风功率预测三种模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风电功率预测问题
摘要
风能是一种可再生、清洁的能源,风力发电是最具大规模开发技术经济条件的非水电再生能源。现今风力发电主要利用的是近地风能。
近地风具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。
大规模风电场接入电网运行时,大幅度地风电功率波动会对电网的功率平衡和频率调节带来不利影响。
如果可以对风电场的发电功率进行预测,电力调度部门就能够根据风电功率变化预先安排调度计划,保证电网的功率平衡和运行安全。
因此,如何对风电场的发电功率进行尽可能准确地预测,是急需解决的问题。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日24小时96个时点(每15分钟一个时点)的风电功率数值。实时预测是滚动地预测每个时点未来4小时内的16个时点(每15分钟一个时点)的风电功率数值。
对于问题一我们建立了3个模型:1、时间序列模型即指数平滑模型2、拟合回归模型3、神经元预测模型即BP模型。针对这3种模型,根据相对误差的大小和准确度的大小判断来确定优先选择哪个模型。
对于问题二,在第一问的基础上对相关模型进行了比较,分析,做出了预期。
对于问题三,在第一问的基础上,对相关的模型进行了改善,使其预测的更加准确。
关键词:风功率实时预测 BP网络神经 matlab 时间序列
问题的重述
一、背景知识
1、风功率预测概况
风功率预测是指风电场风力发电机发电功率预测。
风电场是利用在某个通过预测的坐标范围内,几座或者更换多的经过科学测算,按照合理距离安装的风力发电机,利用可控范围内的风能所产生的电力来实现运行供电。
由于风是大气压力差引起的空气流动所产生的,风向和风力的大小时刻时刻都在变化。因而,风力发电具有波动性、间歇性和随机性的特点。
这些特点所导致的风电场功率波动,会对地区电网整体运行产生影响,进而会影响到整个地区总网内的电压稳定。因此,当风力发电场,特别是大容量风力发电场接入电网时,就会给整个电力系统的安全、稳定运行带来一定的隐患。同时,这些波动性、间歇性和随机性的特点,也会严重影响风机的发电效率和使用寿命。
2、风功率原理介绍
风功率预测系统技术,是根据风电场气象信息有关数据,利用物理模拟计算和科学统计方法,对风电场的风力风速进行短期预报,而预测出风电场的功率,从而也可实现电力调度部门对风电调度的要求。
二、具体试验数据
PA、PB、PC、PD、P4和P58数据
附件1:风电场功率预测预报管理暂行办法
附件2:风功率数据P
A
风功率数据P
B
风功率数据P
C
风功率数据P
D
58台机总风功率数据P
58
三、要解决的问题
1、问题一:风电功率实时预测及误差分析。
请对给定数据进行风电功率实时预测并检验预测结果是否满足附件1中的关于预测精度的相关要求。具体要求:
1)采用不少于三种预测方法(至少选择一种时间序列分析类的预测方法);
2)预测量:
a.P
A , P
B,
P
C,
P
D
; b.P
4
; c.P
58
。
3)预测时间范围分别为(预测用的历史数据范围可自行选定):
a. 5月31日0时0分至5月31日23时45分;
b. 5月31日0时0分至6月6日23时45分。
4)试根据附件1中关于实时预测的考核要求分析你所采用方法的准确性;
5)你推荐哪种方法?
2、问题二:试分析风电机组的汇聚对于预测结果误差的影响。
在我国主要采用集中开发的方式开发风电,各风电机组功率汇聚通过风电场或风电场群(多个风电场汇聚而成)接入电网。众多风电机组的汇聚会改变风电功率波动的属性,从而可能影响预测的误差。
在问题1的预测结果中,试比较单台风电机组功率(P
A ,P
B
,P
C
,P
D
)的相对预测误
差与多机总功率(P
4,P
58
)预测的相对误差,其中有什么带有普遍性的规律吗?从中你
能对风电机组汇聚给风电功率预测误差带来的影响做出什么样的预期?
3、问题三:进一步提高风电功率实时预测精度的探索。
提高风电功率实时预测的准确程度对改善风电联网运行性能有重要意义。请你在问题1的基础上,构建有更高预测精度的实时预测方法(方法类型不限),并用预测结果说明其有效性。
通过求解上述问题,请分析论证阻碍风电功率实时预测精度进一步改善的主要因素。风电功率预测精度能无限提高吗?
问题的分析
一、相关知识的介绍:
模型的介绍:
1.指数平滑法:
即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。此法实质是由内加权移动平均法演变而来的一种方法
2.bp神经网络:
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
3.Gaussian拟合函数模型
推求一个解析函数y=f(x)使其通过或近似通过有限序列的资料点(xi,yi),通常用多项式函数通过最小二乘法求得此拟合函数。本文中而此多项式为gaussian函数。
二、对问题的具体分析:
1、问题一的具体分析:
利用历史数据进行研究,利用相关的模型进行模拟,找到合适的规律,再利用相应的模型进行对未来的预测。
2、问题二的具体分析:
单个的风电机和整体的风电机有不同,单个的波动大,整体波动相对较小,但是同时影响整体的因素更加多,相对比起单个更加复杂,同时单个的不稳定,分析他们之间的差距,找到其中的规律,进行分析。
3、问题三的具体分析:
在问题一的基础上,想要构建准确率更加高的模型,便可以采取3个模型的组合模型,而对于不同的模型有不同的准确率,于是分配不同的比重,使预测的结果更加接近真实值。
模型的假设
1,根据实时预测要求,真实值出现后,便能运用其对将来进行相应的预测;
2,所有数据都是真实可靠的;
3,预测的几天内,没有出现异常天气;