集成电路封装知识
集成电路的封装形式
QFP/PFP封装具有以下特点: 1.适用于SMD表面安装技术在PCB电路板上安装布线。
2.适合高频使用。 3.操作方便,可靠性高。 4.芯片面积与封装面积之间的比值较小
三、PGA插针网格阵列封装
(Pin Grid Array Package) 特点
插拔操作更方便,可靠性高。 可适应更高的频率
BGA球栅阵列封装 BGA封装技术又可详分为五大类:
六、MCM多芯片模块
为解决单一芯片集成度低和功能不够完善的问题, 把多个高集成度、高性能、高可靠性的芯片,
在高密度多层互联基板上用SMD技术组成 多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。
MCM具有以下特点:
1.封装延迟时间缩小,易于实现模块高速化。
2.缩小整机/模块的封装尺寸和重量。
3.系统可靠性大大提高。
IC面积只比晶粒(Die)大不超过1.4倍。
CSP封装具有以下特点: 1.满足了芯片I/O引脚不断增加的需要。 2.芯片面积与封装面积之间的比值很小。
3.极大地缩短延迟时间
SOIC 封装 BGA 封装 TSOP 封装 TQFP 封装 DIP 封装 QFP 封装 SOP 封装 SSOP 封装 CLCC 封装
提高了成品率。
虽然BGA的功耗增加,但由于采用的是可控塌 陷芯片法焊接,
从而可以改善电热性能。
三.信号传输延迟小,适应频率大大提高。 组装可用共面焊接,可靠性大大提高。
五、CSP芯片尺寸封装 随着全球电子产品个性化、轻巧化的需求蔚为风潮, 封装技术已进步到CSP(Chip Size Package)。 它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大 ,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,
集成电路芯片封装技术培训课程(ppt-35页)全
微电子技术发展对封装的要求
四、高密度化和高引脚数
高密度和高I/O数造成单边引脚间距缩短、封装难
度加大:焊接时产生短路、引脚稳定性差
解决途径:
采用BGA技术和TCP(载带)技术
成本高、难以进行外观检查等。
微电子技术发展对封装的要求
五、适应恶劣环境
密封材料分解造成IC芯片键合结合处开裂、断路
解决办法:寻找密封替代材料
Ceramic
Ceramic or
Thin Film on Ceramic
Thin Film on PWB
PWB-D
•Integration to
BEOL
•Integration in
Package level
PWB-Microation at
System level
1、电源分配:传递电能-配给合理、减少电压损耗
2、信号分配:减少信号延迟和串扰、缩短传递线路
3、提供散热途径:散热材料与散热方式选择
4、机械支撑:结构保护与支持
5、环境保护:抵抗外界恶劣环境(例:军工产品)
确定封装要求的影响因素
成本
外形与结构
产品可靠性
性能
类比:人体器官的构成与实现
微电子封装技术的技术层次
芯片,但两类芯片的可靠性和成本不同。
封装材料
芯片封装所采用的材料主要包括金属、陶瓷、
高分子聚合物材料等。
问题:如何进行材料选择?
依据材料的电热性质、热-机械可靠性、技术和
工艺成熟度、材料成本和供应等因素。
表1.2-表1.4
封装材料性能参数
介电系数:表征材料绝缘程度的比例常数,相对值,通常介
电系数大于1的材料通常认为是绝缘材料。
集成电路封装基础知识
集成电路封装基础知识教材集成电路封装基础知识第一章集成电路的概述第一■节序言第二节集成电路的产生第三节集成电路的定义第四节集成电路的前道和后道的定义第五节集成电路的分类第二章集成电路的构成第一节集成电路的主要构成第二节各组成部分的作用第三章集成电路的封装类型第一节国外集成电路的封装类型第二节国内集成电路的命名第三节本公司内部的集成电路的封装类型第四节集成电路未来发展的趋势第四章集成电路的一脚(INDEX)识别第一节集成电路的一脚构成第二节集成电路的一脚识别第五章集成电路封装的主要材料第一节集成电路的主要原材料第二节各原材料的组成、保管、主要参数第六章集成电路封装工艺流程第一节集成电路封装的主要工艺流程第二节集成电路封装的详细工艺流程第三节封装中工艺流程的变化第七章集成电路封装设备的主要结构第一节封装设备的通用结构第二节设备各部分的作用第三节各工序各部分的结构不同第四节设备操作面板上常用英文和日文单词注释第八章集成电路封装设备的主要控制原理第一节PLC的概念第二节PLC的控制原理第三节设备的控制原理第九章集成电路封装中的常用单位换算第一节长度单位换算表第二节质量单位换算表第三节体积和容积单位换算表第四节力单位换算表第五节力矩和转矩单位换算表第六节压力和应力单位换算表第七节密度单位换算表第一节序言从本世纪50年代末开始,经历了半个多世纪的无线电电子技术正酝酿着一场新的革命.这场革命掀起的缘由是微电子学和微电子技术的兴起•而这场革命的旋涡中心则是集成电路和以其为基础的微型电子计算机.集成电路的问世,开辟了电子技术发展的新天地,而其后大规模和超大规模集成电路的出现,则迎来了世界新技术革命的曙光•由于集成电路的兴起和发展,创造了在一块小指甲般大小的硅片上集中数千万个晶体管的奇迹;使过去占住整幢大楼的复杂电子设备缩小到能放入人们的口袋,从而为人类社会迈向电子化,自动化,智能化和信息化奠定了最重要的物质基础•无怪乎有人将集成电路和微电子技术的兴起看成是跟火和蒸汽机的发明具有同等重要意义的大事1 •集成电路的产生5•集成电路的分类:TTL集成电路;(定义)集成运算放大器;COMS集成电路;接口集成电路; ECL集成电路;集成稳压器与非线性模拟集成电路微型计算机集成电路;HTL集成电路.2•集成电路的构成:.集成电路的封装类型1. 国外集成电路封装类型的命名及分类SIP ---------------------------------------------- (SINGLE IN -INE PACKAGE) ZIP ---------------------------------------- (ZIG-ZAG IN-LINE PACKAGE)DIP-------------------------------------------- (DUAL IN-LINE PACKAGE) SHDIP -------------------------- (SHRINK DUAL IN-LINE PACKAGE)WDIP ------------------ (WINDOW TYPE DUAL IN-LINE PACKAGE)PGA -------------------------------------- (PIN GRID ALLEY PACKAGE)SVP---------------------------------- (SURFACE VERTICAL PACKAGE) SOP ----------------------- (SMALL OUTLINE L-LEADED PACGAGE) TSOP1 ------------ (THIN SMALL OUTLINE L-LEADED PACKAGE)LSSOP -------------------------------------- (LOW PRO SMALL OUTLINE PACKAGE)TSSOP -------------------------------------- (THIN PRO SMALL OUTLINE PACKAGE)UTSOP ------------------------------------ (ULTRA THIN SMALL OUTLINE L-LEADED PACKAGE)QFP ------------------------------------------------------------------ (QUAD FLAT L-LEADED PACKAGE)LQFP -------------------------------------------- (LOW PRO FLAT L-LEADED PACKAGE)TQFP --------------------------------------------------------- (THIN QUAD FLAT L-LEADED PACKAGE)UTQFP ------------------------------------------ (ULTRA THIN QUAD FLAT L-LEADED PACKAGE)HQFP -------------------------------------------------------------------------------- (QFP WITH HEAT SINK)TPQFP ------------------------------------------------- (TEST PAD QUAD FLAT L-LEADED PACKAGE)SON ---------------------------------------------------- (SMALL OUTLINE NON-LEADED PACKAGE)QFN ----------------------------------------------------------- (QUAD FLAT NON-LEADED PACKAGE)SOJ ----------------------------------------------------------- (SMALL OUTLINE J-LEADED PACKAGE)QFJ ------------------------------------------------------------------- (QUAD FLAT J-LEADED PACKAGE)BGA ------------------------------------------------------------------------------------ (BALL GRID ARRAY)SPGA ------------------------------------------------------------- (SHRINK PIN GRID ALLEY PACKAGE)LGA ------------------------------------------------------------------------ (LEAD GRID ALLEY PACKAGE)DTP ------------------------------------------------------------------- (DUAL TAPE CARRIER PACKAGE)QTP ------------------------------------------------------------------- (QUAD TAPE CARRIER PACKAGE)SIMM ------------------------------------------------------------- (SINGLE INLINE MEMORY MODULE)DIMM ---------------------------------------------------------------- (DUAL INLINE MEMORY MODULE)SOCKET TYPE3. 国内外封装名称对照:SIP ----------- S INGLE IN LINE PACKAGE ------------------ 单列封装SIPT --------- S INGLE IN LINE PACKAGE WITH TAB----- 带散热片的单列封装DIP ----------- D UAL IN LINE PACKAGE ----------------------- 双列封装DIPT --------- D UAL IN LINE PACKAGE WITH TAB -------- 带散热片的双列封装SDIP --------- S HRINK DUAL IN LINE PACKAGE ----------- 纵向收缩型双列封装2. 国内集成电路的名称和代号:玻璃陶瓷扁平封装 W 陶瓷四面引线扁平封装 Q 塑料双列弯引线封装O 陶瓷熔封扁平封装 H 塑料双列封装 P 陶瓷熔封双列封装 J 金属菱形封装 K 塑料片式载体封装 E 陶瓷扁平封装 F 塑料扁平封装 B 塑料四面引线扁平封装 N 陶瓷双列封装 D 塑料单列封装 S 金属圆形封装 T 陶瓷无引线片式载体封装 --------------- C陶瓷针栅阵列封装 ---------------------- GSWDIP ----- SKINNY DIP OR SHRINK WIDTH DUAL IN LINE PACKAGE----------- 横向收缩型双列封装QIP ---------- QUAD IN LINE PACKAGE ----------------------- 四列封装ZIP ----------- ZIGZAG IN LINE PACKAGE -------------------- 引线交叉排列封装CERDIP ——CERAMIC DUAL IIN LINE PACKAGE ------- 陶瓷熔封双列式封装CDIP -------- CERAMIC DUAL IN LINE PACKAGE (SIDE BRAZED )----------- 陶瓷双列式封装(通常指侧面钎焊的)PGA --------- PIN GRID ARRAY --------------------------------- 针栅阵列封装SOP --------- SMALL OUT LINE PACKAGE ------------------ 微型封装(两面出腿)SOJ --------- SMALL OUTLINE PACKAGE WITH J LEAD----J 形弓 I 线微型封装PLCC -------- PLASTIC LEADED CHIP CARRIER ----------- CLCC/LCC--CERAMIC LEADLESS CHIP CAEEIER ------ 陶瓷片式载体 QFP --------- QUAD FLAT PACKGE ---------------------------- 四面引线扁平封装 薄的微型封装(两面出腿)塑封有引线的片式封装TSOP ------- THIN SMALL OUTLINE PACKAGE ------------4.本公司内现有的封装类型SIP、SIPTDIP、DIPT、SDIP、SKDIPDIP24、DIP28、DIPT14、SDIP42、SDIP52、SDIP64、SKDIP22、SKDIP24SOP8、SOP14 SOP16 SOP20、SOP24 SOP28 SOL8SOJ26QFP48、QFP64、QFP80、QFP100.集成电路的一脚(INDEX)识别印记正对人的位置,产品最左下角的起脚为一脚,然后按逆时针方向旋转,以次列数.DIP8、DIP14、DIP16、DIP18、DIP20、 SOP 、SOL SOJQFP5.本公司内现有的圭寸装品种.集成电路封装的主要材料1. 引线框架:LEAD FRAME(IC的载体,连接芯片和PCB板)(框架的一脚标记与芯片的一脚在装片时,要保持一致)2•银浆Ag:用以粘接芯片和L/F的PAD.3. 金丝:用以连接芯片和L/F.4. 树脂(塑封料):用以包封以键合好的半成品,以达到保护芯片的目的5. 油墨:用以标识集成电路.四.集成电路封装工艺流程1. 主要工艺流程:(磨片)-----划片-----装片-----键合——塑封——去飞边——电镀-----打印-----切筋打弯-------- 外观-----(测试)----包装2. 工艺流程的细化:贴片----磨片----贴片----划片----超声清洗----UV照射----崩片----装片----银浆固化----键合----塑封前烘----塑封----后固化----切筋----去飞边----电镀----打印----油墨固化----成形----外观----测试----包装七.设备的结构和控制原理1. 磨片(减薄):在使用大直径的硅片制造集成电路芯片时,由于其厚度较大,不能满足划片,装片和键合的工艺要求,因此需要对圆片的背面进行处理和减薄,除去其背面的氧化层,才能保证在装片和键合时有良好的浸润性,并改善装片后芯片与中岛之间的欧姆接触,减小串联附加电阻和提高散热性能.1.)研磨法:是利用大量硬度较大,颗粒较细并具有复杂棱角的磨料,在外力的推动下对被加工表面进行磨削作用的一种机械加工方法•研磨料:可采用天然或人造金刚砂,如a -AL2O3;a -SiC 磨料与水的比例为:1:52. )磨削法:是将机械平面磨削方法应用到半导体器件的加工中.磨削圆片时,砂轮和转盘各自以相反方向旋转,借助于它们的相对运动将圆片磨削减薄.(例:MPS2R30C减薄机)结构:由磨头,转盘(吸盘),磨头垂直和水平进给机构和冷却装置等部分组成.2. 划片:把已制有电路图形的集成电路圆片切割分离成具有单个图形(单元功能)的芯片,常用的方法有金刚刀划片,砂轮划片和激光划片等几种.而我们通常使用的是砂轮划片.砂轮划片机的砂轮转速为30000r/min左右,切割速度通常在50-150mm/min之间.圆片的固定方法是采用真空吸盘,并且工作台面是气垫式的,因此可以保证切割深度完全一致.同时利用监视图象或显微镜来进行定位.全自动划片机工艺步骤包括:圆片上料,对准,划片,清洗,烘干,进圆片盒等工步. 划片的切割方法:通常我们采用的是切割留深法.划片的切割方式:A模式(用于非FJ产品) C 模式(用于富士通产品)3. 装片:是把集成电路芯片粘接到引线框架中岛上的指定位置,为丝状引线的连接提供条件的工艺,称之为装片.3.1 装片的方法有:导电胶粘接法,银浆,低温玻璃烧结法和低熔点合金的共晶熔接法等.3.2 导电胶粘接法由于具有工艺简单.成本低,易采用自动化专用设备,同时在胶粘剂中增加一定比例的金属粉粒,以改善胶粘剂的导电和导热性能,有利于改善芯片的散热条件,因此目前广为应用的就是导电胶粘接法.3.3导电胶:是利用高分子有机化合物所制成的胶粘剂,是以环氧树脂为主体并加有银粉或铝粉等金属粉粒,再配置少量的固化剂和溶剂而成,其具体要求是:粘接牢固,固化时间短,在经受一定的温度后仍能保持其固化状态不变,并在固化期间不产生过多的挥发气体而污染芯片和具有较高的导电散热能力.3.4装片机:由承片台,真空吸嘴,芯片传送机构,加热系统,工件传送机构几个主要部分组成. 承片台:主要作用是将已经分离的但仍与塑料薄膜保持粘贴的芯片,连同贴片环进入承片台后,可由步进电机驱动承片台,作X和丫方向的移动,并通过图形识别装置,挑选出合格与合格芯片.对缺角,破裂和注有不合格标志的芯片,将有反馈信号加至步进电机,使承片台迅速移动,不将其剔除不用;而对合格芯片,则也有反馈信号输至步进电机,使承片台移动,将其送入到规定的位置上.真空吸嘴:作用是将到达规定位置的芯片,为了保护芯片不受损伤,采用真空吸力键芯片吸起,并送到引线框架的中岛上进行装片.真空吸嘴分为:平面吸嘴,斜面吸嘴和角锥吸嘴等. 根据材料的不同可分为:金属吸嘴和海绵吸嘴等.芯片的传送机构:通常采用悬臂式结构•主要作用是将由真空吸嘴吸取的芯片直接送到规定位置去进行装片,也可经过中途修正台修正位置后再送到规定位置上•加热系统:由内热式电阻加热,体积小但功率可达150-200W,并附有调温装置和预热设备,但仅限于共晶焊接装片使用.工件传送机构:对于塑料封装引线框架,可根据引线的尺寸来调整其轨道的宽度,并由步进电机按规定程序使之准确就位•4. 键合:将芯片的电极用金丝与引线框架的内引线连接起来,这一工艺过程称之为键合•4.1集成电路的芯片与封装外壳的连接方式可分为:有引线键合结构和无引线键合结构两大类有引线键合结构就是通常所说的丝焊法,即用金丝或铝丝实行金-金键合,金-铝键合或铝- 铝键合•由于都是在一定压力下进行的焊接,故又称为压焊•4.2目前塑料封装的集成电路通常使用有引线键合的金丝焊接.金丝焊接又分为:热压楔焊,热压球焊,超声热压焊,超声焊.4.3热压焊键合:就是在加热和加压的同时,对其芯片金属化层的压点(一般是铝层)以及外壳或引线框架的外引线引出端头,用金属丝引线(一般是金丝)通过焊接连接起来.由于金属丝和芯片上的铝层同时受热受压,其接触面产生了塑性变形,并破坏了界面的氧化膜,使两者接触面几乎接近原子引力的范围;又因为金丝和焊接层(铝层,镀金层或镀银层)表面存在的不平整现象,加压后其高低不平处相互填充而产生弹性嵌合作用,使两者紧密结合在一起,从而达到键合的目的.键合时,外壳或引线框架应预先加热到310-350 C°,金丝通过陶瓷,碳化钨或碳化钛硬质合金所做成的劈刀,并加热至200C°左右.当金丝由劈刀毛细孔中伸出时,利用氢气或电火花在其端头进行加热,使其熔化成球状,并立即通过50-160g的压力压焊在芯片金属化层的压点上.外焊点则仍采用楔形焊,,即金丝与外壳或引线框架的外引线引出端头实行金-金的热压焊接.4.4超声焊键合:是利用超声波的能量将金属丝(通常是用铝丝)在不加热的情况下,实行内外焊点的键合.其工作原理是由超声波发生器产生的几十千周的(通常为50-60kHz)超声波振荡电能,通过磁致伸缩换能器,在超声频磁场感应下迅速伸缩而产生弹性振动,再经变幅杆传给劈刀,并同时在劈刀上施加一定的压力.劈刀就在这两种力的作用下,带动金属丝在芯片金属层的压点和外壳或引线框架的外引出端头的表面迅速摩擦振动.这样不仅破坏了两者焊接界面的氧化膜,同时也使两者产生塑性变形,使两种纯净的金属面紧密接触,形成牢固的键合.超声焊接的内外焊点都是成楔形的,不需要对芯片和外壳加热,压点是实行铝-铝键合.键合状态主要由以下三个工艺参数所决定的:功率,时间,压力.4.5超声热压焊键合:在热压焊的基础上再加增加超声的能量所实现的键合,称之为超声热压超声热压焊同时具有热压和超声压焊两者的优点,可以降低热压焊的温度(从单纯的热压焊温度---300 C°以上下降至200-260 C°),使一些耐温不高的外壳货基片也能应用金丝作互连•对于引线框架较厚的和带有散热片的塑料封装集成电路,因为它们的散热好,温度梯度大,也可采用超声热压焊•超声热压焊机分为:手动式,半自动式,全自动式.操作步骤:(1)位置复原:确定芯片一金属化层压点为第一个焊接点,并调整其位置,使之置于对位光点之下;11/15(2) 按下开动钮:劈刀降落并进行第一点的焊接.当金球与芯片压点接触时,劈刀端头的内凹面在热能的作用下将金球压成钉头状的焊点,此时超声波发生器同步启动,并产生超声能量,以加速焊接的进行;(3) 劈刀自动提升到一定高度,丝夹张开,使金丝自动送出;(4) 把引线框架外引线一相应的引出端头作为第二焊点,并调整其位置,使之置于对位光点之下,按下开动钮,劈刀降落,以第二点的焊接,并用劈刀端头的外侧把金丝压成楔形的焊点,此时超声波发生器同步启动,并产生超声能量,以加速焊接的进行;(5) 劈刀自动升起时丝夹夹紧金丝,把金丝从楔形焊点的端头拉断,成为一个无丝尾的焊点;(6) 劈刀自动停在复原位置上,丝夹仍然夹紧金丝,电子烧球器产生高压电火花,把金丝端部烧成金球;(7) 丝夹松开,靠金丝的张力把金球升起到劈刀端部,准备进行下一个程序的循环.全自动式金丝球焊机:当对其第一个产品进行光点对位或采用自教程序进行焊接后,则所有的动作程序全部存储在微处理机中,通过自动传输机构,对以后的同类产品进行连续作业作业人员只需用料盒将已经装片的引线框架放到送料台上,并取走已焊接好的产品.如果个别芯片装片位置不当或有其他差错时,则设备上图形识别装置将会自动报警停机,以待作业人员处理.同时,当金丝使用完毕后,设备也会自动给出信号,告诉作业人员添加金丝.图形识别装置的作用:就是对芯片的焊接位置进行寻找和检测,其工作原理是采用相关法技术,即用工业视频摄像机摄取芯片表面的图形,并将摄取图象转换为二进制数码,然后和预先存储的标准的二进制数码图象进行比较.当发现差异时,可由步进电机按给定信号驱动工作台,作X和丫方向的移动,直至对位准确为止.校准范围一般在X= ± 0.2mm,Y= ± 0.2mm 0 =±5°.4.6 球焊劈刀:适用于金丝球焊键合,都是空心管状轴对称型,其端头的锥角有30 ° ,20 ° ,15° ,10° 等.劈刀常用材料有:陶瓷,碳化钨和碳化钛等.由于陶瓷能耐王水(3HCL+HNO3)的腐蚀,当金丝阻塞劈刀通孔而不能取出时,可用王水浸泡而将残存的金丝溶解出来,因此陶瓷劈刀应用较多.4.7金丝要求:(1)丝材的表面应光滑,清洁,不应有任何有机物如油脂,指印等的污染;(2) 不应有大于直径四分之一的影响丝材横截面的缺凹,划伤,裂痕,凸块和附着物⑶丝材应卷绕在特定的绕线轴上,不应有小于30°的死弯和小于0.76mm直径的结存在,且卷绕紧密整齐,不能杂乱松动;(4) 任意长的丝材卷绕在绕线轴上时,只能单层上绕式密绕,且每轴只绕一根,并在首尾注有标记;(5) 每轴丝材都应有严格的包装,以防止受损或污染,并应有规定的标志.⑹金丝纯度要求在99.99%以上,经制成细丝后还需进行退火处理,以保证其拉力强度和延伸率都能符合键合工艺要求.金丝成分表:金丝的选用:应根据集成电路的工作电流来加以选择.一般金丝的熔断电流与金丝的直径成线性关系.5.塑封:即塑料封装,是一种非气密性封装.它是将键合后的半成品用塑料封装起来,以达到保护作用以适应一定的环境.5.1塑料封装从50年代开始,70年代推广,到今天九十年代已广为使用.之所以塑料封装能发展到目前的水平,因其存在诸多的优点:(1) 塑料封装在集成电路的组装过程中一次加工完毕,不同与其他形式的气密性封装,需要事先作成封装外壳,大大简化了工艺流程;(2) 生产工艺简便.一次成型几百只,节省时间,提高工效,易于实现自动化,便于大批量生产;(3) 成本低.所用材料少,除了在初建初期需要对设备和模具投资外,以后的维护费用很低,是气密性封装的1/3-1/5;(4) 重量轻,抗冲击,振动和加速运动等机械性能都比较优越;(5) 环氧和硅酮树脂的抗辐射性能好;(6) 绝缘性能好,寄生参数小;(7) 抗化学腐蚀能力强;(8) 塑料封装中铀,钍的含量少,适于VLSI存储器的封装. 缺点:(1) 抗潮性能差;(2) 热性能差;(3) 抗盐雾腐蚀性能差;(4) 电屏蔽性能差;(5) 易老化.5.2塑封树脂:是一种热固性塑料,以高分子化合物合成的树脂为基体,加入固化剂仮应促进剂(催化剂),填充剂,阻燃剂,脱模剂和着色剂等组成.常用树脂有:环氧树脂,硅酮树脂等.目前我们使用的是环氧树脂. 树脂发展趋势:高纯度,低应力,低a射线等.树脂的保管:5C°以下.5.3塑料封装的成型方法有滴涂敷法,填充法,浇铸法和递模成型法.目前我们使用的是递模成型法. 递模成型法:是将塑料包封机上油缸压力,通过注塑头,传递到被预热的塑料上,使塑料经浇道,浇口缓慢挤入型腔,并充满整个型体,把芯片包封起来,该成型法称之为递模成型法.也就是通常称的塑封.5.4塑圭寸的工艺条件:⑴塑封模的温度:175土5C°(2) 合模压力:根据塑封模的大小,重量,型腔数,以下框架材料,成品外形尺寸和注塑压力等条件选定的.(3) 注塑压力:也称为递模压力和传递压力,其作用是传递塑料,使塑料能充满型腔.一般30-100Kg/cm2.⑷预热温度:塑料(塑封料)的预热温度取决于塑料的凝胶时间和流动性,一般为80-100C。
集成电路封装技术
集成电路封装技术一、概述集成电路封装技术是指将芯片封装成实际可用的器件的过程,其重要性不言而喻。
封装技术不仅仅是保护芯片,还可以通过封装形式的不同来满足不同应用领域的需求。
本文将介绍集成电路封装技术的基本概念、发展历程、主要封装类型以及未来发展趋势等内容。
二、发展历程集成电路封装技术随着集成电路行业的发展逐渐成熟。
最早的集成电路封装形式是引脚直插式封装,随着技术的不断进步,出现了芯片级、无尘室级封装技术。
如今,随着3D封装、CSP、SiP等新技术的出现,集成电路封装技术正朝着更加高密度、高性能、多功能的方向发展。
三、主要封装类型1.BGA封装:球栅阵列封装,是一种常见的封装形式,具有焊接可靠性高、散热性好等优点。
2.QFN封装:裸露焊盘封装,具有体积小、重量轻、成本低等优点,适用于尺寸要求严格的应用场合。
3.CSP封装:芯片级封装,在尺寸更小、功耗更低的应用场合有着广泛的应用。
4.3D封装:通过将多个芯片垂直堆叠,实现更高的集成度和性能。
5.SiP封装:系统级封装,将多个不同功能的芯片封装在一起,实现更复杂的功能。
四、未来发展趋势随着物联网、人工智能等领域的兴起,集成电路封装技术也将迎来新的挑战和机遇。
未来,集成电路封装技术将朝着更高密度、更低功耗、更可靠、更环保的方向发展。
同时,新材料、新工艺和新技术的应用将为集成电路封装技术带来更多可能性。
五、结语集成电路封装技术是集成电路产业链中至关重要的一环,其发展水平直接关系到整个集成电路的性能和应用范围。
随着技术的不断进步,集成电路封装技术也在不断演进,为各个领域的技术发展提供了强有力的支撑。
希望本文能够帮助读者更好地了解集成电路封装技术的基本概念和发展趋势,为相关领域的研究和应用提供一定的参考价值。
集成电路的封装方式
集成电路的封装方式随着电子技术的发展,集成电路已经成为现代电子产品中不可或缺的一部分。
而集成电路的封装方式则是保护和连接芯片的重要环节。
本文将介绍几种常见的集成电路封装方式,包括DIP封装、QFP封装、BGA封装以及CSP封装。
DIP封装,即双列直插封装(Dual In-line Package),是最早也是最常见的一种封装方式。
DIP封装的芯片引脚通过两行排列在芯片的两侧,方便插入插座或焊接到电路板上。
DIP封装的优点是成本低廉、易于维修和更换,但其缺点是占用空间较大,限制了芯片的集成度和密度。
QFP封装,即四边形薄封装(Quad Flat Package),是一种较新的封装方式。
QFP封装的芯片引脚通过四边排列在芯片的四周,使得芯片的尺寸更小,适用于高密度集成电路。
QFP封装的优点是体积小、引脚多、传导性能好,但其缺点是焊接难度较大,需要使用SMT设备进行焊接。
BGA封装,即球栅阵列封装(Ball Grid Array),是一种高密度的封装方式。
BGA封装的芯片引脚通过芯片底部的焊球连接到电路板上,使得芯片的引脚数量和密度更高。
BGA封装的优点是高集成度、体积小、传导性能好,但其缺点是焊接难度较大,需要使用专用设备进行焊接。
CSP封装,即芯片级封装(Chip Scale Package),是一种最小尺寸的封装方式。
CSP封装将芯片封装在最小尺寸的封装基板上,使得芯片的尺寸和重量更小。
CSP封装的优点是体积小、重量轻、传导性能好,适用于小型移动设备等场景。
但由于其尺寸小,焊接和维修难度较大。
除了以上几种常见的封装方式外,还有一些特殊的封装方式,如PGA封装(Pin Grid Array)、SOIC封装(Small Outline Integrated Circuit)等。
这些封装方式都有各自的特点和适用场景,可以根据具体的需求选择合适的封装方式。
在选择集成电路的封装方式时,需要考虑多个因素,如芯片的功耗、集成度、散热性能、可靠性和成本等。
封装基础第1章-集成电路封装
现代集成电路封装
图 4.2 电子封装系统中前三级封装组装层次 Fig. 4.2 Three levels of electronic package assemble
现代集成电路封装
一级封装 一级封装是指芯片级封装,即将芯片封装以形成器件,所以又称器件封装。 常规一级封装
几种典型的器件封装类型 针栅阵列封装 针栅阵列(PGA,Pin grid array)封装也叫插针网格阵列封装技术,由这种技术封装的 器件有多个由内至外的方阵形的插脚(针) ,每个方阵形插针沿芯片的四周间隔一定距离排 列,根据管脚数目的多少,可以围成 2~5 圈。安装时,将器件插入专门的 PGA 插座。为了 使得 CPU 器件能够更方便的安装和拆卸,从 486 芯片开始,出现了一种 ZIF CPU 插座,专 门用来满足 PGA 封装的 CPU 在印刷电路板上安装和拆卸的要求,该技术一般用于可能出现 多次插拔操作器件的场合。
图 2.4 集成电路二级封装的发展趋势 Fig. 2.4 Evolution of IC package
电子封装
电子封装的发展
封装是芯片和电子系统之间的桥梁,集成电路封装技术的发展既受微电子技术 中芯片设计和制造技术的推动,同时,封装技术的发展又有力地支撑和推动了整个 微电子技术的发展。
在过去几十年里,为适应集成电路向小型化、高速化、大功率发展的需要,集 成电路封装技术得到了不断的提高和改进。朝着小尺寸、多 I/O、高密度、高可靠 性、高散热能力、自动化组装的方向发展。
Introduction to Microsystems Packaging
Prof. Rao R. Tummala Georgia Institute of Technology
现代集成电路封装
集成电路封装工艺介绍
集成电路封装工艺介绍
SMD(Surface Mount Technology,表面安装技术)集成电路封装技术是一种利用表面安装技术来安装集成电路片上的元件,这种技术为模块封装提供了一种新的封装方式。
SMD封装技术在使用后可以实现低成本、高密度和高可靠性,在封装技术中已经得到了广泛应用。
下面介绍SMD集成电路封装工艺:
1.贴标:将集成电路封装片进行贴标,贴标中需包含集成电路芯片型号、芯片生产厂商、批量等信息,以及集成电路封装片的图纸。
2.清洗:进行封装片的清洗,通常使用抛光膏、洗涤液等来完成清洗工作,使其能够保持清洁无杂质。
3.引弧焊:将元件焊接到封装片上,通常采用引弧焊工艺,即采用电弧的能量将元件与前面进行过清洗的封装片上焊上。
4.返修:返修是根据集成电路封装的失效原因,通过改变封装片上的焊接参数和元件的安装形式,来改善集成电路封装的质量,以保证封装片的质量,通过返修可以减少集成电路封装的失效。
5.检测:检测是从元件安装,焊接,到封装完成后,进行完整性和质量检测,进而使其在使用中能够发挥良好的性能,满足质量要求。
集成电路封装知识
集成电路封装知识电子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。
封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。
什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。
所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。
但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。
通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。
目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。
电子封装的类型也很复杂。
从使用的包装材料来分,我们可以将封装划分为金属封装、陶瓷封装和塑料封装;从成型工艺来分,我们又可以将封装划分为预成型封装(pre-mold)和后成型封装(post-mold);至于从封装外型来讲,则有SIP(single in-line package)、DIP(dual in-line package)、PLCC(plastic-leaded chip carrier)、PQFP(plastic quad flat pack)、SOP(small-outline package)、TSOP(thin small-outline package)、PPGA(plastic pin grid array)、PBGA(plastic ball grid array)、CSP (chip scale package)等等;若按第一级连接到第二级连接的方式来分,则可以划分为PTH (pin-through-hole)和SMT(surface-mount-technology)二大类,即通常所称的插孔式(或通孔式)和表面贴装式。
常见集成电路封装类型
常见集成电路封装类型同学们,今天咱们来聊聊常见的集成电路封装类型,这可是电子领域里很重要的一部分呢!来看看双列直插式封装,简称DIP。
这就像是一个小小的长方形盒子,两边伸出一排引脚。
它的优点是安装方便,咱们在一些老式的电路板上经常能看到。
比如说早期的计算机内存条,用的很多就是DIP 封装。
然后是球栅阵列封装,也就是BGA。
这种封装的引脚变成了一颗颗小小的锡球,密密麻麻地排列在芯片底部。
BGA 封装的集成电路体积更小,能容纳更多的引脚,性能也更强。
就像咱们现在用的高性能手机、电脑的处理器,很多都采用了BGA 封装。
接着是扁平封装,比如QFP(Quad Flat Package)。
它的引脚是从四个边伸出来的,而且引脚很细很密集。
QFP 封装的集成电路在一些对体积有一定要求,同时引脚数量又比较多的场合很常见,像一些高端的显卡芯片就可能会用这种封装。
再来说说小外形封装,SOP(Small Outline Package)。
它比DIP要小巧很多,引脚也是从两边伸出,但引脚数量相对少一些。
在一些小型的电子设备里,比如便携式音乐播放器,可能就会用到SOP 封装的集成电路。
还有一种叫芯片级封装,CSP(Chip Scale Package)。
它的尺寸几乎和芯片本身一样大,能极大地节省空间。
像一些超薄的电子设备,比如智能手表,就会选择CSP 封装来减小体积。
给大家举个例子,假如我们要组装一台高性能的游戏电脑,主板上的芯片可能就会有BGA 封装的处理器、QFP 封装的控制芯片等等。
而如果是制作一个小巧的智能手环,可能就会用到CSP 封装的传感器芯片。
还有无引脚封装,比如LGA(Land Grid Array)。
它的引脚不是伸出来的,而是在芯片底部形成一个个触点。
这种封装在一些对散热要求高的芯片上比较常见。
集成电路的封装类型多种多样,每种都有自己的特点和适用场景。
了解这些封装类型,能帮助我们更好地理解电子设备的内部结构和工作原理。
集成电路封装
集成电路封装
集成电路封装,又称芯片封装,是指将集成电路芯片进行封装,以提供保护、连接和连接外部电路的功能。
常见的集成电路封装有以下几种类型:
1. 对顶焊接(DIP)封装:这是最早也是最常见的封装形式之一,通常用于较低密度和较低频率的应用。
它采用两排引脚,可以直接插入插座或焊接到电路板上。
2. 表面贴装技术(SMT)封装:这是目前最常用的封装技术,广泛应用于各种电子设备中。
SMT封装可以有效提高集成度和组装效率,减小封装体积和重量。
3. 高级封装:随着技术的发展,出现了一些更高级的封装形式,例如球形阵列封装(BGA)、无引脚封装(LGA)和封装在柔性基板上的芯片(COF)等。
这些封装形式主要用于高密度、高速和复杂电路的应用。
封装的选择会根据应用需求、电路复杂性、可靠性和成本
等因素进行评估和决策。
不同的封装形式有各自的优缺点,需要根据具体的设计要求和制造工艺选择适合的封装。
集成电路封装技术
第一章集成电路芯片封装技术1. (P1)封装概念:狭义:集成电路芯片封装是利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。
广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程。
2. 芯片封装实现的功能:1 传递电能,主要是指电源电压的分配和导通。
2 传递电路信号,主要是将电信号的延迟尽可能减小,在布线时应尽可能使信号线与芯片的互连路径以及通过封装的IO接口引出的路径达到最短。
3 提供散热途径,主要是指各种芯片封装都要考虑元器件、部件长期工作时如何将聚集的热量散出的问题。
4 结构保护与支持,主要是指芯片封装可为芯片和其他连接部件提供牢固可靠的机械支撑,并能适应各种工作环境和条件的变化。
3.在确定集成电路的封装要求时应注意以下儿个因素:1 成本2 外形与结构3 可靠性4 性能4.在选择具体的封装形式时,主要需要考虑4种设计参数:性能、尺寸、重量、可靠性和成本目标。
5.封装工程的技术层次:第一层次(Level1或First Level):该层次又称为芯片层次的封装(Chip Level Packaging),是指把集成电路芯片与封装基板或引脚架(Lead Frame)之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次组装进行连接的模块(组件Module)元件。
第二层次(Level2或Second Level:将数个第一层次完成的封装与其他电子元器件组成个电路卡(Card〉的工艺.第三层次(Level3或Third Level):将数个第二层次完成的封装组装成的电路卡组合成在一个主电路板(Board)上使之成为一个部件或子系(Subsystem)的工艺。
第四层次(Level4或Fourth Level)将数个子系统组装成为一个完整电子产品的工艺过程。
在芯片上的集成电路元器件间的连线工艺也称为零级层次(Level 0)的封装,6.封装的分类:按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类。
集成电路芯片封装技术培训课程(2024)
2024/1/28
生物医学应用中的特殊封装实例
如植入式医疗设备、生物传感器、神经刺激器等。
26
06
封装设备选型及使用注意事项
2024/1/28
27
关键设备介绍及选型建议
封装设备分类
根据封装工艺和芯片类型,封装设备可分为手动、半自动和全自动 三类。
关键设备介绍
包括贴片机、焊线机、塑封机、切筋打弯机等,分别用于芯片贴装 、焊接、塑封和引脚成型等工序。
金
高导电性、抗氧化、耐腐 蚀,用于高端封装中的引 线和触点。
8
绝缘材料
陶瓷
高热稳定性、良好的绝缘 性和机械强度,用于高端 封装和特殊环境。
2024/1/28
塑料
低成本、易加工、良好的 绝缘性,广泛用于中低端 封装。
玻璃
较高的热稳定性和绝缘性 ,用于某些特定封装中。
9
密封材料
环氧树脂
低成本、良好的密封性和绝缘性,广 泛用于中低端封装。
主要以金属罐封装为主,体积大 、重量重、成本高。
2024/1/28
中期封装技术
逐渐出现塑料封装和陶瓷封装,体 积减小、重量减轻、成本降低。
现代封装技术
不断追求小型化、轻量化、高性能 化和低成本化,出现了多种先进封 装技术,如BGA、CSP、3D封装等 。
5
常见封装类型及其特点
DIP封装
双列直插式封装,引脚从两侧引出,插装方便 ,但封装密度较低。
选型建议
根据生产需求、预算和工艺要求,选择适合的设备型号和配置,注意 设备的精度、稳定性、生产效率和易维护性。
2024/1/28
28
设备操作规范与维护保养要求
2024/1/28
操作规范
集成电路封装介绍
由陶瓷封装向塑料封装发展
在陶瓷封装向高密度 ,多引线和低功耗展的同时 , 多引线和低功耗展的同时 越来越多的领域正在由塑料封装所取代。 越来越多的领域正在由塑料封装所取代。而且 , ,目前以PQFP和 目前以PQFP 新的塑料封装形式层出不穷 ,目前以PQFP和 PBGA为主 全部用于表面安装 这些塑料封装 PBGA为主 ,全部用于表面安装 ,这些塑料封装 占领着 90 %以上的市场 以上的市场
半导体制造装备概述
芯片制造(前道) 芯片制造(前道)
单晶硅拉制、切片、表面处理、光刻、减薄、 单晶硅拉制、切片、表面处理、光刻、减薄、 划片
芯片封装(后道) 芯片封装(后道)
测试、 滴胶、 测试、 滴胶、Die bonding、Wire bonding、 、 、 压模
Y
Y
Y
Y
封装类型 无引线(面) 栅阵列 小外形或小外 形IC 小外形J形引 线 载带自动焊 列直插封装 单列直插封装 单边交叉双列 直插封装 四边单列直插 封装 单列直插存储 器模块
缩写词 LGA SO或SOIC SOJ TAB SIP ZIP QUIP
SMTPGA TAB
60年代
70年代
80年代
90年代 Y Y Y
Y Y Y Y Y Y Y
Y Y Y Y Y
多芯片模块 MCM针栅阵列 缩小的DIP 多I/O引脚数SIMM
MCM MCMPG A
SIMM (SIP)
微电子封装一般可分为 4级 ,如图 所示 ,即 : 级 如图 即 0级封装 级封装———芯片上器件本体的互连 级封装 芯片上器件本体的互连 1级封装 级封装———芯片 (1个或多个 )上的输入 / 级封装 芯片 个或多个 上的输入 输出与基板互连 2级封装 级封装———将封装好的元器件或多芯片 级封装 将封装好的元器件或多芯片 PWB)组装成电 组件用多层互连布线板 (PWB 组装成电 PWB 子部件 ,插件或小整机 插件或小整机 3级封装 级封装———用插件或小整机组装成机柜 级封装 用插件或小整机组装成机柜 整机系统
集成电路芯片封装技术
引线键合应用范围:低本钱、高靠得住、高产量等特点使得它成为芯片互连的主要工艺方式,用于下列封装::一、陶瓷和塑料BGA、单芯片或多芯片二、陶瓷和塑料(CerQuads and PQFPs)3、芯片尺寸封装(CSPs)4、板上芯片(COB)硅片的磨削与研磨:硅片的磨削与研磨是利用研磨膏和水等介质,在研磨轮的作用下进行的一种减薄工艺,在这种工艺中硅片的减薄是一种物理的进程。
硅片的应力消除:为了堆叠裸片,芯片的最终厚度必需要减少到了30μm乃至以下。
用于3D互连的铜制层需要进行无金属污染的自由接触处置。
应力消除加工方式,主要有以下4种。
硅片的抛光与等离子体侵蚀:研磨减薄工艺中,硅片的表面会在应力作用下产生细微的破坏,这些不完全平整的地方会大大降低硅片的机械强度,故在进行减薄以后一般需要提高硅片的抗折强度,降低外力对硅片的破坏作用。
在这个进程中,一般会用到干式抛光或等离子侵蚀。
干式抛光是指不利用水和研磨膏等介质,只利用干式抛光磨轮进行干式抛光的去除应力加工工艺。
等离子侵蚀方式是指利用氟类气体的等离子对工件进行侵蚀加工的去除应力加工工艺。
TAIKO工艺:在实际的工程应用中,TAIKO工艺也是用于增加硅片研磨后抗应力作用机械强度的一种方式。
在此工艺中对晶片进行研削时,将保留晶片外围的边缘部份(约3mm左右),只对圆内进行研削薄型化,通过导入这项技术,可实现降低薄型晶片的搬运风险和减少翘曲的作用,如图所示。
激光开槽加工:在高速电子元器件上慢慢被采用的低介电常数(Low-k)膜及铜质材料,由于难以利用普通的金刚石磨轮刀片进行切割加工,所以有时无法达到电子元件厂家所要求的加工标准。
为此,迪思科公司的工程师开发了可解决这种问题的加工应用技术。
减少应力对硅片的破坏作用先在切割道内切开2条细槽(开槽),然后再利用磨轮刀片在2条细槽的中间区域实施全切割加工。
通过采用该项加工工艺,能够提高生产效率,减少乃至解决因崩裂、分层(薄膜剥离)等不良因素造成的加工质量问题。
集成电路封装基础知识
集成电路封装基础知识《集成电路封装基础知识:小身材,大能量》嘿,各位小伙伴们!今天咱来聊聊那小小的集成电路封装,可别小瞧了这玩意儿,它虽然看着不起眼,但那可是有着大能量哩!说起集成电路封装啊,就像是给那些芯片小宝贝们穿衣服。
你想啊,这些芯片就像刚出生的小宝宝,赤裸裸地可不行,总得给它们好好包装一下,让它们能安全又舒服地在各种电子设备里工作呀。
这衣服穿得好不好,那影响可大了去了。
要是封装得不好,就好比给宝宝穿了一身不合身的衣服,不但行动不方便,还可能出各种毛病。
所以啊,封装这活儿可得精细着点儿。
好的封装就像是给芯片穿上了一套超级战甲!不仅能保护芯片不受外界的干扰和伤害,还能帮助它们散热,不然芯片温度太高,那不就“发烧感冒”啦。
而且呀,这战甲还得轻,不能给芯片增加太多负担。
想象一下,这些集成电路就像是一群小小的超级英雄,在封装的保护下,威风凛凛地在电子世界里大显身手。
它们在手机里让我们愉快地聊天、打游戏;在电脑里帮我们高效地工作、学习。
而这背后,封装功不可没呀!封装还有各种不同的类型和技术呢,就跟咱买衣服有不同款式一样。
有的封装小而精致,适用于那些小巧玲珑的电子产品;有的封装则强大厚实,能应对更复杂苛刻的环境。
咱普通人平时可能不太会注意到集成电路封装,但它真的无处不在。
可以说,没有了它,我们的生活可就没那么便捷和精彩啦!所以啊,下次当你愉快地拿着手机玩耍,或者用电脑办公的时候,不妨想想那小小的集成电路封装,是它们在背后默默地付出,让一切变得如此美好。
总之,集成电路封装虽然听起来是个很专业的东西,但其实它就像我们生活中的一部分,小小的身材却蕴含着大大的能量。
让我们为这些小小的英雄们点赞,也期待着未来它们能带给我们更多的惊喜和便利!怎么样,现在你对集成电路封装是不是有了更有趣的认识啦?。
集成电路封装技术(3)
集成电路封装技术
前言 第一章 电子封装工程概述 第二章 封装工艺流程 第三章 厚薄膜技术
前言
一、微电子封装的作用和意义 1、从与人们日常生活直接相关的事说起——着装
随着科技的进步和社会文明程度的提高,服装的种类、式样、所用的材料、 制作工艺都在不断的进步,所起的作用不仅限于御寒和美观上。
元器件与电路板连接
封胶材料与技术
陶瓷封装
塑料封接
气密性封装 封装过程中的缺陷分析
封装可靠性工程
第一章 电子封装工程概述
1.3.1 20世纪电子封装技术发展的回顾
第一章 电子封装工程概述
1.3.2 发展趋势 1、半导体集成电路的发展迅速
芯片尺寸越来越大
工作频率越来越高
发热量日趋增大
引脚越来越多
第一章 电子封装工程概述
随着封装技术的进步,引线节距和封装厚度不断地减小 引线节距从2.54mm(PDIP)降至0.65mm(PQFP) 封装厚度从3.6 mm(PDIP)降至2.0mm(PQFP)和
第一章 电子封装工程概述
1.2.3封装技本术与课封装程材所料 涉及的工艺技术
芯片封装工艺流程 焊接材料
厚膜/薄膜技术 印制电路板
第一章 电子封装工程概述
1.2 封装技术
1.2.1封装工程的技术层次
1.2.1封装工程的技术层次
层次1 它是指半导体集成电路元件(芯片)。芯片由半导体厂商提供,分二类,一 类系列标准芯片,另一类是针对系统用户的专用芯片。由于芯片为厂家提供, 如何确保芯片质量就成为关键问题。将其列为1个层次是指集成电路元器件间 的连线工艺。
封装的发展趋势已初见端倪。 (1)高性能CSP封装 以其超小型、轻重量化为特色,如果能在高速、多功能低 价格两个方面兼得,CSP在LSI封装中将会迅速得到普及。 (2)以芯片叠层式封装为代表的三维封装 三维立体封装包括封装层次的三维封 装、芯片层次的三维封装和硅圆片层次的三维封装等三种。 (3)全硅圆片型封装 其特点是在完成扩散工序的硅圆片上进行封装布线、布置 引线端子、贴附焊球、完成封装,最后再切分一个一个的封装件。 (4)球形半导体 涉及到半导体前工程、后工程等许多基本工序的变革,能否在 技术上突破并发展为实用的封装形式,还要经过实践检验。
集成电路芯片封装第十九讲课件.ppt
薄膜再分布:通过薄膜技术将沿芯片周边分布的焊区转 换为芯片表面上阵列分布的凸点焊区。
薄膜再分布技术
钝化的圆片表面涂覆首层BCB 光刻老焊区
淀积金属薄膜制备金属导线连接焊区 溅射淀积、光刻UBM层
二次涂覆BCB 光刻新焊区窗口 电镀或印刷焊料合金 再流形成焊料凸点 WLP测
焊前检测-三角激光测量法:是否有脱落及尺寸一致性 焊后检测-X射线检测法:对位误差和桥连等焊接缺陷
2、BGA返修工艺流程
3、CSP概念及分类
CSP技术应用现状
CSP封装具有轻、薄、短、小的特点,在便携 式、低I/O数和低功率产品中的应用广泛,主要用 于闪存(Flash Card )、RAM、DRAM存储器 等产品中。
用于裸芯片连接在基板上的FCT称为FCB,采用FC互 连技术的芯片封装型式称为FCP。
倒装芯片技术的特点
➢ FC采用阵列凸点结构,互连长度更短,互连 电性能较之WB和TAB得到明显改善; ➢ FC将焊料凸点转移至芯片下面,具有更高的 I/O引脚数; ➢ FC组装工艺与BGA类似,关键在于芯片凸点 的对位,凸点越小、间距越密,对位越困难。 ➢ 芯片产生的热量可通过凸点直接传给封装基 板,且裸芯片上面可外加散热器。
目前,超过100家公司开发CSP产品:Amkor、 Tessera、Chip-scale、Sharp等,市场潜力巨 大。
ROM与RAM
ROM—只读内存Read-Only Memory,一种只能读出 事先所存数据的固态半导体存储器。其特性是一旦储存资 料就无法再将之改变或删除。
RAM -Random Access Memory 随机存储器。存储 单元内容可按需随意取出或存入,且存取速度与存储单 元位置无关。在断电时将丢失其存储内容,故主要用于 存储短时间使用的程序。 按照存储信息的不同,随机存 储器又分为静态随机存储器(Static RAM,SRAM)和动 态随机存储器(Dynamic RAM,DRAM)。
集成电路封装与测试技术
集成电路封装与测试技术随着信息技术的快速发展和应用的广泛普及,集成电路在现代社会中扮演着重要的角色。
而集成电路封装与测试技术作为集成电路制造的重要环节,对于电子产品的性能、可靠性和稳定性起着至关重要的作用。
本文将介绍集成电路封装与测试技术的基本概念、重要性以及相关的发展趋势。
一、集成电路封装技术1.1 封装技术的定义与作用集成电路封装技术是将裸片芯片进行外包装,以提供对芯片的保护、连接和便于插拔。
其主要目标是保证芯片的电性能、机械可靠性和环境适应性,同时满足产品的体积、功耗和成本要求。
1.2 封装技术的分类根据不同的封装方式和结构,集成电路封装技术可以分为裸片封装、芯片级封装和模块级封装等多种形式。
其中,裸片封装是指将芯片直接粘贴在PCB板上,不进行封装的方式;芯片级封装是将芯片封装成单芯片或多芯片封装;模块级封装是将集成电路芯片与其他元器件进行封装。
1.3 封装技术的发展趋势随着集成电路的功能不断增强和尺寸不断缩小,封装技术也在不断创新与发展。
目前,多芯片封装、三维封装、无线封装等是集成电路封装技术的研究热点与发展方向。
这些新技术的应用将进一步提高集成电路的性能和可靠性。
二、集成电路测试技术2.1 测试技术的定义与作用集成电路测试技术是对封装好的集成电路芯片进行功能、电性能和可靠性等方面的验证和测试。
通过测试可以确保芯片的质量和性能符合设计要求,提高产品的可靠性和稳定性。
2.2 测试技术的分类根据不同的测试目的和方法,集成电路测试技术可以分为芯片测试、模块测试和系统测试等多种形式。
其中,芯片测试是对单个芯片进行测试,模块测试是对芯片封装后的模块进行测试,系统测试是对整个集成电路系统进行测试。
2.3 测试技术的发展趋势随着集成电路的复杂度不断提高,传统的测试技术已经无法满足需求。
因此,新型测试技术如板级测试、全片测试、MEMS测试等正在逐渐发展起来。
这些新技术的应用将提高测试效率、降低测试成本,并能同时满足不同级别的测试需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路封装知识典子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。
封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。
集成电路封装知识典子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。
封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。
什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。
所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。
但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。
通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。
目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。
电子封装的类型也很复杂。
从使用的包装材料来分,我们可以将封装划分为金属封装、陶瓷封装和塑料封装;从成型工艺来分,我们又可以将封装划分为预成型封装(p re-mold)和后成型封装(post-mold);至于从封装外型来讲,则有SIP(single in-line pack age)、DIP(dual in-line package)、PLCC(plastic-leaded chip carrier)、PQFP(p lastic quad flat pack)、SOP(small-outline package)、TSOP(thin small-outline package)、PPGA(plastic pin grid array)、PBGA(plastic ball grid array)、CSP (chip scale package)等等;若按第一级连接到第二级连接的方式来分,则可以划分为PTH (p in-through-hole)和SMT(surface-mount-technology)二大类,即通常所称的插孔式(或通孔式)和表面贴装式。
金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。
金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。
在底座中心进行芯片安装和在引线端头用铝硅丝进行键合。
组装完成后,用10号钢带所冲制成的镀镍封帽进行封装,构成气密的、坚固的封装结构。
金属封装的优点是气密性好,不受外界环境因素的影响。
它的缺点是价格昂贵,外型灵活性小,不能满足半导体器件日益快速发展的需要。
现在,金属封装所占的市场份额已越来越小,几乎已没有商品化的产品。
少量产品用于特殊性能要求的军事或航空航天技术中。
陶瓷封装是继金属封装后发展起来的一种封装形式,它象金属封装一样,也是气密性的,但价格低于金属封装,而且,经过几十年的不断改进,陶瓷封装的性能越来越好,尤其是陶瓷流延技术的发展,使得陶瓷封装在外型、功能方面的灵活性有了较大的发展。
目前,IBM的陶瓷基板技术已经达到100多层布线,可以将无源器件如电阻、电容、电感等都集成在陶瓷基板上,实现高密度封装。
陶瓷封装由于它的卓越性能,在航空航天、军事及许多大型计算机方面都有广泛的应用,占据了约10%左右的封装市场(从器件数量来计)。
陶瓷封装除了有气密性好的优点之外,还可实现多信号、地和电源层结构,并具有对复杂的器件进行一体化封装的能力。
它的散热性也很好。
缺点是烧结装配时尺寸精度差、介电系数高(不适用于高频电路),价格昂贵,一般主要应用于一些高端产品中。
相对而言,塑料封装自七十年代以来发展更为迅猛,已占据了90%(封装数量)以上的封装市场份额,而且,由于塑料封装在材料和工艺方面的进一步改进,这个份额还在不断上升。
塑料封装最大的优点是价格便宜,其性能价格比十分优越。
随着芯片钝化层技术和塑料封装技术的不断进步,尤其是在八十年代以来,半导体技术有了革命性的改进,芯片钝化层质量有了根本的提高,使得塑料封装尽管仍是非气密性的,但其抵抗潮气侵入而引起电子器件失效的能力已大大提高了,因此,一些以前使用金属或陶瓷封装的应用,也已渐渐被塑料封装所替代。
SIP是从封装体的一边引出管脚。
通常,它们是通孔式的,管脚插入印刷电路板的金属孔内。
这种形式的一种变化是锯齿型单列式封装(ZIP),它的管脚仍是从封装体的一边伸出,但排列成锯齿型。
这样,在一个给定的长度范围内,提高了管脚密度。
SIP的吸引人之处在于它们占据最少的电路板空间,但在许多体系中,封闭式的电路板限制了SIP的高度和应用。
DIP封装的管脚从封装体的两端直线式引出。
DIP的外形通常是长方形的,管脚从长的一边伸出。
绝大部分的DIP是通孔式,但亦可是表面贴装式。
对DIP来说,其管脚数通常在8至64(8、14、16、18、20、22、24、28、40、48、52和64)之间,其中,24至40管脚数的器件最常用于逻辑器件和处理器,而14至20管脚的多用于记忆器件,主要取决于记忆体的尺寸和外形。
当器件的管脚数超过48时,DIP结构变得不实用并且浪费电路板空间。
称为芯片载体(ch ip carrie r)或quad的封装,四边都有管脚,对高引脚数器件来说,是较好的选择。
之所以称之为芯片载体,可能是由于早期为保护多引脚封装的四边引脚,绝大多数模块是封装在预成型载体中。
而后成型技术的进步及塑料封装可靠性的提高,已使高引脚数四边封装成为常规封装技术。
其它一些缩写字可以区分是否有引脚或焊盘的互连,或是塑料封装还是陶瓷封装体。
诸如LLC(lead chip carrier),LLCC(le adless chip carrier)用于区分管脚类型。
PLCC(plastic leaded chip carrier)是最常见的四边封装。
PLCC的管脚间距是0.050英寸,与DIP相比,其优势是显而易见的。
PLCC的引脚数通常在20至84之间(20、28、32、44、52、68和84)。
还有一种划分封装类型的参数是封装体的紧凑程度。
小外形封装通常称为SO,SOP或SOI C。
它封装的器件相对于它的芯片尺寸和所包含的引脚数来说,在电路板上的印迹(foot print)是出乎寻常的小。
它们能达到如此的紧凑程度是由于其引脚间距非常小,框架特殊设计,以及模块厚度极薄。
在SO封装结构中,两边或四边引脚设计都有。
这些封装的特征是在芯片周围的模封料及其薄,因而,SO封装发展和可靠性的关键是模封料在防止开裂方面的性能。
SOP的引脚数一般为8、14和16。
四方扁平封装(QFP)其实是微细间距、薄体LCC,在正方或长方形封装的四周都有引脚。
其管脚间距比PLCC的0.050英寸还要细,引脚呈欧翅型与PLCC的J型不同。
QFP可以是塑料封装,可以是陶瓷封装,塑料QFP通常称为PQFP。
PQFP有二种主要的工业标准,电子工业协会(EIA)的连接电子器件委员会(Joint Electronic Device Committee, JEDEC)注册的PQFP是角上有凸缘的封装,以便在运输和处理过程中保护引脚。
在所有的引脚数和各种封装体尺寸中,其引脚间距是相同的,都为0.025英寸。
日本电子工业协会(EIAJ)注册的PQFP没有凸缘,其引脚间距用米制单位,并有三种不同的间距:1.0mm,0.8mm和0.65mm,八种不同的封装体尺寸,从10mm* 10mm到40mm*40mm,不规则地分布到三种不同的引脚间距上,提供十五种不同的封装形式,其引脚数可达232个。
随着引脚数的增加,还可以增加封装的类型?同一模块尺寸可以有不同的引脚数目,是封装技术的一个重要进展,这意味着同一模具、同一切筋打弯工具可用于一系列引脚数的封装。
但是,EIAJ的PQFP没有凸缘,这可能会引起麻烦,因为在运输过程中,必须把这些已封装好的器件放在一个特别设计的运输盒中,而JEDEC的PQFP只要置于普通的管子里就可以运输,因为凸缘可以使它们避免互相碰撞。
EIAJ的PQFP的长方形结构还为将来高引脚数封装的互连密度带来好处。
当引脚数大于256时,在0.100英寸间距的电路板上,长方形外形可达到较高的互连密度,这是因为周边的一些引脚可以通过模块下的通孔转换成平面引脚,达到PGA的互连密度。
在正方形结构中,并非所有模块下的通孔均可以插入,必须有一些芯片的连接要转换到模块外形的外面,提高其有效互连面积。
长方形结构可以使短边引脚数少于64个、引脚间距不大于0.025英寸(1mm)的所有引脚都插入模块底下的通孔中。
PQFP最常见的引脚数是84、100、132、164和196。
当引脚数目更高时,采用PQFP的封装形式就不太合适了,这时,BGA封装应该是比较好的选择,其中PBGA也是近年来发展最快的封装形式之一。
BGA封装技术是在模块底部或上表面焊有许多球状凸点,通过这些焊料凸点实现封装体与基板之间互连的一种先进封装技术。
广义的BGA封装还包括矩栅阵列(LGA)和柱栅阵列(CGA)。
矩栅阵列封装是一种没有焊球的重要封装形式,它可直接安装到印制线路板(PCB)上,比其它BGA封装在与基板或衬底的互连形式要方便得多,被广泛应用于微处理器和其他高端芯片封装上。