人教版中考数学模拟试卷(一)

合集下载

中考数学模拟考试卷(1)新人教

中考数学模拟考试卷(1)新人教

26.点 P ( 1,3) 关于原点对称的点的坐标是……………………………(

( A) ( 1, 3) ; ( B) (1, 3) ; ( C) (1,3) ; (D) (3, 1) .
27.下列命题中,正确的是
……………………………………………(

(A)有两边和其中一边的对角对应相等的两个三角形全等;
35.如图 2,已知△ ABC中, BC=10, cosC= 1 , AC=8。求∠ B的正切值。 8
A
图2
36. 为了了解某地区初三女生的身高情况,以 B200 名女生的身高(单位C: cm)作为样本, 将她们的身高整理、分组,列成下表: ( 每组数据含最小值 , 不含最大值 )
分组( cm) 150-155

( C) y 2 8y 20 0 ;
(D) 20 y 2 8 y 1 0 .
23. 在下列图形中,既是中心对称图形又是轴对称图形的是…………(
( A )等腰三角形 ; (B)梯形; (C)圆; (D)平行四边形.
24. .下列命题中正确的是…………………………………………………(
( A)圆内两条互相垂直且相等的弦一定互相平分;
B
14.将一次函数 y mx 3 的图象沿 y 轴的正方向平移 3 个单图象互相重合,那么 m

k2
16 .反比例函数 y
,当 x 0 时, y 随着 x 的增大而增大,则
x
k 的取值范围是
_

17 一台电视机原售价为 a 元,因库存积压,所以连续两次降价 10%出售,那么现每台售价为

( C) a10
a2
a5
( D(a5 )2
a7 .

最新人教版中考模拟检测《数学试题》含答案解析

最新人教版中考模拟检测《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________第I卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣1、2、13、3这四个数中,无理数是()A. ﹣1B. 2C. 13D. 32.下列运算结果为a3的是()A. a+a+aB. a5﹣a2C. a•a•aD. a6÷a23.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D. 4.人体中红细胞的直径约为0.0000077m,将数字0.0000077用料学记数法表示为()A. 57.710-⨯ B. 50.7710-⨯ C. 67.710-⨯ D. 77710-⨯5.下列事件中,是必然事件的是()A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子,所得点数小于7 C. 抛掷一枚一元硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是()A. 圆子(2,3),方子(1,.3)B. 圆子(1,3),方子(2,3)C. 圆子(2,3),方子(4,0)D. 圆子(4,0),方子(2,3)7.关于x 的一元二次方程210x mx --=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定8.一次函数y =﹣2x+1的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )A. ﹣3B. ﹣23C. ﹣33D. ﹣4310.如图,点E 为ABC ∆的内心,过点E 作MN BC 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A. 3.5B. 4C. 5D. 5.5第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.11.计算:(12)﹣1+(3﹣1)0=_____.12.若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为_____.13.在五边形ABCDE中,若440A B C D∠+∠+∠+∠=︒,则E∠=______︒.14.若x ay b=⎧⎨=⎩是方程组2155x yx y-=⎧⎨-+=⎩的解,则a+4b=_____.15.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O的半径为3,则图中阴影部分的面积为_____.16.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上,则点B的坐标为_____.三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.解不等式组42233xx x+≥⎧⎨-+⎩>,并将解集在数轴上表示出来.18.先化简,再求值:(a+12a-)÷221aa a-+,其中a=﹣2.19.如图,在ABC∆中,AB AC=,CD AB⊥于点D,BE AC⊥于点E.求证:BD CE=.20.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?21.如图,在ABCD中,AC与BD相交于点O,AC BC⊥,垂足为C.将ABC∆沿AC翻折得到AEC∆,连接DE.(1)求证:四边形ACED 是矩形;(2)若4AC =,3BC =,求sin ABD ∠的值.22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式 A BC D 利润(元/台) 160200 240 320表2:甲、乙两店电脑销售情况电脑款式 AB C D 甲店销售数量(台) 2015 10 5 乙店销售数量(台)8 8 10 14 18试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.23.在平面直角坐标系中,反比例函数y =k x (x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). (1)求n 值;(2)如图,直线l 为正比例函数y =x 的图象,点A 在反比例函数y =k x(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1﹣S 2的值.24.如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合)对角线AC与BD相交于点O,连接AE,交BD于点G.(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆心F(不写作法和证明,保留作图痕迹);(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;②记t=GF2+AG•GE,当AB=6,BD=63时,求t的取值范围.25.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT时,求y的最大值与最小值(用含a的式子表示).答案与解析第I 卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣1、2、13 )A. ﹣1B. 2C. 13D. 【答案】D【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.13,2,﹣1是有理数, 故选D .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列运算结果为a 3的是( )A. a+a+aB. a 5﹣a 2C. a •a •aD. a 6÷a 2【答案】C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】解:A 、a+a+a =3a ,故本选项错误;B 、a 5﹣a 2不能计算,故本选项错误;C 、a •a •a =a 3,故本选项正确;D 、a 6÷a 2=a 6﹣2=a 4,故本选项错误.故选C .【点睛】本题考查了同底数幂的乘法,合并同类项法则,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选C .【点睛】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.4.人体中红细胞的直径约为0.0000077m ,将数字0.0000077用料学记数法表示为( )A. 57.710-⨯B. 50.7710-⨯C. 67.710-⨯D. 77710-⨯【答案】C【解析】【分析】根据科学计数法的表示即可求解.【详解】0.0000077=67.710-⨯故选C.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知负指数幂的性质.5.下列事件中,是必然事件的是( )A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子,所得点数小于7C. 抛掷一枚一元硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】【分析】根据事件发生的可能性大小即可判断.【详解】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是()A. 圆子(2,3),方子(1,.3)B. 圆子(1,3),方子(2,3)C. 圆子(2,3),方子(4,0)D. 圆子(4,0),方子(2,3)【答案】A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:如图所示:9枚棋子组成的图案既是轴对称图形又是中心对称图形,∴这两枚棋子的坐标分别是圆子(2,3),方子(1,.3),故选A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.关于x的一元二次方程210--=的根的情况是()x mxA. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定【答案】A【解析】【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.8.一次函数y=﹣2x+1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.9.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A. ﹣3B. ﹣23C. ﹣33D. ﹣43【答案】B【解析】【分析】 根据已知求出B (﹣2,24b b a a-),由△AOB 为等边三角形,得到2b 4a =tan60°×(﹣2b a ),即可求解; 【详解】解:抛物线y =ax 2+bx+c (a >0)过原点O ,∴c =0,B (﹣2,24b b a a-), ∵△AOB 为等边三角形,∴2b 4a=tan60°×(﹣2b a ), ∴b =﹣23;故选B .【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.10.如图,点E 为ABC ∆的内心,过点E 作MN BC 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A. 3.5B. 4C. 5D. 5.5【答案】B【解析】【分析】连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN的方程,然后解方程即可.【详解】连接EB、EC,如图,∵点E为△ABC的内心,∴EB平分∠ABC,EC平分∠ACB,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴MN AMBC AB=,即767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,①+②得MN=12-2MN,∴MN=4.故选:B.【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.11.计算:(12)﹣1+﹣1)0=_____. 【答案】3【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【详解】解:原式=2+1=3.故答案为3.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.12.若一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为_____.【答案】5【解析】【分析】根据众数和中位数的概念求解.【详解】解:∵数据1、3、x 、5、8的众数为8,∴x =8,则数据重新排列为1、3、5、8、8,所以中位数为5,故答案为5.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.【答案】100【解析】【分析】根据五边形内角和即可求解.【详解】∵五边形的内角和为(5-2)×180°=540°,∴∠E=540°-(A B C D ∠+∠+∠+∠)=540°-440°=100°,故填100.【点睛】此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.14.若x ay b=⎧⎨=⎩是方程组2155x yx y-=⎧⎨-+=⎩的解,则a+4b=_____.【答案】6【解析】【分析】方程组两方程相加求出x+4y的值,将x与y的值代入即可求出值.【详解】解:2155x yx y-=⎧⎨-+=⎩①②,①+②得:x+4y=6,把x ay b=⎧⎨=⎩代入方程得:a+4b=6,故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.15.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O的半径为3,则图中阴影部分的面积为_____.33π-【解析】【分析】阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.【详解】解:如图,连接OA,AB.∵PA切⊙O于点A,∴∠OAP=90°,∵点B是线段PO的中点,∴AB是直角三角形OAP斜边上的中线,∴AB=OB,∵OB=OA,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵OA=3,OP=23,∴AP=22(23)(3)-=3,∴△OAP的面积=332,扇形AOB的面积=260(3)360π⨯⨯=2π,图中阴影部分的面积为33332ππ--=.故答案为33π-.【点睛】本题考查了切线的性质定理以及30°的直角三角形的性质,三角形面积和扇形面积的计算等知识.关键是熟练运用扇形的面积计算公式,能够明确阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.16.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上,则点B的坐标为_____.【答案】(0,1)或(0,3)【解析】【分析】设B(0,n),根据旋转的性质可以得到CD=OB=n,BD=OA=4,得到点C的坐标是(﹣n,n﹣4),即可得到﹣n(n﹣4)=3,从而求得点B的坐标.【详解】解:设B(0,n),∵点A的坐标为(4,0),将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=3x的图象上, 易证△AOB ≌△BDC ,设B (0,n ),∴CD =OB =n ,BD =OA =4,∴点C 的坐标是(﹣n ,n ﹣4),∵C 恰好落在反比例函数y =3x的图象上, ∴﹣n (n ﹣4)=3,解得n =1,3,∴点B 的坐标是(0,1)或(0,3),故答案为(0,1)或(0,3). 【点睛】本题考查反比例函数的性质、坐标与图形的变化﹣旋转,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 17.解不等式组42233x x x+≥⎧⎨-+⎩>,并将解集在数轴上表示出来.【答案】﹣2≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+4≥2,得:x ≥﹣2,解不等式2x >﹣3+3x ,得:x <3,则不等式组解集为﹣2≤x <3,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.先化简,再求值:(a+12a -)÷221a a a -+,其中a =﹣2. 【答案】-32【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【详解】解:22112a a a a a -⎛⎫+÷ ⎪-+⎝⎭ (2)1(1)2(1)(1)a a a a a a a -++=⋅-+- 22121a a a a a -+=⋅-- 2(1)21a a a a -=⋅-- (1)2a a a -=-当a =﹣2时,原式=2(21)3-222-⨯--=-- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.如图,在ABC ∆中,AB AC =,CD AB ⊥于点D ,BE AC ⊥于点E .求证:BD CE =.【答案】详见解析【解析】【分析】根据已知条件证明BCD CBE ∆≅∆,即可求解.【详解】证明:∵CD AB ⊥,BE AC ⊥,∴90BDC CEB ∠=∠=︒.∵AB AC =,∴A ABC CB =∠∠在BCD ∆与CBE ∆中,BDC CEB ∠=∠,DBC ECB ∠=∠,BC CB =,∴BCD CBE ∆≅∆.∴BD CE =.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.20.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?【答案】12【解析】【分析】设矩形的长为x 步,则宽为(60﹣x )步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x+864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.21.如图,在ABCD 中,AC 与BD 相交于点O ,AC BC ⊥,垂足为C .将ABC ∆沿AC 翻折得到AEC ∆,连接DE .(1)求证:四边形ACED 是矩形;(2)若4AC =,3BC =,求sin ABD∠的值. 【答案】(1)详见解析;(2)13sin 65ABD ∠=【解析】【分析】 (1)根据折叠性质及平行四边形的性质即可证明;(2)过点A 作AF BD ⊥于点F ,根据矩形与折叠的性质得到BE 的长,再根据在Rt BED ∆中,由勾股定理得到BD 的长,在Rt ABC ∆中,同理可得AB 的长,再由三角形的面积得到AF 的长,再利用在Rt AFB ∆中的三角函数即可求解.【详解】(1)由折叠性质得:BC CE =.在ABCD 中,BC AD =,BC AD ∥,∴CE AD =,又AD CE ,∴四边形ACED 是平行四边形.∵AC BC ⊥,∴90ACE ∠=︒.∴ACED 是矩形. (2)在矩形ACED 中,4AC DE ==,90DEC ADE ∠=∠=︒.∵90ACE ∠=︒,由折叠性质可知:B 、C 、E 三点共线,∴336BE BC CE =+=+=.在Rt BED ∆中,由勾股定理得:226452213BD +=.在Rt ABC ∆中,同理可得:5AB =. 如图1,过点A 作AF BD ⊥于点F ,∴1122ABD S BD AF AD DE ∆=⋅=⋅,∴112133422AF ⨯⋅=⨯⨯,61313AF =. 在Rt AFB ∆中,61361313sin 5AF ABD AB ∠===.【点睛】此题主要考查三角函数的应用,解题的关键是熟知矩形的性质及三角函数的定义及应用. 22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润 电脑款式 A BC D 利润(元/台) 160200 240 320表2:甲、乙两店电脑销售情况 电脑款式 A BC D 甲店销售数量(台) 20 1510 5 乙店销售数量(台)8 8 10 14 18试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.【答案】(1)310 (2)应对甲店作出暂停营业的决定 【解析】【分析】 (1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元), ∵248>204,∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.23.在平面直角坐标系中,反比例函数y =k x (x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). (1)求n 的值;(2)如图,直线l 为正比例函数y =x 的图象,点A 在反比例函数y =k x(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1﹣S 2的值.【答案】(1)2(2)6【解析】【分析】(1)利用反比例函数图象上点的坐标特征得到n •3n =(n+1)•2n ,然后解方程可得n 的值;(2)设B (m ,m ),利用△OBC 为等腰直角三角形得到∠OBC =45°,再证明△ABD 为等腰直角三角形,则可设BD =AD =t ,所以A (m+t ,m ﹣t ),把A (m+t ,m ﹣t )代入y =12x 中得到m 2﹣t 2=12,然后利用整体代入的方法计算S 1﹣S 2.【详解】解:(1)∵反比例函数y =k x(x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). ∴n •3n =(n+1)•2n ,解得n =2或n =0(舍去),∴n 的值为2;(2)反比例函数解析式为y =12x , 设B (m ,m ),∵OC =BC =m ,∴△OBC 为等腰直角三角形,∴∠OBC =45°,∵AB ⊥OB ,∴∠ABO =90°,∴∠ABC =45°,∴△ABD 为等腰直角三角形,设BD =AD =t ,则A (m+t ,m ﹣t ),∵A (m+t ,m ﹣t )在反比例函数解析式为y =12x 上, ∴(m+t )(m ﹣t )=12,∴m 2﹣t 2=12,∴S 1﹣S 2=2211112222m t -=⨯=6. 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x (k ≠0)图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质. 24.如图,在菱形ABCD 中,点E 是BC 边上一动点(不与点C 重合)对角线AC 与BD 相交于点O ,连接AE ,交BD 于点G .(1)根据给出的△AEC ,作出它的外接圆⊙F ,并标出圆心F (不写作法和证明,保留作图痕迹); (2)在(1)的条件下,连接EF .①求证:∠AEF =∠DBC ;②记t=GF2+AG•GE,当AB=6,BD=63时,求t的取值范围.【答案】(1)见解析(2)①证明见解析②9≤t≤12【解析】【分析】(1)作EC的垂直平分线,其与BD的交点即为外心F;(2)连接AF,EF,利用菱形的性质及外心的定义可证明∠DBC=90°﹣∠ACB及∠AEF=90°﹣∠ACB,可推出结论;(3)先证△ABG∽△FEG,再证△EFB∽△GFE,由相似三角形的性质可推出t=GF2+AG•GE=GF2+GF•BG =GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,当点F与点O重合时,AF最大,求出此时t的最大值为12,即可写出t的取值范围.【详解】解:(1)如图1,⊙F为所求作的圆;(2)①证明:如图2,连接AF,EF,∵四边形ABCD为菱形,∴AC⊥BD,∴∠DBC=90°﹣∠ACB,∵FA=FE,∴∠AEF=∠FAE,∴∠AEF=12(180°﹣∠AFE)=90°﹣12∠AFE,又∠ACB=12∠AFE,∴∠AEF=90°﹣∠ACB,又∵∠DBC=90°﹣∠ACB,∴∠AEF=∠DBC;②解:∵四边形ABCD为菱形,∴∠ABD=∠CBD,AO=CO,BO=DO=12BD=12×6333=,在Rt△ABO中,AO=22226(33)3AB BO-=-=,又∵∠AGB=∠FGE,∠ABG=∠FEG,∴△ABG∽△FEG,AG BGGF GE∴=,∴AG•GE=GF•BG,∵∠GEF=∠FBE,∠GFE=∠EFB,∴△EFB∽△GFE,∴EF BF GF EF=,∴GF•BF=EF2,∴t=GF2+AG•GE=GF2+GF•BG=GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,如图3,当点F与点O重合时,AF最大,由题意可知:AF=BF,设AF=x,则OF=33﹣x,∵AO2+OF2=AF2,∴32+(33﹣x)2=x2,解得,x=23,∴当x=23时,t的最大值为12,∴9≤t≤12.【点睛】本题考查了尺规作图,外接圆的定义,菱形的性质,相似三角形的判定与性质等,灵活运用相似三角形的性质是解题的关键.25.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(03(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩,即413a<,根据抛物线的增减性求得y的极值.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,解得b=﹣2,则该二次函数的解析式为:y=x2﹣2x﹣3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.∴抛物线的对称轴是直线x =1.又∵点D 的纵坐标为∴D (1,.由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),∴A (﹣1,0),B (3,0).在Rt △AED 中,tan ∠DAE =2DE AE == ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值;②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上, ∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD .∵A (﹣1,0),D (1,,∴点M 的坐标是(0.(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT . 又HT =a ,∴H (a ﹣1,0),T (2a ﹣1,0).∵OH ≤x ≤OT ,又动点T 在射线EB 上运动,∴0≤a ﹣1≤x ≤2a ﹣1.∴0≤a ﹣1≤2a ﹣1.∴a ≥1,∴2a ﹣1≥1.(i )当2111(1)211a a a -⎧⎨----⎩,即14a 3时,当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.(ii)当0112111(1)211 aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.。

人教版九年级中考第一次模拟考试数学试卷

人教版九年级中考第一次模拟考试数学试卷

九年级数学中考第一次模拟考试满分:150分 考试时间:120分钟第I 卷(选择题)一、单选题(每小题5分,共45分) 1.﹣25的倒数是( )A .﹣52B .52C .﹣25D .252.人体的每只眼睛约含120 000 000个视杆细胞.将120 000 000这个数用科学记数法表示为( ) A .81.210⨯B .81210⨯C .91.210⨯D .90.1210⨯3.下列计算正确的是( ) A .3332a a ⋅=36a B .32(4)a b -=628a b C .2()a b +=22a b +D .2223a a -+=2a4.下列说法正确的是( ) A .“清明时节雨纷纷”是必然事件B .为了解某灯管的使用寿命,可以采用普查的方式进行C .甲乙两组身高数据的方差分别为20.02S =甲、20.1S =乙,那么乙组的身高比较整齐 D .一组数据3,5,4,5,6,7的众数、中位数和平均数都是55.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( ) A .4B .﹣4C .1D .﹣16.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩7.如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若AE =2,BE =1,则EC 的长度是( )A .2B .3C 3D 58.如图,在△ABC 中,点D 是AB 中点,BE ⊥AC 垂足为E ,连接DE ,若∠ABE =30°,∠C =45°,DE=2,则BC 的长为( )A .2B .3C .3D .69.如图,点M 是正方形ABCD 内一点,MBC △是等边三角形,连接AM MD 、对角线BD 交CM 于点N ,现有以下结论:①150AMD ∠=︒;②2MA MN MC =⋅;③23ADM BMC S S ∆∆-;④3DN BN =论有( )A .1B .2C .3D .4第II 卷(非选择题)二、填空题(每小题5分,共30分)10.计算:(217|3|2ππ-⎛⎫-+-= ⎪⎝⎭____________.11.一元二次方程220x x +=根的判别式的值为__________.12.从分别标有1,2,3,4的四张卡片中,一次同时抽2张,其中积为奇数的概率是_____. 13.如图,点A 、B 、C 都是正八边形的顶点,连接AB 、BC ,则∠ABC 的度数为_____.14.如图,四边形ABCD 为矩形,以A 为圆心,AD 为半径的弧交AB 的延长线于点E ,连接BD ,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,点A 是y 轴正半轴上一点,过点A 作y 轴的垂线交反比例函数y =3m x-的图象于点B ,交反比例函数y =6m x+的图象于点C ,若AB =2AC ,则m 的值是_____.三、解答题(共75分)16.(6分)解方程组:2422x y x y +=⎧⎨-=⎩17.(6分)先化简,再求值:(23)(23)(1)(43)a a a a -+-+-,其中26a .18.(8分)如图,在四边形ABCD 中,//AB CD ,2AB BC CD ==,E 为对角线AC 的中点,F 为边BC 的中点,连接,DE EF .(1)求证:四边形CDEF 为菱形;(2)连接DF 交EC 于点G ,若2DF =,53CD =,求AD 的长.19.(8分)我市某学校为落实“立德树人”根本任务,构建“五育并举”课程体系,开设了“烹饪、园艺、电工、木工、缝纫”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图: 劳动课程 烹饪 园艺 电工 木工 缝纫人数1012a915(1)=a __________,b =__________,扇形统计图中“烹饪”所对应扇形的圆心角α=__________;(2)若该校七年级共有600名学生,请估计该校七年级学生选择“园艺”劳动课程的人数;(3)七(1)班计划在“烹饪、园艺、电工、缝纫”四大类劳动课程中任选两类参加学校展示活动,请用列表或画树状图的方法,求恰好选中“园艺、缝纫”这两类劳动课程的概率.20.(10分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高54m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进22m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin34°≈0.5,cos34°≈0.8,tan34°≈0.63)21.(12分)某超市计划购进甲,乙两种品牌的新型节能台灯20盏,这两种台灯的进价和售价如下表所示:甲 乙 进价(元/件) 40 60 售价(元/件)60100设购进甲种台灯x 盏,且所购进的两种台灯都能全部卖出.(1)若该超市购进这批台灯共用去1000元,问这两种台灯购进多少盏?(2)若购进两种台灯的总费用不超过1100元,设这20盏台灯的销售总利润为W 元, ①求W 与x 的关系式;②该商店购进甲品牌,乙品牌各多少台,才能使销售利润最大最大利润是多少?22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,请研究如下美丽的圆,如图,以O 为圆心,AB 长为直径作圆,在⊙O 上取一点C ,延长AB 至点D ,连接DC 、AC 、BC ,过点A 作⊙O 的切线交DC 的延长线于点E ,且∠DCB =∠DAC .(1)求证:CD 是⊙O 的切线;(2)若AD =6,tan ∠DCB 23=,则: ①求CD 的长;②求CE 的长.23.(13分)如图,二次函数()2230y ax ax a a =--<的图象与x 轴交于点AB 、 (点A 在点B 的左侧),与y 轴交于点C ,且ABC 的面积等于8.(1)求点,,ABC 的坐标及抛物线的解析式.(2)点P 从点O 出发,以每秒4个单位长度的速度沿y 轴正方向运动,同时点Q 从点B 出发,以每秒5个单位长度的速度沿射线BC 运动,设运动的时间为t 秒,直线BP 与抛物线的另一交点为点E . ①当t 为多少秒时,由点A B P Q 、、、四点构成的四边形为平行四边形?并求出此时点P 的坐标. ②在,P Q 运动的过程中,若2PBC PQC ∠=∠请直接写出点E 的横坐标.参考答案:1.A2.A3.D4.D5.D6.C7.D8.D9.C10.π11.412.1 613.45°14.433415.3-16.312 xy=⎧⎪⎨=⎪⎩17.6a--,2-18.(2)17AD=19.(1)14;25;60︒(2)120人(3)1620.炎帝塑像DE的高度约为64m.21.(1)甲、乙两种台灯均购进10盏;(2)①20800W x=-+;②当甲种台灯购进5盏,乙种台灯购进15盏时,超市获得的利润最大,最大利润为700元22.(1)(2)①4;②5223.(1)()()()2481,0,3,0,0,4,433A B C y x x -=-++;(2)①728,0,33t P ⎛⎫= ⎪⎝⎭;②58-或258。

2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国中考专题数学中考模拟考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列图形中,是中心对称图形的有( )A.个B.个C.个D.个2. 下列计算正确的是 A.=B.=C. D.3. 据统计自开展精准扶贫工作五年以来,湖南省减贫人,贫困发生率由下降到,个贫困村出列,个贫困县摘帽.将用科学记数法表示为( )A.B.C.D.1234()−5−2−3−8−80551000013.43%3.86%26951455100000.551×1075.51×1065.51×107551×1044. 下列几何体中,从正面看和从上面看到的图形都为长方形的是( ) A. B. C. D.5. 如图,正六边形内接于,的半径为,则的长为( )A.B.C.D.6. 把不等式组的解集表示在数轴上,下列选项正确的是( )A.B.C.ABCDEF ⊙O ⊙O 1AB ^π6π3π2π{−x ≤1x +1>0D.7. 如图,直线,若,,则的度数为( )A.B.C.D.8. 如图,在中, , , 是的外接圆,是直径,交于点,连接,若,则的长为( )A.B.C.D.9. 已知:.求作:一点,使点到三个顶点的距离相等.小明的作法是:作的平分线;作边的垂直平分线;直线与射线交于.点即为所求的点(作图痕迹如图).小丽的作法是:作的平分线;作的平分线;射线与射线交于点.点即为所求的点(作图痕迹如图).对于两人的作法,下列说法正确的是( )AD //BC ∠1=42∘∠BAC =78∘∠250∘60∘68∘84∘△ABC AB =BC tan C =12⊙O △ABC AD ⊙O BD AC E CD CE =3AD 853–√45–√10△ABC O O △ABC (1)∠ABC BF (2)BC GH (3)GH BF O O 1(1)∠ABC BF (2)∠ACB CM (3)CM BF O O 2A.小明对,小丽不对B.小丽对,小明不对C.两人都对D.两人都不对10. 已知函数(其中)的图象如图所示,则一次函数与反比例函数的图象可能是( )A.B.C.D.卷II (非选择题)y =−(x −m)(x −n)m <ny =mx +n y =m +n x二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若某个一元二次方程的两个实数根分别为、,则这个方程可以是________.12. 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是 ,则另一个交点的坐标是________.13. 数据,,,,的方差是________.14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有道题,答对一题得分,答错(或不答)一题扣分;小军参加本次竞赛得分要超过分,他至少要答对的题数为________道.15. 边长为的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 ) 16.计算: ;先化简,再求值: ,其中.17. 如图,在四边形中,、分别平分和 ,与交于点,探究与之间的数量关系.−21(2,3)1−21,−1−12201051004ABCD BC E AE EF ⊥AE CD F CF 34CE (1)−+2cos (−1)2–√0()12−160∘(2)÷(−x −2)2x −6x −25x −2x =−1ABCD AM CM ∠DAB ∠DCB AM CM M ∠AMC ∠B,∠D18. 开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了元和元分别采购了香蕉和橘子,采购的香蕉比橘子多千克,香蕉每千克的价格比橘子每千克的价格低,求橘子每千克的价格.19. 如图,一次函数与反比例函数的图象交于点和,与轴交于点.求一次函数和反比例函数的解析式;在轴上取一点,当的面积为时,求点的坐标;将直线向下平移个单位后得到直线,当函数值时,求的取值范围. 20. 如图,为了测量某校教学楼的高度,先在地面上用测角仪自处测得教学楼顶部的仰角是,然后在水平地面上向教学楼前进了,此时自处测得教学楼顶部的仰角是.已知测角仪的高度是,请你计算出该教学楼的高度.(结果精确到)(参考数据:)21. 随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选择一种),在全校随机调查了部分学生,将统计结果绘制成了如下两幅不完整的统计图,其中扇形统计图中,表示“钉钉”和“”的扇形圆心角相等,请结合图中所给信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“钉钉”的扇形圆心角的度数为2800250015030%=kx +b (k ≠0)y 1=(m ≠0)y 2m x A (1,2)B (−2,a)y M (1)(2)y N △AMN 3N (3)y 12y 3>>y 1y 2y 3a CD A 30∘40m B 45∘1.2m 1m ≈1.732,≈1.4143–√2–√QQ________;(2)将条形统计图补充完整;(3)该校共有名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“钉钉”、“”、“电话”四种沟通方式中选择一种方式与对方联系,请用列表或树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22. 如图,将平行四边形的边延长到点,使,连接,交于点,,连接,.求证:四边形是矩形.23. 如图,抛物线的图象过点.求抛物线的解析式:根据轴对称的性质知道在抛物线的对称轴上存在一点,使得的周长最小,此时,在直线上方的抛物线上是否存在点(不与点重合),使得?若存在,请直接写出点的坐标;若不存在,请说明理由.2000QQ ABCD DC E CE =DC AE BC F ∠AFC =2∠D AC BE ABEC y =a −bx +3x 2A(−1,0),B(3,0)(1)(2)P △PAC PA M C =S △PAM S △PAC M参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】中心对称图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】根据有理数的运算法则逐项计算即可求解.【解答】解:.,故不正确;.,故不正确;.,故正确;.,故不正确;故选.3.【答案】A −5−2=−7B −8−8=−16C −=−1642D =823CB【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:.故选.4.【答案】B【考点】简单几何体的三视图【解析】分别找出从物体正面看所得到的图形即可.【解答】解:、主视图是三角形,故此选项不合题意;、主视图是长方形,俯视图是长方形,故此选项符合题意;、主视图是长方形,俯视图是圆,故此选项不合题意;、主视图是梯形,俯视图是长方形,故此选项不合题意;故选.5.【答案】B【考点】正多边形和圆弧长的计算【解析】连接,,求出圆心角的度数,再利用弧长公式解答即可.a ×10n 1≤|a |<10n n a n ≥1n <1n 5510000=5.51×106B A B C D B OA OB ∠AOB【解答】连接,,∵多边形为正六边形,∴=,∴的长,6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】先求出各个不等式的解集,再把解集表示在数轴上即可.【解答】解:解得:则在数轴上表示为:故选.7.【答案】B【考点】平行线的性质【解析】根据平行线的性质,可以得到=,再根据题目中=,=,即可得到的度数.【解答】解:∵直线,∴,OA OB ABCDEF ∠AOB ×=360∘1660∘AB ^==60π×1180π3{−x ≤−1,x +1>0,{x ≥1,x >−1,A ∠1+∠2+∠BAC 180∘∠140∘∠BAC 80∘∠2AD //BC ∠DAC =∠1∠1+∠2+∠BAC =180∘∴,∵,,∴.故选.8.【答案】D【考点】勾股定理锐角三角函数的定义圆周角定理【解析】1【解答】解:∵ ,∴,∴,∴,∵,∴,在中,,,∴,设,,∴,在中,,故选.9.【答案】D【考点】作角的平分线作图—尺规作图的定义∠1+∠2+∠BAC =180∘∠1=42∘∠BAC =78∘∠2=60∘B AB =BC ∠BAC =∠BCA ∠BDC =∠ACB tan ∠BDC ==CE CD 12CE =3CD =6Rt △ECD DE =35–√tan ∠CAB ==BE AB 12AB =2BE BE =x tan ∠ADB ===AB BD 122xx +35–√x =5–√Rt △ABD AD =10D线段垂直平分线的性质角平分线的性质【解析】分别判断小明和小丽作法表示的几何意义,即可判断.【解答】解:点到三个顶点的距离相等,即是的外心,即为各边垂直平分线的交点.小明:的平分线,上的点到两边距离相等;边的垂直平分线,上的点到点距离相等,故与的交点,无法确定与点距离的关系,故小明作法错误;小丽:角平分线的交点为的内心,即到各边距离相等,也无法确定到各顶点距离的关系,故小丽作法也错误.故选.10.【答案】C【考点】二次函数的图象一次函数的图象反比例函数的图象【解析】根据二次函数图象判断出,,然后求出,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,,,∴,∴一次函数经过第一、二、四象限,且与轴相交于点,反比例函数的图象位于第二、四象限;故选:.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】=(答案不唯一)【考点】O △ABC O △ABC O ∠ABC BF BF BC GH GH B,C BF GH O A △ABC D m <−1n =1m +n <0m <−1n =1m +n <0y =mx +n y (0,1)y =m +n xC +x −2x 20根与系数的关系【解析】此题是一道开放型的题目,答案不唯一,只要写出一个符合的方程即可.【解答】=,=,所以这个一元二次方程可以是=,12.【答案】【考点】反比例函数的应用【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】方差【解析】此题暂无解析【解答】解:这组数据的平均数为:,∴方差.故答案为:.14.【答案】−2+1−1−2×1−2+x −2x 202×(1−2+1−1−1+2)=016=×[(1−0+(−2−0+(1−0+(−1−0+(−1−0+(2−0]=2s 216)2)2)2)2)2)2214【考点】一元一次不等式的实际应用【解析】先设小军答对了道题,根据二等奖在分或分以上,列出不等式,求出的取值范围,再根据只能取正整数,即可得出答案.【解答】解:设小军答对了道题,依题意得:解得:,∵是正整数,∴最小为.故答案为:.15.【答案】或【考点】正方形的性质相似三角形的判定与性质【解析】由正方形的性质结合三角形内角和定理可得出,结合可得出,由C , ’可证出,再利用相似三角形的性质可求出的长.【解答】解:四边形为正方形,.,.,,,,,即, 或.故答案为:或.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )y 100100y y y 10y −5(20−y)≥100y ≥403y y 141413∠BAE +∠AEB =90∘∠AEB +∠CEF =90∘∠BAE =∠CEF ∠B =∠∠BAE =∠CEF △ABE ∼△ECF CE ∵ABCD ∴∠B =∠C =90∘∵EF ⊥AE ∴∠AEF =90∘∵∠BAE +∠AEB =90∘∴∠AEB +∠CEF =90∘∴∠BAE =∠CEF ∴△ABE ∼△ECF ∴=CE BA CF BE =CE 4344−CE ∴CE =1CE =31316.【答案】解: ;,当时,原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂分式的化简求值【解析】利用零指数幂,负指数幂和特殊角的三角函数求值即可;利用分式的运算求解即可.【解答】解: ;(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)=−2x +3x =−1=−=−12−1+3(1)(2)(1)−+2cos (−1)2–√0()12−160∘=1−2+2×12=−1+1=0(2)÷(−x −2)2x −6x −25x −2=÷2(x −3)x −25−(x −2)(x +2)x −2=÷2(x −3)x −29−x 2x −2=⋅2(x −3)x −2x −2−(x +3)(x −3)−2,当时,原式.17.【答案】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,∴,∴ .【考点】三角形中位线定理【解析】此题暂无解析【解答】证明:如图,连接并延长.∵ 是 的外角,∴,∵是的外角,∴,∵,∴,∵、分别平分,∴,=−2x +3x =−1=−=−12−1+3DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘DM ∠3△AMD ∠3=∠1+∠ADM ∠4△CMD ∠4=∠2+∠CDM ∠AMC =∠3+∠4∠AMC =∠1+∠ADM +∠CDM +∠2=∠1+∠2+∠ADC AM CM ∠DAB,∠DCB ∠1=∠BAD.12∠2=∠BCD 12AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC111∴,∴ .18.【答案】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.【考点】分式方程的应用【解析】此题暂无解析【解答】解:设橘子每千克的价格为元,则香蕉每千克的价格为元.根据题意,得.解得.经检验, 是原分式方程的解,且符合题意.答:橘子每千克的价格为元.19.【答案】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,∵向下平移两个单位得且∴,22∠AMC =∠BAD +∠BCB +∠ABC =(−∠B −∠ADC)+ADC 121212360∘=(−∠B −∠ADC)12360∘2∠AMC +∠B =∠ADC =360∘x 70%x −=150280070%2500x x =10x =1010x 70%x −=150280070%2500x x =10x =1010(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 =2联立得.解得或∴,,在、两点之间或、两点之间时,,∴或.【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式【解析】此题暂无解析【解答】解:∵过点,∴,即反比例函数:,当时,,即,过和,代入得 ,解得,∴一次函数解析式为;当时,代入中得,,即,∵,∴,∴或;如图,设与的图像交于,两点,向下平移两个单位得且∴,联立得.解得或∴,,在、两点之间或、两点之间时,,∴或. y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <2(1)=y 2m x A(1,2)m =1×2=2=y 22x x =−2a =−1B (−2,−1)=kx +b y 1A(1,2)B (−2,−1){k +b =2−2k +b =−1,{k =1b =1=x +1y 1(2)x =0y =x +1y =1M (0,1)=⋅MN ⋅||=3,=1S △AMN 12x A x A MN =6N (0,7)(0,−5)(3)y 2y 3C D y 1y 3=x +1y 1=x −1y 3 y =2x y =2x {x =−1y =−2{x =2y =1C (−1,−2)D (2,1)A D B C >>y 1y 2y 3−2<x <−11<x <220.【答案】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.【考点】解直角三角形的应用-仰角俯角问题【解析】设,根据锐角三角函数的定义列出关于的方程,解出即可.【解答】解:设,根据题意得,,∵,∴,.在直角中,,解得,,即,∴.即教学楼的高度约为.21.【答案】,∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m CE =xm x CE =xm AB =40m ∠CBE =45∘BE =CE =xm ∴AE =AB +BE =(40+x)m △ACD tan ===30∘CE AE x 40+x 3–√3x =(20+20)m 3–√CE =(20+20)m 3–√CD =CE +DE =20+20+1.2≈20×1.732+20+1.2≈56m3–√56m 10054∘100100×5%5∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.【考点】条形统计图用样本估计总体列表法与树状图法扇形统计图【解析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出喜欢用“钉钉”沟通的人数即可求出表示“钉钉”的扇形圆心角度数;(2)计算出喜欢用短信与微信的人数即可补全统计图;(3)用样本中喜欢用微信进行沟通的百分比来估计名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【解答】喜欢用电话沟通的人数为,所占百分比为,∴此次共抽查了:=(人),100−20−5−15−15−5402000×800200080016425002020%20÷20%100QQ∵表示“钉钉”和“”的扇形圆心角相等,∴喜欢用“钉钉”和“”沟通的人数相等,∴喜欢用“钉钉”沟通的人数为人,∴表示“钉钉”的扇形圆心角的度数为=;故答案为:;;∵抽查的名学生中,喜欢用“短信”沟通的人数为:=(人),∴喜欢用“微信”进行沟通的学生有:=(人),将条形统计图补充完整如图:=(名),即该校共有名学生,估计该校最喜欢用“微信”进行沟通的学生有名;画出树状图,如图所示:所有情况共有种情况,其中甲、乙两名同学恰好选择同一种沟通方式的共有种情况,故甲、乙两名同学恰好选中同一种沟通方式的概率为:=.22.【答案】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,QQ QQ 15×360∘54∘10054∘100100×5%5100−20−5−15−15−5402000×8002000800164ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC∴,∴四边形是矩形.【考点】矩形的判定平行四边形的性质【解析】(2)由(1)得的结论先证得四边形是平行四边形,通过角的关系得出,,得证.【解答】证明:∵四边形是平行四边形,∴,.∵,∴,,∴四边形是平行四边形,∴,.∵四边形是平行四边形,∴.又∵,∴.∵,∴,∴,∴,∴,∴四边形是矩形.23.【答案】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,AE =BC ABEC ABEC FA =FE =FB =FC AE =BC ABCD AB //CD AB =CD CE =DC AB =EC AB //EC ABEC FA =FE FB =FC ABCD ∠ABC =∠D ∠AFC =2∠D ∠AFC =2∠ABC ∠AFC =∠ABC +∠BAF ∠ABC =∠BAF FA =FB FA =FE =FB =FC AE =BC ABEC 1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.【考点】待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:()把点 分别代入,得解得,∴抛物线的解析式为 .存在满足条件的带你,使得,如图:∵,∴当以为底时,两三角形等高,∴点和点到直线的距离相等,∵在轴上方,∴,∵,,设直线的解析式为,∴,解得,∴直线的解析式为,CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)1A (−1,0),B (3,0)y =a +bx +3x 2{0=a −b +3,0=9a +3b +3{a =−1b =2.y =−+2x +3x 2(2)M =S △PAM S △PAC =S △PAM S △PAC PA C M PA M x CM//CA A(−1,0)P(1,2)AP y =px +d {−p +d =0p +d =2{p =1d =1AP y =x +1∴直线的解析式为,联立得,解得(即点),,∴点的坐标为.CM y =x +3{y =x +3y =−+2x +3x 2{=0x 1=3y 1C {=1x 2=4y 2M (1,4)。

最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案

最新人教版中考数学仿真模拟考试卷含答案一、单选题1.2的相反数是()A.2B.C.﹣2D.﹣2.下列运算正确的是()A.a6÷a2=a3B.3a2b﹣a2b=2C.(﹣2a3)2=4a6D.(a+b)2=a2+b23.设直线是函数(,,是实数,且)图象的对称轴,则正确的结论是().A.若,则B.若,则C.若,则D.若,则4.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上,如果∠2=25°,那么∠1的度数是()A.30°B.25°C.20°D.15°5.数据70、71、72、73的标准差是()A.B.2C.D.6.已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.7.将一个直角三角形三边扩大3倍,得到的三角形一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上三种情况都有可能8.下图是由7个相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB=2,∠B=60时,AC的长是()A.B.C.D.10.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.二、填空题11.已知直线:和直线:,其中k为不小于2的自然数.当、3、4,,2018时,设直线、与x轴围成的三角形的面积分别为,,,,,则__________.12.如图,AD是△ABC的中线,△ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.13.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在左右,则的值大约为___.14.分解因式:2x2-12xy+18y2=__________.15.不等式组的解集是_________.16.数据70700用科学计数法可表示为___________________.用四舍五入法,50.2462≈__________(精确到0.01).三、解答题17.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC =2S△A′BC,求所有满足条件的抛物线L′的表达式.18.张老师为了解学生课前预习的情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了名同学?(2)C类女生有名,D类男生有名;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好都是男同学的概率.19.无锡火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往徐州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35。

2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国初中中考专题数学新人教版中考模拟(含解析)

2022-2023学年全国中考专题数学中考模拟考试总分:127 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1. 计算的结果是( )A.B.C.D. 2.如图,在中,边的高是( )A.B.C.D. 3. 大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:写成,=;写成=;写成=.按这个方法请计算=( )A.B.⋅(−a)a 3a 3−a 3a 4−a 4△ABC BC CECDACAF81110−218929200−20+976831310000−2320+352−3124081990C.D.4. 的算术平方根是 A.B.C.D.5. 如果过一个多边形的一个顶点的对角线有条,则该多边形是( )A.九边形B.八边形C.七边形D.六边形6. 据统计,年长春市接待旅游人数约人次,这个数用科学记数法表示为( )A.B.C.D. 7.如图是由个相同的小正方体组成的几何体,那么这个几何体的俯视图是( ) A.B.241030249()−33±38162016670000006700000067×1066.7×1056.7×1076.7×1086C. D.8. 如图,在▱中,,是上两点,,连接,,,.添加一个条件,使四边形是矩形,这个条件是( )A.B.C.D.9. 如果 ,那么 的值为 ( )A.B.C.D.以上都不对10. 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中’,中心线的两条弧的半径都是,这段变形管道的展直长度约为(取)( )ABCD M N BD BM =DN AM MC CN NA AMCN MB =MOOM =AC 12BD ⊥AC∠AMB =∠CND2x =3y (−)⋅y x (−)x y2−1−23−32∠O =∠O=90∘1000mm π3.14A.B.C.D.11. 在下列图形中,由条件不能得到的是 A. B. C. D.12. 已知,则函数=和的图象大致是( )A.9280mm6280mm6140mm457mm∠1+∠2=180∘AB //CD ()<0<k 1k 2y x −1k 1y =k 2xB. C. D.13. 下列说法中:①若点在直线上,则点一定在线段上;②两点之间,直线最短;③已知,则点是线段的中点;④两点确定一条直线;⑤连接两点的线段叫两点间的距离.其中正确的个数有( )A.个B.个C.个D.个14. 甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击次,成绩(单位:环)统计如表:甲乙丙丁平均数方差如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选( )A.甲B.乙C.丙D.丁15. 一个两位数,个位数字与十位数字的和是,如果将个位数字与十位数字对调后所得的新数比原数大,那么原来的两位数为( )A.C AB C AB AC =BC C AB 3210109.79.69.69.70.250.250.270.289954B.C.D.16. 平行四边形两邻边长分别为和,它们的夹角(锐角)为 ,则平行四边形中较短的对角线的长为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 一个质地均匀的小正方体,个面分别标有数字,,,,,.若随机投掷一次小正方体,则朝上一面的数字是的概率为________.18. 如图,是的直径,已知,,是的上的两点,且,是上一点,则的最小值是________.19. 已知如图,每个小正方形的边长都是,、、、…都在格点上,、、、…都是斜边在轴上,且斜边长分别为、、、…的等腰直角三角形.若的三个顶点坐标为、、,则依图中规律,则的坐标为________.277245ABCD 2360∘ABCD 7–√26−−√3161121551AB ⊙O AB =2C D ⊙O +=BC ˆBD ˆ23AB ˆM AB MC +MD 1A 1A 2A 3△A 1A 2A 3△A 3A 4A 5△A 5A 6A 7x 246△A 1A 2A 3(2,0)A 1(1,−1)A 2(0,0)A 3A 19三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.先化简,再求值:,然后从的范围内选取一个合适的整数作为的值代入求值. 21. 科技是第一生产力.科技深刻地改变了中国人的生活方式,更为企业插上了腾飞的翅膀.机器人分拣、配送货物已经成为很多大型企业仓储的首选.某公司为了了解下属仓库机器人的工作状况,随机抽取台进行日分拣货物测试,并将它们的测试结果数据进行整理、描述和分析(日分拣货物的重量单位:吨)部分信息如下:等级重量(吨)频率请结合上述信息完成下列问题:________, ________, ________;请补全频数分布直方图;①在扇形统计图中,“”等级对应的圆心角的度数是________;②这次调查的中位数落在________等级内;(填“”“”“”或“”)若该公司仓库有 台机器人,根据抽样调查结果,请估计该公司日分拣货物超过吨的机器人的台数.22. 为了求的值,可令,则,因此,,所以.仿照以上推理计算:的值________.(−)÷a +4a +1a +1a 4a −2−1a 2−2<a ≤2a 20A20≤x <25a B25≤x <30b C30≤x <35D 35≤x <40c(1)a =b =c =(2)(3)C A B C D (4)200301+2+++⋯+22232100m =1+2+++⋯+222321002m =2+++⋯+222321012m −m =−12101m =−121011+3+++⋯+32333n23.小明家今年种植的草莓喜获丰收,采摘上市天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量(单位:千克)与上市时间(单位:天)的函数关系如图所示,草莓的销售价(单位:元/千克)与上市时间(单位:天)的函数关系如图所示.设第天的日销售额为(单位:元).第天的日销售额为________元;观察图象,求当时,日销售额与上市时间之间的函数关系式及的最大值;若上市第天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克元,马叔叔到市场按照当日的销售价元/千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了.那么,马叔叔支付完来回车费元后,当天能赚到多少元? 24. 如图,是的直径,,分别与相切于点,,交的延长线于点,交的延长线于点,交于点,连接.求证:;若,,求的面积和线段的长. 25. 如图,直线与双曲线相交于和两点,与轴交于点,与轴交于点.(1)求,的值;(2)在轴上是否存在一点,使与相似?若存在求出点的坐标;若不存在,请说明理由.20y x (1)p x (2)x w (1)11w (2)16≤x ≤20w x w (3)1515p 2%20AB ⊙O PA PC ⊙O A C PC AB D DM ⊥PO PO M ⊙O N AN (1)∠MPD =∠MDO (2)PC =6sin ∠PDA =35⊙O MN =mx +n(m ≠0)y 1=(k ≠0)y 2k x A(−1,2)B(2,b)y C x D m n y P △BCP △OCD P26. 如图,是中边的中线,,点为上一点,如果,过作交于点,点是的中点,将绕点顺时针旋转度(其中)后,射线交直线于点.如果的面积为,求的面积(用的代数式表示);当和不重合时,请探究的度数与旋转角的度数之间的函数关系式;写出当为等腰三角形时,旋转角的度数.OC △ABC AB ∠ABC =36∘D OC OD =k ⋅OC D DE //CA BA E M DE △ODE O α<α<0∘180∘OM BC N (1)△ABC 26△ODE k (2)N B ∠ONB y α(3)△ONB α参考答案与试题解析2022-2023学年全国中考专题数学中考模拟一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1.【答案】D【考点】同底数幂的乘法【解析】根据单项式乘单项式的方法先进行相乘,然后按照同底数幂的乘法运算法则进行计算即可.【解答】解:故选.2.【答案】D【考点】三角形的高【解析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【解答】解:从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,所以在中,边上的高是.故选.3.【答案】A【考点】⋅(−a)=−⋅a =−.a 3a 3a 4D △ABC BC AF D有理数的加减混合运算【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】算术平方根【解析】如果一个非负数的平方等于,那么是的算术平方根,根据此定义即可求出结果.【解答】解:∵,∴的算术平方根为.故选.5.【答案】A【考点】多边形的对角线【解析】根据从每一个顶点处可以作的对角线的条数为计算即可得解.【解答】∵过一个多边形的一个顶点的对角线有条,∴多边形的边数为=,∴这个多边形是九边形.6.【答案】Cx a x a =32993B (n −3)66+39【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】这个数用科学记数法表示为.7.【答案】C【考点】简单几何体的三视图【解析】此题暂无解析【解答】解:由个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选.8.【答案】B【考点】矩形的判定【解析】此题暂无解析【解答】a ×10n 1≤|a |<10n n a n ≥1n <1n 67000000 6.7×1076C ABCD解:∵四边形是平行四边形,∴,,∵对角线上的两点,满足,∴,即,∴四边形是平行四边形,由矩形性质得:①矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;②矩形的四个角都是直角;③矩形的对角线相等.,因不能确定原平行四边形的对角线相等,故,不可判定四边形是矩形,,由可得平行四边形对角线相等,故可判定四边形是矩形,,矩形的对角线互相平分但不一定垂直,故不可判定四边形是矩形,,因原题中未给定具体的角的度数,所以不能得出四边形的角的具体度数,故不可判定四边形是矩形,故选.9.【答案】C【考点】分式的化简求值【解析】【解答】解:原式,,,原式.故选.10.【答案】C【考点】弧长的计算【解析】ABCD OA =OC OB =OD BD M N BM =DN OB −BM =OD −DN OM =ON AMCN A ABCD MB =MO AMCN B OM =AC 12AMCN AMCN C AMCN D ∠AMB =∠CND AMCN AMCN B =−×y x x 2y 2=−x y∵2x =3y ∴=x y 32∴=−32C先计算出扇形的弧长再加上直管道的长度即可.【解答】图中管道的展直长度.11.【答案】C【考点】平行线的判定【解析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:、的对顶角与是同旁内角,它们互补,所以能判定,故本选项不符合题意;、的对顶角与的对顶角是同旁内角,它们互补,所以能判定,故本选项不符合题意;、由条件能得到,不能判定,故本选项符合题意;、的邻补角,所以能判定,故本选项不符合题意.故选.12.【答案】A【考点】反比例函数的图象一次函数的图象【解析】根据反比例函数的图象性质及正比例函数的图象性质可作出判断.【解答】∵,=∴直线过二、三、四象限;双曲线位于一、三象限.13.3000=2×+3000=1000π+3000≈1000×3.14+3000=6140mm 90π×1000180A ∠1∠2AB //CD B ∠1∠2AB //CDC ∠1+∠2=180∘AD //BC AB //CD D ∠1∠BAD =∠2AB //CD C <0<k 1k 2b −1<0C【考点】线段的中点两点间的距离线段的性质:两点之间线段最短直线的性质:两点确定一条直线直线、射线、线段【解析】分别根据线段、直线的性质,两点间距离的定义,线段中点的定义等知识对各选项进行逐一分析即可.【解答】解:①若点在直线上,则点不一定在线段上,可能在线段外,故原说法错误;②两点之间,线段最短,故原说法错误;③若,且,,三点共线,则点是线段的中点,故原说法错误;④两点确定一条直线,故原说法正确;⑤连接两点的线段的长度叫两点间的距离,故原说法错误.综上所述,其中正确的个数有个.故选.14.【答案】A【考点】方差【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】一元一次方程的应用——其他问题C AB C AB AB AC =BC A B C C AB 1C此题暂无解析【解答】此题暂无解答16.【答案】A【考点】勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:作于,因为,,所以,,,所以.故选.二、 填空题 (本题共计 3 小题 ,每题3 分 ,共计9分 )17.【答案】【考点】概率公式【解析】此题暂无解析CE ⊥AD E ∠ADC =60∘CD =2DE =1AE =2CE =3–√AC ==(+3–√)222−−−−−−−−−√7–√A 12解:由题意得,共有种情况,则朝上一面的数字是的有种,故朝上一面的数字是的概率为.故答案为:.18.【答案】【考点】圆心角、弧、弦的关系轴对称——最短路线问题【解析】过作于交于,根据垂径定理得到,于是得到,连接交于,则的最小值,过作于,得到,,解直角三角形得到,即可得到结论.【解答】解:过作于交于,∴,∵,∴,∴,连接交于,则的最小值,过作于,∵,∴,,∵,∴,∴,∴的最小值是,故答案为:.19.【答案】6131=3612123–√D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N CD'=2NC ∠C =30∘CN =3–√2D DD'⊥AB H ⊙O D'=BD ˆD'B ˆ+=BC ˆBD ˆ23AB ˆ+=BC ˆBD'ˆ23AB ˆ∠COD'=120∘CD'AB M CD'=MC +MD O ON ⊥CD'N OC =OD'CD'=2NC ∠C =30∘OC =AB =112CN =3–√2CD'=3–√MC +MD 3–√3–√(−8,0)规律型:点的坐标【解析】根据相邻的两个三角形有一个公共点列出与三角形的个数与顶点的个数的关系式,然后求出所在的三角形,并求出斜边长,然后根据第奇数个三角形关于直线对称,第偶数个三角形关于直线对称求出,然后写出坐标即可.【解答】解:设到第个三角形顶点的个数为,则,∵当时,,∴是第个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为、、、…,∴第个等腰直角三角形的斜边长为,由图可知,第奇数个三角形在轴下方,关于直线对称,∴,∴的坐标为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20.【答案】解:原式.在中,取时,原分式有意义.当时,原式.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式.在中,取时,原分式有意义.A 19x =1x =2OA 19n y y =2n +12n +1=19n =9A 19924692×9=18x x =1O =−1=8A 19182A 19(−8,0)(−8,0)=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2a =2===a −12a 2−12×214=⋅=+4a −−2a −1a 2a 2a(a +1)(a +1)(a −1)2(2a −1)a −12a−2<a ≤2a =2==a −12−11当时,原式.21.【答案】,,下图即为补全的频数分布直方图.,因为台,所以该公司日分拣物超过吨的机器人有台.【考点】频数(率)分布直方图中位数扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:由频数分布直方图,知,.因为,所以.故答案为:;;.下图即为补全的频数分布直方图.①在扇形统计图中,“”等级对应的圆心角的度数是.②因为“”等级内的有台,所以中位数落在“”等级内.故答案为:;.a =2===a −12a 2−12×2140.10.50.1(2)108∘B (4)200×=806+2203080(1)a =2÷20=0.1c =10%=0.16÷20=0.3b =1−0.1−0.3−0.1=0.5a =0.1b =0.5c =0.1(2)(3)C ×=360∘620108∘B 10B 108∘B ×=806+2因为台,所以该公司日分拣物超过吨的机器人有台.22.【答案】【考点】规律型:数字的变化类【解析】令,然后两边同时乘,接下来按照例题的方法计算即可.【解答】解:令,则,因此,所以.所以.故答案为:.23.【答案】当时,设与之间的函数关系式为,依题意得解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,(4)200×=806+2203080−13n+12S =1+3+++...+3233320153m =1+3+++⋯+32333n3m =3++++⋯+3233343n+13m −m =−13n+12m =−13n+1m =−13n+12−13n+121980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912=py =(x +9)(−10x +200)1∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.【考点】待定系数法求一次函数解析式二次函数的应用待定系数法求二次函数解析式二次函数的最值【解析】此题暂无解析【解答】解:由图可得,第天的日销售量为千克,由图可得,第天的销售价格为元/千克,第天的销售价格为元/千克,设第天到第天的销售价格与天数的解析式为,由题意得解得∴当时,,当时,,∴销售价格为元/千克,∴销售额(元).故答案为:.当时,设与之间的函数关系式为,依题意得w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)(1)1190(2)3301617316p x p =kx +b {3k +b =30,16k +b =17,{k =−1,b =33,3≤x ≤16p =−x +33x =11p =2222w =90×22=19801980(2)11≤x ≤20y x y =x +k 1b 1{20+=0,k 1b 111+=90,k 1b 1=−10,解得∴,当时,设与之间的函数关系式为:,依题意得解得∴,∴,∴当时,随的增大而减小,∴当时,有最大值是元.当时,,,当时,(元),(千克),∴利润为:(元).答:马叔叔当天能赚到元.24.【答案】证明:,分别与相切于点,,,.,,,,,.解:连接,,如图:{=−10,k 1=200,b 1y =−10x +20016≤x ≤20p x p =x +k 2b 2{16+=17,k 2b 220+=19,k 2b 2 =,k 212=9,b 2p =x +912w =py =(x +9)(−10x +200)12=−5+10x +1800x 2=−5+1805(x −1)216≤x ≤20w x x =16w 680(3)3≤x ≤16p =−x +33y =−10x +200x =15p =−15+33=18y =−10×15+200=5050(1−2%)×18−50×15−20=112112(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.【考点】切线的性质相似三角形的性质与判定勾股定理锐角三角函数的定义【解析】左侧图片未给出解析左侧图片未给出解析【解答】证明:,分别与相切于点,,∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PAD AD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAO OP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMN MN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2(1)∵PA PC ⊙O A C ∴∠MPD =∠MPA ∠PAO =90∘,.,,,,,.解:连接,,如图:,分别与相切于点,,,,在中,,,,在中,由勾股定理得:,,,,的面积.在中,由勾股定理得:.在和中,,,,∴,即,,在中,由勾股定理得:.的面积为,线段的长为.25.【答案】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,∴∠MPD =∠MPA ∠PAO =90∘∵DN ⊥PO ∴∠PMD =90∘∵∠POA =∠DOM ∠PAO =∠PMD ∴∠MPA =∠MDO ∴∠MPD =∠MDO (2)OC ON ∵PA PC ⊙O A C PC =6∴PA =6∵Rt △PAD sin ∠PDA =35∴=PA PD 35∴PD =10Rt △PADAD ===8P −P D 2A 2−−−−−−−−−−√−10262−−−−−−−√∴CD =4∴OC =3OD =5∴⊙O S =9πRt △PAOOP ===3O +A A 2P 2−−−−−−−−−−√+3262−−−−−−√5–√Rt △OAP Rt △OMD ∵∠AOP =∠MOD ∠PAO =∠DMO =90∘∴△OAP ∽△OMD =OP OD OA OM =35–√53OM ∴OM =5–√Rt △OMNMN ===2O −O N 2M 2−−−−−−−−−−−√−32()5–√2−−−−−−−−−√∴⊙O 9πMN 2A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{ −m +n =22m +n =−1解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.【考点】反比例函数综合题【解析】(1)把点、的坐标分别代入反比例函数解析式求得、的值,然后将点、的坐标分别代入一次函数解析式,利用方程组求得它们的值;(2)需要分类讨论:,,由坐标与图形的性质以及等腰直角三角形的性质进行解答.【解答】∵和在双曲线上,∴,解得.∴.∵和在直线上,∴,解得,∴,的值分别是、;在轴上存在这样的点,理由如下:①如图,过点作交轴于点,∴,{m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)A B k b A B △PCB ∽△OCD △BCP'∼△OCD A(−1,2)B(2,b)=(k ≠0)y 2k x k =−1×2=2b b =−1B(2,−1)A(−1,2)B(2,−1)=mx +n(m ≠0)y 1{−m +n =22m +n =−1{ m =−1n =1m n −11y P B BP //x y P △PCB ∽△OCD B(2,−1)∵,∴,②过点作交轴于点,∴,由(1)知,,∴,,∴,∴是等腰直角三角形,∴是等腰直角三角形,∴,∴,∴这样的点有个.即和.26.【答案】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,B(2,−1)P(0,−1)B BP'⊥AB y P △BCP'∼△OCD =−x +1y 1C(0,1)D(1,0)OC =OD △OCD △BCP'CP'=PP'=2P'(0,−3)P 2(0,−1)(0,−3)(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.【考点】三角形的中线相似三角形的性质与判定旋转的性质等腰三角形的性质【解析】(1)通过证明,可得,即可求解;(2)通过证明,可得==,分两种情况讨论可求解;(3)分四种情况讨论,由等腰三角形的性质可求解.【解答】解:∵是中边的中线,的面积为,∴.∵,∴,,∴,且,∴.∵,∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘△ODE ∽△OCA =()S △DEO S △OAC OD OC2△OEM ∽△BAC ∠EOM ∠ABC 36∘(1)OC △ABC AB △ABC 26=13S △OAC DE //AC △ODE ∼△OCA ∠OEM=∠OAC =()S △ODE S △OAC OD OC2OD =k ⋅OC =13S △ODE k 2(2)△ODE ∼△OCA ==kOE OD DE∴.∵是中边的中线,点是的中点,∴,,∴,且,∴,∴.如图,当时,∵,∴,即,∴.如图,当时,∵,∴,∵.∴的度数与旋转角的度数之间的函数关系式为当时,若,则,若,则,若,则,∴.当时,若,则,∴.综上,旋转角的度数为,,,.===k OE OA OD OC DE AC OC △ABC AB M DE AB =2AO EM =DE 12==OE AB k 2EM AC ∠OEM =∠OAC △OEM ∼△BAC ∠EOM=∠ABC =36∘<α<0∘144∘∠AON=∠B +∠ONB ∠AOE +∠EOM =∠B +∠ONB α+=+y 36∘36∘y =α<α<144∘180∘∠BON=∠EOM −∠BOE =−(−α)36∘180∘∠BON=α−144∘∠ONB=∠ABC −∠BON=−(α−)=36∘144∘−α180∘∠ONB y αy ={α,<α<,0∘144∘−α,<α<.180∘144∘180∘(3)<α<0∘144∘OB =ON ∠ABC=∠BNO =36∘=αOB=BN ∠ONB ===α−180∘36∘272∘ON =BN ∠ABC=∠BON =36∘∠ONB=−2×=180∘36∘108∘=α<α<144∘180∘OB=BN ∠ONB=∠NOB =18∘=−α180∘α=162∘α36∘72∘108∘162∘。

中考数学模拟试卷(一)(含解析)-人教版初中九年级全册数学试题

中考数学模拟试卷(一)(含解析)-人教版初中九年级全册数学试题

2020年某某中考数学模拟试卷一、选择题:(每小题4分,共48分)1.(4分)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4B.0C.﹣1D.32.(4分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A.B.C.D.3.(4分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()4.(4分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值X围是()A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣25.(4分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE=AD=2,则AB的长是()A.6B.5C.4D.26.(4分)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形7.(4分)如图,圆O是△ABC的外接圆,连接OB,OC,若∠A=55°,则∠OBC的度数为()A.30°B.35°C.45°D.55°8.(4分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放网袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是()A.12个B.20个C.30个D.35个9.(4分)新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的降价x元,则x满足的关系式为()A.(x﹣2500)(8+4×)=5000B.(2900﹣x﹣2500)(8+4×)=5000C.(x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=500010.(4分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是()A.①②④B.①③④C.①④D.③④11.(4分)中考结束后,小明和好朋友一起前往某某旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.27612.(4分)如图,反比例函数y=(k>0)的图象与矩形AOBC的边AC,BC分别相交于点E,F,点C的坐标为(4,3),将△CEF沿EF翻折,C点恰好落在OB上的点D处,则k的值为()A.B.6C.3D.二、填空题:(本大题6个小题,每小题4分,共24分)将每小题的答案直接填在答题卡中对应的横线上13.(4分)某某火神山医院建筑面积340000000平方厘米,拥有1000X床位.将340000000平方厘米用科学记数法表示应为平方厘米.14.(4分)分解因式:a3﹣25a=.15.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是.16.(4分)小明和小亮玩猜数字游戏中,把小明猜的数字记为a,小亮猜的数字记为b,且a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≥1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为.17.(4分)要使关于x的分式方程+1=有整数解,且使关于x的一次函数y=(a+2)x+3不经过第四象限,则满足条件的所有整数a的和是.18.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤)19.(10分)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:20.(10分)化简:(1)(﹣2x﹣3y)2﹣4x(x+3y);(2)化简(1﹣)÷.21.(10分)在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.22.(10分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x 6.6≤x7.0≤x7.4≤x7.8≤x8.2≤x 频数 2 m10 6 2 1 b.实心球成绩在7.0≤xc.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:A B C D E F G H女生代码实心球* 42 47 * 47 52 * 49一分钟仰卧起坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.23.(10分)如图,平面直角坐标系内,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(4,0),与y轴交于点C(0,6).(1)求二次函数的解析式;(2)点D为x轴下方二次函数图象上一点,连接AC,BC,AD,BD,若△ABD的面积是△ABC面积的一半,求D点坐标.24.(10分)2019年12月以来,某某省某某市发现一种新型冠状病毒感染引起的急性呼吸道传染病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.国家卫健委已发布1号公告,将新型冠状病毒感染的肺炎纳入传染病防治法规定的乙类传染病,但采取甲类传染病的预防、控制措施,同时将其纳入检疫传染病管理.(1)在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B 型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?(3)由于实际需要,该物业决定再次购买这两种3M口罩,已知此次购进A型和B型两种3M口罩的数量一共为1000个,恰逢市场对这两种3M口罩的售价进行调整,A型3M口罩售价比第一次购买时提高了20%,B型3M口罩按第一次购买时售价的1.5倍出售,如果此次购买A型和B型这两种3M口罩的总费用不超过7800元,那么此次最多可购买多少个B型3M口罩?25.(10分)如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm0y/cm请你通过计算,补全表格;(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x 的图象.(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:.(4)解决问题:当MN=2BM时,BM的长度大约是cm.(保留两位小数).四、解答题(本大题1个小题,共8分)解谷时每小题必须给出必要的演算过程或推理步,面出必要的图形(包括轴助线),请将解答过程书写在答题卡中对应的位置26.(8分)如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D不与点B,C重合).以D 为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.2020年某某第二外国语学校中考数学模拟试卷(一)参考答案与试题解析一、选择题:(每小题4分,共48分)1.【解答】解:∵|﹣4|=4,|﹣1|=1,∴﹣4<﹣1,∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.故选:D.2.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,cosα==.故选:C.3.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.4.【解答】解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.5.【解答】解:∵DE∥BC,∴=,∴=,∴AB=6,故选:A.6.【解答】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选:D.7.【解答】解:∵∠BOC=2∠A,∴∠BOC=110°,∵OB=OC,∴∠OBC=∠OBC=35°,故选:B.8.【解答】解:设袋中蓝球有x个,根据题意得:=0.6,解得:x=30,经检验:x=30是分式方程的解,故袋中蓝球有30个.故选:C.9.【解答】解:设每台冰箱的降价x元,依题意得(2900﹣x﹣2500)(8+4×)=5000.故选:B.10.【解答】解:抛物线开口向上,a>0,对称轴在y轴的右侧,a、b异号,因此b<0,与y轴的交点在正半轴,因此c<0,abc>0,故结论①正确;当x=1时,y=a+b+c<0,因此选项②是不正确的;对称轴为x=1,即﹣=1,也就是2a+b=0,因此选项③不正确;抛物线与x轴有两个不同的交点,因此方程ax2+bx+c=0有两个不相等的实数根.选项④正确;故选:C.11.【解答】解:如图,延长AB交ED的延长线于G,作CH⊥DG于H,CF⊥BG于F.在Rt△CDH中,∵CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,∵CF=36米,BF:CF=1:2.4,∴BF=15(米),∵四边形CFGH是矩形,∴HG=CF=36(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°==0.5,∴=0.5,∴DE=212(米),故选:B.12.【解答】解:如图,过点E作EG⊥OB于点G,∵四边形OACB是矩形,∴AC=4,BC=3,∠ACB=90°,∴将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠ACB=90°,EC=ED,CF=DF,∴∠GDE+∠FDB=90°,又∵EG⊥OB,∴∠GDE+∠GED=90°,∴∠GED=∠FDB,∴△GED∽△BDF;∴EG:DB=ED:DF,又∵点E,F在矩形的边AC,BC边上,且在反比例函数上,∴点E(,3),F(4,),∴EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∴EG:DB=ED:DF=4:3,而EG=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)将每小题的答案直接填在答题卡中对应的横线上13.【解答】解:340000000=3.4×108.故答案为:3.4×108.14.【解答】解:原式=a(a2﹣25)=a(a+5)(a﹣5).故答案为:a(a+5)(a﹣5).15.【解答】解:设该方程的另外一个根为x,由根与系数的关系可知:2x=﹣8,∴x=﹣4,故答案为:﹣416.【解答】解:画树状图得:∵共有16种等可能的结果,a,b满足|a﹣b|≥1的有12种情况,∴得出他们“心有灵犀”的概率==,故答案为:.17.【解答】解:由分式方程+1=,得x=,∵关于x的分式方程+1=有整数解,x﹣4≠0,∴a+2=﹣4,a+2=﹣2,a+2=﹣1,a+2=2,a+2=4,解得,a=﹣6,﹣4,﹣3,0,2,又∵关于x的一次函数y=(a+2)x+3不经过第四象限,∴a+2>0,∴a>﹣2,∴满足条件的所有整数a的值是﹣1,2,4,∴满足条件的所有整数a的和是:﹣1+2+4=5,故答案为:5.18.【解答】解:连接AM、AN,如图所示:∵点B关于直线AP的对称点M,∴AM=AB=3,∵MN≥AN﹣AM,当A、M、N三点共线时,MN取最小值,此时,MN=AN﹣AM=AN﹣3,∴当AN取最小值时,MN最小,∵AN=,AD=BC=4,是定值,∴当DN最小时,AN最小,∵点B关于直线AP的对称点M,∴∠APB=∠APM,∵PN平分∠MPC,∴∠MPN=∠CPN,∴∠APN=(∠BPM+∠CPM)=×180°=90°,∵∠ABP=∠P=90°,∴∠APB+∠NPC=∠APB+∠BAP,∴∠NPC=∠BAP,∴△ABP∽△P,∴=,设BP=x,PC=4﹣x,∴=,∴=﹣(x2﹣4x)=﹣(x﹣2)2+,∴当x=2时,最大为:,∴DN最小值为:CD﹣=3﹣=,∴AN最小值===,∴线段MN的最小值为:﹣3=,故答案为:.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤)19.【解答】解:(1)原式=1﹣2×﹣4+﹣1,=1﹣﹣4+﹣1,=﹣4.(2)由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.20.【解答】解:(1)(﹣2x﹣3y)2﹣4x(x+3y)=4x2+12xy+9y2﹣4x2﹣12xy=9y2;(2)(1﹣)÷===.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DFA=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.22.【解答】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.23.【解答】解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把(0,6)代入得6=a×(0+2)(0﹣4),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4),即y=﹣x2+x+6;(2)设D(t,﹣t2+t+6),∵△ABD的面积是△ABC面积的一半,∴×(2+4)×[﹣(﹣t2+t+6)]=××(2+4)×6整理得t2﹣2t﹣12=0,解得t1=1+,t2=1﹣,∴P点坐标为(1+,﹣3)或(1﹣,﹣3).24.【解答】解:(1)设每轮传染中平均一个人传染了x人,依题意,得:2+2x+x(2+2x)=288,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮传染中平均一个人传染了11人.(2)设该物业购买A种3M口罩的单价为y元,则B种3M口罩的单价为(y+3)元,由题意得,,解得,y=5,经检验y=5是原方程的解,则y+3=8,答:该物业购买A种3M口罩的单价为5元,B种3M口罩的单价为8元;(3)设此次可购买a个B型3M口罩,则购买(1000﹣a个A型3M口罩,由题意可得,5(1+20%)×(1000﹣aa≤7800,解得,a≤300,答:此次最多可购买300个B型3M口罩.25.【解答】解:(1)①当x=BM=0时,MN是三角形ABC的中位线,则MN=AC=3;②x=BM=,在△MBD中,BD=4,BM=,cos∠B==cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=,则MH=,MD2=HD2+MH2=,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=;故:答案为3,;(2)描点出如下图象,(3)从图象可以看出:0≤x≤1.65时,y随x增大而减小,当1.65<x≤4.10时,y随x增大而增大(数值是估值,不唯一);(4)方法一:MN=2BM,即y=2x,在上图中作直线y=2x,直线与曲线交点的横坐标1.33和4.00,故答案为:1.33或4.00.方法二:如图3,DN与CA的延长线交于点H.设BM=x,MN=2xEN=3x﹣3,AN=6﹣3x∵∠NDB=∠H+∠C(外角的性质)∠NDB=∠MDB+∠NDM∴∠MDB+∠NDM=∠H+∠C∴∠MDB=∠H,∠B=∠C∴△MDB∽△DHC∴=∴,CH=,HA=HC﹣AC=﹣6又∵△HAN∽△DEN∴=∴=解得x1=4,x2=.故答案为:1.33或4.00.四、解答题(本大题1个小题,共8分)解谷时每小题必须给出必要的演算过程或推理步,面出必要的图形(包括轴助线),请将解答过程书写在答题卡中对应的位置26.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,则AM=BM•tan B=4k×=3k,由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或﹣4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴=,∴DB===,∵DE∥AB,∴=,∴AE===.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=20,tan B=∴BM=CM=16,∴BC=32,在Rt△ABM中,由勾股定理,得AM===12,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴==tan∠ADF=tan B=,∴AN=AM=×12=9,∴CH=CM﹣MH=CM﹣AN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=14,∴BD=BC﹣CD=32﹣14=18,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

【最新】人教版中考综合模拟考试《数学试题》含答案解析

【最新】人教版中考综合模拟考试《数学试题》含答案解析

人教版中考数学模拟测试卷一.选择题1. 2020的绝对值等于( )A. 2020B. -2020C. 12020D. 12020- 2. 如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A. 90°-12αB. 90°+ 12αC.2α D. 360°-α 3. 在下列几何体中,从正面看到的平面图形为三角形的是( )A. B. C.D. 4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5. 下列式子中计算结果与2()m -相同的是( ) A. 12()m - B. 24m m -⨯ C. 24m m ÷ D. 24m m --÷6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( ) A. 0.51×109 B. 5.1×108 C. 5.1×109D. 51×107 7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩8. 将抛物线y=x 2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x ﹣1)2+3C. y=(x ﹣1)2﹣3D. y=(x+1)2﹣3 9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D.10. 下列命题中真命题是( )A. 若a 2=b 2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角11. 如图,给出线段a ,h ,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点A 为圆心,a 为半径作弧,与MN 分别交于点B ,C ;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A . ①B. ②C. ③D. ④12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1C. 1x =1,2x =﹣2D. 1x =1,2x =2二.填空题13. 若分式232x x -+无意义,则x 的值为__________. 14. 因式分解:-2x 2+12x -18=______.15. 在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.17. 如图,在平面直角坐标系中,已知C (1,2),△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 的面积是△ABC 面积的5倍,则点F 的坐标为_____.18. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的项点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为3时,阴影部分的面积为____.三.解答题19. 计算:0(13)+|12|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x(k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x >﹣x+5的解集; (3)求△AOD 的面积.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.23. 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m 的值为_____,表示“D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题1. 2020的绝对值等于()A. 2020B. -2020C.12020D.12020-【答案】A【解析】【分析】根据绝对值的定义直接进行计算即可.【详解】根据绝对值的概念可知:|2020|=2020.故选:A.【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°-12α B. 90°+12α C.2αD. 360°-α【答案】C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.3. 在下列几何体中,从正面看到的平面图形为三角形的是()A. B. C. D.【答案】B【解析】【分析】主视图是从物体前面看所得到的图形,由此进行判断即可.【详解】A选项:圆柱的主视图是长方形,故本选项不合题意;B选项:圆锥的主视图是三角形,故本选项符合题意;C选项:正方体的主视图是正方形,故本选项不合题意;D选项:三棱柱的主视图是长方形,故本选项不合题意;故选:D.【点睛】考查了简单几何体的主视图,解题关键是掌握主视图的定义,即从正面看得到的图形.4. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷【答案】D【解析】【分析】先计算原数,再根据幂的运算性质逐项判断即可.【详解】解:22()m m -=,A 、122()m m --=,与原数不相等,本选项不符合题意;B 、242m m m --⨯=,与原数不相等,本选项不符合题意;C 、242m m m -÷=,与原数不相等,本选项不符合题意;D 、()24242m m m m -----÷==,与原数相等,本选项符合题意.故选D.【点睛】本题考查了幂的运算性质,属于常考题型,熟练掌握幂的运算性质是关键.6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×107 【答案】B【解析】【详解】试题分析:510 000 000=5.1×108.故选B . 考点:科学记数法—表示较大的数.7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩【答案】B【解析】【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.8. 将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A. y=(x+1)2+3B. y=(x﹣1)2+3C. y=(x﹣1)2﹣3D. y=(x+1)2﹣3【答案】D【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】抛物线y=x2的顶点坐标为(0,0),向下平移3个单位,再向左平移1个单位后的图象的顶点坐标为(-1,-3),所以,所得图象的解析式为y=(x+1)2﹣3,故选D.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A. B. C. D. 【答案】C【解析】【分析】根据第一小组人数占总人数的百分比即可计算其角度.【详解】由题意可得,总人数为12+20+13+5+10=60,第一小组对应的圆心角度数是:12360=72 60⨯︒︒,故选C.考点:1.扇形统计图;2.条形统计图.10. 下列命题中真命题是()A. 若a2=b2,则a=b B. 4的平方根是±2 C. 两个锐角之和一定是钝角 D. 相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.11. 如图,给出线段a ,h ,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点A 为圆心,a 为半径作弧,与MN 分别交于点B ,C ;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A. ①B. ②C. ③D. ④【答案】B【解析】【分析】 利用基本作图(过已知直线上一点作直线的垂线)可判断②错误.【详解】有错误的一步是②,应该为过D 点作MN ⊥AD .故选B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1 C .1x =1,2x =﹣2D. 1x =1,2x =2【答案】B【解析】【分析】 分两种情况把含绝对值的方程化为一元二次方程,进而即可求解.【详解】当x≥1时,方程为x 2﹣x+1﹣1=0,∴x 1=0(舍去),x 2=1;当x <1时,方程为x 2+x ﹣1﹣1=0,∴x 1=﹣2,x 2=1(舍去),∴方程的解是:x1=﹣2,x2=1.故选:B.【点睛】本题主要考查含绝对值的方程,掌握求绝对值法则以及解一元二次方程的步骤,是解题的关键.二.填空题13. 若分式232xx-+无意义,则x的值为__________.【答案】-2【解析】【分析】根据分式无意义的条件为:分母为0即可求出x的值.【详解】∵分式232xx-+无意义∴20x+=解得2x=-故答案为:-2.【点睛】本题主要考查分式无意义的条件,掌握分式无意义的条件是分母为0是解题的关键.14. 因式分解:-2x2+12x-18=______.【答案】-2(x-3)2.【解析】【分析】先提取公因式,再根据完全平方公式分解即可.【详解】解:-2x2+12x-18=-2(x2-6x+9)=-2(x-3)2,故答案为-2(x-3)2.【点睛】本题考查了分解因式,能灵活运用因式分解的方法分解因式是解此题的关键.15. 在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.【答案】8 【解析】【分析】根据白球的概率公式44 n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=8,故答案为8.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.【答案】2051【解析】【分析】根据题意,列出有理数的加减法算式,进而即可求解.【详解】∵﹣1+2﹣3+4﹣5+6﹣…﹣99+100=50,∴2001+(﹣1+2﹣3+4﹣5+6﹣…﹣99+100)=2051,故答案为:2051.【点睛】本题主要考查有理数的加减法,掌握有理数的加减混合运算法则,是解题的关键.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF 的面积是△ABC面积的5倍,则点F的坐标为_____.【答案】510)【解析】【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的5倍,∴点F的坐标为(1×5,2×5),即(5,10),故答案为(5,10).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18. 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的项点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为3时,阴影部分的面积为____.【答案】99 42π-【解析】【分析】连接OC,可得∠COD=45°,利用阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即可求解.【详解】连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=32,∴阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即:245(32)360π⨯﹣1332⨯⨯=94π﹣92.故答案为:9942π-.【点睛】本题主要考查求阴影部分的面积,掌握扇形的面积公式,是解题的关键.三.解答题19.计算:0(1+|1|﹣2cos45°+114-⎛⎫⎪⎝⎭.【答案】4.【解析】【分析】先求零指数幂,负整数指数幂,绝对值以及特殊角的三角函数,再算加减法,即可求解.【详解】原式=﹣1﹣=4.【点睛】本题主要考查实数的混合运算,掌握零指数幂,负整数指数幂,绝对值以及特殊角的三角函数的运算法则,是解题的关键.20. 先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中1x=.. 【解析】【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将1x==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21. 如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=kx(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式kx>﹣x+5的解集;(3)求△AOD的面积.【答案】(1)k=﹣6;(2)﹣1<x<0;(3)5.【解析】【分析】(1)过A作AM⊥x轴于M,先求出点C的坐标,再根据S△AOC=15,求出点A的坐标,进而即可得到k 的值;(2)由函数的图象,可知:反比例函数图象在一次函数图象上方部分所对应的x的范围,即为不等式kx>﹣x+5的解集;(3)由△AOD与△AOC的高相等,CD:AC=2:3,进而求解.【详解】(1)对于y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,∵S△AOC=15,∴15AM2⨯⨯=15,解得:AM=6,∴A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=kx得:k=﹣6;(2)由函数图象可知:当﹣1<x<0时,kx>﹣x+5,∴当x<0时不等式kx>﹣x+5的解集是:﹣1<x<0;(3)∵CD:AC=2:3,S△AOC=15,∴△AOD的面积=13S△AOC=1153⨯=5.【点睛】本题主要考查反比例函数与一次函数的综合,掌握一次函数与反比例函数的图象和性质,是解题的关键.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由“HL”可判定Rt △ABC ≌Rt △EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF 是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF ,∴Rt △ABC ≌Rt △EDF(2)∵Rt △ABC ≌Rt △EDF∴BC=DF ,∠ACB=∠DFE∴∠BCF=∠DFC∴BC ∥DF ,BC=DF∴四边形BCDF 是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.23. 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【答案】(1)参赛学生共20人;补图见解析;(2)40;72;(3)23.【解析】【分析】(1)由“A等级的人数÷A等级的百分比=参赛学生人数”,即可求得参赛人数,再求出B等级人数,补全条形统计图,即可;(2)由C等级人数÷参赛学生人数,即可得到m的值,由360°×D等级的百分比,即可得到“D等级”的扇形的圆心角;(3)根据题意,列出表格,得到所有等可能的结果,再根据概率公式,即可求解.【详解】(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,B等级人数有:20﹣(3+8+4)=5(人),补全条形图如下:(2)C等级的百分比为:820×100%=40%,即:m=40,表示“D等级”的扇形的圆心角为:360°×420=72°,故答案为:40,72;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴P(恰好是一名男生和一名女生)=46=23.【点睛】本题主要考查条形统计图、扇形统计图以及等可能事件的概率,掌握条形统计图、扇形统计图的特征以及列举法求概率,是解题的关键.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.【答案】平路有443千米,坡路有53千米【解析】【分析】设去时平路为xkm,上山的坡路为ykm,根据去的时候共用3h,返回时共用4h,列方程组即可.【详解】解:设平路有x千米,坡路有y千米.由题意可知3 634 45x yx y⎧+=⎪⎪⎨⎪+=⎪⎩解得44353 xy⎧=⎪⎪⎨⎪=⎪⎩答:平路有443千米,坡路有53千米【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程组.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=tan∠FAC=12,∵Rt△ABE中,tan∠ABE=AEBE=12,∴设AE=x,则BE=2x,∴AB=10,解得:x=∴∆ABE≅∆CBE,∴AC=2AE=BE=作CH⊥AF于点H,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAE,∴HCAE=AHBE=ACAB10,∴HC=4,AH=8,∵HC∥AB,∴FCFB=HCAB,即FCFC10+=25,解得:FC=203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】(1)y=﹣x2﹣x+2;(2)(0,2)或(﹣1,2)或117-+,﹣2)或117--,﹣2);(3)1.【解析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P 的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(1)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC , ∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0,解得m =0或﹣1或12-±,∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(12-+,﹣2)或(12-,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2),ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1,∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.。

人教版中考第一次模拟测试《数学试卷》含答案解析

人教版中考第一次模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。

2022-2023学年新人教版中考专题数学中考模拟(含解析)

2022-2023学年新人教版中考专题数学中考模拟(含解析)

2022-2023学年初中中考专题数学中考模拟学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )A.B.C.D.3. 如图所示,三架飞机,,保持编队飞行,某时刻在坐标系中的坐标分别为,,.秒后,飞机飞到位置,则飞机,的位置,分别为( )−20202020−1202012020−2020P Q R (−1,1)(−3,1)(−1,−1)30P P'(4,3)Q R Q'R'A.,B.,C.,D.,4. 下列各式计算正确的是( )A.B.C.D.5. 如图,一束光线先后经平面镜,反射后,反射光线与平行,当时,的度数为( )A.B.C.D.6. 港珠澳大桥的桥隧全长米,是世界最长的跨海大桥,数字用科学记数法表示为(  )A.B.C.D.7. 方程的解是( )Q'(2,3)R'(4,1)Q'(2,3)R'(2,1)Q'(2,2)R'(4,1)Q'(3,3)R'(3,1)=±222−−√(+)(−)=35–√2–√5–√2–√=−2(−2)2−−−−−√=×(−4)×(−25)−−−−−−−−−−−√−4−−−√−25−−−−√AB OM ON CD AB ∠ABM =40∘∠DCN 40∘50∘60∘80∘55000550005.5×1040.55×1045.5×10355×103+=−111−x x x −1A.B.C.D.无实数解8. 赵师傅透过平举放大镜从正上方看到水平桌面上的菱形的,那么与放大镜中的的大小关系是( )A.B.C.D.9. 如图所示的两个统计图,女生人数多的学校是( )A.甲校B.无法确定C.甲、乙两校女生人数一样多D.乙校10. 如图,点在内,连接,,,若对于任意的,都成立,则点应是( )A.三条高的交点B.的三条中线的交点C.的三条角平分线的交点D.的一条中线与一条角平分线的交点卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )x =2x =1x =0ABCD ∠C ∠A ∠C ∠A =∠C∠A >∠C∠A <∠C∠A ≤∠CO △ABC OA OB OC △ABC ==S △OAB S △OBC S △OAC O △ABC △ABC △ABC △ABC11. 方程组的解是________.12. 方程的两个根分别为,,则的值等于________.13. 某服装店元旦促销,如图是该商店抽奖所用的一个转盘,这个转盘被分成的每等份所对的圆心角为.转动转盘,若指针落在空白区域,顾客所购商品打折;若指针落在阴影区域,顾客所购商品在打折的基础上,还可获得消费满减的代金券,则小李在该店消费并能获得代金券的概率为________.14. 用不等式表示下列关系:(1)是正数________;(2)是负数________;(3)与的和是正数________;(4)减的差是负数________;(5)的倍大于或等于________;(6)的一半小于________. 15. 如图,平行四边形的对角线,相交于点,则添加一个适当的条件:________,可使其成为菱形(只填一个即可).16. 如图,在中,是边上的高,且=,=,矩形的顶点、在边上,顶点、分别在边和上,如果设边的长为,矩形的面积为,那么关于的函数解析式是________.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )17. 计算:. 18. 为迎接建党周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取次,记录这次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第个数据看不清,但知道甲的中位数比乙的众数大.{x +y =5x −y =32+3x −1=x 20x 1x 2+1x 11x 222.5∘8850050a a a 5b 5x 39y 3ABCD AC BD O △ABC AD BC BC 5AD 3EFGH F G BC E H AB AC EF x(0<x <3)EFGH y y x (a −3+)÷1a −1−4a 22−2a1008853甲乙求的值;现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.19. 如图, , ,垂足分别为、.求证: ;猜想线段、、之间具有怎样的数量关系,并说明理由;题设条件不变,根据图可得线段、、之间的数量关系是________ .20. 如图所示,某数学活动小组选定测量小河对岸大树的高度,他们在斜坡上的处测得大树顶端的仰角是,在地面上处测得大树顶端的仰角是,若坡角,,求大树的高度.(结果保留整数,参考数据:)21. 晓芳的妈妈绣了一幅长厘米、宽厘米的十字绣的矩形风景画.晓芳想帮妈妈把这幅十字绣的四周镶一条相同宽度的金边,然后再装裱在一个矩形画框中,如图所示,最外圈深色部分是画框.如果要使整个画框的面积是厘米,当画框四边宽度均为厘米时,求金边的宽度? 22. 如图,在平面直角坐标系中,直线=与轴、轴分别相交于点、,.(1)求的值;(2)若直线=与双曲线的一个交点在一象限内,以为直径的与轴相切于点,求的值.78798182x 8893957580808385909295(1)x (2)1∠ACB =90∘AC =BC,AD ⊥MN,BE ⊥MN D E (1)△ADC ≅△CEB (2)AD BE DE (3)2AD BE DE BC AF D B 30∘A B 45∘∠FAE =30∘AD =6m ≈1.733–√805054002l :y kx +1(k >0)x y A B tan ∠ABO =3–√k l :y kx +1y =(m ≠0)m xQ BQ ⊙I x T m23. 如图,在平面直角坐标系中,圆心为 的动圆经过点,且与轴相切于点,与之间存在一种确定的函数关系,其图像是一条常见的曲线,记作曲线.如图,①时,直接写出的半径;②当,时,直接写出的半径.求曲线最低点的坐标(用含有的式子表示);如图,若曲线最低点总在直线 的下方,点 都在曲线上,试比较与的大小.24.(问题发现)如图①,正方形的两边分别在正方形的边和上,连接.填空:①线段与的数量关系为________;②直线与所夹锐角的度数为________;(拓展探究)如图②,将正方形绕点逆时针旋转,在旋转的过程中,中的结论是否仍然成立,请利用图②进行说明;(解决问题)如图③,在正方形中,,点为直线上异于,的一点,以为边作正方形,点为正方形的中心,连接,若,,直接写出的长. 25. 如图,已知为的直径,是弦,于点,于点,.求证;求证;若,设,求的值及阴影部分的面积. 26. 综合与探究如图,在平面直角坐标系中,抛物线=的顶点为,与轴交于点,与轴交于点,.是上的动点,设点的横坐标为,过点作直线轴.P (x,y)A (m,2m +4)(m >−2)x B y x F (1)1y =32⊙P m =−1x =−2⊙P (2)F m (3)2F y =x +312C (−2,),D (1,)y 1y 2F y 1y 2(1)AEFG ABCD AB AD CF CF DG CF DG (2)AEFG A (1)(3)ADBC AD =AC M BC B C AM AMEF N AMEF CN AC =4CM =2CN AB ⊙O CD AB ⊥CD E OF ⊥AC F BE =OF (1)OF//BC (2)△AFO ≅△CEB (3)EB =5cm,CD =10cm 3–√OE =xcm x 1:y W 1a +bx +3(a ≠0)x 2A y D x B(3,0)C(−1,0)P W 1P m(0<m <3)P //x(1)求抛物线的函数表达式及点,的坐标;(2)如图,连接,直线交直线于点,连接交于点,求的长(用含的代数式表示)及的最大值;(3)在点运动过程中,将抛物线沿直线对称得到拋物线,与轴交于点,为上一点,试探究是否存在点,使是以为直角顶点的等腰直角三角形?若存在,直接写出此时点的坐标;若不存在,请说明理由.W 1A D 2BD l BD M OP BD N PM m P W 1l W 2W 2y E F W 2P △DEF D P参考答案与试题解析2022-2023学年初中中考专题数学中考模拟一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:的相反数是.故选.2.【答案】B【考点】简单几何体的三视图【解析】找到从上面看所得到的图形即可.【解答】解:从上面看依然可得到两个半圆的组合图形.故选.3.【答案】A【考点】坐标与图形变化-平移【解析】由点到知,编队需向右平移个单位、向上平移个单位,据此可得.【解答】由点到知,编队需向右平移个单位、向上平移个单位,∴点的对应点坐标为,点的对应点,−20202020A B P(−1,1)P'(4,3)52P(−1,1)P'(4,3)52Q(−3,1)Q'(2,3)R(−1,−1)R'(4,1)4.【答案】B【考点】二次根式的性质与化简二次根式的混合运算【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:,,故选项错误;,,故选项正确;,,故选项错误;,,故选项错误.故选.5.【答案】B【考点】平行线的性质【解析】此题暂无解析【解答】解:∵∴∴,∴∴,∴,∵∴,故选.6.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移A ==222−−√4–√B (+)(−)=5−2=35–√2–√5–√2–√C ==2(−2)2−−−−−√4–√D =×(−4)×(−25)−−−−−−−−−−−√4–√25−−√B ∠ABM =,∠ABM =∠OBC,40∘∠OBC =40∘∠ABC =−∠ABM −∠OBC =−−=180∘180∘40∘40∘100∘CD//AB∠ABC +∠BCD =180∘∠BCD =−∠ABC =180∘80∘∠BCO =∠DCN,∠BCO +∠BCD +∠DCN =180∘∠DCN =(−∠BCD)=12180∘50∘B a ×10n 1≤|a |<10n n a动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将用科学记数法表示应为:.7.【答案】D【考点】解分式方程【解析】此题暂无解析【解答】解:方程两边同乘以得,,移项得,,合并同类项得,,系数化为得,.当时,,该分式方程无意义.故该分式方程无实数解.故选.8.【答案】A【考点】圆内接四边形的性质【解析】此题暂无解析【解答】解:由于图形放大或缩小后,角的形状没有发生变化,结合相似三角形的性质,可判定.故选.9.【答案】B【考点】扇形统计图【解析】根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.【解答】n >10n <1n 55000 5.5×1041−x 1−x =−1+x−x −x =−1−1−2x =−21x =1x =11−x =0D ∠A =∠C A解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选.10.【答案】B【考点】全等三角形的性质与判定三角形的面积三角形的角平分线、中线和高【解析】根据三角形的面积公式,知点和点到的距离相等,利用全等三角形就可证明的延长线和的交点即为的中点,同理可证明、也是三角形的中线的一部分.【解答】解:延长交于,作于,作于.,.,,,,∴是边上的中线.同理可以证明是边上的中线,是边上的中线,∴点是三角形的三条中线的交点.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )11.【答案】【考点】加减消元法解二元一次方程组【解析】本题考查解二元一次方程组.【解答】B BC AO AO BC BC BO CO AO BC P BE ⊥AO E CF ⊥AO F ∵=S △OAB S △OAC ∴BE =CF ∵∠E =∠CFP =90∘∠BPE =∠CPF ∴△BEP ≅△CFP ∴BP =CP AO BC BO AC CO AB O B {x =4y =1x +y =5①解:得,,解得,把③代入①得,,∴方程组的解为:.故答案为:.12.【答案】【考点】根与系数的关系【解析】先根据根与系数的关系得到,,再通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得,,所以.故答案为:.13.【答案】【考点】概率公式【解析】由题可得,该转盘被等分成了份,其中阴影部分有份,故顾客在该店消费并能获得代金券的概率为.【解答】解:由题意,得转盘一共有个格子,且阴影部分一共有个格子,又获得代金券的概率,则顾客在该店消费并能获得代金券的概率为.故答案为:.14.【答案】{x +y =5①x −y =3②①+②2x =8x =4③y =1{x =4y =1{x =4y =13+=−x 1x 232=−x 1x 212+=1x 11x 2+x 1x 2x 1x 2+=−x 1x 232=−x 1x 212+===31x 11x 2+x 1x 2x 1x 2−32−123316163316÷=16360∘22.5∘3=阴影个数总数316316【考点】由实际问题抽象出一元一次不等式【解析】直接利用正数、负数的定义以及结合不等关系得出不等式.【解答】是正数,则;是负数,则;与的和是正数,则;减的差是负数,则;的倍大于或等于,则;的一半小于,则.故答案为:,,,.15.【答案】【考点】菱形的判定【解析】利用菱形的判定方法确定出适当的条件即可.【解答】解:平行四边形的对角线,相交于点,添加,可使其成为菱形,理由为邻边相等的平行四边形为菱形.故答案为:.(答案不唯一)16.【答案】【考点】相似三角形的性质与判定根据实际问题列二次函数关系式【解析】设边的长为,则=,进而利用已知得出,进而得出的长,即可得出答案.a >0a <0a +5>0b −5<03x ≥9<3a a >0a a <0a 4a +5>0b 8b −5<0x 793x ≥6y 3<6a >0a <0b −2<0<8AB =BCABCD AC BD O AB =BC AB =BC y =−+5x 53x 2EF x(0<x <3)AN 3−x △AEH ∽△ABC EH【解答】设边的长为,则=,∵,∴,∴,∴,解得:,∵矩形的面积为,∴关于的函数解析式是:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )17.【答案】解:原式.【考点】分式的混合运算【解析】暂无【解答】解:原式.18.【答案】解:依题意,可知甲的中位数为,乙的众数为.所以,解得.派甲参赛比较合适.理由如下:,,,,因为,,EF x(0<x <3)AN 3−x EH //BC △AEH ∽△ABC =AN AD EH BC =3−x 3EH 5EH =(3−x)53EFGH y y x y =(3−x)×x =−+5x 5353x 2=⋅(a −3)(a −1)+1a −12(1−a)(a +2)(a −2)=⋅(a −2)2a −12(1−a)(a +2)(a −2)=−2a −4a +2=⋅(a −3)(a −1)+1a −12(1−a)(a +2)(a −2)=⋅(a −2)2a −12(1−a)(a +2)(a −2)=−2a −4a +2(1)82+x 280=80+382+x 2x =84(2)=(78+79+81+82+84+88+93+95)=85x ¯¯¯甲18=(75+80+80+83+85+90+92+95)=85x ¯¯¯乙18=[(78−85+++S 2甲18)2(79−85)2(81−85)2(82−85)2++(88−85+(93−85+(95−85]=35.5(84−85)2)2)2)2=[(75−85+(80−85+(80−85+(83−85S 2乙18)2)2)2)2+(85−85+(90−85+(92−85+(95−85]=41)2)2)2)2=x ¯¯¯甲x ¯¯¯乙<S 2甲S 2乙所以甲的成绩较稳定,派甲参赛比较合适.【考点】中位数众数算术平均数方差【解析】(1)依题意,可知甲的中位数为,乙的众数为 .∴,解得 .【解答】解:依题意,可知甲的中位数为,乙的众数为.所以,解得.派甲参赛比较合适.理由如下:,,,,因为,,所以甲的成绩较稳定,派甲参赛比较合适.19.【答案】证明:∵,∴,∴.∵,∴,∴,在和中,∴.解:,理由如下:由()知,∴ ,,∴.【考点】全等三角形的性质与判定82+x 280=80+382+x 2x =84(1)82+x 280=80+382+x 2x =84(2)=(78+79+81+82+84+88+93+95)=85x ¯¯¯甲18=(75+80+80+83+85+90+92+95)=85x ¯¯¯乙18=[(78−85+++S 2甲18)2(79−85)2(81−85)2(82−85)2++(88−85+(93−85+(95−85]=35.5(84−85)2)2)2)2=[(75−85+(80−85+(80−85+(83−85S 2乙18)2)2)2)2+(85−85+(90−85+(92−85+(95−85]=41)2)2)2)2=x ¯¯¯甲x ¯¯¯乙<S 2甲S 2乙(1)AD ⊥MN,BE ⊥MN ∠CDA =∠BEC =90∘∠ACD +∠DAC =90∘∠ACB =90∘∠ACD +∠BCE =90∘∠DAC =∠ECB △ADC △CEB ∠CDA =∠BEC,∠DAC =∠ECB,AC =CB,△ADC ≅△CEB (2)AD =BE +DE 1△ADC ≅△CEB AD =CE CD =BE AD =CE =CD +DE =BE +DE DE=AD +BE【解析】111【解答】证明:∵,∴,∴.∵,∴,∴,在和中,∴.解:,理由如下:由()知,∴ ,,∴.解:.理由:∵ ,∴ ,∴,∵,∴,∴.又∵, ,∴,∴ .∵,∴ .故答案为:.20.【答案】解:如图,延长交于点,作于点.因为,所以,易知,设米,则解得:,∴米.∴大树的高度为:米.【考点】解直角三角形的应用-仰角俯角问题【解析】(1)AD ⊥MN,BE ⊥MN ∠CDA =∠BEC =90∘∠ACD +∠DAC =90∘∠ACB =90∘∠ACD +∠BCE =90∘∠DAC =∠ECB △ADC △CEB ∠CDA =∠BEC,∠DAC =∠ECB,AC =CB,△ADC ≅△CEB (2)AD =BE +DE 1△ADC ≅△CEB AD =CE CD =BE AD =CE =CD +DE =BE +DE (3)DE =AD +BE AD ⊥MN,BE ⊥MN ∠ADC =,∠BEC =90∘90∘∠EBC +∠ECB =90∘∠ACB =90∘∠ECB +∠ACD =90∘∠ACD =∠CBE ∠ADC =∠CEB AC =CB △ADC ≅△CEB AD =CE,CD =BE CD +CE =DE DE =AD +BE DE =AD +BE BD EC M DG ⊥EC G BC ⊥EC △DMG ∼△BMC ∠DMA =30°MG =GA =6×cos 30°=3,3–√DG =6×sin 30°=3,BC =x =,33–√6+x 3–√3xx ≈14BC =1414DG ⊥BC G DH ⊥CE BC DG =CH CG =DH过点作于,于,设为,根据矩形性质得出,,再利用锐角三角函数的性质求的值即可.【解答】解:如图,延长交于点,作于点.因为,所以,易知,设米,则解得:,∴米.∴大树的高度为:米.21.【答案】解:设金边的宽度是,由题得,,或(舍去).答:金边的宽度是厘米.【考点】一元二次方程的应用——几何图形面积问题【解析】设金边的宽度是,根据绣了一幅长厘米、宽厘米的十字绣的矩形风景画,整个画框的面积是厘米,当画框四边宽度均为厘米时,可列方程求解.【解答】解:设金边的宽度是,由题得,,或(舍去).答:金边的宽度是厘米.22.【答案】在=中,令=,则=,∴=,在中,,∴,,把点代入=中得:,解得:,(D DG ⊥BC G DH ⊥CE H BC x DG =CH CG =DH x BD EC M DG ⊥EC G BC ⊥EC △DMG ∼△BMC ∠DMA =30°MG =GA =6×cos 30°=3,3–√DG =6×sin 30°=3,BC =x =,33–√6+x 3–√3xx ≈14BC =1414xcm (80+2+2+2x)(50+2+2+2x)=5400(x +72)(x −3)=0x =3x =−723xcm 805054002xcm (80+2+2+2x)(50+2+2+2x)=5400(x +72)(x −3)=0x =3x =−723y kx +1(k >0)x 0y 1OB 1Rt △AOB tan ∠ABO ===AO BO AO 13–√AO =3–√A(−,0)3–√A(−,0)3–√y kx +10=−k +13–√k =3–√3tan ∠ABO =3–√如图,∵,∴=,=,连接,∵与轴相切于点,∴,=,在中,=,=,∴=,在中,=,设=,则=,=,∴=,解得:=,=,作轴于点,在中,=,,,∴,∴,把点代入得:,【考点】反比例函数综合题【解析】(1)先求出,进而利用锐角三角函数求出,将点坐标代入表达式即可得出结论;(2)先求出=,进而求出=,即可求出=,利用锐角三角函数求出,即可得出结论.【解答】在=中,令=,则=,∴=,在中,,∴,,把点代入=中得:,解得:,(如图,∵,∴=,=,连接,∵与轴相切于点,∴,=,在中,=,=,∴=,在中,=,设=,则=,=,∴=,解得:=,=,作轴于点,在中,=,,,∴,∴,把点代入得:,23.【答案】解:①的半径为;②的半径为.tan ∠ABO =3–√∠ABO 60∘∠BAO 30∘IT ⊙I x T IT ⊥AT ∠ITA 90∘Rt △AOB ∠BAO 30∘OB 1AB 2Rt △ATI ∠IAT 30∘IT r AI r +2AI 2TI r +22r r 2AQ 6QC ⊥x C Rt △ATI ∠QAC 30∘QC =AQ =×6=31212AC =AQ ∗cos =330∘3–√OC =AC −AO =3−=23–√3–√3–√Q(2,3)3–√Q(2,3)3–√y =m xm =63–√OB OA A ∠BAO 30∘AB 2AQ 6CQ y kx +1(k >0)x 0y 1OB 1Rt △AOB tan ∠ABO ===AO BO AO 13–√AO =3–√A(−,0)3–√A(−,0)3–√y kx +10=−k +13–√k =3–√3tan ∠ABO =3–√∠ABO 60∘∠BAO 30∘IT ⊙I x T IT ⊥AT ∠ITA 90∘Rt △AOB ∠BAO 30∘OB 1AB 2Rt △ATI ∠IAT 30∘IT r AI r +2AI 2TI r +22r r 2AQ 6QC ⊥x C Rt △ATI ∠QAC 30∘QC =AQ =×6=31212AC =AQ ∗cos =330∘3–√OC =AC −AO =3−=23–√3–√3–√Q(2,3)3–√Q(2,3)3–√y =m x m =63–√(1)⊙P 32⊙P 54(2)PA A AC ⊥x C PD ⊥AC分别连接,,过点作 轴于点,过点作 于点如图所示,∵圆心为 的动圆经过点,且与轴相切于点.根据勾股定理 .∴,∴.整理得.∵.∴是关于的二次函数,其图象是一条开口向上,对称轴是的抛物线(即曲线,其最低点的坐标.∵抛物线的顶点在直线的下方,,解得,.点都在抛物线上,当时,,当时,;当时,【考点】二次函数综合题切线的性质【解析】此题暂无解析【解答】解:①的半径为;②的半径为.分别连接,,过点作 轴于点,过点作 于点如图所示,∵圆心为 的动圆经过点,且与轴相切于点.根据勾股定理 .∴,∴.整理得.∵.(2)PA PB A AC ⊥x C P PD ⊥AC D.P (x,y)A (m,2m +4)x B.∴PA =PB =CD P +A =P D 2D 2A 2+=(x −m)2(2m +4−y)2y 2+−2(2m +4)y +=(x −m)2(2m +4)2y 2y 2y =+(m +2)14m +8(x −m)2m >−2,∴>014m +8y x x =m F)(m,m +2)(3)y =x +312∴m +3>m +212m <2∵m >−2,∴−2<m <2∵C(−2,),D(1,)y 1y 2∴m =−12=y 1y 2−2<m <−12<y 1y 2−<m <212>.y 1y 2(1)⊙P 32⊙P 54(2)PA PB A AC ⊥x C P PD ⊥AC D.P (x,y)A (m,2m +4)x B.∴PA =PB =CD P +A =P D 2D 2A 2+=(x −m)2(2m +4−y)2y 2+−2(2m +4)y +=(x −m)2(2m +4)2y 2y 2y =+(m +2)14m +8(x −m)2m >−2,∴>014m +8F)∴是关于的二次函数,其图象是一条开口向上,对称轴是的抛物线(即曲线,其最低点的坐标.∵抛物线的顶点在直线的下方,,解得,.点都在抛物线上,当时,,当时,;当时,24.【答案】,中的结论仍然成立.理由如下:连接,,延长交的延长线于点,交于点.∵,∴.∵,,∴,∴,∴,,∴,.∵,∴.①当点在线段上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴;②当点在线段的延长线上时,如图,连接,.y x x =m F)(m,m +2)(3)y =x +312∴m +3>m +212m <2∵m >−2,∴−2<m <2∵C(−2,),D(1,)y 1y 2∴m =−12=y 1y 2−2<m <−12<y 1y 2−<m <212>.y 1y 2CF =DG 2–√45∘(2)(1)AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘∠CAF =∠DAG AC =AD 2–√AF =AG 2–√==AC AD AF AG 2–√△CAF ∼△DAG ==CF DG AC AD 2–√∠AFC =∠AGD CF =DG 2–√∠AFO =∠OGK ∠AOF =∠GOK ∠K =∠FAO =45∘(3)M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN =BM =2–√22–√M BC AB AN∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴.【考点】正方形的性质旋转的性质相似三角形的性质与判定【解析】()【问题发现】连接.易证,,三点共线.易知,,推出,从而得出与所夹锐角的度数;()【拓展探究】连接,,延长交的延长线于点,交于点,根据四边形的性质得到,根据,得到,根据相似三角形的性质即可解决问题;()【解决问题】需分两种情况讨论:①当点在线段上时,连接,,根据正方形的性质得到,,可得,根据,可得,从而得到,根据,,可得到,从而可求出的值;②当点在线段的延长线上时,连接,,根据正方形的性质得到,,可得,根据,可得,从而得到,根据,,可得到.从而可求出的值.【解答】解:①线段与的数量关系为;②直线与所夹锐角的度数为.理由如下:连接,易证,,三点共线.∵,,∴.故答案为:;.中的结论仍然成立.理由如下:ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC +CM =6CN =BM =32–√22–√1AF A F C AF =AG 2–√AC =AD 2–√CF =AC −AF =(AD −AG)=DG 2–√2–√CF DG 2AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘AC =AD 2–√AF =AG 2–√△CAF ∽△DAG 3M BC AB AN ∠ABC =∠BAC =45∘∠MAN =45∘∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∽△CAN CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN M BC AB AN ∠ABC =∠BAC =45∘∠MAN =45∘∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∽△CAN CN =BM −2–√2AC =4CM =2BM =AC +CM =6CN (1)CF DG CF =DG 2–√CF DG 45∘AF A F C AF =AG 2–√AC =AD 2–√CF =AC −AF =(AD −AG)=DG 2–√2–√CF =DG 2–√45∘(2)(1)AC AF CF DG AG O连接,,延长交的延长线于点,交于点.∵,∴.∵,,∴,∴,∴,,∴,.∵,∴.①当点在线段上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴;②当点在线段的延长线上时,如图,连接,.∵四边形,四边形为正方形,∴,,∴,即.∵,∴,∴,∴.∵,,∴,∴.25.AC AF CF DG K AG FK O ∠CAD =∠FAG =45∘∠CAF =∠DAG AC =AD 2–√AF =AG 2–√==AC AD AF AG 2–√△CAF ∼△DAG ==CF DG AC AD 2–√∠AFC =∠AGD CF =DG 2–√∠AFO =∠OGK ∠AOF =∠GOK ∠K =∠FAO =45∘(3)M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC −CM =2CN =BM =2–√22–√M BC AB AN ADBC AMEF ∠ABC =∠BAC =45∘∠MAN =45∘∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN ==AB AC AM AN 2–√△ABM ∼△ACN ==BM CN AB AC 2–√CN =BM 2–√2AC =4CM =2BM =AC +CM =6CN =BM =32–√22–√【答案】证明:∵为的直径,.,∴.(2)证明:∵,∴,∴.∵,∴.解:∵,∴,∵,∴在中,解得,∴,∵在中,,∴,∴.,,,∴.【考点】相似三角形的性质与判定全等三角形的性质与判定【解析】此题暂无解析【解答】证明:∵为的直径,.,∴.(2)证明:∵,∴,∴.∵,∴.解:∵,∴,∵,∴在中,解得,∴,∵在中,,∴,∴.,,(1)AB ⊙O BC ⊥AC OF ⊥AC OF//BC AB ⊥CD,OF ⊥AC =,∠CEB =∠OFA =BCˆBD ˆ90∘∠BCD =∠CAB OF =BE △AFO ≅△CEB (AAS)EB =5cm,CD =10cm,AB ⊥CD 3–√∠OEC =,CE =CD =5cm 90∘123–√OE =xcm OC =OB =OE +EB =(5+x)cm.Rt △CEO +=(5)3–√2x 2(5+x)2x =5OC =10cm Rt △CEO OE =CO 12∠OCE =30∘∠COE =60∘=2(−)S 阴S 扇形OB S △OCE =×π×=πc S 扇形COB 60360102503m 2=CE ⋅OE S △OEC 12=×5×5=c 123–√2523–√m 2=2×(π−)S 阴503253–√2=(π−25)c 10033–√m 2(1)AB ⊙O BC ⊥AC OF ⊥AC OF//BC AB ⊥CD,OF ⊥AC =,∠CEB =∠OFA =BCˆBD ˆ90∘∠BCD =∠CAB OF =BE △AFO ≅△CEB (AAS)EB =5cm,CD =10cm,AB ⊥CD 3–√∠OEC =,CE =CD =5cm 90∘123–√OE =xcm OC =OB =OE +EB =(5+x)cm.Rt △CEO +=(5)3–√2x 2(5+x)2x =5OC =10cm Rt △CEO OE =CO 12∠OCE =30∘∠COE =60∘=2(−)S 阴S 扇形OB S △OCE =×π×=πc S 扇形COB 60360102503m 2CE ⋅OEOEC 1,∴.26.【答案】将,代入的函数表达式得,解之得=,=,∴抛物线的表达式为=.∴=-=,∴=,∴顶点,,∵点的横坐标为,∴,经过、的函数表达式为=,∵,的纵坐标相同,∴=,∴=,∴,∴=,∵轴,∴=,又∵=,∴,∴,∵点的坐标为,∴=,设=,∴=,∵-,∴当=时,有最大值,∴当=时,的最大值为;存在,如图,∵与关于直线对称,∴与开口大小不变,方向相反,∵中的=,∴中的=,∵和关于直线对称,∴=,∴=,∴点,∵与关于直线对称,∴=,∴=,∴点,把点和点的坐标代入=,=CE ⋅OE S △OEC 12=×5×5=c 123–√2523–√m 2=2×(π−)S 阴503253–√2=(π−25)c 10033–√m 2B(3,0)C(−1,0)W 1a −1b 2W 1y −+2x +3x 2x 1y 4A(1,4)D(0,3)P m P(m,−+2m +3)m 2B(3,0)D(0,3)y −x +3P M −+2m +3m 2−x +3x −2m m 2M(−2m,−+2m +3)m 2m 2PM −+3m m 2l //x ∠MPO ∠POB ∠MNP ∠BNO △MNP ∽△BNO B (3,0)OB 3q q m q m 3W 1W 2l W 1W 2W 1a 1−1W 2a 21D E l +y D y E 2(−+2m +3)m 2y E −2+4m +3m 2E(0,−2+4m +3)m 2A G l +y A y G 2(−+2m +3)m 2y E −2+4m +2m 2G(1,−2+4m +2)m 2E G W 2+x +c x 2b 2得:,解得:,∴=,∵是以为直角顶点的等腰直角三角形,∴,=,∴轴,∴==,即=,∴=,∴=,∴==,∵===,∴=,两边同时平方并整理得=,令=,则=,解得:=,=,即=,解得:=,=,=,解得:=,=,∵,∴=或,∴点的坐标为或(,).【考点】二次函数综合题【解析】W 2+−2x +(−2+4m +3)x 2m 2△DEF D DE ⊥DF DE DF DF //x y F y D 3−2x +(−2+4m +3)x 2m 23−2x −2+4m x 2m 20x F 1±DF ||x F |1±|DE |−|y D y E |3−(−2+4m +3)|m 22−4m m 2|1±|2−4m m 2(2−4m −3(2−4m)m 2)2m 202−4m m 2t −3t t 20t 10t 232−4m m 20m 10m 222−4m m 23m 3m 40<m <3m 2P (2,3)−+2x +32(1)运用待定系数法求出抛物线的函数表达式=,利用顶点公式求得顶点坐标,令=,即可求得抛物线与轴交点的坐标;(2)由(1)得,运用待定系数法可求得直线的解析式,根据题意点的坐标为,根据轴,可得=,从而得出点的坐标,再由,得出,即可得到关于的函数关系式,再利用二次函数最值求解即可;(3)由于与关于直线对称,可得与开口大小不变,方向相反,根据和关于直线对称,即可得出=,由于是以为直角顶点的等腰直角三角形,即可建立方程求出,进而得出点的坐标.【解答】将,代入的函数表达式得,解之得=,=,∴抛物线的表达式为=.∴=-=,∴=,∴顶点,,∵点的横坐标为,∴,经过、的函数表达式为=,∵,的纵坐标相同,∴=,∴=,∴,∴=,∵轴,∴=,又∵=,∴,∴,∵点的坐标为,∴=,设=,∴=,∵-,∴当=时,有最大值,∴当=时,的最大值为;存在,如图,∵与关于直线对称,∴与开口大小不变,方向相反,∵中的=,∴中的=,∵和关于直线对称,∴=,∴=,∴点,∵与关于直线对称,∴=,∴=,∴点,把点和点的坐标代入=,W 1y −+2x +3x 2x 0y D D(0,3)BD P P(m,−+2m +3)m 2l //x −+2m +3m 2−x +3M PM //OB △MNP ∽△BNO m W 1W 2l W 1W 2D E l W 2+−2x +(−2+4m +3)x 2m 2△DEF D m P B(3,0)C(−1,0)W 1a −1b 2W 1y −+2x +3x 2x 1y 4A(1,4)D(0,3)P m P(m,−+2m +3)m 2B(3,0)D(0,3)y −x +3P M −+2m +3m 2−x +3x −2m m 2M(−2m,−+2m +3)m 2m 2PM −+3m m 2l //x ∠MPO ∠POB ∠MNP ∠BNO △MNP ∽△BNO B (3,0)OB 3q q m q m 3W 1W 2l W 1W 2W 1a 1−1W 2a 21D E l +y D y E 2(−+2m +3)m 2y E −2+4m +3m 2E(0,−2+4m +3)m 2A G l +y A y G 2(−+2m +3)m 2y E −2+4m +2m 2G(1,−2+4m +2)m 2E G W 2+x +c x 2b 2得:,解得:,∴=,∵是以为直角顶点的等腰直角三角形,∴,=,∴轴,∴==,即=,∴=,∴=,∴==,∵===,∴=,两边同时平方并整理得=,令=,则=,解得:=,=,即=,解得:=,=,=,解得:=,=,∵,∴=或,∴点的坐标为或(,).W2+−2x+(−2+4m+3)x2m2△DEF DDE⊥DF DE DFDF//xy F y D3−2x+(−2+4m+3)x2m23−2x−2+4mx2m20x F1±DF||x F|1±|DE|−|y D y E|3−(−2+4m+3)|m22−4mm2|1±|2−4mm2(2−4m−3(2−4m)m2)2m20 2−4mm2t−3tt20t10t232−4mm20m10m222−4mm23m3m40<m<3m2P(2,3)。

人教版中考第一次模拟检测《数学试卷》含答案解析

人教版中考第一次模拟检测《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.122. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×1063. 下列各运算中,计算正确的是()A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a24.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.6.下面是扬帆中学九年八班43名同学家庭人口统计表:这43个家庭人口的众数和中位数分别是( )家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,67.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b 绕点A 逆时针旋转( )A. 15°B. 30°C. 45°D. 60°8. 圆心角为120°,弧长为12π的扇形半径为( )A 6 B. 9 C. 18 D. 369.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 二.填空题(共10小题)11.计算:6826)=_____.12.在函数y=34xx--中,自变量x取值范围是___________.13.在平面直角坐标系中,已知一次函数y=2x+1图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.15.分式方程12x xx x-=+的解为x=_______.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.三.解答题(共7小题)21.先化简,再求代数式(1﹣25 4a-)223aa a+⋅-的值,其中a=2tan45°﹣cos60°.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=83,求⊙O的半径.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.答案与解析一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×106【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:28000=2.8×104,故选B.考点:科学记数法——表示较大的数.3. 下列各运算中,计算正确的是( )A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a2【答案】C【解析】【详解】试题分析:A、合并同类项,系数相加字母部分不变,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选C.考点:1、幂的乘方与积的乘方;2、合并同类项;3、同底数幂的乘法.4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形,是中心对称图形,故错误;B选项:不是轴对称图形,是中心对称图形.故错误;C选项:是轴对称图形,也是中心对称图形.故正确;D选项:不是轴对称图形,是中心对称图形.故错误;故选C.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.【答案】B【解析】【详解】试题分析:根据立方体的组成,结合三视图的观察角度,可得出:A、是几何体的左视图,故此选项错误;B、不是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此选项错误.故选B.考点:简单组合体的三视图.6.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是( ) 家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,6【答案】B【解析】【分析】根据众数和中位数的概念求解可得.【详解】解:这43个家庭人口的众数3,将家庭人口数从小到大排列后,第22个数为4,即中位数为4,故选:B.【点睛】此题考查的是求众数和中位数,掌握众数和中位数的概念是解决此题的关键.7.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A. 15°B. 30°C. 45°D. 60°【答案】A【解析】试题分析:先根据邻补角的定义得到∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°﹣45°=15°.解:∵∠1=120°,∴∠3=60°,∵∠2=45°,∴当∠3=∠2=45°时,b ∥c ,∴直线b 绕点A 逆时针旋转60°﹣45°=15°.故选A .点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.8. 圆心角为120°,弧长为12π的扇形半径为( )A. 6B. 9C. 18D. 36 【答案】C【解析】 试题分析:直接根据弧长的公式180n r l π=列式求解: 设该扇形的半径是r , ∵n=120°,l=12π,∴1201218180r r ππ=⇒= .故选C .考点:弧长的计算.9.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.【答案】D【解析】【分析】先根据一次函数图象与系数的关系得到k 的范围,然后根据k 的范围判断反比例函数图象的位置,逐一判断即可.【详解】解:A 、对于y =kx +1经过第一、三象限,则k >0,﹣k <0,所以反比例函数图象应该分布在第二、四象限,所以A 选项错误;B 、一次函数y =kx +1与y 轴的交点在x 轴上方,所以B 选项错误;C 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以C 选项错误;D 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以D 选项正确.故选:D .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握一次函数的图象及性质和反比例函数的图象及性质是解决此题的关键.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 【答案】C【解析】【分析】根据平行线分线段成比例定理分别对每一项进行判断即可.【详解】解:A .∵EF ∥AB ,∴AE BF EC FC=,故本选项正确; B .∵DE ∥BC ,∴AD DE AB BC=,∵EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,∴AD BF AB BC=,∴AD ABBF BC=,故本选项正确;C.∵EF∥AB,∴EF CF AB BC=,∵CF和DE的大小关系不能确定,∴EF DEAB BC≠,故本选项错误;D.∵EF∥AB,∴CE CF EA BF=,∴CE EACF BF=,故本选项正确,故选:C.【点睛】此题主要考查平行线分线段成比例定理,关键是根据平行线分线段成比例定理列出比例式并能进行灵活变形.二.填空题(共10小题)11.计算:)=_____.【答案】-2【解析】【分析】利用平方差公式和二次根式的乘法公式计算.【详解】解:原式=﹣2)=6﹣8=﹣2.故答案为﹣2.【点睛】此题考查的是二次根式的运算,掌握平方差公式和二次根式的乘法公式是解决此题的关键.12.在函数y=34xx--中,自变量x的取值范围是___________.【答案】x≥3且x≠4.【解析】【详解】试题解析:根据题意知:30 {40 xx-≥-≠解得:x≥3且x≠4故答案为:x≥3且x≠4.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)【答案】<【解析】【分析】根据一次函数的性质,当k>0时,y随x的增大而增大,然后根据横坐标的大小关系即可求出结论.【详解】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.【点睛】此题考查的是一次函数增减性的应用,掌握一次函数增减性与k的符号关系是解决此题的关键.14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【答案】14.【解析】分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】如图,根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为14.15.分式方程12x xx x-=+的解为x=_______.【答案】2.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点睛】本题考查解分式方程.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.【答案】3【解析】【分析】连接OC,BC.只要证明∠A=30°,根据AC=AB•cos30°计算即可.【详解】解:连接OC,BC.∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=120°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=60°,∴∠A=12∠BOC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB•cos30°=33故答案为:33.【点睛】此题考查的是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数,掌握是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数是解决此题的关键.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.【答案】21007.【解析】【分析】根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.【详解】解:∵点M0的坐标为(1,0),∴OM0=1.∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形.∴OM1=2OM0=2,同理,OM2=2OM1=(2)2,OM3=2OM2=(2)3,…,OM2014=2OM2013=(2)2014=21007.故答案为:21007.【点睛】本题考查探索规律题(图形的变化类);点的坐标;旋转的性质;等腰直角三角形的判定和性质.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.【答案】1或2.【解析】【详解】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=DEAD,即3cm,根据勾股定理得:223(3)23cm,∵M为AE的中点,∴3cm在Rt△ADE和Rt△PNQ中,AD=PN,AE=PQ,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=AM AP,∴AP=2cm;由对称性得到AP′=DP=AD-AP=3-2=1cm,综上,AP等于1cm或2cm.故答案为:1或2【点睛】本题考查全等三角形的判定与性质;正方形的性质;锐角三角函数.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.【答案】2 3【解析】【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE =∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE=FG,得出四边形AFGE是菱形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BF AF=23,即可得出结果.【详解】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BFAF=23xx=23,∴cos∠EGF=23,故答案为:23.【点睛】此题考查的是矩形与折叠问题、菱形的判定及性质、等腰三角形的性质和锐角三角函数,掌握矩形的性质、折叠的性质、菱形的判定及性质、等角对等边和等角的锐角三角函数值相等是解决此题的关键.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.【答案】10【解析】分析】以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2,设CF=x,则EL=CK=x,分别用含x的式子表示出Rt△ABC中的三边长,根据勾股定理列方程,解得x值,则可得答案.【详解】解:如图,以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2∵∠ACB=90°,DE⊥AB∴∠BCE+∠DCE=90°,∠BEC+∠DEC=90°∵CD=DE∴∠DCE=∠DEC∴∠BCE=∠BEC∴BC=BE∵BF=BL=2∴EL=CF设CF=x,则EL=CK=x∴BK=2x+2,BC=BE=x+2设∠B=2∠CAF=2α则∠CAK=α,∠K=90°﹣α∴∠KAB=180°﹣2α﹣(90°﹣α)=90°﹣α∴∠K=∠KAB∴BA=BK=2x+2在△CBL和△EBF中CB EB B B BL BF =⎧⎪∠=∠⎨⎪=⎩∴△CBL ≌△EBF (SAS )∴∠BCL =∠BEF又∵∠CEF =45°,∠BCE =∠BEC∴∠ECL =∠CEF =45°∴∠ALC =180°﹣45°﹣45°﹣∠BEF =90°﹣∠BEF∵∠ACL =90°﹣∠BCL ,∠BCL =∠BEF∴∠ALC =∠ACL∴AC =AL =2x在Rt △ABC 中,由勾股定理得:(x +2)2+(2x )2=(2x +2)2解得x =4或x =0(舍)∴AB =10故答案为:10.【点睛】此题考查的是等腰三角形的判定及性质、全等三角形的判定及性质和勾股定理,掌握等角对等边、等边对等角、全等三角形的判定及性质和勾股定理是解决此题的关键.三.解答题(共7小题)21.先化简,再求代数式(1﹣254a -)223a a a+⋅-的值,其中a =2tan45°﹣cos60°. 【答案】3(2)a a a +-,-6 【解析】【分析】 根据特殊角的锐角三角函数值求出a 的值,然后根据分式的运算法则化简,代入即可求出答案.【详解】解:a =2×1﹣12=32∴原式=22924(3)-+•--a a a a a =(3)(3)2(2)(2)(3)+-+•-+-a a a a a a a=3 (2) aa a+-将32a=代入,得原式=33233222+⎛⎫⨯-⎪⎝⎭=﹣6.【点睛】此题考查的是分式的化简求值题和特殊角的锐角三角函数值,掌握分式的各个运算法则和特殊角的锐角三角函数值是解决此题的关键.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.【答案】(1)画图见解析;(2)面积为254π.【解析】试题分析:(1)根据旋转性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.考点:作图-旋转变换;扇形面积的计算.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.【答案】(1)见解析;(2)72°;(3)1 5【解析】【分析】(1)根据军人的人数与所占的百分比求出调查总人数,再分别求出教师、医生的人数,补全统计图即可;(2)根据公务员的人数占总人数的比例再乘360°即可得出结论;(3)根据教师的人数占总人数的比例即可得出结论.【详解】解:(1)∵军人的人数为20,百分比为10%,∴学生总人数为20÷10%=200(人);∵医生的人数占15%,∴医生的人数为:200×15%=30(人),∴教师的人数为:200﹣30﹣40﹣20﹣70=40(人),∴折线统计图如图所示;(2)∵由扇形统计图可知,公务员占20%,∴20%×360°=72°;(3)∵最喜欢的职业是”教师”的人数是40人,∴从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是”教师”的概率=40200=15.【点睛】此题考查的是折线统计图、扇形统计图和求概率问题,结合折线统计图、扇形统计图得出有用信息和掌握概率公式是解决此题的关键.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).【答案】(1)见解析;(2)与△ACD面积相等的三角形有:△ABD,△ACF,△AFB【解析】【分析】(1)首先由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC =90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF 是菱形;(2)根据平行线之间的距离处处相等、等高模型和菱形的性质即可解决问题;【详解】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE =DE ,BD =CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );∴AF =DB .∵DB =DC ,∴AF =CD ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;(2)∵BD=CD ,而△ABD 的边BD 上的高即为△ACD 的边CD 上的高∴S △ACD =S △ABD ;∵四边形ADCF 是菱形∴S △ACD =S △ACF ;∵AF ∥CD∴△ACD 的边CD 上的高等于△BAF 的边AF 上的高∵AF=CD∴S △ACD =S △AFB综上:与△ACD 面积相等的三角形有:△ABD ,△ACF ,△AFB .【点睛】此题考查的是全等三角形的判定及性质、菱形的判定及性质、直角三角形的性质和三角形的面积,掌握全等三角形的判定及性质、菱形的判定及性质、直角三角形斜边上的中线等于斜边的一半和平行线之间的距离处处相等是解决此题的关键.25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?【答案】(1)每箱30元;(2)至少为50元【解析】【分析】(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,根据关键语句”每个进价多了5元”可得方程140060052-=x x,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【详解】解:(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,可得:14006005 2-=x x,解得:x=20,经检验:x=20是原分式方程的解,6003020=元,答:该商贩第一批购进水果每箱30元;(2)这两批水果共有20+2×20=60箱设水果的售价为y元,根据题意得:60y﹣(600+1400)﹣2×20×10%y≥800,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=3,求⊙O的半径.【答案】(1)见解析;(2)见解析;(3)13【解析】【分析】(1)注意到同弧所对的圆周角相等以及∠BDC是△ABD的外角,结合题中所告诉的角度等式进行代换变形即可得结论;(2)连接AG,设∠CGD=∠BGE=β,∠ACF=α,然后推出∠AEG=∠AGE,再根据等角对等边即可证出结论;(3)首先注意到特殊角∠ADE=30°,于是作AP⊥DE于P,由HL定理可得△AEP≌△AGM,进而推出△AEG 是等边三角形,设AE=8k,BE=7k,作GN⊥AE于N,解△BGN可得sin∠ABG的值,而∠ABG是圆周角且所对的弦为AH,于是连接AO并延长交圆O于Q,连接HQ,sin∠AQH=sin∠ABG=AHAQ,而AH已知,从而求出直径AQ,半径也就自然知道了.【详解】解:(1)∵∠BDC=∠ABD+∠BAC,∠BDC﹣∠BFC=2∠ABF,∴∠ABD+∠BAC﹣∠BFC=2∠ABF,∵∠ABF=∠ACF,∠BFC=∠BAC,∴∠ABD+∠BFC﹣∠BFC=2∠ACF,∴∠ABD=2∠ACF.(2)如图2,连接AG.设∠CGD=∠BGE=β,∠ACF=α,则∠ABD=2α,∠AEG=∠ABD+∠BGE=2α+β,∠GDA=∠CGD+∠ACF=α+β,∵GM⊥AD于M且AM=DM,∴AG=DG,∴∠GAD=∠GDA=α+β,∴∠AGE=∠GAD+∠ACF=α+β+α=2α+β,∴∠AGE=∠AEG,∴AE=AG=GD.(3)如图3,连接AG,作AP⊥DE于P,∵∠ADE=30°,∴∠P AD=60°,AP=12 AD,∵GM⊥AD,∴∠AMG=∠APE=90°,∵AM=MD,∴AM=12AD=AP,由(2)可知AE =AG ,在Rt △AEP 和Rt △AGM 中:AE AG AP AM=⎧⎨=⎩ ∴Rt △AEP ≌Rt △AGM (HL ),∴∠EAP =∠GAM ,∵∠GAM +∠P AG =∠P AD =60°,∴∠EAP +∠P AG =∠EAG =60°,∴△AEG 是等边三角形,∴EG =AE =AG =DG ,∵AE :BE =8:7,∴设AE =8k ,BE =7k ,作GN ⊥AE 于N ,AN =EN =4k ,NG =,∴BN =BE +EN =11k ,∴BG 13k ,∴sin ∠ABG =NG BG =13, 连接AO 并延长交圆O 于Q ,连接HQ ,则AQ 直径,∠AHQ =90°,∴sin ∠AQH =AH AQ,∵∠AQH =∠ABG ,AH =∴AQ =26,∴AO =12A Q =13, 即⊙O 的半径为13.【点睛】此题考查的是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数,此题难度较大,掌握是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数是解决此题的关键.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A 点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.【答案】(1)b=9;(2)S=﹣t2+92t;(3)t=1【解析】【分析】(1)由直线解析式可得A、B两点坐标,根据△AOB的面积列方程解出b的值.(2)分别用t表示OC和OD的长即可得到S与t的表达式.(3)首先根据题意画出示意图,然后根据所给定的线段等量关系与角度等量关系推导出∠FEM的正切值,过点E作GP⊥OB于P交DF的延长线于点G,可以推证∠DEG=∠FEM,于是利用∠DEG的正切值列出比例方程,最后解出t的值.【详解】解:(1)如图1,∵直线y=﹣x+b交y轴于点A,交x轴于点B,∴A (0,b ),B (b ,0)∴OA =OB =b ,∴S △AOB =212b =812. ∴b =9或-9(不符合与y 轴的交点,舍去负值).(2)如图2,由题意知OC =t ,AD =2t ,则OD =OA ﹣AD =9﹣2t , ∴S =12OD •OC =12t (9﹣2t )=﹣t 2+92t . (3)∵MH HE =833, ∴设MH =8k ,HE =33k ,如图3,在HE 上截取HN =MH =8k ,连接FN ,则EN =EH ﹣HN =25k ,∵FH ⊥CE 于H ,∴FM =FN ,∠FME =∠FNM ,∵∠FME =32∠FEM , ∴设∠FEM =2α,∠FME =3α,∴∠FNM=3α,∵∠FNM=∠NFE+∠FEN,∴∠NFE=∠FNM﹣∠FEM=3α﹣2α=α,在FE上取一点Q,连接NQ,使NQ=NE=25k,则∠NQE=∠FEM=2α,∵∠NQE=∠NFE+∠QNF=α+∠QNF,∴∠QNF=α=∠NFE,∴FQ=NQ=25k,作NR⊥QE于R,则QR=RE=n,∴FE=FQ+QE=25k+2n,∵cos∠FEH=cos2α=HEFE=REEN,∴33252+kk n=25nk,解得n=15k,∴QR=RE=15k,∴NR20k,∴tan2α=NRRE=43.过点E作GP⊥OB于P交DF的延长线于点G,∴∠CPE=∠BPE=90°,∵OA=OB=9,∴∠OAB=∠OBA=45°,∴∠PEB=45°,∴BP=PE,∵DF∥OB,∴∠ODF=∠ADF=90°,∴四边形DOPG为矩形,∴GP=OD,DG=OP,作CT⊥OB交AB于T,交DF于K,连接DT,则ODKC 为矩形,△CTB 为等腰直角三角形,∴DK =OC =t ,CK =OD ,CT =CB ,∵∠FDA =90°,∠F AF =45°,∴△ADF 为等腰直角三角形,∴DF =AD =2OC =2t ,∴KDF 中点,∴T 为AF 中点,∴△DTF 为等腰直角三角形,∴∠DTK =∠FTK =45°,∵DC ⊥CE ,∴∠DCT +∠TCE =∠TCE +∠BCE =90°,∴∠DCT =∠ECB ,在△DCT 和△ECB 中:DTC EBC CT CBDCT ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DCT ≌△ECB (ASA ),∴CD =CE ,∴△DCE 为等腰直角三角形,∴∠CED =45°,∵∠DCO +∠ECP =∠DCO +∠ODC =90°,∴∠ODC =∠ECP ,在△DOC 和△CPE 中:DOC CPE ODC PCE DC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DOC ≌△CPE (AAS ),∴BP =PE =OC =t ,∴DG =OP =OB ﹣PB =9﹣t ,∴FG =DG ﹣DF =9﹣3t ,∵∠GFE =∠AFD =45°,∠GEF =∠BEP =45°,。

人教版2023年中考数学模拟测试试卷(一)

人教版2023年中考数学模拟测试试卷(一)

2023年中考数学模拟测试试卷(一)一、选择题(本大题10小题,每小题3分,共30分)1.–1.5的倒数是()A.0B.–1.5C.1.5D.232.计算a6÷(﹣a)3的结果是()A.a2B.﹣a2C.a3D.﹣a33.作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下列选项是从上面看到的图形的是()A B C D 第3题图4.如图,BE是△ABC的角平分线,在AB上取点D,使DE∥BC.已知∠ADE=80°,则∠EBC的度数为()A.30°B.40°C.50°D.60°第4题图5.不等式–3x+5≥–6的非负整数解有()A.2个B.3个C.4个D.5个6.用半径为2 cm的半圆围成一个圆锥的侧面,则这个圆锥的底面圆的半径为()A.1 cm B.2 cm C.π cm D.2π cm7.下列选项中,根据圆规作图的痕迹,可以用直尺成功找到三角形内心的图形是()A B C D8.移动5G 通信网络将推动我国数字经济发展迈上新台阶.据预测,2020年到2025年中国5G 直接经济产出和间接经济产出的情况如图所示.根据图中提供的信息,下列推断不正确的是( ) A .2020年到2025年,5G 间接经济产出和直接经济产出都呈增长趋势 B .2022年,5G 间接经济产出是直接经济产出的2倍C .2024年到2025年,5G 间接经济产出和直接经济产出的增长率相同D .2025年,5G 间接经济产出比直接经济产出多3万亿元第8题图9.如图,D 是等边三角形ABC 的边AC 上一点,四边形CDEF 是平行四边形,点F 在BC 的延长线上,G 为BE 的中点,连接DG .若AB =10,AD =DE =4,则DG 的长为( ) A .2B .3C .4D .5第9题图 第10题图10.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =12-,下列结论:①abc >0;①3a +c >0;①当x <0时,y 随x 的增大而增大;①一元二次方程cx 2+bx +a =0的两个根分别为x 1=13-,x 2=12;①若m ,n (m <n )为方程a (x +3)(x ﹣2)+3=0的两个根,则m <﹣3且n >2.其中正确结论的个数是( ) A .2B .3C .4D .5二、填空题(本大题6小题,每小题4分,共24分) 11()231+28-= .12.2022年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元,408万用科学记数法可表示为 .13.一组数3,2,2,0,4,5,-1,6的中位数为 .14.如图,四边形ABCD 内接于圆,点B 关于对角线AC 的对称点E 落在CD 边上,连接AE .若①ABC =115°,则①DAE 的度数为 .第14题图 第15题图 第16题图15.如图,点A 1,A 2,A 3,…,A n 在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…,B n 在y 轴上,已知A 1是直线y =x 与双曲线y =1x的交点,B 1A 1①OA 1,B 2A 2①B 1A 2,B 3A 3①B 2A 3,…,且①B 1OA 1=①B 2B 1A 2=①B 3B 2A 3=…,则点B 2022的坐标是 .16.如图,正方形ABCD 的边长为5,以点C 为圆心,2为半径作①C ,P 为①C 上的动点,连接BP ,并将BP 绕点B 逆时针旋转90°至BP ′,连接CP ′,在点P 移动的过程中,CP ′长度的最大值是 .三、解答题(本大题8小题,共66分)17.(每小题4分,共8分)(1)解方程组:321,46;x y x y +=⎧⎨-=-⎩①② (2)解不等式组:()2432,1 2.2x x x +≤+⎧⎪⎨-⎪⎩①<②18.(6分)如图,在①ABC 中,点D 在边AC 上,BD =BC ,E 是CD 的中点,F 是AB 的中点. (1)求证:EF =12AB ; (2)如图,在①ABC 外作①EAG =①FEA ,交BE 的延长线于点G ,求证:①ABE ①①AGE .第18题图19.(6分)某市甲、乙、丙三所初级中学期末调研测试拟实行联合命题,为确保命题的公平性,决定采取三轮抽签的方式来确定各学校负责命题的学科.第一轮,各校从语文、数学、英语三个学科中随机抽取一科;第二轮,各校从物理、化学、历史三个学科中随机抽取一科;第三轮,各校从道德与法治、地理、生物三个学科中随机抽取一科.(1)甲中学在第一轮抽到语文学科的概率;(2)用画树状图或列表法求乙中学在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.20.(8分)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=502≈1.43 1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队采用了新的施工技术,因此实际施工时每天的工作效率比原计划增加了25%,结果提前25天完成了施工任务.求施工队原计划每天修建多少千米?第20题图21.(8分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7 km,图书馆离宿舍1 km.周末,小亮从宿舍出发,匀速走了7 min到食堂;在食堂停留16 min吃早餐后,匀速走了5 min 到图书馆;在图书馆停留30 min借书后,匀速走了10 min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离y km 与离开宿舍的时间x min 之间的对应关系.第21题图 请根据相关信息,解答下列问题: (1)填表:离开宿舍的时间/min 2 5 20 23 30 离宿舍的距离/km0.20.7(2)填空:①食堂到图书馆的距离为 km ;②小亮从食堂到图书馆的速度为 km/min ; ③小亮从图书馆返回宿舍的速度为 km/min ;④当小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为 min . (3)当0≤x ≤28时,请直接写出y 关于x 的函数表达式.22.(8分)如图,在①O 中,半径OC 垂直于弦AB ,垂足为E . (1)若OC =5,AB =8,求sin ①OCA 的值; (2)若①DAC =21①AOC ,且点D 在①O 的外部,判断直线AD 与①O 的位置关系,并说明理由.第22题图23. (10分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG . 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图①),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由.(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按逆时针方向旋转(如图②),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由.(3)把背景中的正方形分别改成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图③),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.① ② ③ 第23题图24.(12分)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图①,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求12S S 的最大值; (3)如图②,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.① ② 第24题图参考答案2023年山东省枣庄市中考数学模拟测试试卷(一)答案一、1.D 2.D 3.A 4.B 5.C 6.A 7.B 8.C 9.B 10.C 二、11.5212.4.08×106 13.2.5 14.50° 15.(0,22022 16.225+ 三、解答题见“答案详解”答案详解15.(0,22022 解析:易得A 1(1,1),因为①OA 1B 1,①B 1A 2B 2,①B 2A 3B 3,…都是等腰直角三角形,所以OB 1=2.设A 2(a ,2+a ),则a (2+a )=1,解得a =21(舍去负值).所以OB 2=22设A 3(b ,22b ),则b (22b )=1,解得a =32OB 3=23 以此规律,得OB n =2n ,所以B n (0,2n ).所以B 2022(0,2202216.225+ 解析:连接对角线AC ,当点P'在对角线CA 的延长线上时,CP'有最大值. 三、17.解:(1)①+①×2,得11x =﹣11. 解得x =﹣1.把x =﹣1代入①,得y =2. 所以方程组的解为1,2.x y =-⎧⎨=⎩(2)解不等式①,得x ≥﹣2; 解不等式②,得x <5.所以不等式组的解集为﹣2≤x <5.18.证明:(1)因为BD =BC ,E 是CD 的中点,所以BE ①CD . 在Rt △AEB 中,F 是AB 的中点,所以EF =12AB . (2)因为AF =12AB ,EF =12AB ,所以AF =EF .所以①EAB =①FEA . 因为①EAG =①FEA ,所以①EAB =①EAG .又①AEB =①AEG =90°,AE =AE ,所以①ABE ①①AGE (ASA ).19. 解:(1)13(2)列表如下:第三轮 第二轮 物理化学历史道法 (物理,道法) (化学,道法) (历史,道法) 地理 (物理,地理) (化学,地理) (历史,地理) 生物(物理,生物)(化学,生物)(历史,生物)由上表知,总共有9种可能的结果,每种结果出现的可能性相同.其中乙中学在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的结果只有1种,所以抽到的学科恰好是历史和地理的概率为19.20.解:(1)如图,过点C 作CD ⊥AB ,垂足为D .在Rt △BCD 中,∠B =30°,BC =50千米,所以CD =BC •sin 30°=50×12=25(千米),BD =BC •cos 30°=50×32=253(千米). 在Rt △ACD 中,∠A =45°,所以AD =CD =25千米,AC =sin 45CD︒=252(千米). 所以AB =AD+BD =()25253+千米.所以从A 地到景区B 旅游可以少走的路程为AC +BC ﹣AB =252+50﹣()25253+=25+252﹣253≈17.5(千米).答:从A 地到景区B 旅游可以少走17.5千米.第20题图(2)设施工队原计划每天修建x 千米. 根据题意,得25+253x -()25+253125x +%=25.解得x=1+35≈0.54.经检验x =0.54是原分式方程的解. 答:施工队原计划每天修建0.54千米. 21. 解:(1)依次填0.5 0.7 1 (2)①0.3 ②0.06 ③0.1④6或62 解析:当0≤x ≤7时,小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为0.6÷0.1=6(min ),当58≤x ≤68时,小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min ). 故答案为6或62.(3)当0≤x ≤28时,y 关于x 的函数表达式是y =0.10.70.060.68x x ⎧⎪⎨⎪-⎩(0≤x ≤7);(7<x ≤23);(23<x ≤28). 22.解:(1)因为OC ①AB ,所以AE =21AB=4. 在Rt ①AOE 中,OA =OC =5,AE =4,所以OE 22OA AE - 所以CE =OC -OE =5-3=2.所以22=25EC AE + 在Rt ①AEC 中,sin ①OCA =42525AE AC ==(2)AD 与①O 相切.理由如下: 连接OB.因为OC ①AB ,所以BC ①=AC ①. 所以①BAC=21①BOC =21①AOC . 又①DAC =21①AOC ,所以①DAC =①BAC . 因为OA=OC ,所以①O AC =①ACO .因为①ACO +①BAC =90°,所以①OAC +①DAC =90°,即①OAD =90°. 因为OA 为⊙O 的半径,所以AD 与①O 相切.23. (1)证明:因为四边形AEFG 为正方形,所以AE =AG ,∠EAG =90°.又因为四边形ABCD 为正方形,所以AB =AD ,∠BAD =90°,所以∠EAG -∠BAG =∠BAD -∠BAG ,即∠EAB =∠GAD .所以△AEB ≌△AGD (SAS ).所以BE =DG . (2)解:当∠EAG =∠BAD 时,BE =DG . 理由如下:因为∠EAG =∠BAD ,所以∠EAG+∠BAG =∠BAD+∠BAG ,即∠EAB =∠GAD . 又因为四边形AEFG 和四边形ABCD 都为菱形,所以AE =AG ,AB =AD . 所以△AEB ≌△AGD (SAS ).所以BE =DG .(3)解:如图,设BE 与AG ,DG 分别相交于点P ,Q . 因为AE AG =AB AD =23,AE =4,AB =8,所以AG =6,AD =12. 因为四边形AEFG 和四边形ABCD 都为矩形,所以∠EAG =∠BAD .所以∠EAG+∠BAG =∠BAD+∠BAG ,即∠EAB =∠GAD . 因为AE AG =ABAD,所以△EAB ∽△GAD .所以∠BEA =∠DGA . 又∠EP A =∠GPQ ,所以∠GQP =∠EAP =90°.所以GD ⊥EB . 连接EG ,BD ,所以ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2.因为EG 2+BD 2=AE 2+AG 2+AB 2+AD 2=42+62+82+122=260,所以ED 2+GB 2=260.第23题图24. 解:(1)设抛物线的函数表达式为y =a (x +1)(x ﹣4). 将点C (0,﹣2)代入,得-4a =-2,解得a =12. 所以抛物线的函数表达式为y =12(x +1)(x ﹣4),即y =12x 2﹣32x ﹣2. (2)如图①,过点D 作DG ⊥x 轴于点G ,交BC 于点F .过点A 作AK ⊥x 轴交BC 的延长线于点K ,则有AK ①DG .所以△AKE ∽△DFE ,所以DF AK =DE AE.所以12S S =BDE ABE S S △△=DE AE =DFAK .设直线BC 的表达式为y =kx +b .将点B (4,0),C (0,﹣2)代入,得40,2.k b b +=⎧⎨=-⎩解得1,22.k b ⎧=⎪⎨⎪=-⎩所以直线BC 的表达式为y =12x ﹣2. 因为A (﹣1,0),所以y k =﹣12﹣2=﹣52.所以AK =52. 设D 213222m m m ⎛⎫-- ⎪⎝⎭,,则F 122m m ⎛-⎫ ⎪⎝⎭,,所以DF =12m ﹣2–213222m m ⎛⎫-- ⎪⎝⎭=﹣12m 2+2m .所以12S S =212252m m -+=﹣15m 2+45m =﹣15(m -2)2+45.11所以当m =2时,12S S 有最大值,最大值是45.① ②第24题图(3)符合条件的点P 的坐标为349689⎛⎫ ⎪⎝⎭,或3+416+241⎝⎭,. 因为l ∥BC ,所以直线l 的表达式为y =12x .设P ,2a a ⎛⎫ ⎪⎝⎭. ①当点P 在直线BQ 右侧时,如图②,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M . 因为A (﹣1,0),C (0,﹣2),B (4,0),所以AC 5,AB =5,BC =5.因为AC 2+BC 2=AB 2,所以∠ACB =90°.因为△PQB ∽△CAB ,所以PQ BP =CA BC =12∠QPB =90°.所以∠MPQ +∠NPB =90°.因为∠QMP =∠BNP =90°,所以∠MQP +∠MPQ =90°.所以∠MQP =∠NPB .所以Rt △QPM ∽Rt △PBN ,所以QM PN =PM BN =PQ BP =12. 所以QM =4a ,PM =12(a ﹣4)=12a ﹣2.所以 y Q =MN =a ﹣2, x Q =ON ﹣QM =a ﹣4a =34a . 所以Q 234a a ⎛⎫ ⎪⎝⎭,﹣.将点Q 的坐标代入抛物线的表达式,得12×234a ⎛⎫ ⎪⎝⎭﹣32×34a -2=a -2. 解得a =0(舍去)或a =689.所以点P 的坐标为349689⎛⎫ ⎪⎝⎭,. ②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为5,24a ⎛⎫ ⎪⎝⎭.此时点P 的坐标为3+416+241⎝⎭,.12。

人教版中考数学模拟试卷(含答案)

人教版中考数学模拟试卷(含答案)

人教版中考数学模拟试卷(含答案) 中考数学模拟试卷(1)一、选择题(共10小题)1.下列说法中,正确的是()A。

最小的整数B。

最大的负整数是-1C。

有理数包括正有理数和负有理数D。

一个有理数的平方总是正数2.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A。

140元B。

135元C。

125元D。

120元3.若=0无解,则m的值是()A。

-2B。

2C。

3D。

-34.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)人数(单位:人)1 42 63 24 3A。

中位数是2B。

平均数是2C。

众数是2D。

极差是25.下列各式中能用完全平方公式分解因式的是()A。

x^2 + x + 1B。

x^2 + 2x + 1C。

x^2 + 2x - 1D。

x^2 - 2x - 16.如图所示,扇形AOB的圆心角120°,半径为2,则图中阴影部分的面积为()A。

-2B。

-√3C。

-π/3D。

-π/67.若方程组的解x,y满足<x+y<1,则k的取值范围是()A。

-4 < k <B。

-1 < k <C。

< k < 8D。

k。

-48.将一个四边形纸片依次按图示①、②的方式对折,然后沿图③中的虚线裁剪成④样式。

将纸片展开铺平,所得到的图形是图中的()A.B.C.D.9.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图像不经过第三象限,则符合题意的整数k 有()个。

A。

4B。

3C。

2D。

110.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A。

第504个正方形的左下角B。

第504个正方形的右下角C。

第505个正方形的左上角D。

第505个正方形的右下角二、填空题(共8小题)11.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()。

2022年人教版中考第一次模拟考试《数学试卷》含答案解析

2022年人教版中考第一次模拟考试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.下列是中心对称图形但不是轴对称图形的是( ) A. B. C. D.2.整数681700用科学记数法表示为96.81710⨯,则原数中” “的个数为( ) A.个 B.个 C.个 D.个3.如图,OA 是表示北偏东55︒方向的一条射线,则OA 的反向延长线OB 表示的是( )A. 北偏西55︒方向上的一条射线B. 北偏西35︒方向上的一条射线C. 南偏西35︒方向上的一条射线D. 南偏西55︒方向上的一条射线 4.在等式[]209()a a a ⋅-⋅=中,”[]“内的代数式为( )A. 6aB. ()7a -C. 6a -D. 7a5.如图是由几个大小相同的小正方体组合而成的几何体,则下列视图中面积最小的是( )A. 主视图B. 俯视图C. 左视图D. 主视图和俯视图 6.不等式214(1)x x -<+解集表示在如图所示的数轴上,则阴影部分盖住的数是( )A. B. C. 1.5- D. 2.5-7.交换下列命题的题设和结论,得到的新命题是假命题的是( )A. 两直线平行,同位角相等B. 相等的角是对顶角C. 所有的直角都是相等的D. 若a=b,则a﹣3=b﹣38.我国正在逐步进入人口老龄化社会,某市老龄化社会研究机构经过抽样调查,发现当地老年人的日常休闲方式主要有,,,,五种类型,抽样调查的统计结果如下表,则下列说法不正确的是()休闲类型休闲方式人数老年大学老年合唱队350老年舞蹈队400太极拳200其它方式500A. 当地老年人选择型休闲方式的人数最少B. 当地老年人选择型休闲方式的频率是7 30C. 估计当地万名老年人中约有1.8万人选择型休闲方式D. 这次抽样调查的样本容量是15009.如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角ABC,尺规作图及步骤如下:步骤一:以点为圆心,CA为半径画弧;步骤二:以点为圆心,BA为半径画弧,两弧交于点; 步骤三:连接AD,交BC延长线于点.下面是四位同学对其做出的判断:小明说:BH AD⊥;小华说:BAC HAC∠=∠;小强说:BC HC=;小方说:AH DH=.则下列说法正确的是()A. 只有小明说得对B. 小华和小强说的都对C. 小强和小方说的都不对D. 小明和小方说的都对10.如图描述了在一段时间内,小华,小红,小刚和小强四名工人加工零件的合格率与所加工零件的总个数之间的关系(合格个数合格率总个数),则这四名工人在这段时间内所加工零件合格的个数最多的是()A. 小华B. 小红C. 小刚D. 小强11.如图,ABD∆是O的内接正三角形,四边形ACEF是O的内接正四边形,若线段BC恰是O的一个内接正边形的一条边,则n=()A. B. C. D.12.若满足2220x x--=,则分式231211xx x⎛⎫--÷⎪--⎝⎭的值是()A. B. 12C. D.32-13.如图,一根电线杆PO⊥地面MN,垂足为,并用两根斜拉线PA,PB固定,使点,,,在同一平面内,现测得66PAO ∠=︒,54PBO ∠=︒,则PA PB =( )A. tan 66tan 54︒︒B. cos54cos66︒︒C. sin 66sin 54︒︒D. sin 54sin 66︒︒14.ABC ∆的三边长分别为,,,其中5a =,和是关于的一元二次方程:22(23)320x k x k k -++++=(为常数)的两个实数根,若ABC ∆中只有两条边相等,则的值为( )A.或B.或C.或D. 任意实数15.如图,将一个三角板ABC ∆,绕点按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A. 62-B. 6C. 2D.16.如图,已知点(2,0)A ,(0,1)B ,以AB 为边作菱形ABCD ,使点,在第一象限,且对角线//BD x 轴,点(2,4)P -总在直线:24l y kx k =++(0)k ≠的图象上,若使与菱形ABCD 有交点,则的取值范围是( )A. 32k ≤-B. 12k ≥-且0k ≠C. 3122k -≤≤-D. 32k ≤-或12k ≥-且0k ≠ 二、填空题17.若2336=,则” “内的运算符号为_________.18.如图,已知AB 是O 的直径,且4AB =,是O 上一点,将弧AC 沿直线AC 翻折,使翻折后的圆弧恰好经过圆心,则 (1)AC 的长是_________.(2)劣弧BC 的长是__________.19.如图,10AOB ∠=︒,点在OB 上.以点为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P;,按照上面的要求一直画下去,就会得到11223OP PP PP P P ===,则 (1)234P P P ∠=_________;(2)与线段OP 长度相等的线段一共有__________条(不含OP ).三、解答题20.王老师数学课上带领同学们做数学游戏,规则如下:游戏规则甲任报一个有理数数传给乙;乙把这个数减后报给丙;丙再把所得的数的绝对值报给丁;丁再把这个数的一半减,报出答案.根据游戏规则,回答下面的问题:(1)若甲报的数为12,则乙报的数为_________,丁报出的答案是_________; (2)若甲报的数为3-,请列出算式并计算丁报出的答案;(3)若丁报出的答案是,则直接写出甲报的数.21.已知甲、乙两个长方形纸片,其边长如图中所示()0m >,面积分别为S 甲和S 乙.(1)①用含的代数式表示S =甲_________,S =乙_________;②用” “、” “或” “号填空:S 甲________S 乙;(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正.①该正方形的边长是_________(用含的代数式表示);②小方同学发现,”S 正与S 乙差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由. 22.学校组织甲、乙两组同学参加国学经典知识对抗赛,每组有位选手,每场比赛两组各派人进行现场对抗比赛,满分为分,共进行了场比赛.学校整理和汇总了这场比赛的成绩,并制成如下所示的尚不完整的统计表和图所示的折线统计图. 场次一 二 三 四 五 六 甲组成绩(单位:分)24 25 27 28 25 乙组成绩(单位:分)27 25 25 24根据以上信息回答下面的问题:(1)若甲、乙两组成绩的平均数相同,①求的值;②将折线统计图补充完整,并根据折线统计图判断哪组成绩比较稳定.(2)若甲、乙两组成绩的中位数相等,直接写出的最小值.(3)在(1)中的条件下,若从所有成绩为25分的选手中随机抽取两人对其答题情况进行分析,请用列表法求抽到的两位选手均来自同一组的概率.23.在菱形ABCD 中,对角线AC 与BD 交于点,5AB =,8BD =,点是对角线AC 上一点(可与,重合),以点为圆心,为半径作P (其中0r >).(1)如图1,当点与重合,且03r <<时,过点,分别作P 的切线,切点分别为M ,.求证:BM DN =; (2)如图2,当点与点重合,且P 在菱形ABCD 内部时(不含边界),求的取值范围;(3)当点为ABD ∆或CBD ∆的内心时,直接写出AP 的长.24.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服套(为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为元. 运动服款式甲款 乙款 进价(元套) 60售价(元套)100 150(1)求与的函数关系式;(2)该服装店计划投入万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低元(其中2040a <<),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案. 25.如图,点在直线MN 上,过点作AB MN ⊥,且4AB =,点在射线AN 上(点不与点重合),且满足BPA BPC ∠=∠,BC BP ⊥,BC 与PC 交于点,过点作CD MN ⊥于点.设AP t =()0t >.(1)用含的代数式表示PC 的长;(2)①线段CD 长是________;②线段AD 的长是_________;(用含的代数式表示)(3)当何值时,PBC S ∆有最小值?并求出这个最小值.26.如图,抛物线2:2L y ax ax a k =-++(,为常数且0a >)经过点()1,0C -,顶点为M ,经过点()0,4P a +的直线与轴平行,且与交于点, (在的右侧),与的对称轴交于点,直线:n y ax a =+经过点.(1)用表示及点M 的坐标;(2)BP AP -的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线经过点时,求的值及点,的坐标;(4)当1a =时,设ABC ∆的外心为点,则①求点的坐标;②若点Q 在的对称轴上,其纵坐标为,且满足AQB ACB ∠<∠,直接写出的取值范围.答案与解析一、选择题1.下列是中心对称图形但不是轴对称图形的是( ) A.B. C. D. 【答案】A【解析】【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;而轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此对各选项依次判断,最后得出答案即可.【详解】A :不是轴对称图形,是中心对称图形,符合题意;B :是轴对称图形,不是中心对称图形,不合题意;C :是轴对称图形,也是中心对称图形,不合题意;D :是轴对称图形,也是中心对称图形,不合题意;故选:A .【点睛】本题主要考查了中心对称图形与轴对称图形的判断,熟练掌握相关概念是解题关键. 2.整数681700用科学记数法表示为96.81710⨯,则原数中” “的个数为( ) A.个B.个C.个D.个 【答案】B【解析】【分析】首先将96.81710⨯写成不用科学记数法表示的原数的形式,然后由此即可得出答案.【详解】∵96.817106817000000⨯=,∴原数中有个” “,故选:B .【点睛】本题主要考查了把科学记数法表示的数还原为原数,熟练掌握相关概念是解题关键. 3.如图,OA 是表示北偏东55︒方向的一条射线,则OA 的反向延长线OB 表示的是( )A. 北偏西55︒方向上的一条射线B. 北偏西35︒方向上的一条射线C. 南偏西35︒方向上的一条射线D. 南偏西55︒方向上的一条射线【答案】D【解析】【分析】 如图,首先根据题意得出∠1或∠2的度数,由此进一步结合题意判断OA 的反向延长线OB 表示的方向即可. 【详解】如图,根据对顶角相等可知∠2=55°,再根据余角的性质可得∠1=35°,∴OA 的反向延长线OB 表示的是:南偏西55°方向上的一条射线或西偏南35°方向上的一条射线. 故选:D .【点睛】本题主要考查了方位角的相关知识,熟练掌握相关概念是解题关键.4.在等式[]209()a a a ⋅-⋅=中,”[]“内的代数式为( )A. 6aB. ()7a -C. 6a -D. 7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案. 【详解】()01a -=,则原式化简为:[]29a a ⋅=, ∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键. 5.如图是由几个大小相同的小正方体组合而成的几何体,则下列视图中面积最小的是( )A. 主视图B. 俯视图C. 左视图D. 主视图和俯视图【答案】C【解析】【分析】 首先根据三视图的定义得出该几何体的主视图、左视图以及俯视图是由几个小正方体组成,由此进一步得出答案即可.【详解】由题意得:该几何体的主视图由5个小正方形组成,左视图由3个小正方形组成,俯视图是由5个小正方形组成, ∴三种视图面积最小的是左视图,故选:C .【点睛】本题主要考查了几何体的三视图的面积,熟练掌握相关概念是解题关键.6.不等式214(1)x x -<+的解集表示在如图所示的数轴上,则阴影部分盖住的数是( )A.B. C. 1.5- D. 2.5-【答案】D【解析】【分析】首先将该不等式的解集求出来,由此进一步判断即可.【详解】原不等式去掉括号可得:2144x x -<+,移项化简可得:25x -<,解得: 2.5x >-,∴阴影部分盖住的数是 2.5-,故选:D .【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.7.交换下列命题的题设和结论,得到的新命题是假命题的是()A. 两直线平行,同位角相等B. 相等的角是对顶角C. 所有的直角都是相等的D. 若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.我国正在逐步进入人口老龄化社会,某市老龄化社会研究机构经过抽样调查,发现当地老年人的日常休闲方式主要有,,,,五种类型,抽样调查的统计结果如下表,则下列说法不正确的是()A. 当地老年人选择型休闲方式的人数最少B. 当地老年人选择型休闲方式的频率是7 30C. 估计当地万名老年人中约有1.8万人选择型休闲方式D. 这次抽样调查的样本容量是1500【答案】C【解析】【分析】首先直接通过表格数据即可得出选择A型休闲方式的人数最少,然后利用频率定义、样本估计总体与样本容量的概念逐一判断即可.【详解】A:选择A型休闲方式的人数为50,与其他方式相比最少,故选项正确;B:选择B型休闲方式的频率是3507150030=,故选项正确;C:当地选择C型休闲方式的老人大约人数为:万4001.61500⨯=万,故选项错误;D:样本容量为503504002005001500+++=,故选项正确;故选:C.【点睛】本题主要考查了频率定义、样本估计总体与样本容量的概念,熟练掌握相关概念是解题关键.9.如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角ABC∆,尺规作图及步骤如下:步骤一:以点为圆心,CA为半径画弧;步骤二:以点为圆心,BA为半径画弧,两弧交于点;步骤三:连接AD,交BC延长线于点.下面是四位同学对其做出的判断:小明说:BH AD⊥;小华说:BAC HAC∠=∠;小强说:BC HC=;.小方说:AH DH则下列说法正确的是()A. 只有小明说得对B. 小华和小强说的都对C. 小强和小方说的都不对D. 小明和小方说的都对【答案】D【解析】【分析】首先连接BD、CD,结合题意可知CA=CD,BA=BD,然后根据”到线段两个端点距离相等的点在线段的垂直平分线上”以及”两点确定一条直线”得出BH垂直平分AD,由此进一步逐一判断即可.【详解】如图,连接CD、BD,则:CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,即直线BC是线段AD的垂直平分线,∴BH⊥AD,且AH=DH,即小明与小方的说法正确,∵CA不一定平分∠BAH,故小华的说法错误,∵点C不一定是BH的中点,故小强的说法错误,综上所述,小明与小方的说法正确,故选:D.【点睛】本题主要考查了线段垂直平分线的性质,熟练掌握相关概念是解题关键.10.如图描述了在一段时间内,小华,小红,小刚和小强四名工人加工零件的合格率与所加工零件的总个数之间的关系(合格个数合格率总个数),则这四名工人在这段时间内所加工零件合格的个数最多的是()A. 小华B. 小红C. 小刚D. 小强【答案】C【解析】【分析】根据题意可以得知加工零件合格的个数等于加工零件的合格率与所加工零件的总个数的乘积,由此通过观察进一步判断即可.=,【详解】由题意得,加工零件合格的个数xy∴观察图象中四个人对应的点的位置,分别将四个人对应的点与原点连接起来,然后进一步依次作其各自垂直于轴的垂线,据此通过直观观察比较此时四个三角形的面积大小,可以得出小刚的横、纵坐标的乘积最大,即小刚加工零件合格的个数最多,故选:C.【点睛】本题主要考查了反比例函数性质的应用,熟练掌握相关概念是解题关键.11.如图,ABD∆是O的内接正三角形,四边形ACEF是O的内接正四边形,若线段BC恰是O的一个内接正边形的一条边,则n=()AB. C. D.【答案】B【解析】【分析】 连接OB ,OC ,首先根据等边三角形性质与正方形性质结合圆的相关性质得出∠BAC 的度数,然后进一步根据”同弧所对的圆心角是圆周角的倍”得出∠BOC 的度数,由此进一步求解即可.【详解】连接BO 、CO ,由题意可得,∠BAD=60°,∠CAF=90°,根据ABD ∆是O 内接正三角形,四边形ACEF 是O 的内接正四边形, 则:2CAF BAD BAC ∠-∠∠==15°, ∵同弧所对的圆心角是圆周角的倍,∴2BOC BAC ∠=∠=30°,3601230n ∴==, 故选:B .【点睛】本题主要考查了正多边形与圆的综合运用,熟练掌握相关概念是解题关键.12.若满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( )A. B. 12 C. D. 32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭, 又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.13.如图,一根电线杆PO ⊥地面MN ,垂足为,并用两根斜拉线PA ,PB 固定,使点,,,在同一平面内,现测得66PAO ∠=︒,54PBO ∠=︒,则PA PB=( )A. tan 66tan 54︒︒B. cos54cos66︒︒C. sin 66sin 54︒︒D. sin 54sin 66︒︒【答案】D【解析】【分析】首先在Rt △PAO 中利用sin PO PAO PA ∠=表示出PA ,然后在Rt △PBO 中利用sin PO PBO PB∠=表示出PB ,据此进一步表示出PA PB,然后将其化简即可.【详解】在Rt △PAO 中,sin PO PAO PA∠=,∴PO sin66PA =︒; 在Rt △PBO 中,sin PO PBO PB∠=,∴PO sin54PB =︒; ∴PA PB =PO sin54sin54sin66sin66PO ︒︒⨯=︒︒, 故选:D .【点睛】本题主要考查了三角函数的综合运用,熟练掌握相关概念是解题关键.14.ABC ∆的三边长分别为,,,其中5a =,和是关于的一元二次方程:22(23)320x k x k k -++++=(为常数)的两个实数根,若ABC ∆中只有两条边相等,则的值为( )A.或B.或C.或D. 任意实数 【答案】B【解析】【分析】首先根据该一元二次方程得出其根的判别式为1,由此可知该方程有两个不相等的实数根,结合题意可知和中必有一个为5,据此将其代入原方程,最后根据方程求解即可.【详解】由方程22(23)320x k x k k -++++=可得:其根的判别式为:()()2223413210k k k ⎡⎤-+-⨯⨯++=>⎣⎦, ∴该方程总有两个不相等的实数根,∵和是该方程的两个根,又ABC ∆中只有两条边相等,∴5b a ==或5c a ==,即是该方程的根,不存在b c =的情况,∴把5x =代入原方程,得:225(23)5320k k k -+⨯+++=,即27120k k -+=,解得:3k =或4k =,故选:B .【点睛】本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关概念是解题关键.15.如图,将一个三角板ABC ∆,绕点按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )- B. 6 C. 2 D.A. 62【答案】A【解析】【分析】连接BD,延长BE交AD于点,根据旋转性质可知AB=AD,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD为等边三角形,然后进一步通过证明△BAE≅△BDE得出∠ABE=∠DBE,根据等腰三角形”三线合一”可知BF⊥AD,且AF=DF,由此利用勾股定理分别计算出AB、BF的长,最后通过BE=BF−EF进一步计算即可得出答案.【详解】如图,连接BD,延长BE交AD于点,由旋转可知,AB=AD,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形”三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴22222+=∴AB=BD=AD=2,∴AF=2, ∴BF=226AB AF -=,∵∠AED=90°,AE=DE ,∴∠FAE=45°,∵BF ⊥AD ,∴∠FEA=45°,∴EF=AF=2,∴BE=BF −EF=62-,故选:A .【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.如图,已知点(2,0)A ,(0,1)B ,以AB 为边作菱形ABCD ,使点,在第一象限,且对角线//BD x 轴,点(2,4)P -总在直线:24l y kx k =++(0)k ≠的图象上,若使与菱形ABCD 有交点,则的取值范围是( )A. 32k ≤-B. 12k ≥-且0k ≠ C. 3122k -≤≤- D. 32k ≤-或12k ≥-且0k ≠ 【答案】C【解析】【分析】根据题意,结合菱形的性质首先得出点C 的坐标为(2,2),点D 的坐标为(4,1),然后分别将点B 、C 、D 的坐标代入24y kx k =++,求得的值,最后根据一次函数图象的性质进一步分析即可.【详解】由题意可得:点C 的坐标为(2,2),点D 的坐标为(4,1),若使与菱形ABCD 有交点,则分别代入点B 、C 、D 的坐标,把点B(0,1)代入24y kx k =++,得32k =-, 把点C(2,2),点D(4,1)分别代入24y kx k =++,均得12k =-, ∵B 点是菱形ABCD 最左边的点,D 点是菱形ABCD 最右边的点,∴若使与菱形ABCD 有交点,则:3122k -≤≤-, 故选:C .【点睛】本题主要考查了一次函数图象的性质与菱形性质的综合运用,熟练掌握相关概念是解题关键. 二、填空题17.若2336=,则” “内的运算符号为_________. 【答案】【解析】【分析】根据二次根式的运算法则进一步选择所填的运算符号即可.【详解】∵2336⨯=,故” “内的运算符号为×,故答案为:×.【点睛】本题主要考查了二次根式的运算,熟练掌握相关运算法则是解题关键.18.如图,已知AB 是O 的直径,且4AB =,是O 上一点,将弧AC 沿直线AC 翻折,使翻折后的圆弧恰好经过圆心,则(1)AC 的长是_________.(2)劣弧BC 的长是__________.【答案】 (1). 23 (2).23π 【解析】【分析】(1)首先利用垂径定理以及”30°角所对的直角边等于斜边的一半”得出∠EAO 为30°,由此进一步利用三角函数即可得出AC ;(2)由(1)进一步得出∠COB=60°,然后进一步结合题意直接计算出劣弧BC 的长即可. 【详解】如图,作OE AC ⊥交O 于,交AC 于,连接OC ,BC ,则:OA=OF=OC=OB ,(1)由折叠的性质可知,12EF OE OF ==, ∴12OE OA =, ∴在Rt △AOE 中,EAO ∠=30°,∵AB=4,∵AB 为直径,∴∠ACB=90°∴在Rt △CAB 中,cos ∠CAB 3AC AB ==, ∴23AC = 故答案为:3(2)由(1)可得∠CBO=90°−∠CAB=60°,又∵CO=OB ,∴∠COB =60°,∴劣弧BC 的长60423603ππ⨯⨯==, 故答案为:23π. 【点睛】本题主要考查了圆的性质和弧的长度计算与三角函数的综合运用,熟练掌握相关概念是解题关键. 19.如图,10AOB ∠=︒,点在OB 上.以点为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;,按照上面要求一直画下去,就会得到11223OP PP PP P P ===,则 (1)234P P P ∠=_________;(2)与线段OP 长度相等的线段一共有__________条(不含OP ).【答案】 (1). 100 (2).【解析】【分析】(1)根据题意首先可以得出1PO PP =,121PPP P =,…,从而进一步可得1PPB ∠=20°,21P P A ∠=30°,32P P B ∠=40°,43P P A ∠=50°,54P P B ∠=60°,…,最后利用三角形内角和定理直接计算即可;(2)根据题意,若按照题中的要求一直画下去,可得到点n P ,由此可得1090n ︒⨯<︒,从而进一步得出的值,然后利用54P P B ∠=60°、4556P P P P =可以得出456P P P ∆为等边三角形,最后进一步分析即可.【详解】(1)由题意可知,1PO PP =,121PPP P =,…, 则11POP OPP ∠=∠,1212PPP PP P ∠=∠,…,∵AOB ∠=10°,∴1PPB ∠=20°,21P P A ∠=30°,32P P B ∠=40°,43P P A ∠=50°,54P P B ∠=60°,…,∴234P P P ∠=180°−40°−40°=100°,故答案为:100;(2)根据题意,若按照题中的要求一直画下去,可得到点n P ,∴1090n ︒⨯<︒,解得9n <.∵为整数,故8n =.∵54P P B ∠=60°,4556PP P P =,∴456P P P ∆为等边三角形,∴与线段OP 长度相等的线段一共有条(不含OP ),故答案为:9.【点睛】本题主要考查了等腰三角形性质在探索图形规律中的运用,熟练掌握相关概念并找出相应的规律是解题关键.三、解答题20.王老师在数学课上带领同学们做数学游戏,规则如下:根据游戏规则,回答下面的问题:(1)若甲报的数为12,则乙报的数为_________,丁报出的答案是_________; (2)若甲报的数为3-,请列出算式并计算丁报出的答案; (3)若丁报出的答案是,则直接写出甲报的数.【答案】(1)32-,14-;(2)32;(3),. 【解析】【分析】(1)按照游戏中的说法将”甲报的数为12“代入,然后依次计算即可; (2)按照游戏中的说法将”甲报的数为3-“代入,然后直接计算即可;(3)按照游戏中的说法,将”丁报出的答案是 “代入,然后进一步分析即可.【详解】(1)由题意可得: 若甲报的数为12,则乙报的数为:13222-=-, ∴丙报的数为:3322-=, ∴丁报的答案为:3111224⨯-=-;故答案为:32-,14-; (2)由题意可得:若甲报的数为3-,则乙报的数为:325--=-,∴丙报的数为:55-=,∴丁报的答案为:135122⨯-=; (3)由题意得:若丁报的答案为0,则丙报的这个数的一半为1,即该数为2,∴乙报给丙的数为2或2-,∴甲报给乙的数为4或0.【点睛】本题主要考查了有理数的运算,熟练掌握相关方法是解题关键.21.已知甲、乙两个长方形纸片,其边长如图中所示()0m >,面积分别为S 甲和S 乙.(1)①用含的代数式表示S =甲_________,S =乙_________;②用” “、” “或” “号填空:S 甲________S 乙;(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正.①该正方形的边长是_________(用含的代数式表示);②小方同学发现,”S 正与S 乙的差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由.【答案】(1)①21227m m ++,21024m m ++;②;(2)①5m +;②正确,理由见解析.【解析】【分析】(1)①根据长方形面积的计算公式直接计算化简即可;②利用”作差法”比较大小即可;(2)①首先求出乙的周长,由此得出该正方形的边长即可;②将二者相减,然后进一步化简分析即可.【详解】(1)①由题意得:甲的面积为:()()2122739m m m m ++=++, 乙的面积为:()()2102446=m m m m ++++, ②∵21227m m ++−()21024m m ++=23m +,其中0m >,∴230m +>,∴21227m m ++>21024m m ++,故答案为:①21227m m ++,21024m m ++;②;(2)①由题意得:乙的周长为:()246420m m m +++=+,∵该正方形纸片的周长与乙的周长相等, ∴该正方形边长为:42054m m +=+; ②正确,理由如下:()22(5)1024S S m m m -=+-++乙正()()2210251024m m m m =++-++1=∴S S -乙正的差等于,是定值.【点睛】本题主要考查了整式运算的综合运用,熟练掌握相关概念是解题关键.22.学校组织甲、乙两组同学参加国学经典知识对抗赛,每组有位选手,每场比赛两组各派人进行现场对抗比赛,满分为分,共进行了场比赛.学校整理和汇总了这场比赛的成绩,并制成如下所示的尚不完整的统计表和图所示的折线统计图.根据以上信息回答下面的问题:(1)若甲、乙两组成绩的平均数相同,①求的值;②将折线统计图补充完整,并根据折线统计图判断哪组成绩比较稳定.(2)若甲、乙两组成绩的中位数相等,直接写出的最小值.(3)在(1)中的条件下,若从所有成绩为25分的选手中随机抽取两人对其答题情况进行分析,请用列表法求抽到的两位选手均来自同一组的概率.【答案】(1)①26;②图见解析,乙组成绩较稳定;(2)25;(3)13.【解析】【分析】(1)①首先根据”甲、乙两组成绩的平均数相同”可以得出甲、乙两组的总分数一样,据此列出方程求解即可;②根据已经计算出的的值再结合表格信息进一步补全图形,由此再根据折线波动情况进行分析比较即可;(2)首先根据中位数的定义求出甲组的中位数,然后进一步根据乙组成绩加以分析即可;(3)根据题意,根据列表法找出所有可能发生的事件,然后进一步求出相应的概率即可.【详解】(1)①∵甲、乙两组成绩的平均数相同,∴2425272825212327252524n+++++=+++++,解得,26n=;②补全折线统计图如下图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版中考数学模拟试卷(一)
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()
A.B.C.D.
2 . 下列各组线中,互为相反数的是()
A.|-2|与2B.-2与
C.|-2|与(-)2D.-2与
3 . 下图是某几何体的三视图,则这个几何体是()
A.棱柱B.圆柱C.棱锥D.圆锥
4 . 下列图形中既是轴对称图形又是中心对称图形的是().
A.B.C.D.
5 . 将一些相同的“O”按如图所示摆放,观察每个图形中的“O”的个数,若第n个图形中“O”的个数是78,则n的值是()
……
第1个图形第2个图形第3个图形第4个图形
A.11B.12C.13D.14
6 . 如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有()
A.①②③B.①③④C.③④⑤D.②③⑤
7 . 甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是().[说明:棋子的位置用数对表示,如A点在(6,3)]
A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)
C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)
8 . 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地
从袋子中摸出三个球.下列事件是必然事件的是()
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
9 . 下列式子为最简二次根式的是()
A.B.C.
D.
10 . 某商店有两件进价不同的上衣都卖了60元,其中一件盈20%,另一件亏20%,则在这次买卖中,这家商店()
A.不盈不亏B.亏5元C.盈5元D.盈8元
二、填空题
11 . 某中学为了了解该校八年级学生在2018年4月23日“世界读书日”的读书情况,随机调查了50名学生的读书册数,统计数据如下表所示:
册数01234
人数31315172
在这组数据中,这50名学生读书册数的众数记为m,中位数记为n,则m+n=_____.
12 . 已知,如图,点是长方形的边上一点,将沿着对折,点恰好折叠到边上的点,若,那么__________.
13 . 若x+=,则x-=____________.
14 . 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差______________;
15 . 如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB
边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.
16 . 如图,将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH;将AD沿过点G的直线折叠,使点A、点D分别落在边AB、CD上,折痕为E
A.则折出的四边形BCEF的长宽之比为_____.
三、解答题
17 . 化简:
(1)2a﹣3b+6a+9b﹣8a+12b
(2)(7y﹣3z)﹣2(8y﹣5z)
18 . 为打造平安校园,增强学生安全防范意识,龙岗某学校组织了 1200名学生参加校园安全网络知识竞赛.赛后随机抽取了其中200名学生的成绩作为样本进行整理,并制作了如下不完整的频数分布表和频数分布直方图.
请根据图表提供的信息,解答下列各题:
(1)表中m= ,n= ,请补全频数分布直方图.
(2)若用扇形统计图来描述成绩分布情况,z则分数段80≤x<90对应扇形的圆心角的度数是.
(3)若成绩在80分以上(包括80分)为合格,则参加这次竞赛的1200名学生中成绩合格的大约有多少名?
19 . 如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及S四边形ABDC;
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC若存在这样一点,求出点Q的坐标;若不存在,试说明理由;
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),求证:∠DCP+∠BOP=∠CPO.
20 . 如图,点在上,,,说明的理由。

21 . 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当t为何值时,CP=OD?
(2)当△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).
(3)在线段PB上是否存在一点Q,使得四边形ODQP为菱形?若存在,求t的值,并求出Q点的坐标;若不存
在,请说明理由.
22 . 东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.
(1)试求y与x的函数关系式;
(2)为了使每月获得利润为144元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?
23 . 学校组织首届“数学文化节”活动,旨在引导同学们感受数学魅力、提升数学素养。

活动中,七年级全体同学参加了“趣味数学知识竞赛” 。

收集数据:现随机抽取七年级中 40 名同学“趣味数学知识竞赛”的成绩,如下(单位:分):
75 85 75 80 75 75 85 70 75 90 75 80 80 70 75 80 85 80 80 95
95 75 90 80 70 80 95 85 75 85 80 80 70 80 75 80 80 55 70
60
整理分析:小彬按照如下表格整理了这组数据,并绘制了如下的频数直方图。

(1)请将图表中空缺的部分补充完整,并说明这 40 名同学“趣味数学知识竞赛”的成绩分布情况(写出一条即可);
(2)这 40 名同学的“趣味数学知识竞赛”成绩的中位数是分;
问题解决:
(3)“数学文化节”组委会决定,给“趣味数学知识竞赛”成绩在 90 分及 90 分以上的同学授予“数学之星”称号。

根据上面统计结果估计该校七年级 560 人中,约有多少人将获得“数学之星”称号?
(4)“数学文化节”中,获得“数学之星”称号的小颖得到了 A,B,C,D 四枚纪念章(除头像外完全相同)。

如图所示,四枚纪念章上分别印有四位数学家的头像。

她将纪念章背面朝上放在桌面上,然后从中随机选取两枚送给妹妹。

求小颖送给妹妹的两枚纪念章中恰好有一枚印有华罗庚头像的概率。

(提示:答题时可用序号 A,B,C,D
表示相应的纪念章)
24 . (14分)如图,抛物线(≠0)与轴交于A(-4,0),B(2,0),与轴交与点C (0,2).
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D 的坐标及此时三角形的面积;(解题用图见答题卡)
(3)以AB为直径作⊙M,直线经过点E(-1,-5),并且与⊙M相切,求该直线的解析式.(解题用图见答题卡)
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
三、解答题
1、
2、
3、
4、
5、
6、
7、
8、。

相关文档
最新文档