变形监测数据处理1-2

合集下载

测绘技术变形监测数据处理要点

测绘技术变形监测数据处理要点

测绘技术变形监测数据处理要点近年来,随着测绘技术的不断发展,变形监测在工程、地质、地震等领域中的应用日益广泛。

变形监测数据的处理是确保监测结果准确可靠的关键环节。

本文将就测绘技术变形监测数据处理的要点进行探讨。

一、数据收集与处理的关系数据收集是变形监测的第一步,其精度和准确性决定了后续处理结果的可靠性。

然而,在实际操作中,由于设备、环境等因素的限制,测量数据往往无法达到完美的状态。

因此,在数据收集阶段需要进行数据处理,补偿因素误差,提高数据质量。

数据处理是数据收集的补充和完善,两者密切相连,互相促进。

二、数据预处理数据预处理是指在对采集到的原始数据进行处理之前,对数据进行适当清洗和加工的过程。

首先,对数据进行检查和筛选,排除明显异常值和错误数据。

其次,对数据进行“去全局”操作,消除全局误差,使得数据更具可比性。

最后,进行数据插补和差值,填充缺失值和间断数据,使数据连续化。

数据预处理的目的是为后续的数据完整性评估和提取变形特征打下基础。

三、数据完整性评估数据完整性评估是对测量数据进行质量评估的过程,主要针对数据的可靠性、准确性、完整性和可用性进行评估。

对于变形监测,数据完整性评估主要包括以下几个方面:数据精度评估,通过比较参考数据和监测数据的差异,评估监测数据的精度;数据重复性评估,通过对同一点位的反复观测数据进行比较,评估监测数据的稳定性和可靠性;数据连续性评估,通过对连续监测时间段的数据进行比较和分析,评估数据的连续性和一致性。

四、数据质量控制数据质量控制是确保变形监测数据质量的重要措施。

通过对采集到的数据进行质量检查和筛选,保证最终处理结果的可靠性和可信度。

数据质量控制主要包括以下几个方面:数据去噪和平滑,通过滤波算法对数据进行平滑处理,消除高频噪声和异常波动;数据误差修正,通过模型建立和参数估计,对数据进行误差修正和校正,提高数据准确性和可靠性;数据一致性验证,通过各种数理统计方法和定量分析,对数据进行一致性检验,排除数据冲突和矛盾。

变形监测数据处理方法

变形监测数据处理方法

变形监测数据处理方法摘要:随着社会的不断进步以及经济的迅猛发展,现代工程建筑物的规模、造型和难度都有了更高的要求。

近年来,变形监测技术在自然灾害的预防和工程建筑物的倒塌与沉降等各个生产、生活领域都得到了广泛的应用与发展,变形监测也与我们的生产和生活紧密相连。

基于此,本文对变形监测的意义进行阐述,分析了变形监测处理中存在的问题,并提出了变形监测数据的处理方法,望对未来变形监测数据的发展提供一定的帮助。

关键词:变形监测;数据处理方法引言变形监测是测量工程中的重要工作内容,和很多方面的学科(比如地球物理、岩土力学、土木工程等)有着紧密的关联。

近年来,人们除了对发展新的监测方法、手段以及仪器重视外,对变形监测数据的处理方法也愈加重视。

而变形监测工作开展的目的主要是通过变形监测技术得到监测数据,并对监测数据进行处理研究,根据变形数据分析发生变形的原因,并提前做好预防工作。

1、变形监测技术的研究意义变形监测主要是利用各种设备以及先进检测技术对变形体的变形趋势进行持续监测,并不断对变形体的动态形变数据进行记录,再根据对观测数据的智能分析,对变形体的变形趋势建立直观的数学预测模型,当变形超过特定的数值时,则认为是可能发生事故灾害的前兆。

采取科学合理的手段对变形体的形变做好监测,不仅能及时准确地对变形体的稳定性和安全性做出判断,降低事故发生的可能,减少国民经济的损失、保障人身财产安全;同时,通过对监测资料的分析,能够更好地解释变形的机理,为研究灾害预报的理论与方法、制定工程设计规范等提供了重要依据。

2、变形监测数据处理中存在的问题2.1数据模型单一现有变形监测数据模型不能做到真实体现变形体的实际变形机理,且变形体还存在力学参数模糊的问题,因此,当变形体处于环境复杂、变形因素不稳定的情况时,如果使用单一的数据模型进行预报,展现效果比较差。

2.2数据准确度低在变形监测数据资料中,经常会出现数据缺失或是粗差等问题,在这种情况下对继续变形趋势进行预测,得出的结果会因数据缺失或是粗差的影响而使得数据的准确度比较低。

大坝变形监测数据分析与处理研究

大坝变形监测数据分析与处理研究

大坝变形监测数据分析与处理研究引言:大坝是一种重要的水利工程结构,它承担着调节水流、防洪、发电等多种功能,对于社会、经济和环境的稳定发展具有重要作用。

然而,由于大坝的使用时间长、工作环境复杂等原因,大坝会出现各种问题,如变形现象。

因此,对大坝的变形进行监测十分必要,而对监测数据进行分析与处理则能为大坝的安全运行提供有效保障。

一、大坝变形监测数据概述大坝的变形监测数据通常包括水平位移、竖向位移、沉降位移等方面的数据。

这些数据的采集可以通过传感器进行实时监测,也可以通过定期测量的方式获取。

在获取这些监测数据之后,需要对其进行分析与处理,以便及时发现大坝变形的异常情况,并采取相应的措施。

二、大坝变形监测数据分析方法1. 统计分析方法:统计分析方法是对大量监测数据进行整体分析的一种方法。

通过对监测数据进行统计,我们可以获得大坝变形的一些基本统计量,如平均值、标准差、极差等,从而判断大坝的稳定性。

此外,还可以通过统计分析来探索大坝变形与其他因素的相关性,如年龄、水位变化、降雨量等。

2. 趋势分析方法:趋势分析方法是利用大坝变形数据的变化趋势来判断其稳定性的一种方法。

通过对一段时间内的数据进行趋势分析,我们可以判断大坝的变形是否呈现出增长或减小的趋势,并根据趋势预测未来可能出现的问题。

常见的趋势分析方法包括线性回归分析、指数平滑法等。

3. 频谱分析方法:频谱分析方法是利用大坝变形数据的频谱信息来判断其稳定性的一种方法。

频谱分析可以将时域的变形数据转化为频域数据,从而揭示出变形数据中的主要频率成分。

通过对频谱进行分析,我们可以识别出大坝变形的周期性变化,并判断其是否处于危险状态。

三、大坝变形监测数据处理方法1. 数据清洗:数据清洗是指对采集到的监测数据进行预处理的过程。

在数据清洗中,我们需要检查数据的完整性、准确性和一致性,并对异常数据进行处理。

同时,还需要对数据进行去噪处理,以消除测量误差和干扰。

2. 数据可视化:数据可视化是将监测数据以图表、曲线等形式展示出来的过程。

变形监测数据处理

变形监测数据处理

§5.1 绝对网和相对网
1.何为绝对网和相对网(P84) 2.基准点 3.平差问题的基准(参考系) 4.监测网平差的基准与一般平差问题的
基准的区别(P86) 5.三种可选的监测网平差基准
6.模型误差(P88) 7.变形分析中,平差方法的选择
§5.3 平均间隙法
平均间隙法的基本思想(P90)
1.变形观测 2.地面监测方法有(P30) 3.地面监测方法的优点 4.测量机器人 5.测量机器人自动化变形监测的两种方
式及工程应用 6.地面摄影测量方法(P33)
7.摄影测量方法的优点 8.GPS变形监测的特点 9.GPS变形监测自动化系统 10.特殊的测量手段
§6.5 人工神经网络
1.人工神经网络的特点,五个方面 2.BP网络的拓扑结构 3.BP网络的学习过程 4.BP网络的一般学习步骤
作业 P129 6,7
第七章 变形的确定性模型和混 合模型
1.弹性力学的有关内容简介 2.有限元法的基本概念 3.大坝位移确定性模型的建立 4.混合模型的表达式 5.确定性模型和混合模型的应用实例 6.反分析理论及其应用
§2.2 假设检验原理与方法
1.假设检验的概念 2.假设检验的方法
§2.3 随机过程及其特征
1.随机过程的基本概念 2.随机过程的特征量 3.随机过程特征量的实际估计
第三章 变形监测技术
1.变形监测技术 2.变形监测方案 3.变形监测网优化设计
§3.1 变形监测技术
§5.4 GPS变形监测网的数据 处理
1.GPS变形监测网可直接测定变形体的 三维空间变形(P93)
2.GPS变形监测网的两种平差方法,静 态平差和动态平差

《变形监测与数据处理》复习资料整理总结

《变形监测与数据处理》复习资料整理总结

《变形监测与数据处理》复习资料整理总结变形监测:对被监测的对象或物体(简称变形体)进行测量以确定其空间位置及内部形态随时间的变化特征。

隧道施工过程中,使用各种类型的仪表和工具,对围岩、支护和衬砌的力学行为以及它们之间的力学关系进行量测和观察,并对其稳定性进行评价,称为监控量测变形监测的时间间隔称为观测周期变形监测又称变形测量或变形观测。

在水平方向所产生的位移叫做建筑物的水平位移,向上的垂直位移叫做上升,而向下的垂直位移叫做建筑物的沉降。

由于建筑物基础的不均匀沉降而使建筑物垂直轴线偏离其设计位置时,叫做建筑物的倾斜。

由基准点、工作基点组成的平面控制网叫做平面监测网也叫水平位移监测网由基准点、工作基点组成的高程控制网叫做高程监测网也叫垂直位移监测网为观测建筑物、构筑物的变形而建立的专用测量控制网叫变形监测网变形监测的目的与意义1分析和评价建筑物的安全状态、2验证设计参数3反馈设计施工质量 4研究正常的变形规律和预报变形的方法变形监测的特点1周期性重复观测2精度要求高3多种观测技术的综合应用4监测网着重于研究点位的变化变形监测系统设计原则针对性、完整性、先进性、可靠性、经济性变形监测方案设计内容变形监测方案有哪些内容:1监测内容2监测方法和仪器3监测精度施测部位和测点布置4监测期限和频度5预警值及报警制度等实施计划6仪器设备及检定要求7观测与数据处理方法提交成果内容。

变形监测系统设计主要内容1技术设计书2有关建筑物自然条件和工艺生产过程的概述3观测的原则方案4控制点及监测点的布置方案5测量的必要精度论证6测量的方法及仪器7成果的整理方法及其它要求或建议。

8观测进度计划表9观测人员的编制及预算资料分析的常用方法:作图分析、统计分析、对比分析、建模分析。

沉降产生的原因1与地基的土力学性质和地基的处理方式有关;2与建筑物基础的设计有关;3与建筑物的上部结构有关,即与建筑物基础的荷载有关;4施工中地下水的升降对建筑物沉降也有较大的影响。

变形观测数据处理课件

变形观测数据处理课件
4.5 小波变换用于信噪分离
➢ 变形分析中的为什么要应用小波变换? ➢ 了解小波变换的基本概念 ➢ 小波变换在变形分析中的应用体现
PPT学习交流
10
第四章 变形监测资料的预处理 复习要点
4.6 变形监测成果的整理
➢ 以“工作基点位移对变形值的影响”为例,说
明变形监测成果整理的重要性
➢ 观测资料的整编
而修正设计的理论以及所采用的经验系数。
PPT学习交流
17
2. 资料整理步骤:
资料的校核 变形观测资料的插补
填表 绘图
PPT学习交流
18
资料的校核
校核各项原始记录,检查各次变形观测值的计算有否 错误。
(1)原始观测记录应填写齐全,字迹清楚,不得涂 改、擦改和转抄;凡划改的数字和超限划去的成果,均 应注明原因,并注明重测结果的所在页数;
3、数据处理前的准备工作:
• 核对和复查外业观测成果与起算数据; • 进行各项改正计算; • 验算各项限差,在确认全部符合规定要求后,方可
进行计算。
PPT学习交流
5
第一节 概述
4、数据处理方法:
• 数据检验:粗差剔出;超限误差检验;稳定性分 析
• 平差处理:经典平差;自由网平差;秩亏网平差; 拟稳平差等
4.3 监测网观测资料的数据筛选
➢ 数据筛选的基本原理与检验步骤
➢ 超限误差局部检验中, u检验法、 检验法、
t检验法等三种检验方法的本质区别
PPT学习交流
9
第四章 变形监测资料的预处理 复习要点
4.4 监测资料的奇异值检验与插补
➢ 自动化监测系统中数据的奇异值检验方法 ➢ 监测资料插补的原因和插补方法
(1)按内在物理联系进行插补 按照物理意义,根据对已测资料的逻辑分析,找出主 要原因量之间的函数关系,再利用这种关系,将缺漏值 插补出来。 (2)按数学方法进行插补 ① 线性内插法:由某两个实测值内插此两值之间的观 测值时,可用:

变形监测数据处理

变形监测数据处理

1.2 变形监测技术及其发展
本节重点为:
➢ 变形信息获取的手段 ➢ 变形监测方案设计问题 ➢ 地表变形监测方法 ➢ GPS周期性和连续性变形监测问题 ➢ GPS动态监测 ➢ 变形监测技术的未来
GPS在工程中的应用
厦 门 的 高 层 建 筑
GPS在高层建筑动态监测中
的应用
厦 门 建 设 银 行 大 厦
2)地面摄影测量技术在变形监测中的应用起步较早,但是 由于摄影距离不能过远,绝对精度较低,使得其应用受到局 限,仅大量应用于高塔、烟囱、古建筑、船闸、边坡体等的 变形监测.后来发展起来的数字摄影测量和实时摄影测量为地 面摄影测量技术在变形监测中的深入应用开拓了非常广泛的 前景。地面三维激光扫描系统将是变形监测领域的一种重要 技术。
3)光、机、电技术的发展,研制了一些特殊和专用的监 测仪器可用于变形的自动监测,它包括应变测量、准直测量 和倾斜测量。采用光纤传感器测量系统将信号测量与信号传 输合二为一,具有强的抗雷击、抗电磁场干扰和抗恶劣环境 的能力,便于组成遥测系统,实现在线分布式监测。
1.2 变形监测技术及其发展
4)GNSS作为一种全新的现代空间定位技术,已逐渐在许 多领域取代常规光学和电子测量仪器,在变形监测领域也不 例外.
变形分析的内涵就是从错综复杂的变形现象中找出其 内在规律性。
1.3 变形分析的的内涵及其研究进展
变形分析的研究内容涉及到变形数据处理与分析、变形 物理解释和变形预报的各个方面,通常将其划为两部分:
1)变形的几何分析; 2)变形物理解释. 变形的几何分析是对变形体的形状和大小的变形作几何 描述,其任务在于描述变形体变形的空间状态和时间特性。 变形物理解释的任务是确定变形体的变形和变形原因之 间的关系,解释变形的原因。

变形监测与数据处理综述

变形监测与数据处理综述

2024/9/15
变形监测
3
❖ 世间万物皆变形。
❖ 静止是相对的, 运动是绝对的;
❖ 不变是相对的, 变化是绝对的。
❖ 绝对的“运动”和“变化”必然会导致物体 产生变形。
❖ 所有的变形都须有“度”(限度)。
❖ 只要变形的速度与程度不超过一定的“限 度”, 则这种变形是正常的、安全的, 否则就 是不正常的、危险的。
第三方实时监测(是指除施工单位和监理 单位的具有一定资质的第三方监测单位, 对施工过程中全天候的监测 )已逐步纳 入各大型重点工程, 成为其关键工序。
2024/9/15
变形监测
14
l 变形:
1 变形的定义
在自重和各种外力的共同作用下, 有形 物体随着时间的推移而发生的形体或 位置的改变称为变形。
变形是自然界普遍存在的现象, 各种荷 载作用于变形体, 使其形状、大小及 位置在时间域或空间域发生变化均为
2024/9/15
变形监测
19
2 变形监测的对象
广义而论, 变形观测的研究对象既包括工程建筑物变 形、板块运动、地壳变形、滑坡移动等自然现象, 也包 括人类活动(例如石油开采、矿山开挖、水库蓄水、地下 水过量开采、地下核爆炸等)导致的地表运动。 变形体的范畴可以大到整个地球, 小到一个工程建 (构)筑物的块体, 它包括自然和人工的建(构)筑物。 根据变形体的研究范围, 可将变形监测的研究对象划分 为三大类。
建筑物、大坝、防护堤、矿区等。它们产生变形的原 因一般有以下几点:
(1)自然条件及变化,包括建筑物地基的工
程地质、水文地质、土壤的物理性质、大气温度变化 影响。
(2)与建筑物本身相联系的原因,即建筑物 本身的荷重、建筑物结构型式及动荷载(如风力、震 动)等。

建筑物变形监测中的监测点布设与数据处理方法

建筑物变形监测中的监测点布设与数据处理方法

建筑物变形监测中的监测点布设与数据处理方法随着城市化进程的不断加快,建筑物的数量也不断增加。

在建筑物的使用过程中,由于各种原因,如地质条件、建筑材料质量、自然灾害等,建筑物变形是不可避免的。

为了确保建筑物的安全使用,对建筑物进行变形监测就显得尤为重要。

本文将从监测点布设和数据处理方法两个方面来探讨建筑物变形监测的技术要点。

一、监测点布设在建筑物变形监测中,监测点的布设是非常关键的环节。

监测点的位置应该选择在建筑物的关键部位,如主体结构、支撑系统等。

通过合理布设监测点,我们可以全面了解建筑物的变形情况,及时发现问题并采取相应措施。

在监测点的选择上,我们可以考虑以下几个因素:1. 结构特点:建筑物的结构特点是监测点布设的重要参考依据。

例如,对于高层建筑,监测点应包括主体结构的各个部位,如地基、立柱、梁、楼板等。

2. 功能区域:建筑物往往包括不同的功能区域,如住宅区、商业区、公共区等。

在监测点布设时,应该根据功能区域的不同考虑监测点的数量和位置。

3. 变形方向:建筑物的变形通常包括平面变形和垂直变形两个方向。

监测点的布设应考虑到这两个方向上的变形情况,以确保全面监测。

二、数据处理方法监测点布设好后,接下来就是对监测数据进行处理和分析。

数据处理的目标是从海量的监测数据中提取有用信息,为建筑物的管理和维护提供依据。

以下介绍几种常用的数据处理方法:1. 趋势分析:通过对监测数据的时间序列进行统计和分析,可以得出建筑物变形的趋势。

这有助于了解变形的速率和方向,判断是否存在潜在的安全隐患。

2. 峰值分析:监测数据中可能存在一些突变点或突变区域,这些突变点或突变区域可能是建筑物发生较大变形的地方。

通过对监测数据进行峰值分析,可以准确地找出这些突变点或突变区域。

3. 统计分析:监测数据中可能存在一定的误差,通过统计分析可以对监测数据进行修正和优化。

统计分析还可以帮助我们对建筑物的变形情况进行概括和总结,为进一步的管理和维护提供依据。

《变形监测数据处理》课件

《变形监测数据处理》课件

提高数据处理精度的措施与方法
多源数据融合
综合利用不同来源和类型的变形监测数据,通过数据融合提高数 据处理精度和可靠性。
误差分析与校正
对变形监测数据进行误差分析和校正,消除或减小误差对数据处理 结果的影响。
数据处理算法改进
研究和改进数据处理算法,提高算法的稳定性和精度,以满足更高 标准的变形监测需求。
新技术在变形监测数据处理中的应用
机器学习与人工智能
应用机器学习和人工智能技术,对变形监测数据进行模式 识别、预测分析和异常检测,提高数据处理效率和精度。
遥感与无人机技术
利用遥感和无人机技术,实现快速、准确和全面的变形监 测,尤其在难以接近或危险的区域具有显著优势。
深度学习与神经网络
通过深度学习和神经网络,对变形监测数据进行复杂的非 线性处理和分析,揭示数据之间的潜在联系和规律。
THANKS
感谢观看
数据处理与分析
利用适当的数学模型和算法对 预处理后的数据进行处理和分 析,提取出有用的信息。
结果评估与报告
根据处理和分析的结果,对变 形状况进行评估,并编写相应 的报告,为工程安全和维护提
供依据。
02
变形监测数据获取
变形监测点的布设
监测点布设原则
根据工程特点和变形类型选择合 适的变形监测点,确保能够全面 反映变形情况。
明确监测对象、监测点和监测周期。
选择合适的模型
根据数据特征和变形类型选择合适的数学模 型。
模型参数估计
利用已知数据估计模型参数,建立变形模型 。
变形分析方法
静态分析
对某一时间点的数据进行对比和分析,评估变形量。
动态分析
将不同时间点的数据进行连续对比,分析变形趋势和 规律。

第七章 变形监测数据处理

第七章 变形监测数据处理
Eco 参数 X 是混凝土假定弹模与实际弹模之比。 E
i 0
§3 确定性模型和混合模型 第七章 变形监测数据处理
3.1 确定性模型 (2)确定性模型各分量的计算 ②温度分量: 分析资料,确定起始时刻,以此时刻测得的各测点温度、位 移、水位等为初始值,以初始温度代入有限元计算,得位移 值。逐次把每只温度计变化10℃,求出各温度计变化10 ℃ 时位移与初始位置差值,作为温度计系数:
T (t ) bi ( x, y, z )Ti (t )
i 1
k1
Ti (Ti T0 ), T (t ) Ti T0
k1 i 1
以参数y修正:
参数 y 是实际线胀系数与假设张胀系数之比。 co
fT (t ) y bi ( x, y, z)Ti (t )
1 统计模型及处理技术
2 统计模型在资料分析中的应用
3 确定性模型和混合模型
4 安全监测模型的数据诊断 5 变形监测的动态模型 6 灰关联分析及GM模型 7 人工神经网络基本原理及应用
§1 统计模型及处理技术 第七章 变形监测数据处理
变形分析任务:对具有一定精度的观测资料,通过合理 的数学模型,寻找出建筑物变形的时空分布情况及发展 规律;掌握变形量与各种内外因素的关系,确定出建筑 物变形是正常还是异常,防止变形朝不安全方向发展。
高层建筑物顶部位移:日照作用、大气温度、风力情况、 基础的不均匀沉陷、地下水位、渗流作用 大坝顶部位移:库水位、温度、坝基、渗流 回归分析:从数理统计理论出发,在进行了大量试验和 观测后,寻找出建筑物变形量与各种作用因素间关系的 方法。所建模型叫统计模型。
§1 统计模型及处理技术 第七章 变形监测数据处理

变形监测数据处理

变形监测数据处理

变形监测数据处理1.变形的类型(了解):按变形性质可以分为周期性变形和瞬时变形;按变形状态则可分为静态变形和动态变形(1)水准基点:垂直位移监测的基准点。

一般3~4个点构成一组,形成近似正三角形或正方形,为保证其坚固与稳定,应选埋在变形区以外的岩石上或深埋于原状土上,也可以选埋在稳固的建构筑物上。

普通混凝土标;地面岩石标;浅埋钢管标;井式混凝土标;深埋钢管标;深埋双金属标(2)工作基点:用于直接测定监测点的起点或终点。

工作基点布置:应在变形区附近相对稳定的地方,其高程尽可能接近监测点的高程。

工作基点埋设:一般采用地表岩石标,当建筑物附近的覆盖层较深时,可采用浅埋标志,当新建建筑物附近有基础稳定的建筑物时,也可设置在该建筑物上。

工作基点观测:应经常与水准基点进行联测,通过联测结果判断其稳定状况,保证监测成果的正确可靠。

(3)监测点:垂直位移监测点的简称,布设在被监测建(构)筑物上。

5.监测点布设要求:位于建(构)筑物的特征点上,能充分反映建(构)筑物的沉降变形情况,点位应当避开障碍物,便于观测和长期保护,标志应稳固,不影响建构筑物的美观和使用,还要考虑建筑物基础地质、建筑结构、应力分布等,对重要和薄弱部位应该适当增加监测点的数目。

盒式标志;窨井式标志;螺栓式标志6.监测点分类:基准点:基本控制点,尽可能长期保存、稳定不动,一般每个工程要3个以上;7.监测点设置一般原则:要能够反映变形监测对象整体及关键部位的位移;便于现场观测;便于保存,并不易受损;不同监测对象类型的相应规范要求。

变形监测方案的设计的原则:以安全监测为目的,针对监测对象安全稳定的主要指标进行;测点的布置应能够比较全面地反映出监测对象的工作状态;按照国家现行的有关规定与规范进行;应尽量采用先进的测试技术,积极选用效率高、可靠性强的先进仪器和设备;各监测项目应能够相互校验,以利于进行变形分析;在满足监测性能和精度要求前提下,力求减少费用;方案中临时监测项目和永久监测项目应相互衔接;应尽量减少与工程施工的交叉影响。

高精度测量变形监测方案与数据处理

高精度测量变形监测方案与数据处理

高精度测量变形监测方案与数据处理1. 引言变形监测是一项重要的工程技术,用于探测结构物的变形情况,为结构的安全运行提供依据。

随着测量技术的不断发展,高精度测量变形监测方案和数据处理成为了研究的重点。

本文将从测量方案和数据处理两个方面进行论述,探讨高精度测量变形监测的方法和技术。

2. 测量方案高精度测量变形监测方案需要选用合适的仪器设备和测量方法。

在选择仪器设备时,需要考虑其测量精度、稳定性和适应性。

常用的测量仪器包括全站仪、激光测距仪和倾斜仪等。

选用合适的测量方法,如静态测量、动态测量和非接触测量等,根据实际需求确定监测方案。

同时,应充分考虑环境因素对测量结果的影响,例如温度、湿度和振动等。

3. 测量误差分析测量误差是测量过程中不可避免的问题,对于高精度测量变形监测尤为重要。

其中,系统误差和随机误差是主要的误差来源。

系统误差是由仪器设备和测量方法本身的固有误差引起的,如仪器校准不准确等;而随机误差则是由于环境因素和操作人员的不确定性引起的。

对误差来源进行分析和解决,可以提高测量的可靠性和精度。

4. 数据采集与存储高精度测量变形监测需要准确采集和存储测量数据。

数据采集可以通过现场观测和远程监测两种方式进行。

现场观测一般采用实时数据采集系统,通过连接测量设备和计算机,及时获取变形数据。

远程监测则是通过无线传感器网络等技术,将测量数据传输到中心服务器进行实时分析和存储。

同时,应建立完善的数据存储系统,包括数据库和云存储等,以确保数据的安全性和可靠性。

5. 数据处理与分析高精度测量变形监测的数据处理是保证监测结果准确可靠的关键。

数据处理包括数据预处理、误差校正和数据分析等步骤。

数据预处理主要包括数据滤波和数据修正等,用于去除异常值和减小测量误差。

误差校正则通过建立误差模型和修正算法,对测量误差进行补偿。

数据分析则是对采集的数据进行统计和分析,以获得结构物变形的特征和趋势。

6. 结果展示与报告高精度测量变形监测的结果展示与报告是将测量数据转化为工程决策的重要环节。

变形监测数据处理-

变形监测数据处理-

示,称为该点的位移分量,表示为坐标的函
数:
u(x, y, z)




v(x,
y,
z)

w(x, y, z)
§7.1 弹性力学的有关知识
3. 应变 弹性体受力后,任一点p将产生形变,也
即存在微小线段 PA x,PB y,Pc z 的长 度以及它们之间直角的改变。
,

yz

v z

w y
,
zx
w u x z
§7.1 弹性力学的有关知识
几何方程的矩阵形式:


x

x (x, y, z)


y
(
x,
y,
z)

xzy((xx,,
y, z) y, z)


0
0
yz

yz
G
,
zx

zx
G
§7.1 弹性力学的有关知识
物理方程的第二形式: D
D为刚度矩阵,,即

1
x

y

xzy



y
z

zx

E(1 ) (1 )(1 2)


1
弹性力学的有关知识 有限单元法的概念 大坝变形的确定性模型 混合模型的表达式 确定性模型和混合模型的应用实例 反分析理论及其应用
§7.1 弹性力学的有关知识
1. 应力 弹性体受力以后,其内部将发生应力。
弹性体内某一点p的应力状态可用:
正应力 x 、 y 、 z

变形监测中数据处理方法综述

变形监测中数据处理方法综述

变形监测中数据处理方法综述作者:候晓康来源:《中国科技博览》2018年第02期[摘要]随着我国城市建设的发展以及社会经济的繁荣,我国的工程建设单位加强了对于大、中型工程的建设。

在此背景之下,为了进一步促进项目建设的安全性及稳定性,工程建设单位加强了变形监测作业的开展。

为了进一步促进相关效益的提高,技术人员需加强对于数据的优化处理。

故在本文中我们主要对变形监测中数据处理方法进行了简单的分析与探讨。

[关键词]变形监测;数据处理;方法中图分类号:S135 文献标识码:A 文章编号:1009-914X(2018)02-0237-011 变形监测技术内容概述及监测方法分析1.1 变形监测技术内容概述变形监测技术的本质便是测量,主要是利用监测技术对被监测的工程对象所存在的位置空间进行准确定位,还可以利用变形监测技术对工程内部结构形态随时间推移发生的变化规律进行研究,从而使得在工程工程施工过程中,可以根据监测数据进行合理安排,为施工质量提供保障。

因此,在工程监测中利用变形监测技术可以确保工程项目的整体质量。

变形监测技术能对工程工程项目的安全性进行客观的分析与评价,将其参数、设计进行合理设置,同时还可以根据施工质量,对工程的变形特点做出分析,通过预估的方式对桥梁变形进行预报。

工程变形监测的主要方法便是利用工程测量的相关知识以及先进的测量手段,借助精密的测量仪器、设备,在工程水平、垂直的两个方向,对其变形的程度进行定期、不定期的监测,从而对工程的整体性能进行判断。

1.2 变形监测技术方法分析这种监测方法已经被应用多年时间,技术发展得较为成熟,且测量准确度较高、成本较低。

但极易受到天气等各方面因素的影响,利用人工进行操作,使得劳动强度较大。

第二,摄影监测法。

这种监测方法主要是基于地面摄影的测量办法,可以将其利用在距离较小、范围较小、高度较低的范围内进行监测,如对大型工程利用这种监测方法,则会出现分辨率较低的情况,从而使得监测范围受到严重限制。

变形监测及数据处理方案

变形监测及数据处理方案

目录摘要 (I)Abtract.............................................................................................................................................. I I1 工程概况 (1)2 监测目的 (2)3 编制依据 (3)4 控制点和监测点的布设 (4)4.1 变形监测基准网的建立 (4)4.2 监测点的建立 (4)4.3 监测级别及频率 (5)5 监测方法及精度论证 (6)5.1水平位移观测方法 (6)5.2沉降观测方法 (8)5.3基坑周围建筑物的倾斜观测 (9)6 成果提交 (10)7 人员安排及施工现场注意事项 (11)8 报警制度 (13)9 参考文献 (13)附录1 基准点布设示意图 (15)附录2 水准观测线路设示意图 (16)附录3 水平位移和沉降观测监测报表 (17)附录4 巡视监测报表样表 (18)附录5 二等水准测量观测记录手薄 (19)附录6 水平位移记录表 (20)1 工程概况黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。

由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。

按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。

”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。

为此,编制以下检测方案。

2 监测目的在基坑施工期间,由于坑内土体开挖,会引起基坑底面的回弹;在外侧土压力的作用下,会引起围护结构内力发生变化,同时产生变形;如果围护结构强度和刚度不足,将导致支护桩倾斜,甚至坍塌等严重事故;同时由于基坑降水,水位的下降会引起坑外土体的固结,使地面发生沉降,特别是如果支护防渗系统存在缺陷,将会发生渗漏,流沙等现象,结果导致地坪开裂以及周围建筑物产生不均匀沉降。

工程测量学第9讲 工程的变形监测和数据处理

工程测量学第9讲 工程的变形监测和数据处理
4.变形监测的特点: 变形监测的最大特点是要进行周期观测,所谓周期一周期 的观测方案如监测网的图形、使用的仪器、作业方法乃至观 测人员都要一致。
二、变形体的几何模型和监测点布设
1.变形监测实施:变形监测是通过对变形体进行空间上的离 散化和数据获取在时间上的离散化实施的。 (1)前者是用一定数量的有代表性的位于变形体上的目标 点(或称为观测点)来代表变形体的几何模型,变形监测就是 确定目标点之间的相对运动以及相对于变形体周围的绝对运 动(参见图6-3)。
(5)水准基准点有时还设在平峒内,或采用深埋双金属标 等。 (6)目标点的布设应具有一定的密度,具有代表性。 (7)不仅仅布设在变形体的表面,而且还布设在内部的不 同部位,呈立体式分布。应与变形体固连在一起,能反映所 代表部位的变形,且稳定;能长期保存,与变形体共存亡; 便于观测,对外界的其他干扰影响不敏感。 (8)在变形观测时,不可能对建筑物的每一点都进行观
(2)科学上的作用:积累监测分析资料,能更好地 解释变形的机理,验证变形假说,为研究灾害预报的 理论和方法服务检验工程设计的理论是否正确,设计 是否合理,为以后修改设计、制定设计规范提供依。
3.变形监测的内容: 变形监测主要包括水平位移、垂直位移监测,偏距、倾斜、
挠度、弯曲、扭转、振动、裂缝等的测量,主要是对描述变 形体自身形变和刚体位移的几何量的监测。 (1)水平位移:监测点在平面上的变动,它可以分解到某一 特定方向; (2)垂直位移是监测点在铅直面或大地水准面法线方向上的 变动。
若只对目标点的相对变形感兴趣,则可以不设参考点,这时 存在秩亏问题,坐标系的定义也需另定。
3.监测点的布设: (1)对于所有的变形监测都有共性,但具体的要求又不尽 相同,一般要与相邻学科(如地球物理、岩土力学、建筑工程、 机械制造等)人员共同研究决定。 (2)参考点的布设主要应考虑稳定,不受干扰,埋标要求 高,且要考虑测量技术。 (3)在参考点周围一般还要设保护点。当参考点受破坏时 可用保护点来恢复,平时可用于参考点的检核。参考点一般 要钻孔深埋,要求与基岩固结在一起。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 变形监测技术及其发展
本节重点为:
➢ 变形信息获取的手段 ➢ 变形监测方案设计问题 ➢ 地表变形监测方法 ➢ GPS周期性和连续性变形监测问题 ➢ GPS动态监测 ➢ 变形监测技术的未来
1.2 变形监测技术及其发展
变形信息获取方法的选择取决于变形体的特征、变 形监测的目的、变形大小和变形速度等因素。 ➢ 在全球性变形监测方面,空间大地测量是最基本最 适用的技术,它主要包括全球定位系统(GPS)、甚长 基线射电干涉测量(VLBI)、卫星激光测距(SLR)、 激光测月技术(LLR)以及卫星重力探测技术(卫星测 高、卫星跟踪卫星和卫星重力梯度测量)等技术手段;
例如,在美国加州南部的一个新水库(Diamond Valley Lake已安装了由8个永久性 RTS 和218个棱镜组成的地面自动 监测系统。但是,TPS(Terrestrial Positional System)的最大 缺陷是受测程限制,测站点一般都处在变形区域范围之内。
1.2 变形监测技术及其发展
GPS用于变形监测的作业方式可划分为周期性和连续性两种 模式(episodic and continuous mode)。
1)周期性变形监测与传统的变形监测网没有多大区别,因为 有的变形体的变形极为缓慢,在局部时间域内可以认为是稳定的 ,其监测频率可以是几个月,有的长达几年,此时,采用GPS静 态相对定位法进行测量,数据处理与分析一般都是事后的。经过 十多年的努力,GPS静态相对定位数据处理技术基本成熟,在周 期性监测方面,其最大屏障还是变形基准的选择与确定,已成为 近几年研究的关键 。
1.2 变形监测技术及其发展
本节重点为:
➢ 变形信息获取的手段 ➢ 变形监测方案设计问题 ➢ 地表变形监测方法 ➢ GPS周期性和连续性变形监测问题 ➢ GPS动态监测 ➢ 变形监测技术的未来
1.2 变形监测技术及其发展
数十年变形监测技术的发展,传统的地表变形监测方法主 要采用的是大地测量法。
1)常规地面测量方法的完善与发展,其显著进步是全站 型仪器的广泛使用,尤其是全自动跟踪全站仪(RTS, Robotic Total Stations),也称测量机器人(Georobot),为局部工程 变形的自动监测或室内监测提供了一种很好的技术手段,它可 进行一定范围内无人值守、全天侯、全方位的自动监测。
1.2 变形监测技术及其发展
本节重点为:
➢ 变形信息获取的手段 ➢ 变形监测方案设计问题 ➢ 地表变形监测方法 ➢ GPS周期性和连续性变形监测问题 ➢ GPS动态监测 ➢ 变形监测技术的未来
1.2 变形监测技术及其发展
合理设计变形监测方案是变形监测的首要工作,对于监测网 设计而言,其主要内容包括:确定监测网的质量标准;选择观测 方法;点位的最佳布设和观测方案的最优选择。在过去三十年里 ,变形监测方案设计和监测网优化设计的研究较为深入和全面, 取得了丰富的理论研究成果和实用效益,这一点可从众多文献中 得到体现。目前,在变形监测方案与监测系统设计方面,其主要 发展是监测方案的综合设计和监测系统的数据管理与综合处理。 例如,在大坝的变形监测中,要综合考虑外部观测和内部观测设 计,大地测量与特殊测量的观测量(geodetic and geotechnical observations)要进行综合处理与分析。
3)光、机、电技术的发展,研制了一些特殊和专用的监 测仪器可用于变形的自动监测,它包括应变测量、准直测量 和倾斜测量。采用光纤传感器测量系统将信号测量与信号传 输合二为一,具有强的抗雷击、抗电磁场干扰和抗恶劣环境 的能力,便于组成遥测系统,实现在线分布式监测。
1.2 变形监测技术及其发展
4)GNSS作为一种全新的现代空间定位技术,已逐渐在许 多领域取代常规光学和电子测量仪器,在变形监测领域也不 例外。
1.2 变形监测技术及其发展
➢ 在区域性变形监测方面,GPS已成为主要的技术手段 。近十年发展起来的空间对地观测遥感新技术——合成 孔径雷达干涉测量(InSAR,Interferometric Synthetic Aperture Radar),在监测地震变形、火山地表移动、 冰川漂移、地面沉降、山体滑坡等方面,其试验成果的 精度已可达厘米或毫米级,表现出很强的技术优势。但 精密水准测量依然是高精度高程信息获取的方法。 ➢ 在工程和局部性变形监测方面,地面常规测量技术 、地面摄影测量技术、特殊和专用的测量手段、以及以 GPS为主的空间定位技术等均得到了较好的应用。
2)地面摄影测量技术在变形监测中的应用起步较早,但 是由于摄影距离不能过远,绝对精度较低,使得其应用受到 局限,仅大量应用于高塔、烟囱、古建筑、船闸、边坡体等 的变形监测。后来发展起来的数字摄影测量和实时摄影测量 为地面摄影测量技术在变形监测中的深入应用开拓了非常广 泛的前景。地面三维激光扫描系统将是变形监测领域的一种 重要技术。
GPS在工程中的应用
清江隔河岩大坝GPS自动监测系统
清 江 隔 河 岩 大 坝
清江隔河岩大坝GPS自动监测系统
5.1.4 实际应用
自从上世纪80年代以来,尤其是进入90年代后,GPS卫星 定位和导航技术与现代通信技术相结合,在空间定位技术方 面引起了革命性的变化。用GPS同时测定三维坐标的方法将测 绘定位技术从陆地和近海扩展到整个海洋和外层空间,从静 态扩展到动态,从单点定位扩展到局部与广域差分,从事后 处理扩展到实时(准实时)定位与导航,绝对和相对精度扩 展到米级、厘米级乃至亚毫米级,从而大大拓宽了它的应用 范围和在各行各业中的作用。
1.2 变形监测技术及其发展
本节重点为:
➢ 变形信息获取的手段 ➢ 变形续性变形监测问题 ➢ GPS动态监测 ➢ 变形监测技术的未来
1.2 变形监测技术及其发展
数据通讯技术、计算机技术和以GPS为代表的空间定位技术的 日益发展和完善,使得GPS法由原来的周期性观测走向高精度、 实时、连续、自动监测成为可能。
相关文档
最新文档