专题复习:一次函数与图形面积

合集下载

【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究(解析版)

【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究(解析版)

【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究考点一 一次函数图象与坐标轴围成图形的面积 【知识点睛】❖ 求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高; 类型一 一条直线与坐标轴围成的三角形面积 解题步骤:①求出直线与x 轴、y 轴的交点坐标,从而得出直线与坐标轴围成的直角三角形的两条直角边长; ②利用三角形面积公式求出三角形的面积 【类题训练】1.已知一次函数图象经过A (﹣4,﹣10)和B (3,4)两点,与x 轴的交于点C ,与y 轴的交于点D . (1)求该一次函数解析式;(2)点C 坐标为 ,点D 坐标为 ;(3)画出该一次函数图象,并求该直线和坐标轴围成的图形面积.【分析】(1)用待定系数法求直线AB 的解析式; (2)令y =0求得点C 的坐标,令x =0求得点D 的坐标;(3)利用已知的点A 和点B 画出一次函数的图象,然后利用求得的点C 和点D 求出OC 和OD 的长度,最后求得直线和坐标轴围成的图形面积.【解答】解:(1)设一次函数的解析式为y =kx +b (k ≠0),则,解得:,∴一次函数的解析式为y =2x ﹣2.(2)当x =0时,y =﹣2,当y =0时,x =1, ∴C (1,0),D (0,﹣2). 故答案为:(1,0),(0,﹣2).(3)由点A和点B,可以画出一次函数的图象,如下如所示,∵C(1,0),D(0,﹣2),∴OC=1,OD=2,∴S△OCD==1,∴一次函数与坐标轴围成的图形的面积为1.2.在平面直角坐标系中,一条直线经过A(﹣1,5),与B(3,﹣3)两点.(1)求这条直线与坐标轴围成的图形的面积.(2)若这条直线与y=﹣x+1交于点C,求点C的坐标.【分析】(1)根据待定系数法求得直线的解析式,进一步求出直线与x轴和y轴的交点坐标,然后根据三角形面积公式求解;(2)联立方程,解方程即可.【解答】(1)解:设直线解析式为y=kx+b(k≠0),将A(﹣1,5),与B(3,﹣3)两点代入得,解得,∴直线解析式为y=﹣2x+3,将x=0代入得y=3,∴与y轴交于点(0,3),将y=0代入得x=,∴与x轴交于点(,0),∴S=×3×=.(2)解得,∴点C的坐标是(2,﹣1).变式.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.【分析】先根据一次函数y=kx+b(k≠0)图象过点(2,0)可知b=﹣2k,用k表示出函数图象与y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.类型二两条直线与坐标轴围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,若直线y=﹣2x+1与直线y=kx+4交于点B(﹣1,m),且两条直线与y轴分别交于点C、点A;那么△ABC 的面积为.【分析】根据B点在直线y=﹣2x+1上,且横坐标为﹣1,求出B点的坐标,再根据直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4解析式,即可求出答案,根据已知得出B点的坐标,再根据直线y=﹣2x+1和直线y=x+4求得与y轴交点A和C点的坐标,再根据三角形的面积公式得出S△ABC.【解答】解:∵B点在直线y=﹣2x+1上,且横坐标为﹣1,∴y=﹣2×(﹣1)+1=3,即B点的坐标为(﹣1,3)又直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4得:3=﹣k+4,解得k=1;∴直线AB的解析式为y=x+4,∴直线AB与y轴交点A的坐标为(0,4),∵直线y=﹣2x+1与y轴交点C的坐标为(0,1),∴AC=4﹣1=3,∴S△ABC=AC•|x B|=×3×1=.故答案为.2.如图,直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),直线l1交y轴于点A,直线交y轴于点B,则△PAB的面积为.【分析】利用一次函数y=kx+b(k,b为常数,k≠0)可得直线l1与直线l2:与y轴交点,然后可求出△PAB 的面积.【解答】解:∵直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),∴﹣1=﹣2×1+b,解得:b=1,∴A点坐标为(0,1),∵直线l2:y=kx﹣2交y轴于B,∴B(0,﹣2),∴AB=3,∴△PAB的面积为:3×1=,故答案为:.变式.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k 的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选:B.类型三三条直线围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC=S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC=S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.2.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1)求点A、B、C的坐标;(2)求△ADE的面积;(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长度,由折叠的性质可得出AC =AB ,结合OC =OA +AC 可得出OC 的长度,进而可得出点C 的坐标;(2)根据点E 为直线AB 与直线CD 的交点,联立两直线解析式可求出点E 坐标,再由△ADE 和△ADB 组成△BDE ,得△ADE 的面积=△BDE 的面积-△ABD 的面积,即可求出△ADE 的面积;(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|,利用三角形的面积公式可得出关于m 的含绝对值符号的一元一次方程,解之即可得出结论. 【解答】解:(1)当x =0时,y =﹣x +4=4, ∴点B 的坐标为(0,4); 当y =0时,﹣x +4=0, 解得:x =3,∴点A 的坐标为(3,0). 在Rt △AOB 中,OA =3,OB =4, ∴AB ==5.由折叠的性质,可知:∠BDA =∠CDA ,∠D =∠C ,AC =AB =5, ∴OC =OA +AC =8, ∴点C 的坐标为(8,0). (2)∵C (8,0),D (0,﹣6), ∴直线CD 的解析式为:y=43x-6, ∵点E 为直线AB 与直线CD 的交点.由⎪⎩⎪⎨⎧-=+-=643434x y x y 求得点E 坐标为⎪⎭⎫ ⎝⎛512-524,, ∴S △ADE =S △BDE ﹣S △ABD =BD •|x E |﹣BD •|x A |=9(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|. ∵S △PAD =S △ADE ,即DP •OA =×OD •OA ,∴|m+6|=3,解得:m=﹣3或m=﹣9,∴假设成立,即y轴上存在一点P(0,﹣3)或(0,﹣9),使得S△PAD=S△ADE.3.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.【分析】(1)首先根据分别与x轴、y轴交于点A、B可求得A、B坐标,然后根据S△ABD=2可求得D点坐标,代入直线CD:y=x+b可求得b,直线AB与CD相交于点P,联立两方程可求得P点坐标.(2)可把S△ADP的面积分解为S△ABD+S△BDP,而S△BDP=|x P|,即可求得.【解答】解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2∴|BD|•|OA|=2而|OA|=2∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|x P|=6或S△ADP=S△PAC+S△DAC=|y P|)=×3×(1+3)=6.4.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.【分析】(1)利用待定系数法可分别求出直线AB的解析式为y=2x+4;直线CD的解析式为y=x﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A点坐标为(0,4)=B点坐标为(﹣2,0)、D点坐标为(6,0),然后根据三角形面积公式和四边形ABCD的面积=S△ABD+S△CBD进行计算;(3)根据一次函数的交点问题通过解方程组得到E点坐标,然后利用△BCE的面积=S△EBD﹣S△CBD进行计算.【解答】解:(1)设直线AB的解析式为y=kx+b,把(1,6)、(﹣3,﹣2)代入得,解得.所以直线AB的解析式为y=2x+4;设直线CD的解析式为y=mx+n,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线CD的解析式为y=x﹣3;如图所示;(2)把x=0代入y=2x+4得y=4,则A点坐标为(0,4);把y=0代入y=2x+4得2x+4=0,解得x=﹣2,则B点坐标为(﹣2,0);把y=0代入y=x﹣3得x﹣3=0,解得x=6,则D点坐标为(6,0),所以四边形ABCD的面积=S△ABD+S△CBD=×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E点坐标为(﹣,﹣),所以△BCE的面积=S△EBD﹣S△CBD=×(6+2)×﹣×(6+2)×3=.变式.已知点A(2,4),B(﹣2,2),C(x,2),若△ABC的面积为10,求x的值.【分析】审题知B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为2,而且B、C两点之间的距离可用两点的横坐标之差的绝对值表示,即x+2的绝对值.已知三角形的面积为10,依此列出方程求解即可.【解答】解:由B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为4﹣2=2,BC=|x ﹣(﹣2)|=|x+2|,因为△ABC的面积为10,所以×2×|x+2|=10,|x+2|=10,x+2=10,或x+2=﹣10,解得:x=8,或x=﹣12.考点二一次函数图象与几何图形动点面积【知识点睛】❖此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息❖对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点❖动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。

2021年中考数学复习函数专题突破专题12 一次函数-面积问题(全国通用)(含答案解析)

2021年中考数学复习函数专题突破专题12 一次函数-面积问题(全国通用)(含答案解析)

专题12 一次函数-面积问题函数的学习中,自然离不开点、线、面,如求点的坐标、直线、曲线解析式、图形的面积,并且点、线、面之间的相互转化,本专题以一次函数为背景下求多边形面积,即由点或线的条件下求图形的面积,反之,也可以由面积求点的坐标,由面积求直线或曲线的解析式等,本专题的面积问题的巩固,为后面学习函数综合题的面积问题有极大帮助!一、单选题1.(2020·广西博白·期末)如图,矩形ABCD 中,AB =4,BC =3,动点E 从B 点出发,沿B ﹣C ﹣D ﹣A 运动至A 点停止,设运动的路程为x ,△ABE 的面积为y ,则y 与x 的函数关系用图象表示正确的是( )A .B .C .D .【答案】B【解析】试题分析:当点E 在BC 上运动时,三角形的面积不断增大,最大面积=12AB BC ⋅=1432⨯⨯=6;当点E 在DC 上运动时,三角形的面积为定值6.当点E 在AD 上运动时三角形的面不断减小,当点E 与点A 重合时,面积为0. 故选B .考点: 动点问题的函数图象.2.(2020·广西灵山·期末)一次函数24y x =-+的图象与x 轴、y 轴的交点分别为A B 、,则OAB ∆的面积是( ) A .12B .1C .2D .4【答案】D【解析】由题意先根据坐标轴上点的坐标特征确定A 点坐标为(2,0),B 点坐标为(0,4),然后根据三角形面积公式即可求得△OAB 的面积.【详解】∵一次函数y=-2x+4图象与x 轴交点为A ,与y 轴的交点为B ,∴A (2,0),B (0,4), ∴OA=2,OB=4, ∴△AOB 的面积=12OA•OB=12×2×4=4.故选:D . 【点拨】本题考查一次函数图象上点的坐标特征,注意掌握与x 轴交点的纵坐标为0;与y 轴交点的横坐标为0.3.(2020·广西大化·初二期末)若直线4y x b =-+与两坐标轴围成的三角形的面积是5,则b 的值为( )A .±B .±C .D .-【答案】B【解析】首先计算出直线y =−4x +b 与两坐标轴的交点是(0,b )(4b,0),再根据三角形的面积公式可得12×|b×4b |=5,再解即可. 【详解】当x =0时,y =b ,当y =0时,x =4b, ∴直线y =−4x +b 与两坐标轴的交点是(0,b )(4b,0),∵与两坐标轴围成的三角形的面积是5,∴12×|b×4b |=5,解得:b =±故选:B .【点拨】此题主要考查了一次函数图象与坐标轴的交点,关键是根据三角形的面积公式列出方程. 4.(2020·山东枣庄·初三其他)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .4【答案】A【解析】由一次函数解析式分别求出点A 和点B 的坐标,即可作答. 【详解】一次函数y =2x +1中,当x =0时,y =1;当y =0时,x =﹣0.5;∴A (﹣0.5,0),B (0,1),∴OA =0.5,OB =1 ∴△AOB 的面积10.5124=⨯÷=,故选:A .【点拨】此题考查一次函数图象上点的坐标特征,解题关键在于结合函数图象进行解答.二、填空题5 .(2020·甘肃省庆阳市第五中学初二期末)已知直线8y kx =+与轴和轴所围成的三角形的面积是4,则k 的值是________. 【答案】8±【解析】直线8y kx =+与两坐标轴的交点为()0,8,8,0k ⎛⎫- ⎪⎝⎭,则直线8y kx =+与坐标轴围成的面积为:18-842k⨯⨯=,求解即可;【详解】直线8y kx =+与两坐标轴的交点为()0,8,8,0k ⎛⎫-⎪⎝⎭,则直线8y kx =+与坐标轴围成的面积为:18-842k⨯⨯=,若0k <,直线8y kx =+过一、二、四象限,解得:-8k =, 若0k >,直线8y kx =+过一、二、三象限,解得:8k ;则8k =±.故答案是8±.【点拨】本题主要考查了一次函数图象上的点的坐标特征,准确计算是解题的关键.6.(2020·湖南隆回·初三二模)一次函数24y x =-的图象与x 轴,y 轴所围成的三角形面积S =__________. 【答案】4【解析】先求出直线y=2x -4与两坐标轴的交点,再根据三角形的面积公式即可解答.【详解】由函数的解析式可知,函数图象与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,-4), 直线y=2x -4与两坐标轴围成的三角形面积=12×2×4=4. 故答案为:4.【点拨】本题考查了一次函数图象上点的坐标特征,属简单题目,解答此题的关键是熟知两坐标轴上点的坐标特点,及三角形的面积公式.7.(2020·湖北曾都·初二期末)若直线y=kx+b (k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k 的值为_______【答案】±1.【解析】∵直线y=kx+b(k≠0)的图象经过点(0,2),∴b=2,∴直线y=kx+b(k≠0)为y=kx+2,当y=0时,x=−2k,∴12222k⨯⨯-=,解得k=±1.故答案为±1.8.(2020·长沙市南雅中学初二期末)函数y=2x+6 的图象与x、y 轴分别交于A、B 两点,坐标系原点为O,求△ABO 的面积___________.【答案】9【解析】先求出A,B两点的坐标,然后再求面积即可.【详解】当x=0时,y=6,故B点坐标为:(0,6),当y=0时,0=2x+6,解得x=-3,∴A点的坐标为(-3,0),∴OA=3,OB=6,∴S△ABO=12×3×6=9,故答案为:9.【点拨】本题考查了一次函数与坐标轴的交点,求出A,B两点的坐标是解题关键.9.(2020·湖南渌口·初二期末)已知一次函数y=kx+4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则k的值为_____.【答案】-1.【解析】先分别求出函数图像与x轴、y轴的交点坐标,再由三角形面积可得S=12×(﹣4k)×4=﹣8k=8并解答即可.【详解】一次函数y=kx+4与x轴的交点为(﹣4k,0),与y轴的交点为(0,4),∵k<0,∴函数图象与坐标轴围成三角形面积为S=12×(﹣4k)×4=﹣8k=8,∴k=﹣1,故答案为﹣1.【点拨】本题考查一次函数图象上点的坐标特点;求出一次函数图象与坐标轴的交点坐标是解答本题的关键.10.(2019·山西初二期末)如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.【答案】152【解析】把点A (﹣3,4)代入y =﹣3x+b 求出点B 的坐标,然后得到OB=5,利用A 的坐标即可求出△AOB 的面积.【详解】 ∵点A (﹣3,4)在一次函数y =﹣3x+b 的图象上,∴9+b=4,∴b=-5, ∵一次函数图象与y 轴的交点的纵坐标就是一次函数的常数项上的数, ∴点B 的坐标为:(0,-5),∴OB=5,而A (﹣3,4), S △AOB =1155322⨯⨯= .故答案为: 152. 【点拨】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.三、解答题11.(2020·福建宁化·期中)已知直线l 的表达式为y=﹣x+8,与x 轴交于点B ,点P (x ,y )在直线l 上,且x >0,y >0,点A 的坐标为(6,0). (1)求出B 点的坐标;(2)设△OPA 的面积为S ,求S 与x 的函数关系式(并写出自变量的取值范围).【答案】(1)B (8,0);(2)()32408S x x =-+<<【解析】(1)令y=0求得x 即可;(2)由点P (x ,y )在直线l 上且x >0,y >0即80y x =-+>,可得0<x <8,再由三角形面积公式可知答案.【详解】(1)在8y x =-+中令0y =,得80x -+=,∴8x =,∴B (8,0);(2)∵点P (x ,y )在直线l 上,点A 的坐标为(6,0),∴S=()1682x ⨯⨯-+. 即324S x =-+(08x <<).【点拨】本题主要考查了一次函数的图象和性质,熟练掌握一次函数与坐标轴相交问题及一次函数图象上点的坐标特点是解题的关键.12.(2020·甘肃徽县·初二期末)如图,直线l 1的解析式为y =﹣x +2,l 1与x 轴交于点B ,直线l 2经过点D (0,5),与直线l 1交于点C (﹣1,m ),且与x 轴交于点A (1)求点C 的坐标及直线l 2的解析式; (2)求ABC 的面积.【答案】(1)C (﹣1,3),y =2x +5;(2)274. 【解析】(1)首先利用待定系数法求出C 点坐标,然后再根据D 、C 两点坐标求出直线l 2的解析式; (2)首先根据两个函数解析式计算出A 、B 两点坐标,然后再利用三角形的面积公式计算出ABC 的面积即可.【详解】(1)∵直线l 1的解析式为y =﹣x +2经过点C (﹣1,m ), ∴m =1+2=3, ∴C (﹣1,3),设直线l 2的解析式为y =kx +b ,∵经过点D (0,5),C (﹣1,3),∴53b k b =⎧⎨-+=⎩,解得:25k b =⎧⎨=⎩,∴直线l 2的解析式为y =2x +5; (2)由25y x =+得: 当y =0时,2x +5=0, 解得:52x =-,则5,0,2A ⎛⎫- ⎪⎝⎭由2y x =-+,当y =0时,﹣x +2=0,解得x =2,则B (2,0),ABC ∴的面积152723224⎛⎫=⨯+⨯= ⎪⎝⎭.【点拨】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,同时考查了坐标与图形的面积,掌握以上知识是解题的关键.13.(2020·湖北下陆·初二期末)在平面直角坐标系中,原点为O ,已知一次函数的图象过点A (0,5),点B (-1,4)和点P (m ,n ). (1)求这个一次函数的解析式;(2)当n =2时,求直线 AB ,直线 OP 与 x 轴围成的图形的面积; (3)当OAP △的面积等于OAB 的面积的2倍时,求n 的值. 【答案】(1)5y x =+;(2)5;(3)n 的值为7或3. 【解析】(1)利用待定系数法求一次函数的解析式;(2)设直线AB 交x 轴于C ,如图,则C (-5,0),然后根据三角形面积公式计算OPCS 即可;(3)利用三角形面积公式得到 11521522m ⨯⨯=⨯⨯⨯,解得m=2或m=-2,然后利用一次函数解析式计算出对应的纵坐标即可.【详解】(1)设这个一次函数的解析式是y=kx+b , 把点A (0,5),点B (-1,4)的坐标代入得:45k b b -+=⎧⎨=⎩ ,解得:15k b =⎧⎨=⎩, 所以这个一次函数的解析式是y=x+5; (2)设直线AB 交x 轴于C ,如图, 当y=0时,x+5=0,解得x=-5,则C (-5,0),当n=2时,15252OPCS=⨯⨯=, 即直线AB ,直线OP 与x 轴围成的图形的面积为5; (3)∵当OAP △的面积等于OAB 的面积的2倍,()0,5,A ∴11521522m ⨯⨯=⨯⨯⨯,∴m=2或m=-2, 即P 点的横坐标为2或-2, 当x=2时,y=x+5=7,此时P (2,7); 当x=-2时,y=x+5=3,此时P (-2,3); 综上所述,n 的值为7或3.【点拨】本题考查了待定系数法求一次函数解析式:考查了直线与坐标轴围成的图形的面积,掌握以上知识是解题的关键.14.(2020·昆明市官渡区第一中学初二月考)已知一次函数22y x =--. (1)画出函数图象;(2)求图象与x 轴、y 轴的交点A 、B 的坐标; (3)求图象与坐标轴围成的图形的面积.【答案】(1)见解析;(2)A(-1,0),B(0,-2);(3)1 【解析】(1)根据描点法,可得函数图象; (2)根据自变量与函数值的对应关系,可得答案; (3)根据三角形的面积公式,可得答案. 【详解】(1)x 的取值范围为全体实数, 列表:;(2)∵图象与x 轴交点纵坐标为0,与y 轴交点横坐标为0, ∴令y=0,220x --=,解得-1x =,A (-1,0), 令x=0,y=-2,B (0,-2); (3)11212S =⨯⨯=. 【点拨】本题考查了一次函数图象,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.15.(2018·安徽初二期末)如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数24y x =-+的图象.(1)求A 、B 、P 三点坐标; (2)求PAB △的面积;(3)已知过P 点的直线把PAB △分成面积相等的两部分,求该直线解析式.【答案】(1)()1,0A -,()2,0B ,()1,2P ;(2)3;(3)42y x =-.【解析】(1)把y =0分别代入1y x =+、24y x =-+求出x 即可得到A 、B 的坐标,联立两个函数解析式得到方程组,解方程组即可得到点P 的坐标;(2)根据A 、B 、P 三点的坐标及三角形面积公式即可求解;(3)设过P 点直线交x 轴于点D ,根据面积相等及两个三角形同高,可知AD=BD ,据此求出点D 坐标,再利用待定系数法求解析式即可.【详解】(1)直线1y x =+,当0y =时,1x =-,∴()1,0A -, 直线24y x =-+,当0y =时,2x =,∴()2,0B ,联立函数解析式得方程组124y x y x =+⎧⎨=-+⎩,解得12x y =⎧⎨=⎩,∴()1,2P ;(2)过P 点作PC ⊥x 轴,垂足为C ,∵()()()1,0,2,0,1,2A B P -,∴AB=2-(-1)=3,PC=2, ∴S △ABP =12×3×2=3; (3)设过P 点直线交x 轴于点D ,∵S △PAD = S △PBD ,且两个三角形同高,∴AD=BD , 设D 点坐标为(),0x ,∴()12x x --=-,解得12x =,∴1,02D ⎛⎫ ⎪⎝⎭, 设过P 、D 两点直线解析式为y kx b =+,则2102k bk b =+⎧⎪⎨=+⎪⎩,解得42k b =⎧⎨=-⎩, ∴直线解析式42y x =-. 【点拨】本题考查了一次函数与坐标轴交点、表达式的求法,三角形面积,及一次函数与二元一次方程组的联系,熟练掌握待定系数法求表达式,求得图形关键点坐标是解题的关键.16.(2019·山东初一期末)如图,已知一次函数y =−x +2的图像与y 轴交于点A ,一次函数y =kx +b 的图像过点B(0,4),且与x 轴及y =−x +2的图像分别交于点C 、D ,D 点坐标为(−23,n). (1)求n 的值及一次函数y =kx +b 的解析式. (2)求四边形AOCD 的面积.【答案】(1) n =83;y=2x+4;(2)S=103【解析】(1)根据点D 在函数y =-x +2的图象上,即可求出n 的值;再利用待定系数法求出k ,b 的值; (2)用三角形OBC 的面积减去三角形ABD 的面积即可. 【详解】(1)∵点D (-23,n )在直线y =-x +2上,∴n =23+2=83.∵一次函数经过点B (0,4)、点D (-23,83),∴{b =4−23k +b =83 ,解得:{k =2b =4.故一次函数的解析式为:y =2x +4;(2)直线y =2x +4与x 轴交于点C ,∴令y =0,得:2x +4=0,解得:x =-2,∴OC =2.∵函数y =-x +2的图象与y 轴交于点A ,∴令x =0,得:y =2,∴OA =2.∵B (0,4),∴OB =4,∴AB =2.S △BOC =12×2×4=4,S △BAD =12×2×23=23,∴S 四边形AOCD =S △BOC ﹣S △BAD =4﹣23=103.【点拨】本题考查了一次函数的交点,解答此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(2)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.17.(2019·内蒙古初二期中)如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C .(1)写出点A 、B 、C 的坐标;(2)求此一次函数的解析式;(3)求△AOC 的面积.【答案】(1)A (2,4),B (0,2),C (2,0-);(2)2y x =+;(3)4【解析】(1)由图观察可得A ,B ,C 的坐标;(2)由图可知A ,B 两点的坐标,把两点坐标代入一次函数y kx b =+即可求出,k b 的值;进而得出结论; (3)由C 点坐标可求出OC 的长,再由A 点坐标可知AD 的长,利用三角形的面积公式即可得出结论.【详解】(1)由图观察可知:A (2,4),B (0,2),C (2,0-)(2)由(1)知A (2,4),B (0,2),代入y kx b =+得242k b b +=⎧⎨=⎩,解得12k b =⎧⎨=⎩ 故一次函数解析式为:2y x =+(3)由(1)知C (2,0-),A (2,4)∴OC=2,AD=4 ∴1124422AOC S OC AD ∆=⋅⋅=⨯⨯= 故AOC ∆的面积为4【点拨】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出A 、B 、C 三点的坐标是解答此题的关键.18.(2019·内蒙古初三月考)一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (-1,4).(1)求两条直线的解析式;(2)求四边形ABDO 的面积.【答案】(1)直线CD 的解析式为:3y x =-+;直线AB 的解析式为:26y x =+;(2)四边形ABDO 的面积为7.5.【解析】(1)将B (﹣1,4)代入一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,可以得到关于k 、b 的二元一次方程组,解方程组即可得到k 、b 的值,即可求出两条直线的解析式.(2)由图可知四边形ABDO 不是规则的四边形,利用割补法得到ABDO ABC COD S SS =-,分别算出△ABC与△DOC 的面积即可算出答案.【详解】(1)∵一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (﹣1,4),∴将点B (﹣1,4)代入一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,可得:4422k b k b =+⎧⎨=-+⎩ 解得:13k b =⎧⎨=⎩; ∴直线CD 的解析式为:3y x =-+;直线AB 的解析式为:26y x =+;(2)∵点A 为直线AB 与x 轴的交点,令y=0得:26=0x +解得:=3x ﹣,∴A (﹣3,0);∵C 为直线CD 与x 轴的交点,令y=0得:3=0x -+解得:=3x ,∴C (3,0);∵D 为直线CD 与y 轴的交点,令x=0得y=3∴D (0,3);∴AC=6,OC=3,OD=3; 由图可知1164337.522ABDO ABC COD S S S =-=⨯⨯-⨯⨯=; ∴四边形ABDO 的面积为7.5.【点拨】本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.19.(2017·山东省济南兴济中学初二单元测试)两个一次函数的图象如图所示,(1)分别求出两个一次函数的解析式;(2)求出两个一次函数图象的交点C 坐标;(3)求这两条直线与y 轴围成△ABC 的面积.【答案】(1)l 1为y =-14x +1,l 2为y =-32x -3;(2)C (-165,95);(3)325. 【解析】试题分析:(1)利用待定系数法求出两个一次函数的解析式;(2)运用两个一次函数的解析式联立得出方程组求解即可.(3)利用三角形的面积求解.试题解析:解:(1)设l 1的解析式为y =k 1x +b 1,l 2的解析式为y =k 2x +b 2,把(﹣2,0),(0,﹣3)代入l 1,(4,0),(0,1)代入l 2得,111023k b b =-+⎧⎨-=⎩ ,222041k b b =+⎧⎨=⎩, 解得:11323k b ⎧=-⎪⎨⎪=-⎩ ,22141k b ⎧=-⎪⎨⎪=⎩.所以l 1的解析式为y =﹣32x ﹣3,l 2的解析式为y =﹣14x +1; (2)联立方程组332114y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩ ,解得:16595x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以两个一次函数图象的交点坐标(165-,95); (3)三角形的面积=116425⨯⨯=325. 点拨:本题主要考查了两条直线相交或平行问题,解题的关键是能正确求出一次函数的解析式. 20.(2020·安徽初二期末)在平面直角坐标系xOy 中,ABC ∆如图所示,点()()()3,2,1,1,0,4A B C -.(1)求直线AB 的解析式;(2)求ABC ∆的面积;(3)一次函数32y ax a =++(a 为常数).①求证:一次函数32y ax a =++的图象一定经过点A ;②若一次函数32y ax a =++的图象与线段BC 有交点,直接写出a 的取值范围.【答案】(1)1544y x =-+;(2)112;(3)①见解析,②1243a -≤≤且0a ≠. 【分析】(1)根据待定系数求解析式即可;(2)设直线AB 与y 轴的交点为D 点,求出点D 的坐标,然后根据ABC ACD BCD S S S ∆∆∆=+可得出结果; (3)①把一次函数32y ax a =++整理为()32y a x =++的形式,再令x+3=0,求出y 的值即可; ②根据直线32y ax a =++一定经过点A,而且与线段BC 有交点,可得直线32y ax a =++在绕着点A从直线AC 顺时针旋转到直线BC 之间的区域,再结合a ≠0从而得出结果.【详解】(1)设直线AB 的解析式是y kx b =+,将点()3,2A -,点()1,1B 代入的,得321k b k b -+=⎧⎨+=⎩,解得,1454k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线AB 的解析式是1544y x =-+;(2)设直线AB 与y 轴的交点为D 点,则点D 的坐标为50,4⎛⎫ ⎪⎝⎭, 151511434124242ABC ACD BCD S S S ∆∆∆⎛⎫⎛⎫=+=⨯-⨯+⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; (3)①证明:∵()3232y ax a a x =++=++,令x+3=0,得x=-3,此时y=2.∴32y ax a =++必过点()3,2-,即必过A 点;②当直线32y ax a =++与直线AC 重合时,可得4=3a+2,解得a=23, 当直线32y ax a =++与直线AB 重合时,可得1=a+3a+2,解得a=14-, ∴a 的取值范围是:1243a -≤≤且0a ≠. 【点拨】本题是一次函数的综合题,考查了是利用待定系数法求一次函数解析式,一次函数图象上点的坐标特点以及与几何图形的综合问题,有一定的难度.21.(2020·湖北房县·初二期末)如图1,直线l :y =12x +2与x 轴交于点A ,与y 轴交于点B .已知点C (﹣2,0).(1)求出点A ,点B 的坐标.(2)P 是直线AB 上一动点,且△BOP 和△COP 的面积相等,求点P 坐标.(3)如图2,平移直线l ,分别交x 轴,y 轴于交于点A 1,B 1,过点C 作平行于y 轴的直线m ,在直线m 上是否存在点Q ,使得△A 1B 1Q 是等腰直角三角形?若存在,请直接写出所有符合条件的点Q 的坐标.【答案】(1)点A 的坐标为(﹣4,0),点B 的坐标的坐标为(0,2);(2)点P 坐标为(4,4);(3)点Q 为(﹣2,2)或(﹣2,﹣2)或(﹣2,-4)或(﹣2,43). 【解析】(1)根据求与,x y 轴交点坐标的方法,列出方程即可得到结论;(2)设1,22P m m ⎛⎫+ ⎪⎝⎭,根据面积公式列出方程即可得出结论; (3)如图2,①当点1B 是直角顶点时,根据全等三角形的性质即可得出结论;②当点1A 是直角顶点时,111A B AQ =,根据平移的性质得到直线11A B 的解析式为12y x b =+,根据两点间的距离公式即可得到结论;③当点P 是直角顶点时,过点Q 作QH y ⊥轴于点H ,根据全等三角形的性质即可得出结论.【详解】(1)设y =0,则12x +2=0,解得:x =﹣4, 设x =0,则y =2,∴点A 的坐标为(﹣4,0),点B 的坐标的坐标为(0,2);(2)∵点C (﹣2,0),点B (0,2),∴OC =2,OB =2,∵P 是直线AB 上一动点,∴设P (m ,12m +2), ∵△BOP 和△COP 的面积相等,∴12×2|m |=12⨯2×(12|m |+2), 解得:m =±4,当m =﹣4时,点P 与点A 重合,∴点P 坐标为(4,4);(3)存在;理由:如图1,①当点B1是直角顶点时,∴B1Q=B1A1,∵∠A1B1O+∠QB1H=90°,∠A1B1O+∠OA1B1=90°,∴∠OA1B1=∠QB1H,在△A1OB1和△B1HQ中,111111111AOB B HQOA B HB QA B B Q∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A1OB1≌△B1HQ(AAS),∴B1H=A1O,OB1=HQ=2,∴B1(0,﹣2)或(0,2),当点B1(0,﹣2)时,Q(﹣2,2),当点B1(0,2)时,∵B(0,2),∴点B1(0,2)(不合题意舍去),∴Q(﹣2,2),②当点A1是直角顶点时,A1B1=A1Q,∵直线AB的解析式为y=12x+2,由平移知,直线A1B1的解析式为y=12x+b,∴A1(﹣2b,0),B1(0,b),∴A1B12=4b2+b2=5b2,∵A1B1⊥A1Q,∴直线A1Q的解析式为y=﹣2x﹣4b∴Q(﹣2,4﹣4b),∴A1Q2=(﹣2b+2)2+(4﹣4b)2=20b2-40b+20,∴20b2﹣40b+20=5b2,∴b=2或b=23,∴Q(﹣2,-4)或(﹣2,43);③当Q是直角顶点时,过Q作QH⊥y轴于H,∴A1Q=B1Q,∵∠QA 1C 1+∠A 1QC =90°,∠A 1QC +∠CQB 1=90°,∴∠QA 1C =∠CQB 1,∵m ∥y 轴,∴∠CQB 1=∠QB 1H ,∴∠QA 1C =∠QB 1H在△A 1QC 与△B 1QH 中,11111190QA C QB H A CQ B HQ A Q B Q ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△A 1QC ≌△B 1QH (AAS ),∴CQ =QH =2,B 1H =A 1C ,∴Q (﹣2,2)或(﹣2,﹣2),即:满足条件的点Q 为(﹣2,2)或(﹣2,﹣2)或(﹣2,-4)或(﹣2,43). 【点拨】此题目是一次函数综合题,主要考查了一次函数的性质,全等三角形的判定与性质,三角形的面积公式,等腰直角三角形的性质,判断111AOB B HP ∆≅∆是解本题的关键.。

2020年中考二轮专题复习:一次函数综合题(与面积有关)及答案解析

2020年中考二轮专题复习:一次函数综合题(与面积有关)及答案解析

2020年中考二轮专题复习:一次函数综合题(与面积有关)1.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B,C两点,∠ABO=30°,OB=3OC.(1)证明:AC⊥AB;(2)将△ABC沿直线AB翻折得到△ABD,求直线BD的函数解析式;(3)在(2)的条件下,设直线BD交x轴于点E,嘉淇认为△ADE的面积与△AOB的面积相同,请判断嘉淇的观点是否正确.2.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.3.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC 的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.5.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.6.如图1,在平面直角坐标系中,点O为坐标原点,直线y=kx+4交x轴、y轴分别于点A、点B,且△ABO的面积为8.(1)如图2,求k的值;(2)如图3,点P是第一象限直线AB上的一个动点,连接PO,将线段OP绕点O顺时针旋转90°至线段OC,设点P的横坐标为t,点C的横坐标为m,求m与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作直线BM⊥OP,交x轴于点M,垂足为点N,点K在线段MB的延长线上,连接PK,且PK+KB=OP,∠PMB=2∠KPB,连接MC,求四边形BOCM的面积.7.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA =OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.8.如图:一次函数y=﹣x+3的图象与坐标轴交于A、B两点,点P是函数y=﹣x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.9.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.10.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF ∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF 的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,直线与x轴,y轴分别交于点A(6,0),B.点C(0,t)是线段OB 上一点,作直线AC.(1)若BC=2,求直线AC的函数解析式;(2)当1≤t≤4时,求△ABC面积的取值范围;(3)若AC平分∠OAB,记△ABC的周长为m,△AOC的周长为n,求m﹣n的值.13.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为,D点的坐标为;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点O运动,过点Q作QH⊥x轴,交线段BC或线段CO于点H.当点P到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;若不存在,请说明理由.14.阅读下列两则材料,回答问题:材料一:定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”.例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x1,y1),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率k=材料二:对于平面直角坐标系中的任意两点(x1,y1),B(x2,y2),定义一种新的运算:L(A,B)=x1x2+y1y2,例如:A(﹣3,1)、B(2,4),(A,B)=﹣3×2+1×4=﹣2(1)若点A(﹣3,1)、B(2,4)在直线y=kx+b上,则k=;直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求点P的坐标.(2)对于直线y=kx+b上的任意一点M(m,n),都有点N(2m,6n﹣34)在y=kx+b 的“对称直线”上:横坐标互不相同的三个点C,D,E满足L(C,D)=L(D,E),且D点的坐标为(2,2),过点D作DF∥y轴,交直线CE于点F,若DF=6,请求出直线CE、直线y=kx+b与x轴围成的三角形的面积.15.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.16.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.17.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.18.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t 值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.19.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.20.如图,等腰梯形OBCD中,DC∥OB,OD=CB,∠DOB=∠CBO,BD⊥OD,在平面直角坐标系中,等腰梯形OBCD的下底OB在x轴正半轴上,O为坐标原点,点B的坐标为(a,0),C、D两点落在第一象限,且BD=2a.点P以每秒1个单位长度的速度在对角线BD上由点B向点D运动(点P不与点B、点D重合),过点P作PE⊥BD,交下底OB于点E,交腰BC(或上底CD)于点F.(1)线段BC的长是(用含a的代数式表示);(2)已知直线PE经过点C时,直线PE的解析式为y=2x﹣,求a的值,并直接写出点B、C、D的坐标;(3)在(2)的条件下,设动点P运动时间为t(秒),在点P运动过程中,请直接写出△BEF为等腰三角形时t的值(或取值范围),并直接写出等腰△BEF面积的最大值.参考答案1.解:(1)证明:∵A(﹣,0),则OA=,∵∠ABO=30°,∴OB==3,∵OB=3OC,∴OC=1,∴点B的坐标为(0,3),点C的坐标为(0,﹣1),∴tan∠ACB==,∴∠ACB=60°,∴∠ACB+∠ABC=90°,∴∠BAC=90°,即AC⊥AB.(2)∵△ABD是由△ABC折叠得到的,∴∠ADB=∠ACB=60°,∠ABD=∠ABC=30°,∴∠DBC=60°,∴△BCD是等边三角形,∴BD=BC=4,如图1,过点D作DF⊥BC于F,则BF=2,DF=2,∴点D的坐标为(﹣2,1),设直线BD的函数解析式为y=kx+b(k≠0),将点B,D的坐标代入得:,解得:,∴直线BD的函数解析式为y=x+3.(3)如图2,∵点E是直线BD与x轴的交点,∴令y=x+3=0,解得x=﹣3,故OE=3,而AO=,∴AE=EO﹣AO=3﹣=2,∴S△AED=AE•y D=×2×1=,∵S△AOB=AO•OB=××3=,∴S△AED≠S△AOB,∴嘉淇的观点错误.2.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.3.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).4.解:(1)作MN⊥BO,由垂径定理得:点N为OB的中点,∴MN=OA,∵MN=3,∴OA=6,即A(﹣6,0),∵sin∠ABO=,OA=6,∴OB=,即B(0,),设y=kx+b,将A、B代入得:,(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,∴∠ABO=60°,∴∠AMO=120°∴阴影部分面积为.5.解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF ∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.6.解:(1)把x=0代入y=kx+4,y=4,∴OB=4,∵△ABO的面积为8,∴=8,∴AO=4,∴A(﹣4,0),把x=﹣4,y=0代入y=kx+4,∴k=1;(2)把x=t代入y=x+4,∴P(t,t+4),如图1,过点P作PD⊥x轴,垂直为D过点C作CE⊥x轴,垂直为E;∴∠PDO=∠CEO=90°,∴∠POD=∠OPD=90°,∵线段OP绕点O顺时针旋转90°至线段OC,∴∠POC=90°,OP=OC,∴∠POD+∠EOC=90°,∴∠OPD=∠EOC,∴△OPD≌△OCE,∴OE=PD,m=t+4;(3)如图2,过点O作直线TO⊥AB,交直线BM于点Q,垂足为点T,连接QP,由(1)知,AO=BO=4,∴∠BOA=90°,∴△ABO为直角三角形,∴∠ABO=∠BAO=45°,∠BOT=90°﹣∠ABO=45°=∠ABO,∴BT=TO,∵∠BTO=90°,∴∠TPO+∠TOP=90°,∵OP⊥BM,∴∠BNO=90°,∴∠BQT=∠TPO,∴△QTB≌△PTO,∴QT=TP,PO=BQ,∴∠PQT=∠QPT,∵OP=PK+KB,∴QB=KP+KB,QK=KP,∴∠KQP=∠KPQ,∴∠PQT﹣∠KQP=∠QPT﹣∠KPQ,∠TQB=∠TPK,∴∠KPB=∠BPN,设∠KPB=x°,∴∠BPN=x°,∵∠PMB=2∠KPB,∴∠PMB=2x°,∠POM=∠P AO+∠APO=45°+x°,∠NMO=90°﹣∠POM=45°﹣x°,∴∠PMO=∠PMB+∠NMO=45°+x°=∠POM,∴PO=PM,过点P作PD⊥x轴,垂直为点D,∴OM=2OD=2t,∴∠OPD=90°﹣∠POD=45°﹣x°=∠BMO,∴tan∠OPD=tan∠BMO,∴,,∴t=4或t=﹣2(舍),∴OM=8,由(2)知:m=t+4=8=OM,∴CM∥y轴,∵∠PNM=∠POC=90°,∴BM∥OC,∴四边形BOCM是平行四边形,∴四边形BOCM的面BO×OM=4×8=32;7.解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.8.解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得S△OPM==﹣(x﹣2)2+∴当x0=2时,△OPM的面积,有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵PM∥OB,∴∴,将代入代入中,得∴P(,);②在△BOP中,当OP=BP时,如图,过点P作PN⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,NP=∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).9.解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.10.解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BNN′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=3t﹣24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.11.解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.解:(1)将A(6,0)代入y=﹣x+b,得:0=﹣×6+b,解得:b=8,∴点B的坐标为(0,8).∵BC=2,点C在线段OB上,∴点C的坐标为(0,6).设直线AC的函数解析式为y=mx+n(m≠0),将点A(6,0),C(0,6)代入y=mx+n,得:,解得:,∴直线AC的函数解析式为y=﹣x+6;(2)∵点C的坐标为(0,t),∴OC=t,BC=OB﹣OC=8﹣t,∴S△ABC=OA•BC=×6×(8﹣t)=﹣3t+24.∵1≤t≤4,∴12≤﹣3t+24≤21,∴△ABC面积的取值范围是12≤S△ABC≤21;(3)在Rt△AOB中,OA=6,OB=8,∴AB==10.过点C作CD⊥AB于点D,如图所示.∵AC平分∠OAB,∴CD=CO=t.∵∠CBD=∠ABO,∠CDB=∠AOB=90°,∴△BCD~△BAO,∴=,即=,解得:t=3,∴BC=5,∴m=AB+BC+AC=15+AC,n=AC+OC+OA=AC+9,∴m﹣n=(15+AC)﹣(AC+9)=6.13.解:(1)∵直线y=﹣x+b过点C(1,2)∴﹣1+b=2∴b=3,即直线为y=﹣x+3当y=0时,﹣x+3=0,得x=3;当x=0时,y=3∴B(3,0),D(0,3)故答案为:(3,0);(0,3).(2)①∵Rt△AOC中,∠OAC=90°,C(1,2)∴A(0,2),OA=2,AC=1∵OB=OD=3,∠BOD=90°∴OA+AC=OB=3,∠OBD=45°∴0≤t<3,且t≠2i)当0≤t<2时,点P在线段OA上,点H在线段BC上,如图1∴OP=BQ=t∴AP=OA﹣OP=2﹣t,OQ=OB﹣BQ=3﹣t∵HQ⊥x轴于点Q∴∠BQH=90°∴△BQH是等腰直角三角形∴HQ=BQ=t∴HQ∥OP且HQ=OP∴四边形OPHQ是平行四边形∴PH∥x轴,PH=OQ=3﹣t∴S=S△CPH=PH•AP=(3﹣t)(2﹣t)=t2﹣t+3ii)当2<t<3时,点P在线段AC上,点H在线段OC上,如图2∴CP=OA+AC﹣t=3﹣t,x H=OQ=3﹣t∵直线OC解析式为:y=2x∴QH=y H=2(3﹣t)=6﹣2t∴点H到CP的距离h=2﹣(6﹣2t)=2t﹣4∴S=S△CPH=CP•h=(3﹣t)(2t﹣4)=﹣t2+5t﹣6综上所述,S关于t的函数关系式为S=②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH=QH•PE=(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:t1=3(舍去),t2=iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣5∴S△QPH=QH•PE=(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15解得:t1=t2=3(舍去)综上所述,t=1或时,以Q、P、H为顶点的三角形的面积与S相等.14.解:(1)把A(﹣3,1)、B(2,4)分别代入y=kx+b,得.解得.∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与直线y=3x+2的交点.∴.解得.∴P(1,5)故答案是:;(2)∵点M(m,n)是直线y=kx+b上的任意一点,∴km+b=n①,∵点N(2m,6n﹣34)在y=kx+b的“对称直线”上,即N(2m,6n﹣34)在直线y=bx+k上∴2bm+k=6n﹣34②,将①代入②得,2bm+k=6km+6b﹣34,整理得:(2b﹣6k)m=6b﹣k﹣34,∵对于任意一点M(m,n)等式均成立,∴,解得,∴y=2x+6.∴B(﹣3,0).设点C,E的坐标分别为(x1,y1),(x2,y2)(x1≠x2),∵L(C,D)=L(D,E),且D点的坐标为(2,2),∴2x1+2y1=2x2+2y2,即x1+y1=x2+y2,由材料一可知:直线CE的斜率为k CE=﹣1,故设直线CE的解析式为:y=﹣x+d(c≠0)∵DF=6,DF∥y轴,∴F(2,﹣4).∴﹣2+d=﹣4.则d=﹣2.故直线CE的解析式是:y=﹣x﹣2.易得A(﹣2,0).由得到:,即G(﹣,).∴S△ABG=AB•|y G|=×1×=;同理,当直线C′E′的解析式为:y=﹣x+10时,B′(12,0),G′(,),此时S△AB′F=AB′•|y G|=×13×=;综上所述,直线CE、直线y=kx+b与x轴围成的三角形的面积是或.15.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,∵S△BFG=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的表达式为y=x+4.16.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).17.解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),故答案为(4,0);(2)当点Q在原点O时,OA=6,∴AP=OA=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t),∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),∵A(6,0)∴点N是直线AG:y=﹣x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG=6,在Rt△AOG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T正方形PQMN的对角线的交点,∴TN=TP,∴OT+TP=OT+TN,∴点O,T,N在同一条直线上(点Q与点O重合时),且ON⊥AG时,OT+TN最小,即:OT+TN最小,∵S△OAG=OA×OG=AG×ON,∴ON==3.即:OT+PT的最小值为3.18.解:(1)设直线BC的解析式为y=kx+b,则,解得,∴直线BC的解析式为y=x+4.(2)如图,连接AD交MN于点O′.由题意:四边形AMDN是菱形,M(3﹣t,0),N(3﹣t,t),∴O′(3﹣t,t),D(3﹣t,t),∵点D在BC上,∴t=×(3﹣t)+4,解得t=.∴t=s时,点A恰好落在BC边上点D处,此时D(﹣,).(3)如图2中,当0<t≤5时,△ABC在直线MN右侧部分是△AMN,S=•t•t=t2.如图3中,当5<t≤6时,△ABC在直线MN右侧部分是四边形ABNM.S=×6×4﹣×(6﹣t)•[4﹣(t﹣5)]=﹣t2+t﹣12.19.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.20.解:(1)如图1中,∵BD⊥OD,∴∠BDO=90°,∵BD=2a,AB=a,∴OD==a,∵四边形ODCB是等腰梯形,∴BD=OD=a.故答案为a.(2)如图2中,作DM⊥OB于M,CN⊥OB于N.∵∠DOB=∠CBO,BC=a,∴sin∠CBO=sin∠DOB==a=,∴CN=a,BN==a,∴ON=OB﹣BN=a,∴C(a,a),∵直线y=2x﹣经过点C,∴a=a﹣,∴a=1.∴B(,0),C(,),D(,).(3)如图3﹣1中,当点F在线段BC上时,∵EF⊥BD,OD⊥BD,∴EF∥OD,∴∠FEB=∠DOB,∵∠DOB=∠CBO,∴FEB=∠FBE,∴FE=FB,∴△FEB是等腰三角形,如图2中,当直线EF经过点C时,E(,0),此时EB=,∴PB=EB•cos∠EBP=•=,共线图形可知当0<t≤时,△BFE是等腰三角形.如图3﹣2中,当点F在线段CD上,EF=BE时,1=t,∴t=.如图3﹣3中,当点F在线段CD上,BF=BE时,易证:PE=PF,∴t=,∴t=1,综上所述,t的值为0<t≤或或1时,△BEF是等腰三角形.当t=1时,△BEF的面积最大,最大值=××=.。

一次函数图像与面积综合题

一次函数图像与面积综合题

中考专题复习:一次函数综合题(与面积有关)1.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B,C两点,∠ABO=30°,OB=3OC.(1)证明:AC⊥AB;(2)将△ABC沿直线AB翻折得到△ABD,求直线BD的函数解析式;(3)在(2)的条件下,设直线BD交x轴于点E,嘉淇认为△ADE的面积与△AOB的面积相同,请判断嘉淇的观点是否正确.2.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.3.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC 的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.5.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.6.如图1,在平面直角坐标系中,点O为坐标原点,直线y=kx+4交x轴、y轴分别于点A、点B,且△ABO的面积为8.(1)如图2,求k的值;(2)如图3,点P是第一象限直线AB上的一个动点,连接PO,将线段OP绕点O顺时针旋转90°至线段OC,设点P的横坐标为t,点C的横坐标为m,求m与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作直线BM⊥OP,交x轴于点M,垂足为点N,点K在线段MB的延长线上,连接PK,且PK+KB=OP,∠PMB=2∠KPB,连接MC,求四边形BOCM的面积.7.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA =OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.8.如图:一次函数y=﹣x+3的图象与坐标轴交于A、B两点,点P是函数y=﹣x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.9.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.10.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF ∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF 的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,直线与x轴,y轴分别交于点A(6,0),B.点C(0,t)是线段OB 上一点,作直线AC.(1)若BC=2,求直线AC的函数解析式;(2)当1≤t≤4时,求△ABC面积的取值范围;(3)若AC平分∠OAB,记△ABC的周长为m,△AOC的周长为n,求m﹣n的值.13.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为,D点的坐标为;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点O运动,过点Q作QH⊥x 轴,交线段BC或线段CO于点H.当点P到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;若不存在,请说明理由.14.阅读下列两则材料,回答问题:材料一:定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为“对称直线”.例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x1,y1),B(x2,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率k=材料二:对于平面直角坐标系中的任意两点(x1,y1),B(x2,y2),定义一种新的运算:L(A,B)=x1x2+y1y2,例如:A(﹣3,1)、B(2,4),(A,B)=﹣3×2+1×4=﹣2(1)若点A(﹣3,1)、B(2,4)在直线y=kx+b上,则k=;直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,求点P的坐标.(2)对于直线y=kx+b上的任意一点M(m,n),都有点N(2m,6n﹣34)在y=kx+b 的“对称直线”上:横坐标互不相同的三个点C,D,E满足L(C,D)=L(D,E),且D点的坐标为(2,2),过点D作DF∥y轴,交直线CE于点F,若DF=6,请求出直线CE、直线y=kx+b与x轴围成的三角形的面积.15.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.16.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD 为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.17.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.18.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t 值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.19.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.20.如图,等腰梯形OBCD中,DC∥OB,OD=CB,∠DOB=∠CBO,BD⊥OD,在平面直角坐标系中,等腰梯形OBCD的下底OB在x轴正半轴上,O为坐标原点,点B的坐标为(a,0),C、D两点落在第一象限,且BD=2a.点P以每秒1个单位长度的速度在对角线BD上由点B向点D运动(点P不与点B、点D重合),过点P作PE⊥BD,交下底OB于点E,交腰BC(或上底CD)于点F.(1)线段BC的长是(用含a的代数式表示);(2)已知直线PE经过点C时,直线PE的解析式为y=2x﹣,求a的值,并直接写出点B、C、D的坐标;(3)在(2)的条件下,设动点P运动时间为t(秒),在点P运动过程中,请直接写出△BEF为等腰三角形时t的值(或取值范围),并直接写出等腰△BEF面积的最大值.参考答案1.解:(1)证明:∵A(﹣,0),则OA=,∵∠ABO=30°,∴OB==3,∵OB=3OC,∴OC=1,∴点B的坐标为(0,3),点C的坐标为(0,﹣1),∴tan∠ACB==,∴∠ACB=60°,∴∠ACB+∠ABC=90°,∴∠BAC=90°,即AC⊥AB.(2)∵△ABD是由△ABC折叠得到的,∴∠ADB=∠ACB=60°,∠ABD=∠ABC=30°,∴∠DBC=60°,∴△BCD是等边三角形,∴BD=BC=4,如图1,过点D作DF⊥BC于F,则BF=2,DF=2,∴点D的坐标为(﹣2,1),设直线BD的函数解析式为y=kx+b(k≠0),将点B,D的坐标代入得:,解得:,∴直线BD的函数解析式为y=x+3.(3)如图2,∵点E是直线BD与x轴的交点,∴令y=x+3=0,解得x=﹣3,故OE=3,而AO=,∴AE=EO﹣AO=3﹣=2,∴S△AED=AE•y D=×2×1=,∵S△AOB=AO•OB=××3=,∴S△AED≠S△AOB,∴嘉淇的观点错误.2.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.3.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).4.解:(1)作MN⊥BO,由垂径定理得:点N为OB的中点,∴MN=OA,∵MN=3,∴OA=6,即A(﹣6,0),∵sin∠ABO=,OA=6,∴OB=,即B(0,),设y=kx+b,将A、B代入得:,(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,∴∠ABO=60°,∴∠AMO=120°∴阴影部分面积为.5.解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF ∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.6.解:(1)把x=0代入y=kx+4,y=4,∴OB=4,∵△ABO的面积为8,∴=8,∴AO=4,∴A(﹣4,0),把x=﹣4,y=0代入y=kx+4,∴k=1;(2)把x=t代入y=x+4,∴P(t,t+4),如图1,过点P作PD⊥x轴,垂直为D过点C作CE⊥x轴,垂直为E;∴∠PDO=∠CEO=90°,∴∠POD=∠OPD=90°,∵线段OP绕点O顺时针旋转90°至线段OC,∴∠POC=90°,OP=OC,∴∠POD+∠EOC=90°,∴∠OPD=∠EOC,∴△OPD≌△OCE,∴OE=PD,m=t+4;(3)如图2,过点O作直线TO⊥AB,交直线BM于点Q,垂足为点T,连接QP,由(1)知,AO=BO=4,∴∠BOA=90°,∴△ABO为直角三角形,∴∠ABO=∠BAO=45°,∠BOT=90°﹣∠ABO=45°=∠ABO,∴BT=TO,∵∠BTO=90°,∴∠TPO+∠TOP=90°,∵OP⊥BM,∴∠BNO=90°,∴∠BQT=∠TPO,∴△QTB≌△PTO,∴QT=TP,PO=BQ,∴∠PQT=∠QPT,∵OP=PK+KB,∴QB=KP+KB,QK=KP,∴∠KQP=∠KPQ,∴∠PQT﹣∠KQP=∠QPT﹣∠KPQ,∠TQB=∠TPK,∴∠KPB=∠BPN,设∠KPB=x°,∴∠BPN=x°,∵∠PMB=2∠KPB,∴∠PMB=2x°,∠POM=∠P AO+∠APO=45°+x°,∠NMO=90°﹣∠POM=45°﹣x°,∴∠PMO=∠PMB+∠NMO=45°+x°=∠POM,∴PO=PM,过点P作PD⊥x轴,垂直为点D,∴OM=2OD=2t,∴∠OPD=90°﹣∠POD=45°﹣x°=∠BMO,∴tan∠OPD=tan∠BMO,∴,,∴t=4或t=﹣2(舍),∴OM=8,由(2)知:m=t+4=8=OM,∴CM∥y轴,∵∠PNM=∠POC=90°,∴BM∥OC,∴四边形BOCM是平行四边形,∴四边形BOCM的面BO×OM=4×8=32;7.解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.8.解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得S△OPM==﹣(x﹣2)2+∴当x0=2时,△OPM的面积,有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵PM∥OB,∴∴,将代入代入中,得∴P(,);②在△BOP中,当OP=BP时,如图,过点P作PN⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,NP=∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).9.解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.10.解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BNN′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=3t﹣24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.11.解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.解:(1)将A(6,0)代入y=﹣x+b,得:0=﹣×6+b,解得:b=8,∴点B的坐标为(0,8).∵BC=2,点C在线段OB上,∴点C的坐标为(0,6).设直线AC的函数解析式为y=mx+n(m≠0),将点A(6,0),C(0,6)代入y=mx+n,得:,解得:,∴直线AC的函数解析式为y=﹣x+6;(2)∵点C的坐标为(0,t),∴OC=t,BC=OB﹣OC=8﹣t,∴S△ABC=OA•BC=×6×(8﹣t)=﹣3t+24.∵1≤t≤4,∴12≤﹣3t+24≤21,∴△ABC面积的取值范围是12≤S△ABC≤21;(3)在Rt△AOB中,OA=6,OB=8,∴AB==10.过点C作CD⊥AB于点D,如图所示.∵AC平分∠OAB,∴CD=CO=t.∵∠CBD=∠ABO,∠CDB=∠AOB=90°,∴△BCD~△BAO,∴=,即=,解得:t=3,∴BC=5,∴m=AB+BC+AC=15+AC,n=AC+OC+OA=AC+9,∴m﹣n=(15+AC)﹣(AC+9)=6.13.解:(1)∵直线y=﹣x+b过点C(1,2)∴﹣1+b=2∴b=3,即直线为y=﹣x+3当y=0时,﹣x+3=0,得x=3;当x=0时,y=3∴B(3,0),D(0,3)故答案为:(3,0);(0,3).(2)①∵Rt△AOC中,∠OAC=90°,C(1,2)∴A(0,2),OA=2,AC=1∵OB=OD=3,∠BOD=90°∴OA+AC=OB=3,∠OBD=45°∴0≤t<3,且t≠2i)当0≤t<2时,点P在线段OA上,点H在线段BC上,如图1∴OP=BQ=t∴AP=OA﹣OP=2﹣t,OQ=OB﹣BQ=3﹣t∵HQ⊥x轴于点Q∴∠BQH=90°∴△BQH是等腰直角三角形∴HQ=BQ=t∴HQ∥OP且HQ=OP∴四边形OPHQ是平行四边形∴PH∥x轴,PH=OQ=3﹣t∴S=S△CPH=PH•AP=(3﹣t)(2﹣t)=t2﹣t+3ii)当2<t<3时,点P在线段AC上,点H在线段OC上,如图2∴CP=OA+AC﹣t=3﹣t,x H=OQ=3﹣t∵直线OC解析式为:y=2x∴QH=y H=2(3﹣t)=6﹣2t∴点H到CP的距离h=2﹣(6﹣2t)=2t﹣4∴S=S△CPH=CP•h=(3﹣t)(2t﹣4)=﹣t2+5t﹣6综上所述,S关于t的函数关系式为S=②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH=QH•PE=(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:t1=3(舍去),t2=iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣5∴S△QPH=QH•PE=(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15解得:t1=t2=3(舍去)综上所述,t=1或时,以Q、P、H为顶点的三角形的面积与S相等.14.解:(1)把A(﹣3,1)、B(2,4)分别代入y=kx+b,得.解得.∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与直线y=3x+2的交点.∴.解得.∴P(1,5)故答案是:;(2)∵点M(m,n)是直线y=kx+b上的任意一点,∴km+b=n①,∵点N(2m,6n﹣34)在y=kx+b的“对称直线”上,即N(2m,6n﹣34)在直线y=bx+k上∴2bm+k=6n﹣34②,将①代入②得,2bm+k=6km+6b﹣34,整理得:(2b﹣6k)m=6b﹣k﹣34,∵对于任意一点M(m,n)等式均成立,∴,解得,∴y=2x+6.∴B(﹣3,0).设点C,E的坐标分别为(x1,y1),(x2,y2)(x1≠x2),∵L(C,D)=L(D,E),且D点的坐标为(2,2),∴2x1+2y1=2x2+2y2,即x1+y1=x2+y2,由材料一可知:直线CE的斜率为k CE=﹣1,故设直线CE的解析式为:y=﹣x+d(c≠0)∵DF=6,DF∥y轴,∴F(2,﹣4).∴﹣2+d=﹣4.则d=﹣2.故直线CE的解析式是:y=﹣x﹣2.易得A(﹣2,0).由得到:,即G(﹣,).∴S△ABG=AB•|y G|=×1×=;同理,当直线C′E′的解析式为:y=﹣x+10时,B′(12,0),G′(,),此时S△AB′F=AB′•|y G|=×13×=;综上所述,直线CE、直线y=kx+b与x轴围成的三角形的面积是或.15.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,∵S△BFG=B B G•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的表达式为y=x+4.16.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).17.解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),故答案为(4,0);(2)当点Q在原点O时,OA=6,∴AP=OA=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t),∴点T是直线y=﹣B x+2上的一段线段,(﹣3≤x<6),∵A(6,0)∴点N是直线AG:y=﹣x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG=6,在Rt△AOG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T正方形PQMN的对角线的交点,∴TN=TP,∴OT+TP=OT+TN,∴点O,T,N在同一条直线上(点Q与点O重合时),且ON⊥AG时,OT+TN最小,即:OT+TN最小,∵S△OAG=OA×OG=AG×ON,∴ON==3.即:OT+PT的最小值为3.18.解:(1)设直线BC的解析式为y=kx+b,则,解得,∴直线BC的解析式为y=x+4.(2)如图,连接AD交MN于点O′.由题意:四边形AMDN是菱形,M(3﹣t,0),N(3﹣t,t),∴O′(3﹣t,t),D(3﹣t,t),∵点D在BC上,∴t=×(3﹣t)+4,解得t=.∴t=s时,点A恰好落在BC边上点D处,此时D(﹣,).(3)如图2中,当0<t≤5时,△ABC在直线MN右侧部分是△AMN,S=•t•t=t2.如图3中,当5<t≤6时,△ABC在直线MN右侧部分是四边形ABNM.S=×6×4﹣×(6﹣t)•[4﹣(t﹣5)]=﹣t2+t﹣12.19.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.20.解:(1)如图1中,∵BD⊥OD,∴∠BDO=90°,∵BD=2a,AB=a,∴OD==a,∵四边形ODCB是等腰梯形,∴BD=OD=a.故答案为a.(2)如图2中,作DM⊥OB于M,CN⊥OB于N.∵∠DOB=∠CBO,BC=a,∴sin∠CBO=sin∠DOB==a=,∴CN=a,BN==a,∴ON=OB﹣BN=a,∴C(a,a),∵直线y=2x﹣经过点C,∴a=a﹣,∴a=1.∴B(,0),C(,),D(,).(3)如图3﹣1中,当点F在线段BC上时,∵EF⊥BD,OD⊥BD,∴EF∥OD,∴∠FEB=∠DOB,∵∠DOB=∠CBO,∴FEB=∠FBE,∴FE=FB,∴△FEB是等腰三角形,如图2中,当直线EF经过点C时,E(,0),此时EB=,∴PB=EB•cos∠EBP=•=,共线图形可知当0<t≤时,△BFE是等腰三角形.如图3﹣2中,当点F在线段CD上,EF=BE时,1=t,∴t=.如图3﹣3中,当点F在线段CD上,BF=BE时,易证:PE=PF,∴t=,∴t=1,综上所述,t的值为0<t≤或或1时,△BEF是等腰三角形.当t=1时,△BEF的面积最大,最大值=××=.。

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

一次函数
知识梳理
强化 训练
当堂训练
一次函数的图象与性质
查漏补缺
1.直线y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( C )
A.第四象限 B.第三象限 C.第一象限 D.第二象限
2.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐
标可以为( C ) A.(-5,3)
①k1x+b1=0 ②k2x+b2=1 ③k1x+b1=k2x+b2
x=2 x=3 x=3
y D(0,4) y1=k1x+b1
A(3,1)
④k1x+b1≤-2 ⑤k2x+b2<4 ⑥k1x+b1>k2x+b2
x≤0 x>0 x>3
E(4,0)
O B(2,0)
x
C(0,-2) y2=k2x+b2
典例精讲 一次函数与方程(不等式) 知识点三
【例3】(1)如图,一次函数y=ax+b的图象与x轴交于点(2,0),与y轴相交于
点(0,4),结合图象可知,关于x的方程ax+b=0的解是_x_=_2__.
y
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0), ∴关于x的方程ax+b=0的解是x=2.
4 y=ax+b
O2 x
01 一次函数的图象及性质
把两组对应值(自变量与函数的对应值)代入解析式,得到关 于系数k,b的二元一次方程组;
步骤 解 解二元一次方程组,求出系数k,b的值;
还原 将求得的待定系数的值代入y=kx+b.
已知两点坐标确定函数解析式 常见 已知两组函数对应值确定函数解析式 类型 经过直线与平移规律确定函数解析式.

一次函数及其函数图像专题复习

一次函数及其函数图像专题复习

一次函数及其图像专题复习 一知识要点梳理:1.函数的概念:一般地,如果在一个变化过程中有两个变量x 和y ,并且对于变量x 的每一个值,变量y 都有的值与它对应,那么我们称y 是x 的函数,其中x 是自变量。

规律是_______________________________________. 函数与方程的关系_________________________. 【例1】下列四个图像中,不可能是函数图像的是 ( )【习题1】下列各图象中,哪一个不可能是函数图象( )【习题2】下列各图给出了变量x 与y 之间的函数是: ( )2.正比例函数与一次函数的概念:若两个变量y x ,间的对应关系可以表示成(b k ,为常数,0≠k )的形式,则称y 是x 的一次函数。

特别地,当0=b 时,称y 是x 的正比例函数。

一次函数的特点:________________________________________________________;正比例函数与一次函数的关系_______________,正比例函数与一次函数的区别:____________;【例2】 下列函数是一次函数的是( ) A .y =-8x B .y =8x -C .y =-82x +2 D .y =8x-+2 【习题1】设圆的面积为S ,半径为R ,那么下列说法正确的是( ) A .S 是R 的一次函数 B .S 是R 的正比例函数 C .S 与2R 成正比例关系 D .以上说法都不正确 【习题2】函数y =m 1m x- +(m -1)是一次函数,则m 值( )ABDA .m ≠0B .m =2C .m =2或4D .m >2【习题3】若函数y =(k -1)x +2k -1是正比例函数,则k 的值是( ) A .-1B .1C .-1或1D .任意实数【习题4】已知y =(k -3)x +2k -9是关于x 的正比例函数,求当x =-4时,y 的值.【习题5】.在函数(1)3y x =,(2)5y x =-,(3)4y x =-,(4)223y x x =-,(5)y =(6)12y x =-中是一次函数的是,是正比例函数的是. 规律与小结:1. 认清一次函数和正比例函数的区别。

中考数学专题复习5一次函数及其运用(原卷版)

中考数学专题复习5一次函数及其运用(原卷版)

一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。

特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213xC.y=34x D.y=12(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k >0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限 y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象 一次函数y =kx +b (k ≠0)的图象是经过点(0.b )和(-bk.0)的一条直线 图象关系一次函数y =kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0.向上平移b 个单位长度;b <0.向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质 函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0.b >0一、二、三y 随x 的增大而增大k >0.b <0一、三、四y =kx +b (k ≠0)k <0.b >0一、二、四y 随x 的增大而减小k <0.b <0二、三、四(3)两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2.b 1≠b 2.两直线平行; ②当k 1=k 2.b 1=b 2.两直线重合; ③当k 1≠k 2.b 1=b 2.两直线交于y 轴上一点; ④当k 1·k 2=–1时.两直线垂直.【例3】已知正比例函数y =x 的图象如图所示.则一次函数y =mx +n 图象大致是mnA .B .C .D .【例4】已知一次函数3y kx =+的图象经过点A .且y 随x 的增大而减小.则点A 的坐标可以是( ) A .()1,2- B .()1,2-C .()2,3D .()3,4考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数.且k≠0)y=kx+b(k.b是常数.且k≠0)图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a ≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标. 【例7】已知直线y =mx +n (m .n 为常数)经过点(0.–2)和(3.0).则关于x 的方程mx +n =0的解为 A .x =0 B .x =1C .x =–2D .x =3【例8】如图为y =kx +b 的图象.则kx +b =0的解为x = ( )A .2B .–2C .0D .–1【例9】如图.正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m.2).一次函数的图象经过点B (−2.−1). (1)求一次函数的解析式;(2)请直接写出不等式组−1<kx +b <2x 的解集.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是 y kx by mx n=+=+⎧⎨⎩A .B .C .D .考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B .则△AOB 的面积为( ) A .2B .3C .4D .6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等. (2)用一次函数解决实际问题的一般步骤为: ①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式; ③确定自变量的取值范围; ④利用函数性质解决问题; ⑤检验所求解是否符合实际意义; ⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100 (1)设装运食品的车辆数为x.装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数①y=﹣2x+1.②y=ax﹣b.③y=﹣6x.④y=x2+2中.是一次函数的有A.①②B.①C.②③D.①④2.一次函数y=–2x+b.b<0.则其大致图象正确的是A.B.C .D .3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–24. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是A .x >﹣2B .x >0C .x >1D .x <15. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0B .b <0C .a +b >0D .a ﹣b <08.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <29.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,210.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y =(m +2)是正比例函数.则m 的值是__________.12.把直线y =2x ﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____. 13.如图.直线542y x =+与x 轴、y 轴分别交于A 、B 两点.把AOB 绕点B 逆时针旋转90°后得到11AO B .则点1A 的坐标是_____.14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C..则点2020B 的坐标______.23mx-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6.(1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数;(2)若点(a .2)在这个函数的图象上.求a 的值. 19. 如图.直线l 1的函数解析式为y =2x–2.直线l 1与x 轴交于点D .直线l 2:y =kx+b 与x 轴交于点A .且经过点B (3.1).如图所示.直线l 1、l 2交于点C (m .2).(1)求点D 、点C 的坐标;(2)求直线l 2的函数解析式;(3)利用函数图象写出关于x 、y 的二元一次方程组的解.20.某文化用品商店出售书包和文具盒.书包每个定价40元.文具盒每个定价10元.该店制定了两种优惠方案:方案一.买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时.顾客只能选用其中的一种方案.某学校为给学生发奖品.需购买5个书包.文具盒若干(不少于5个).设文具盒个数为x (个).付款金额为y (元). 22y x y kx b =-=+⎧⎨⎩(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒.通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品.最多可以买到__________个文具盒(直接回答即可).21.张师傅开车到某地送货.汽车出发前油箱中有油50升.行驶一段时间.张师傅在加油站加油.然后继续向目的地行驶.已知加油前、后汽车都匀速行驶.汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油.本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米.汽车行驶速度为70千米/时.张师傅要想到达目的地.油箱中的油是否够用?请通过计算说明理由.22.某乡A.B两村盛产大蒜.A村有大蒜200吨.B村有大蒜300吨.现将这些大蒜运到C.D两个冷藏仓库.已知C仓库可储存240吨.D仓库可储存260吨.从A村运往C.D两处的费用分别为每吨40元和45元;从B村运往C.D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨.A.B两村运大蒜往两仓库的运输费用分别为y A元.y B元.(1)请填写下表.并求出y A.y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时.A村的运费较少?(3)请问怎样调运.才能使两村的运费之和最小?求出最小值.。

数学人教版八年级下册专题复习:一次函数与面积问题(学生用)

数学人教版八年级下册专题复习:一次函数与面积问题(学生用)

专题复习:一次函数与面积问题一、忆1.直线y=2x+1与y=2x-3的位置关系是: .2.直线y=2x+5与y=0.5x+5的交点坐标是: .3.直线直线y=x-1与直线y= -0.5 x+2交点坐标是: .4.直线y=x-1与y轴的交点坐标为,与x轴的交点坐标为,此直线与两坐标轴围成的三角形的面积为 .5.一次函数图象经过点(0,2)和(4,0),这个一次函数的解析式为: .二、思例1(根据一次函数求面积):直线y=x-1交x轴、y轴于点A、B,直线y=-0.5x+2交x轴、y轴于点C、点D,两直线交于点P.(1)你能求出哪些点的坐标?哪些线段的长?哪些图形的面积?(2) 求点O到直线AB的距离OM的长吗?(提示:点的横,纵坐标对求图形面积时用到的底边,高的作用. )例2(根据面积求一次函数表达式):一次函数y=kx+b 交y=2x 于点A(1,m),交x 轴于点B ,且S △AOB =4.(1)求一次函数y=kx+b 的解析式.(2) 你能求过点(-4,0)且平行于0A 的直线解析式吗?(提示:面积中出现的底,高对点的横,纵坐标的确定作用,分类讨论,数形结合)三、练1.点P 是一次函数y=-2x+8的图象上一点,如果图象与x 轴交于Q 点,且△OPQ 的面积等于6,则P 点的坐标为 . y=-2x+82.如图:正方形ABCD 边长为4,将此正方形置于坐标系中点A 的坐标为(1,0).(1)过点C 的直线 3834-=x y 与x 轴交与E, 求S 四边形AECD ; (2)直线l 经过点E 且将正方形ABCD 分成面积相等的两部分,求直线l 的解析式.四、获---说说自己的收获五、延---复习题单针对训练。

一次函数专题复习-解析式和面积问题

一次函数专题复习-解析式和面积问题

一次函数专题复习——解析式与面积问题班级姓名一、填空1、若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,若点(x1,y1)和(x2,y2)在此直线上,且x1<x2, 则y1y2.2、直线y=kx+b的平行于y=2x且过(-3,-7),则k= ,b= ;3、已知一次函数y=(m+1)x+m-1的图象不经过第二象限,则m取值范围是_____________.4、y与x-2成正比例,且当x=1时,y=2,则当x=-1时,则y= ;若y1与x成正比例,y2与x-1成正比例,且y1+y2=y, 当x=1时y=1;x=-1时,y=3,则y与x之间的函数关系为。

5、由直线y=2x-1平移得到且过点(-1,3)的直线解析式为;6x -2 -1 0 1 2 3y 6 4 2 0 -2 -4那么方程ax + b = 0的解是___________.7、已知等腰三角形的周长为80,腰长为x,底边长为y.则y与x的函数关系式为;自变量x取值范围是。

8、已知一次函数y=3x+b的图象与两坐标轴围成三角形面积为6,则b= 。

二、解答题9、直线AB与y、x轴分别相交于点A(0,-1)和 B(-3,2).直线AB上是否存在一点C,使点C到y轴的距离等于0.5,若存在求出点C的坐标,若不存在,请说明理由.10、如图,直线l 1过点A (0,4),点D (4,0),直线l 2:121+=x y 与x 轴交于点C ,两直线l 1,l 2相交于点B .(1)求直线1l 的函数关系式;(2)求点B 的坐标;(3)求△ABC 的面积.11. A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的 平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,求该点坐标;(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场的位置,并求出P 点的坐标..A (2, 2) .B (7, 3) y O x12、已知一次函数y=kx+b的图象经过点P(0,-3),且与函数y=12x+1的图象相交于点A(83,a).(1)求a的值;(2)若函数y=k x+b的图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积(其中O为坐标原点).13.直线l1 : y=2x-6与x轴、y轴分别交于A、B两点,直线l2与l1关于y轴对称,若l2与x轴交于点C.(1)求l2的解析式;(2)若直线l3过原点O且分△ABC的面积为1:2,求直线l3.的解析式。

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解专题08 一次函数中的面积问题知识对接考点一、怎样解一次函数中的面积问题(1)如果三角形有一边在坐标轴上(或平行于坐标轴)直接用面积公式求面积.(2)如果三角形任何一边都不在坐标轴上,也不平行于坐标轴,则需转化为几个有边在坐标轴上的三角形面积之和(或差).专项训练一、单选题1.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB 分成面积相等的两部分,则m的值为()A.1 B.2 C.3 D.﹣12.将一次函数y=2x+4的图象与坐标轴围成的三角形面积是()A.4 B.5 C.6 D.73.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A .先变大再变小B .先变小再变大C .无法确定D .保持不变 4.直线24y x =-与两坐标轴所围成三角形的面积等于()A .2B .4C .8D .165.一次函数y =2x +4的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积()A .6B .8C .2D .46.如图,点A ,B ,C 在一次函数y = -2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中的阴影部分的面积之和是()A .1B .3C .3(m -1)D .()322m -7.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b 经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为( )A .0.5B .1C .1.5D .28.已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x的形如y =a b x c c 的一次函数称为“勾股一次函数”.若点P (﹣1)在“勾股一次函数”的图象上,且Rt △ABC 的面积是92,则c 的值是( )A .6B .12C .D .9.如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图像如图②所示,则ABC 的面积是()A .6B .12C .16D .2110.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为( )A .3.5B .2.5C .2D .1.2二、填空题 11.在平面直角坐标系中,□OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向右平移,经过_______秒该直线可将□OABC 的面积平分.12.已知平行四边形ABCD 三个顶点的坐标分别为A (﹣1,0),B (5,0),C (7,4).直线y =kx +1将平行四边形ABCD 分成面积相等的两部分,则k 的值为______.13.在平面直角坐标系xOy 中,直线24y x =-+与两坐标轴围成三角形的面积_______.14.直线m 过A (1,﹣4)和B (5,4)两点,则它与坐标轴围成的面积=__.15.如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,则△ACD 的面积____.三、解答题16.(1)如图1,梯形ABCD 中对角线交于点O ,AB ∥CD ,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O 是坐标原点,点A (﹣2,3),B (2,1).①分别求三角形ACO 和三角形BCO 的面积及点C 的坐标;②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点D 作直线DE 平分三角形ABO 的面积,并交AB 于点E (要有适当的作图说明).17.如图,已知四边形ABCD 的四个顶点的坐标为(1,1),(3,1)A B ---,(1,2),(1,1)C D -.请用不含刻度的直尺和圆规作图并解答问题:(1)请在图中作出这个平面直角坐标系;(2)过点A 作一条直线把四边形ABCD 的面积二等分,并直接写出该直线对应的函数表达式.18.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.19.ABC 在平面直角坐标系中的位置如图所示,点C 在y 轴正半轴上,6OC =,OA ,OB60OB -=.过点A 的直线交BC 于点D ,ABD △的面积等于ABC 面积的13,请解答下列问题:(1)求点A ,点D 的坐标:(2)过点B 作BH AC ⊥于H ,交y 轴于点G ,求线段OG 的长;(3)点M 在y 轴上,平面内是否存在点N ,使以A ,B ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 坐标;若不存在,请说明理由.20.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.21.如图,已知直线11:l y x b =+经过点()5,0A -,交y 轴于点B ,直线22:24l y x =--与直线11:l y x b =+交于点C ,交y 轴于点D .(1)求b 的值.(2)求BCD △的面积(3)当210y y ≤<时,则x 的取值范围是________.(直接写出结果)22.如图,已知直线AB 过点A (5,0)、B (0,﹣5),交直线OC 于点C ,且直线OC 的解析式为y 32x =-.(1)求直线AB 的解析式;(2)求△AOC 的面积;(3)若点P 在直线OC 上,且△BCP 的面积是△AOC 面积的2倍,求点P 的坐标.23.如图,直线1l :23y x =-与x 轴交于点A ,直线2l 经过点()()4,0,0,2B C ,与1l 交于点D .l的解析式;(1)求直线2(2)求ABD△的面积.。

一次函数专题复习考点归纳+经典例题+练习

一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。

一次函数的图象与坐标轴围成的三角形面积问题专题复习【精品】

一次函数的图象与坐标轴围成的三角形面积问题专题复习【精品】

专题:一次函数的图象与坐标轴围成的三角形面积问题类型1 已知图象求三角形的面积例1.【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?解:(1)∵点A和点P的坐标分别是(6,0),(x,y),∴S=12×6×y=3y.∵x+y=8,∴y=8-x.∴S=3(8-x)=24-3x.∴S=-3x+24.∵点P在第一象限,∴x>0,y>0,即x>0,8-x>0.∴0<x<8. 图象如图所示.(2)当x=5时,S=-3×5+24=9.(3)不能.理由:令S>24,则-3x+24>24.解得x<0.∵由(1),得0<x<8,∴△OPA的面积不能大于24.针对练习:1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1).设直线l 1的解析式为y =kx +c ,∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3.∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b ,解得b =6.∴y =x +6.∴点E 的坐标为(0,6).∵直线y =-2x -3与y 轴交于点A ,∴A 的坐标为(0,-3).∴AE =6+3=9.∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,在平面直角坐标系中,点A (0,4)在y 轴上,点B (-8,0)在x 轴上.(1)求直线AB 的函数解析式;(2)若x 轴上有一点P 使得∠APO =2∠ABO ,求△ABP 的面积.解:(1)设直线AB 的函数解析式为y =kx +b (k ≠0),将A (0,4),B (-8,0)代入y =kx +b ,得⎩⎪⎨⎪⎧b =4,-8k +b =0, 解得⎩⎪⎨⎪⎧k =12,b =4,∴直线AB 的函数解析式为y =12x +4. 设点P 的坐标为(t ,0),分两种情况考虑,如图所示.①点P 在x 轴上原点的左侧.当PB =AP 时,∠APO =2∠ABO .在Rt △APO 中,AP=BP=t-(-8)=t+8,AO=4,PO=-t,∵AP2=AO2+PO2,即(t+8)2=42+(-t)2,解得t=-3,∴BP=8-3=5.∴S△ABP=12BP·AO=12×5×4=10.②点P在x轴上原点的右侧.由对称性,可得点P′的坐标为(3,0),此时,BP′=8+3=11,∴S△ABP′=12BP′·AO=12×11×4=22.综上,△ABP的面积为10或22.3.如图,点A,B的坐标分别为(0,2),(1,0),直线y=12x-3与y轴交于点C、与x轴交于点D.(1)设直线AB的解析式为y=kx+b,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是4.解:把A(0,2),B(1,0)代入y=kx+b,得。

中考复习专题一次函数知识点及习题(无答案)

中考复习专题一次函数知识点及习题(无答案)

八年级期末复习—一次函数考点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。

正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m xx +=-+-是一次函数; 4、当m_____________时,()21445m y m x x +=-+-是一次函数;考点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式. 练习1、已知A (0,0),B (3,2)两点,经过A 、B 两点的图象的解析式为( ) A 、y=3x B 、y=32x C 、y= 23x D 、y= 13x+12、如上图,直线AB 对应的函数表达式是( ) A 、3y x 32=-+ B 、3y x 32=+C 、2y x 33=-+ D 、2y x 33=+3、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;y4、如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 考点3、一次函数的图象一次函数b kx y +=的图象是一条直线,与x 轴的交点为)0,(kb-,与y 轴的交点为),0(b 正比例函数kx y =的图象也是一条直线,它过点)0,0(,),1(k练习1、一次函数y=kx+b 的图象如图所示,当y <0时,x 的取值范围是( )A 、x >0B 、x <0C 、x >2D 、x <22、正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )A 、B 、C 、D 、3、如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是( ) A .3x <B .3x >C .0x >D .0x <4、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 下图描述了他上学的情景,下列说法中错误..的是( ) A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米5、如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关QM图1图24 9yx Oxy3离家时间(分钟)离家的距离(米)10 15 20 201100O于x 的不等式k 1x +b <k 2x +c 的解集为( )A 、x >1B 、x <1C 、x >-2D 、x <-2考点4、一次函数的性质 名称 函数解析式系数符号 图象所在象限 性质正比例函数kxy = (0k ≠)K>0图象经过一、三象限y 值随x 的增大而增大K<0图象经过二、四象限y 值随x 的增大而减小一次函数kx+b y =K>0b>0图象经过一、二、三象限y 值随x 的增大而增大b<0图象经过一、三、四象限 K>0b>0图象经过一、二、四象限y 值随x 的增大而减小b<0图象经过二、三、四象限 1、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <O 1xy -2y =k 2x +c y k 1x +2、P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 3、请写出符合以下三个条件的一个函数的关系式 .①过点(3,1);②在第一象限内y 随x 的增大而减小; ③当自变量的值为2时,函数值小于2. 考点5、平移知识点:直线11b x k y +=与直线22b x k y +=的位置关系:两直线平行⇔21k k =; 一次函数图象平移(1)一次函数y=kx+b 的图象可以看做是y=kx 平移|b|个单位长度而得到(b>0时,向上平移,b<0时。

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2

初二一次函数面积计算

初二一次函数面积计算

专题复习:一次函数面积计算1、已知直线Y=kx+b 过点A(-2,0),该直线与Y 轴交点为B ,若三角形AOB 的面积为4,求这条直线的解析式2、已知:直线42-=x y 与直线3+=x y ,它们的交点C 的坐标是________,设两直线与x轴分别交于A,B,则SΔABC=_______,设两直线与y 轴交于P,Q,则SΔPCQ=_________.3、一次函数Y=kx+b 的图像截距为-2,与坐标轴所围成的直角三角形的面积为1,求函数解析式4、直线Y=-2x-2与X 轴,Y 轴分别交于点A,点B ,将该直线平移若干单位后与坐标轴围成的直角三角形的面积是三角形OAB 的面积的4倍,求平移以后直线的解析式5、一次函数图像与X 轴的交点距原点的距离为3,该函数图像与坐标轴所围成的三角形面积为12,求该一次函数在Y 轴上的截距6、已知直线过点A(0,2),B (2,-2),又有另一条直线过点A ,且这两条直线与X 轴所围成的三角形面积为4,求这2条直线的解析式7、已知直线Y=kx+4(K 不为0),经过点(1,3)且与X 轴,Y 轴分别交于A,B 两点,(1)求K 的值(2)若点E 为线段OA 上一点,点F 为线段EA 上一点,且EF=1.分别过点E,F 做OA 的垂线EM,FN 交直线于点M.,N ,当四边形EFNM 的面积为三角形AOB 的面积的三分之一时,求E 点坐标8、如图,直线y=-34x+4与y 轴交于点A,与直线y=54x+54交于点B,且直线y=54x+54与x 轴交于点C,求△ABC 的面积。

B AC O9、一次函数13+-=x y 的图像与X 轴,Y 轴分别交于点A,B ,以线段AB 为边在第一象限做等边三角形ABC ,(1)求该三角形的面积(2)如果在第二象限内有一点P (a,21),请用含a 的代数式表示四边形ABPO 的面积,并求出当三角形ABP 的面积与三角形ABC 的面积相等时a 的值10、已知,函数y=-x+2的图像与X 轴,Y 轴分别交于A,B ,一直线L 经过点C (1,0)(1)将三角形AOB 的面积分成相等的两部分,求直线L 的函数解析式(2)求直线L 将三角形AOB 分成1:3的两部分,求直线L 的函数解析式11、已知一次函数332y x =-+的图象与y 轴、x 轴分别交于点A 、B ,直线y kx b =+经过OA 上的三分之一点D ,且交x 轴的负半轴于点C ,如果AOB DOC S S ∆∆=,求直线y kx b =+的解析式.12、如图:直线PA 式一次函数y=x+1的图像,直线PB 是一次函数y=-2X+m(m>1)的图像,点A,B 是两直线与X 轴交点,(1)用含m 的代数式表示B,P 两点的坐标(2)若AB=2.求四边形PQOB 的面积(3)在(2)的条件下,直线AB 上是否存在一点C ,使得三角形PBC 和三角形APB 的面积相等13、已知直线)11(32≤≤-+=k m kx y 经过点A (4,32),且与Y 轴交于点C ,点B 在Y 轴上,O 为坐标原点,且OB=OA+7-72,记三角形ABC 的面积为S ,(1)m 的取值范围(2)求S 关于m 的函数解析式(3)设点B 在Y 轴的正半轴上,当S 取得最大值时,将三角形ABC 沿着AC 折叠刀三角形ADC ,求点D 的坐标14、在直角梯形AOBC 中,AC//OB ,AC,OB 分别是关于X 的方程04622=++-m mx x 的两根,且5:1:=∆∆BOC AOC S S ,(1)求AC.OB 的长(2)当B C⊥OC,求OC 长和OC 所在直线的解析式(3)在(2)的条件下,在线段OC 上是否存在一点M,过M 作X 轴的平行线交Y 轴于F,交BC 于D,过D 作Y 轴的平行线交X 轴于E 点,使2:1:=AOBC FOED S S 梯形矩形,若存在求点M 的坐标,若不存在,说明理由15、如图,函数4+-=x y 的图象分别交x 轴,y 轴于点N 、M ,过MN 上的两点A 、B 分别向x 轴作垂线与x 轴交于1A (x 1,0)),1B (x 2,0),(的左边在11B A ),若114OA OB +>.(1)分别用含x 1、x 2的代数式表示1OA A ∆的面积1S 与1OB B ∆的面积2S (2)请判断1OA A ∆的面积1S 与1OB B ∆的面积2S 的大小关系,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数小结与复习(一次函数图形与面积)
教学目标:
1. 通过求图形面积问题,深入理解掌握一次函数图象及与坐标轴交点、坐标的几何意义.
2. 掌握由已知图形面积列出方程(组),用待定系数法求直线解析式及相关未知量.
3. 通过对已知图形面积问题的探究,丰富认知情感,体会数形结合思想.
教材分析:
重点:利用一次函数的知识求图形面积.
难点:根据图形面积求一次函数的表达式.
课型方法: 复习课 电教手段:投影机
前置作业:
利用一次函数的有关知识,解决下列问题:
问题1:如图所示,直线y=x+3与x 轴交于点A ,与y 轴交于点B.
问题2:如图所示,直线y=-2x+6与x 轴交于点C ,与y 轴交于点D.
问题3:如图所示,直线:1l y=x+3与:2l y=-2x+6交于点P ,与x 轴分别交于点A 和点C.
思考:如何求出四边形PBOC 的面积呢?你能想到几种方法?说说思路!
①A 点坐标为 ,B 点坐标为 ,
②=∆AOB S .
①C 点坐标为 ,D 点坐标为 ,
②=∆COD S .
:1l 2
求:①P 点坐标;②PAC S ∆.
教学过程
一.展示交流:
二.合作探究:
如果已知图形的面积,反过来求函数解析式,你是否也能应对自如?
问题4:已知一次函数y=kx+3与两坐标轴围成的直角三角形面积为
92,试确定此一次函数的解析式.
问题5:如图所示,直线1:3l y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线()0:2≠=k kx y l 交直线1l 于点C ,且3=∆AOC S .求:①C 点坐标;②直线2l 的解析式.
1:
l 总结:
(1)请根据“问题1”到“问题3”的解题方法,总结出“已知函数解析式,如何求出相关图形的面积?”
(2)请根据“问题4”到“问题5”到的解题方法,总结出“已知相关图形的面积,如何求出函数解析式?”
变式练习:
如图所示,直线y=x+3的图象与x 轴、y 轴分别交于A 、B 两点.直线()0:≠=k kx y l 经过原点, 与线段AB 交于点C,且把△AOB 的面积分为2:1的两部分.
求:直线l 的解析式.(提示:可先画出直线l 的大致位置)
x
三、质疑反馈:
1. 一次函数y=2x-6的图象与x 轴的交点坐标为 ,与y 轴的交点坐标为 ,与两坐标轴围成的三角形面积为 .
2. 在同一直角坐标系中,画出一次函数y=-x+2与y=2x+2的图像,则这两条直线与x 轴围成的三角形的面积为 .
3. 已知一次函数与两个坐标轴围成的三角形面积为4,则________.
4. 在平面直角坐标系xOy 中,一次函数223
y x =
-的图像分别交x 轴、y 轴于点A 、B. (1)求△AOB 的面积; (2)过△AOB 的顶点能否画出直线把△AOB 分成面积相等的两部分?如能,可以画出几条?写出这样的直线相应的函数表达式.
四、拓展延伸:
如图所示,直线22
1:+-=x y l 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式,并写出自变量的取值范围;
(3)当t 取何值时△COM 的面积为2,并求此时M 点的坐标;
(4)当t 取何值时△COM 的面积为10,并求此时M 点的坐标;。

相关文档
最新文档