方根是零。

2.平方根: 一般地, 如果一个数x的平方等于a, 即x2=a, 那么这个数x就叫做a的平方根(或二次方根)。

表示方法: 正数a的平方根记做“”, 读作“正、负根号a”。

性质:一个正数有两个平方根, 它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算, 叫做开平方。

(完整版)常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法

(完整版)常见的分数、小数及百分数的互化,常用平方数、立方数及各种计算方法

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。

2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位常见分数、小数互化表常见的分数、小数及百分数的互化错位相加/减A×9型速算技巧:A×9= A×10-A;例:743×9=743×10-743=7430-743=6687A×9.9型速算技巧:A×9.9= A×10+A÷10;例:743×9。

9=743×10-743÷10=7430—74.3=7355。

7A×11型速算技巧:A×11= A×10+A;例:743×11=743×10+743=7430+743=8173A×101型速算技巧:A×101= A×100+A;例:743×101=743×100+743=75043乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;例:8739。

45×5=8739.45×10÷2=87394。

5÷2=43697。

25A÷5型速算技巧:A÷5=0。

1A×2;例:36。

843÷5=36。

843×0.1×2=3.6843×2=7.3686A×25型速算技巧:A×25=100A÷4;例:7234×25=7234×100÷4=723400÷4=180850A÷25型速算技巧:A÷25=0.01A×4;例:3714÷25=3714×0.01×4=37.14×4=148.56A×125型速算技巧:A×5=1000A÷8;例:8736×125=8736×1000÷8=8736000÷8=1092000A÷125型速算技巧:A÷1255=0。

苏教版八上数学3-4单元知识点梳理

苏教版八上数学3-4单元知识点梳理
2、勾股定理的逆定理——常用于判断三⻆形的形状: 理解: (1)确定最大边(不妨设为 c)。 (2)若 c2=a2+b2,则△ABC 是以∠ C 为直⻆的三⻆形。
(3)若 a2+b2<c2,则此三⻆形为钝⻆三⻆形(其中 c 为最大边)。 (4)若 a2+b2>c2,则此三⻆形为锐⻆三⻆形(其中 c 为最大边)。 (5)难点:运用勾股定理立方程解决问题。
第三章 勾股定理
一、基本定义 1、勾:直⻆三⻆形较短的直⻆边
2、股:直⻆三⻆形较⻓的直⻆边
3、弦:斜边
二、勾股定理 1、定理:
直⻆三⻆形两直⻆边 a,b 的平方和等于斜边 c 的平方,即 a2+b2=c2。
三、勾股定理的逆定理 1、定理:
如果三⻆形的三边⻓ a,b,c 有关系 a2+b2=c2,那么这个三⻆形是直 ⻆三⻆形。
2、四舍五入法: 取近似值的方法——四舍五入法。
十、科学记数法 1、定义: 把一个数记为科学计数法。
十一、实数和数轴 1、每 一 个 实 数 都 可 以 用 数 轴 上 的 点 来 表 示 ;反 过 来 ,数 轴 上 每 一 个 点 都 表 示一个实数。
2、实数与数轴上的点是一一对应的关系。
六、实数定义与分类 1、无理数:无限不循环小数叫做无理数。
理解:常⻅类型有三类
(1)开方开不尽的数:如
等。
(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8 等。 (3)有特定结构的数:如 0.1010010001……等;(注意省略号)。
2、实数:
有理数和无理数统称为实数。 3、实数的分类: (1)按定义来分
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里 面的。 3、实数的运算律:

湘教版八年级数学第3章《实数》知识清单

湘教版八年级数学第3章《实数》知识清单

实数知识点总结3.1平方根知识点1 平方根及其性质1、定义如果有一个数x,使得x²=a,那么我们把x叫作a的一个平方根,或者二次方根.这就是说,若x²=a,则x是a的一个平方根。

表示方法:一个非负数a的平方根记作±√a,读作“正、负根号a”,其中a叫作被开方数。

例:49的平方根是±7,表示方法:±√49 = ±7 .2.平方根的性质:(1)一个正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。

3.开平方:求一个非负数的平方根的运算,叫作开平方。

常用平方数(熟记)12=1 22=4 32=9 42=16 52=2562=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225162=256 172=289 182=324 192=361 202=400 302=900 402=1600 502=2500 602=3600 702=4900 802=6400 152=225 252=625 352=1225 452=2025 552=3025 652=4225 752=5625 852=7225 952=9025知识点2 算术平方根及其性质1.定义:正数a的正平方根叫作a的算术平方根.规定:0的算术平方根是0.表示方法:非负数a的算术平方根记作√a,读作“根号a”.特别解读:√a(1)算术平方根√a具有双重非负性:①根号内的数a是非负数,即a≥0;②算术平方根√a是非负数,即√a≥0(2)算术平方根是它本身的数只有0和1 .2.性质:(1)正数的算术平方根是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根.(4)根号内的数越大,对应的算术平方根也越大.提分必记特别提醒◆求一个正数的算术平方根与求一个正数的平方刚好是互逆的两个运算.◆任何一个数的平方都是非负数,所以求算术平方根时,根号内的数必须是非负数.3.平方根与算术平方根的区别与联系:总结:根号求根一定坑,先算根号是关键.算术平方根与平方根区别:数量和符号.知识点3无理数定义:无限不循环小数叫作无理数判断标准:小数位数无限,小数部分的数字不循环2.三种常见形式(1)开方开不尽的数,如√3, √5,…;(2)含有π的一类数,如2π,π+1,…;3.无理数与有理数的区别;(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数;2)所有的有理数都可以写成分数的形式(整数可以看成分母为1的分数),而无理数不能写成分数的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档