高数有理分式积分法

合集下载

有理分式积分待定系数法

有理分式积分待定系数法

有理分式积分待定系数法理分式的积分可以使用待定系数法进行求解,具体步骤如下:1. 将有理分式进行部分分式分解。

例如,对于形如$$\frac{N(x)}{D(x)} = \frac{N_1(x)}{D_1(x)} + \frac{N_2(x)}{D_2(x)} + \cdots +\frac{N_k(x)}{D_k(x)}$$的有理分式,其中$N(x)$和$D(x)$分别为分子和分母多项式,$N_1(x)$和$D_1(x)$等为部分分式形式。

2. 根据部分分式的形式进行计算。

对于每一项$\frac{N_i(x)}{D_i(x)}$,可以使用待定系数法进行计算。

若$D_i(x)$的次数大于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} =\frac{A_{i1}}{D_{i1}(x)} + \frac{A_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}}{D_{im_i}(x)}$,其中$D_{ij}(x)$的次数小于$D_i(x)$的次数。

若$D_i(x)$的次数等于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} = \frac{A_{i1}x +B_{i1}}{D_{i1}(x)} + \frac{A_{i2}x + B_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}x +B_{im_i}}{D_{im_i}(x)}$。

3. 将部分分式进行通分,整理等式。

4. 将所得等式两边同时积分。

例如,对于每一个部分分式$\frac{A_{ij}x + B_{ij}}{D_{ij}(x)}$,可以通过先对其分子进行展开得到$\frac{A_{ij}x}{D_{ij}(x)} + \frac{B_{ij}}{D_{ij}(x)}$。

然后,可通过分别使用常数乘法法则和有理函数法则进行积分,最终得到对应的积分结果。

有理函数的积分拆分方法

有理函数的积分拆分方法

有理函数的积分拆分方法一、前言积分是高等数学中非常重要的概念。

而有理函数则是些基础的函数,其定义域是有理数的多项式函数。

在进行有理函数的积分时,我们有时可以通过拆分的方式,将原式转化为简单的形式,从而使求解变得更加容易。

本文将讨论有理函数的积分拆分方法,特别是常见的分式分解法和部分分式分解法。

二、分式分解法分式分解法是将原有理式拆分成若干个分式相加的形式。

下面我们将介绍一下分式分解法的具体步骤:1.将分母拆分成多项式的积。

例如:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{ B}{x+2}$其中 $A$,$B$ 是待定系数。

2.将原式中的分式分别乘上其对应的除数。

例如:$x^2+2x=A(x+2)+B(x+1)$3.利用待定系数的方法求解 $A$,$B$。

例如:在上式中将 $x$ 替换为 $x=-1$,可以得到 $A=-1$。

在上式中将 $x$ 替换为 $x=-2$,可以得到 $B=2$。

最终得到:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}$三、部分分式分解法部分分式分解法则是将有理式模拟成部分分式,之后进行求解。

下面我们将介绍部分分式分解法的具体步骤:1.将分母分解因式。

例如:$\frac{5x-1}{x^2-3x+2}=\frac{5x-1}{(x-1)(x-2)}$2.将各因式拆成单项式。

例如:$\frac{5x-1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$3.用待定系数法求解。

例如:$5x-1=A(x-2)+B(x-1)$4.解得系数 $A$,$B$。

例如:在上式中将 $x=1$,可以得到 $A=-4$。

在上式中将 $x=2$,可以得到 $B=9$。

最终得到:$\frac{5x-1}{x^2-3x+2}=\frac{-4}{x-1}+\frac{9}{x-2}$四、总结:通过上述两种方法,我们可以将有理函数的积分拆分为若干个简单的分式相加。

44有理函数的积分知识讲解

44有理函数的积分知识讲解

44有理函数的积分知识讲解有理函数意为有理数的函数,即可以表示为$p(x)/q(x)$的函数,其中$p(x)$和$q(x)$均为多项式函数。

有理函数积分是指对有理函数进行积分运算,是高等数学中一个非常重要的内容。

下面将介绍有理函数积分的知识。

一、分式分解要求有理函数的积分,首先要进行分式分解。

分式分解是将一个有理函数分解成多个个简单的有理函数的和的过程,即对于一个形如$p(x)/q(x)$的有理函数进行分解,使得分解式的分母均为一次多项式或既约二次多项式。

分式分解的基本方法是:用二次多项式的因式作分子的一次式,二次多项式必须既约,即无重根。

若$q(x)$的某个根是$k$,则$(x-k)$是$q(x)$的因式;若二次多项式$(x^2+px+q)$有两个不同实根$x_1,x_2$,则分式分解式可写成两个部分的和形式,即分子为$k_1/(x-x_1)$,分母为$(x-x_1)$,分子为$k_2/(x-x_2)$,分母为$(x-x_2)$。

二、基本积分公式有理函数的积分可以根据基本积分公式进行求解。

常用的基本积分公式有以下几种:1. $\int \frac{1}{x} dx = \ln |x| + C$2. $\int \frac{1}{x^2+a^2} dx=\frac{1}{a}\arctan(\frac{x}{a})+C$三、换元积分法针对部分比较复杂的有理函数,可以采用换元积分法进行求解。

具体方法是:先将分式分解为几个部分,其中一个部分是含有根式的二次函数,用$t=\sqrt{x^2+a^2}$进行代换,然后进行简化,并根据基本积分公式计算积分。

四、分步积分法对于含有较多项的有理函数,可以采用分步积分法进行求解。

具体方法是:将原式中的有理函数分解为两个有理函数的和,其中一个有理函数是原式的导数的因式,另一个有理函数则是原式的乘积。

然后,用分部积分法求解原式的积分。

总之,有理函数积分是高等数学中的一个非常重要的内容,可以通过分式分解、基本积分公式、换元积分法和分步积分法进行求解。

高数讲义第四节有理函数的积分全

高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x

令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式

大一高数第四章简单有理函数的积分

大一高数第四章简单有理函数的积分

b0 , b1 , , bm 都是实数,并且a 0 0 ,b0 0 .
假定分子与分母之间没有公因式
(1) n m , 这有理函数是真分式;
( 2) n m , 这有理函数是假分式; 利用多项式除法, 假分式可以化成 一个多项式和一个真分式之和.
例 难点
1 x x1 x 2 . 2 x 1 x 1
1 dx 例 2 1x
1 1 dx dx 解: 2 1x (1 x)(1 x) 1 1 1 [ ]dx 2 1x 1x
1 [ln | 1 x | ln | 1 x |] C 2 1 1x ln | | C 2 1x
注意:分母拆项是常用的技巧!
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
A 5 A B 1, , B 6 ( 3 A 2 B ) 3, x3 5 6 . 2 x 5x 6 x 2 x 3
例. 求
1 d x d ( 解: 原式 2 2 x 1) ( x 1) ( 22 ) 1 x 1 arctan C (P203 公式 (20) ) 2 2
1 练习:求积分 x(x 1) dx.
机动
目录
上页
下页
返回
பைடு நூலகம்
结束
例. 求
解: 原式
1 ( 2 x 2) 3 2 2

dx, 使用凑微分法比较简单 . x 1
3
x
2
基本思路
尽量使分母简单——降幂、拆项、同乘等 化部分分式,写成分项积分
可考虑引入变量代换
二、简单无理函数的积分

高数4.4

高数4.4
1 1 =∫ dx − 5∫ dx =6ln|x−3|−5ln|x−2|+C. x −3 x−2
2.分母是二次质因式的真分式的不定积分
x−2 dx . 例2 求 ∫ 2 x + 2x + 3

x−2 1 2x + 2 1 ∫ x 2 + 2 x + 3 dx = ∫ ( 2 x 2 + 2 x + 3 − 3 x 2 + 2 x + 3)dx
三、简单无理函数的积分
例4 求
x −1 ∫ x dx . 解 设 x −1 = u ,于是x=u2+1,dx=2u du ,从而

u x −1 u2 dx = ∫ 2 · 2u du = 2∫ 2 du x u +1 u +1 1 = 2 ∫ (1 − )du 2 1+ u
=2(u殊类型函数的积分 .
一、有理函数的积分
有理函数 真分式的不定积分 分母是二次质因式的真分式的不定积分
二、三角函数有理式的积分 三、简单无理函数的积分 练习
一、有理函数的积分
有理函数的形式:
P( x) a0 x n + a1 x n −1 + L + an −1 x + an = Q( x) b0 x m + b1 x m−1 + L + bm−1 x + bm
33 3 = ( x + 2) 2 − 33 x + 2 + ln | 1 + x + 2 | +C. 2
练习
3x + 1 dx sin 5 x dx. , ( 2) ∫ dx, (3) ∫ 2 求积分: (1) ∫ 4 2 + cos x x − 3x + 2 cos x

有理函数积分法(3)

有理函数积分法(3)

2
2
( x2 px q)n
dx
类型4
A
2
(x2
2x px
p
q)n dx
(B
p 2
A)
1 ( x2 px q)n dx
A
2
(x2
1 px
q)n d ( x 2
px
q)
(B
p 2
A)
1 ( x2 px q)n dx
A 1 2 1n
(x2
1 px q)n1
(B p A) 2
arctan
x
2 x (1 x2 )2 dx
arctanx
1 2x 2
2 (1 x2 )2
dx
arctanx 1 2
2x (1 x2 )2 dx
2 (1 x 2 )2 dx
arctanx
1 2
1
1 x2
2
1 (1 x 2 )2 dx
15
1 x x2 ( x2 1)2
13
例4

1
3
x x
3
dx.

1
3
x x
3
dx
(
1
1
x
1
x1 x x2
)dx
1
3
ln1
x
1
x1 x x
2
dx
ln1
x
(2x 1) 2 1 x x2 2dx
ln1
x
1 2
1
2x x
1 x2 dx
3 2
1
1 x
x2 dx
ln 1 x 1 ln1 x x2 3
( x 1)( x 2)2

高数资料(特殊积分法)

高数资料(特殊积分法)

t =∫ ⋅ 2 sin t cos t ⋅ d t = −2 ∫ t ⋅ d cos t cos t
= −2t cos t + 2 ∫ cos t ⋅ d t = −2t cos t + 2 sin t + C = −2 1 − x arcsin x + 2 x + C
5 3 2 = ln( x + 2 x + 4) − ∫ 3 2
dx
2
x + 1 1+ 3 5 x +1 3 arctan +C = ln( x 2 + 2 x + 4) − 3 3 2
例2
8 x + 31 2x + 4 dx ⋅ dx = 4 ∫ 2 ⋅ d x+ 15 ∫ 2 ∫ ( x 2 + 4 x + 13)2 ( x + 4 x + 13) 2 ( x + 4 x + 13) 2
1 1 1 = ∫ + ⋅dt 3 3 − t 3 + t 1 3+ t = ln +C 3 3−t
x 1 3 + tan 2 = ln +C x 3 3 − tan 2
例 6 解一
1 ∫ sin 4 x dx .
x u = tan , 2
2u sin x = , 2 1+ u
2 2
1 3 = − cot x − cot x + C . 3 结论 比较以上三种解法, 比较以上三种解法 便知万能置换不一定是最佳 方法, 故三角有理式的计算中先考虑其它手段, 方法 故三角有理式的计算中先考虑其它手段 不得已才用万能置换. 不得已才用万能置换

简单有理分式函数的积分

简单有理分式函数的积分
简单有理分式 函数的积分
一、有理函数的积分
有理函数是指有理式所表示的函数,它包括有理整式和 有理分式两类:
有理整式 f(x)=a0xn+a1xn-1+…+an-1x+an;
有理分式
其中m,n都是非负整数,a0,a1,…,an及b0,b1,…,bn都是 实数,并且a0≠0,b0≠0.
一、有理函数的积分
1=A(1+x2)+(Bx+C)(1+x),
一、有理函数的积分
整理得 1=(A+B)x2+(B+C)x+A+C.(4-19)
比较式(4-19)两端x的同次幂的系数及常数,有
一、有理函数的积分
3. 有理函数积分举例 【例1】
去分母,得 2x3+x-1=(Ax+B)(x2+1)+(Cx+D) =Ax3+Bx2+(A+C)x+(B+D),
三、积分表的使用
同时还应了解,求函数的不定积分与求函数的导数的 区别.求一个函数的导数总可以循着一定的规则和方法去做, 而求一个函数的不定积分却没有统一的规则可循,需要具 体问题具体分析,灵活应用各类积分方法和技巧.
实际应用中常常利用积分表来计算不定积分.求不定积 分时可按被积函数的类型从表中查到相应的公式,或经过 少量的运算和代换将被积函数化成表中已有公式的形式.
二、可化为有理函数的积分
二、可化为有理函数的积分
二、可化为有理函数的积分
【例3】
二、可化为有理函数的积分
【例4】
二、可化为有理函数的积分
二、可化为有理函数的积分
2. 简单无理函数的积分

有理函数和三角函数有理式的积分法

有理函数和三角函数有理式的积分法

§3-7 阅读(有理函数和三角函数有理式的积分法)在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分..在那里,因为被积函数都很特殊,因为被积函数都很特殊,所以用所以用所以用“拼凑的方法”“拼凑的方法”就求出了它们的积分就求出了它们的积分..这一节讨论的是一般情形下,如何求它们的积分当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了法,而仍用以前那种“拼凑方法”就行了. .1.有理函数的积分法有理函数的积分()d ()p x x q x ò[ [其中其中()p x 和()q x 都是多项式都是多项式] ] 总可以积出来,即可把它表示成初等函数总可以积出来,即可把它表示成初等函数..积分方法的要点是:第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式假分式..在这种情形下,就用多项式除法(见下面例2727)),先把它变成一个多项式与一个真分式之和,即()()()()()p x r x s x q x q x =+ [ [其中分子其中分子()r x 的次数低于分母()q x 的次数的次数] ] 于是,()d ()p x x q x ò()()d d ()r x s x x x q x =+òò右端第一项是多项式的积分右端第一项是多项式的积分((用分项积分法可以积出来用分项积分法可以积出来)),所以就变成求有理函数真分式的积分()d ()r x x q x ò. . 关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题. . 例27 例如求有理函数假分式的积分522d 36x x x x -++ò首先像做整数除法那样,做多项式除法:由此可得63225++-x x x 3212323336x x x x +æö=-+ç÷+èø其次再逐项积分,即(余式) 23+x (被除式) (除式)255336000202x x x x x ++++-+++xx x x 40220233-+-+-+-(商式)31233x x -5342222212321132d d d d 33123363636x x x x x x x x x x x x x x x -+++æö=-+=-+ç÷+++èøòòòò这样就变成求这样就变成求((右端最后一个右端最后一个))有理函数真分式的积分有理函数真分式的积分. .第二,第二,对于真分式对于真分式()()r x q x ,先把分母上的多项式()q x 分解成一次因式或没有实根的二次因式的乘积二次因式的乘积((根据代数基本定理,这是可能的).).然后用待定系数法然后用待定系数法然后用待定系数法((或拼凑方法或拼凑方法))把()()r x q x 化成不超出下面这些“最简分式”的和:化成不超出下面这些“最简分式”的和:22,,,()()n m A B Cx D Ex Fx a x b x px q x rx s ++--++++(n 和m 为正整数为正整数)) (分子比分母上的基因式低一次分子比分母上的基因式低一次) )这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分. . 我们用例子来说明上述方法我们用例子来说明上述方法我们用例子来说明上述方法. .⑴分母为一次重因式的真分式的积分法例28 例如求例如求2353d (2)x x x ++ò,可令,可令2323532(2)(2)(2)x A B C x x x x +=++++++将右端通分,将右端通分,并比较两端分子,并比较两端分子,并比较两端分子,即即C x B x A x ++++º+)2()2(3522,则得三元线性方程组则得三元线性方程组ïîïíì=++=+=(常数项)的系数)(的系数)(3240452C B A x B A x A , 解得解得ïîïíì=-==23205C B A 于是得于是得3232)2(23)2(2025)2(35+++-+=++x x x x x 因此,因此, 2353d (2)x x x ++ò2352023d d d 2(2)(2)x x x x x x =-++++òòò220235ln 222(2)x x x =++-++【注1】上面求待定系数的方法是比较两端x 的同次项系数,下面是求待定系数的另一个方法:根据2253(2)(2)x A x B x C +º++++,则,则第一步,让2x =-,得23C =;第二步,在2253(2)(2)x A x B x C +º++++两端关于x 求导数,得102(2)x A x B º++. 再令2x =-,得20B =-;第三步,在102(2)x A x B º++两端关于x 求导数,则得102A =,即5A =.【注2】把真分式2353(2)x x ++化成最简分式之和的另一个方法是依次用多项式除法化成最简分式之和的另一个方法是依次用多项式除法: :25323(510)22x x x x +=-+++,222253510232023522(2)(2)(2)x x x x x x x +-=+=-++++++ 232353520232(2)(2)(2)x x x x x +=-+++++ ( (你看懂了吗你看懂了吗你看懂了吗?) ?)⑵分母为不同一次因式乘积的真分式的积分法例如求d ()()cx d x x a x b +--ò,可令,可令 bx Ba x Ab x a x d cx -+-=--+))(((A 和B 为待定系数)为待定系数) 然后根据恒等式()()cx d A x b B x a +º-+-,求出待定系数A 和B .于是,于是,d ()()cx d x x a x b +=--òd d ln ||ln ||A B x x A x a B x b x a x b +=-+---òò例29 求2d (3)(5)x x x x ---ò.解 设53)5)(3(2-+-=---x Bx A x x x (B A ,为待定常数为待定常数) ) 则得)3()5(2-+-º-x B x A x ,即,即2)35()(-º+-+x B A x B A 比较两端常数项和x 的系数,则得线性方程组的系数,则得线性方程组îíì=+=+1235BA B A 解得23,21=-=B A ( (求求B A 和的另一个方法见下注的另一个方法见下注).).).因此,因此,因此, 523321)5)(3(2-+--=---x x x x x 从而得从而得2d(3)(5)x x x x ---ò113113d(3)d(5)ln 3ln 5232522x x x x x x =--+-=--+---òò【注】在式2(5)(3)x A x B x -º-+-中,让3x =,则得12A =-,所以12A =-;再让5x =,则得32B =,所以32B =.⑶分母为二次多项式(没有实根)的真分式的积分法 例如例如[[注意注意,,分母没有实根2(40)p q -<],22222111(1)d d d 424x x ux px q u A p q px ==+++-æö++ç÷èøòòò24,22q p p u x A æö-ç÷=+=ç÷èø(套用积分公式)1arctan u A A =2222arctan 44q q x p p p+-=-2222(2)(2)d (0)d d 2b bx p p x ax ba a ax a ax x x px qx px qx px qæö++-+ç÷+èø¹==++++++òòò222d()21d 22ax px q a b p x a x px q x px q++æö=+-ç÷++++èøòò2221ln()d 22aa bx px q p x a x px q æö=+++-ç÷++èøò(套用前一题的结果套用前一题的结果).). ⑷分母为二次重因式的真分式的积分法例30 例如求积分例如求积分322221d (1)x x x x x -+++ò.若用待定系数法,就令若用待定系数法,就令322222221(1)1(1)x xAx B Cx D x x x x x x -+++=+++++++若不用待定系数法,可依次用多项式除法:若不用待定系数法,可依次用多项式除法:第一步,3222212(2)(3)11x x x x x x x x -++=-+++++;第二步,32222222132(2)(1)1(1)x x x x x x x x x x -+-+=+++++++于是,于是,32222222132(2)d d d (1)1(1)x x x x xx x x x x x x x -+-+=+++++++òòò其中右端第一个积分其中右端第一个积分22222231(21)71d(1)7d d d 1212121322x x x x x x x x x x x x x x -+-++==-++++++æöæö++ç÷ç÷èøèøòòòò217221ln(1)arctan 2233x x x +=++-×而第二个积分而第二个积分2222222222(2)(21)3d(1)1d d 3d (1)(1)(1)(1)x x x x xxx x x x x x x x x +++++==+++++++++òòòò2222113d (1)1322x x x x =-+++éùæöæöêú++ç÷ç÷êúèøèøëûò[套积分公式⒇] ⑸分母为一次因式与二次因式乘积的真分式的积分法例如,求22d ()()bx cx d x x a x px q ++-++ò时,可令时,可令 q x p x C x B a x Aq x p x a x d x c x b ++++-=++-++222))((然后根据恒等式然后根据恒等式22()()()bx cx d A x px q Bx C x a ++º++++-求出待定系数A 、B 和C . 于是,于是,22d ()()bx cx dx x a x px q ++-++ò2ln ||d Bx C A x a x x px q +=-+++ò (注意2xpx q ++没有实根没有实根,,即240p q -<)2.三角函数有理式的积分法 所谓“三角函数有理式”,是指由常数和简单三角函数x sin 与x cos 经过有限次的有理运算经过有限次的有理运算((加、减、乘、除加、减、乘、除))得到的函数,记成)cos ,(sin x x R .下面介绍的是形如积分的是形如积分(sin ,cos )d R x x x ò的积分法的积分法..例如积分例如积分2cos d 2sin cos x x x x +ò,1d 2sin cos 1x x x -+ò,1d (0)cos x ab a b x ¹+ò等.实际上,我们在前面几节中曾多次遇到这种类型的积分我们在前面几节中曾多次遇到这种类型的积分..这里介绍的是一般方法这里介绍的是一般方法..你在做题时.....,还是要具体问题具体分析...........,未必就一定要用这里介绍的方法..............(因为一般情形下,这里介绍的方法要麻烦一些)方法要麻烦一些). .令2tan xt =(称它为半角替换或万能替换称它为半角替换或万能替换)),则,则2222122tan12tan22sec 2tan22cos2tan22cos2sin2sin t t x x xx xx x x x +=+==== 22222222112tan12tan 1)2tan 1(2cos 2sin 2cos cos t t x x x x x x x +-=+-=-=-= t t t x d 12)arctan 2(d d 2+==于是,于是,(sin ,cos )d R x x xò2222212,d 111t t R t t t t-æö=ç÷+++èøò这样,三角函数有理式的积分就变成有理函数的积分三角函数有理式的积分就变成有理函数的积分..在有些情形下,像前面做过的那样,不必用半角替换,而用其它三角替换会更简单必用半角替换,而用其它三角替换会更简单..例如例如()i 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令cos t x =; ()ii 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令sin t x =; ()iii 当(sin ,cos )(sin ,cos )R x x R x x --=时,令tan t x =.习题1.求下面的原函数:⑴25d (3)x x x --ò; ⑵⑵325d (2)x x x --ò;⑶23354d (1)x x x x -+-ò; ⑷⑷3223242d 21x x x x x x -++-+ò. 答案:⑴323ln -+-x x;⑵2)2(2122-+--x x ;⑶2)1(1111ln 3-----x x x ; ⑷171ln 94232---++x x x x .2.求下面的原函数:求下面的原函数:⑴x x x x d )3)(2(73ò---; ⑵⑵x x x x d 2152ò-++; ⑶⑶x x x x x x d )2)(2(2342ò+---. 答案:⑴3ln 22ln -+-x x ;⑵1ln 22ln 3-++x x ;⑶2ln 252ln ln 21++-+x x x . 3.求下面的原函数:求下面的原函数:⑴x x x x x d )1)(2(23222ò++-+; ⑵⑵x x x x x d )32)(1(2ò+++; ⑶⑶x x x d 134ò+. 答案:⑴x x arctan )1ln(2-+;⑵21arctan 21)32ln(411ln 212++++++-x x x x ;⑶312arctan 311)1(ln 6121222--+-++x x x x x . 4.根据提示,请把下面的演算做到底:根据提示,请把下面的演算做到底:⑴tan 21d 2sin cos 1x t x x x æö=ç÷èø====-+ò⑵(cos )1d (2cos )sin t x x x x ======+ò⑶2(sin )cos d 2sin cos t x xx x x ======+ò⑷3(tan )3sin d sin cos t x xx x x======+ò答案:⑴22tan2tan ln21+x x ;⑵32)cos 1()cos 1()cos 2(ln 61x x x +-+;⑶12sin 1ln 222sin 1x x +--+;⑷÷÷øöççèæ---+-x x x x x x x sin 3sin cos 2arctan 31cos sin 1)cos (sin ln 612.。

高数:分部积分法,有理函数积分法

高数:分部积分法,有理函数积分法

x 6
1+ e2 + e3 + e6 1 3 3t + 3 6 dt = ∫ − = 6∫ dt − 2 2 t (1 + t )(1 + t ) t 1+ t 1+ t
3 3t + 3 6 dt = ∫ − − 2 t 1+ t 1+ t 2 1 3 d (1 + t ) dt − 3∫ = 6 ln t − 3 ln(1 + t ) − ∫ 2 2 1+ t 2 1+ t 3 2 = 6 ln t − 3 ln(1 + t ) − ln(1 + t ) − 3 arctan t + C 2
∵ x + 3 = A( x − 3) + B( x − 2), ∴ x + 3 = ( A + B ) x − ( 3 A + 2 B ),
A + B = 1, A = −5 , ⇒ ⇒ − ( 3 A + 2 B ) = 3, B = 6 3 6 −5 . ∴ = + 2 x − 5x + 6 x − 2 x − 3
A B C 1 , = + + 例2 2 2 x ( x − 1) x − 1 x ( x −1 )
1 = A( x − 1) 2 + Bx + Cx ( x − 1)
代入特殊值来确定系数 A, B , C 取 x = 0, ⇒ A = 1 取 x = 1, ⇒ B = 1 取 x = 2, 并将 A, B 值代入 (1) ⇒ C = −1

∫ x cos xdx = ∫ xd sin x = x sin x − ∫ sin xdx

高数4.2(2)有理函数的积分。。

高数4.2(2)有理函数的积分。。


x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
A B 1, A 5 , ( 3 A 2 B ) 3, B 6 x3 5 6 . 2 x 5x 6 x 2 x 3
这两个公式称为分部积分公式.
•分部积分过程
目录
上页
下页
返回
结束
分部积分法
分部积分过程: 例1 x sin xcos xC . 例2 例3
使用经验 “反对幂指三”
x2ex2xex2exC ex(x22x2 )C.
目录 上页 下页 返回 结束
在后的凑微分
分部积分过程:
分部积分法
第四章
§5.2 有理函数的积分
• 基本积分法:直接、换元、分部积分法 • 初等函数 求导 初等函数
积分
一、分部积分公式
二、积分方法比较
三、有理函数的积分
目录 上页 下页 返回 结束
分部积分法
一、分部积分公式
•分部积分公式 设函数uu(x)及vv(x)具有连续导数. 那么, (uv)uvuv, 移项得 uv(uv)uv. 对这个等式两边求不定积分, 得
假定分子与分母之间没有公因式
(1) n m , 这有理函数是真分式; ( 2) n m , 这有理函数是假分式;
利用多项式除法, 假分式可以化成一个 多项式和一个真分式之和.
1 x3 x 1 例 x 2 . 2 x 1 x 1
难点 将有理函数化为部分分式之和.
有理函数的积分 三角函数有理式的积分 简单无理函数的积分 小结与作业 练习题

(完整版)高等数学中有理分式定积分解法总结.doc

(完整版)高等数学中有理分式定积分解法总结.doc

由十个例题掌握有理分式定积解法【摘要】 当被积函数为两多项式的商P(x)的有理函数时,解法各种各样、不易掌握,Q( x)在此由易到难将其解法进行整理、总结【关键词】有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分两个多项式的商P xP x称为有理函数,又称为有理分式,我们总假定分子多项式Q x与分母多项式 Q x 之间无公因式,当分子多项式P x 的次数小与分母多项式Q x ,称有理式为真分式,否则称为假分式.1. 对于假分式的积分: 利用多项式除法, 总可将其化为一个多项式与一个真分式之和的形式 .例3x 4 2x 21.1x 2 1dx解 原式3x 2 x21 x 2x21dx3x2dx x 2 dxx 2 13 x2dx 1 x 2 1 dx1 3 x2dx dx1 dxx 3 x21x arctanx C2x 4x 2 3 例 1.221 dxx2x 2 x 2 13 x2 dx解 原式x212 x 2dx 31 1 dx x2 dxx 2x 2 12 x 34arctan x x C31总结:解被积函数为假分式的有理函数时, 用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分 . 对于一些常见函数积分进行记忆,有助于提高解题速度,例如:x 2 dx1 1dxx 2 1 x 2 1P x 对于真分式,若分母可分解为两个多项式乘积Q x = Q 1 x Q 2 x ,且 Q 1x ,Q xP x P xP xQ 2 x 无公因式,则可拆分成两个真分式之和:12,上述过程称为Q xQ 1 x Q 2x把真分式化为两个部分分式之和. 若 Qx 或 Q x 再分解为两个没有公因式的多项式乘12积,则最后有理函数分解式中出现多项式、P 1 xk、P 2 x 等三类函数,则多项xx 2px la q式的积分容易求的2. 先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分2.1类型一(ax b) mdxcxkx31dx例 2.1.1x2解 原式 =x 33x23x1dxx 2= xdx3 dx 31dx 1dxx x 2= 1x 2 3x 3In x 1 C 2x总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数,然后利用常见积分公式进行运算2.2类型二cx kax m dxbx 2例 2.2.13 dxx2解 令 x+2=t , 则 xt 2 , 有 dx dt2t 2原式 = 2dxt 3= t24t4dtt 3= 14 11 dt t2 dt43 dttt=Int+ 4 - 2+Ct t 2=I n x 242Cx 2x 2 2总结:当被积函数形如时cxkm dx ,将其用换元法转换为ax b解法求解2.3 类型三P x l dxax 2bx c例 2.3.1x 32dxx 22x2原式 =x 32 dtx 1 21设=tant,x=tant+1,dx=set2x-1tdt3上式 =1+tantset 2tdtset 2t= tan 3 t 3tan 2 t 3tan t 1dtset 2t = sin 3 t cos 1 t 3sin t cost 3sin 2 t cos 2 t dtm(axb)dx ,再按照后者cx k=- 1 cos 2t costd cost +3sin 2tdt dt cos2tdt4=-Incost + 1cos 2t+2t+2sintcost2 1x 1Q tant=x-1, cost=2,sint= 2x 1 1x1 1上式122x 22 x 214 2arctan x 1 x 2 2x 2C= 2 In x4x 2x 23例2.3.2x 1 dxx 2 2x132x22=2dx22x 3x=1x 21 3 d x 22x 3 -212 dx 2 2 xx 1 2= 1In x22x 3 - 2arttanx 1+C22总结:当被积函数分母含有 ax 2 +bx+c 时,可以用凑微分法进行积分 ;对于形如 ax 2 lbx+c 时,可将其变形为 T 2 x +1或者是1-T 2 x ,然后利用三角函数恒等变形 sin 2x+cos 2x=1和1+tan 2x=set 2x 将T 2 x 降次,便于计算 .3. 以前面的几种简单类型为基础,现在来讨论较为复杂的有理真分式的积分例 3.1 2x+3dx2 3x 10x解法 12x+3 dx2 3x 10x =x 21d x 2 3x 103x 10=In x 23x 10 +C解法 22x+3dxx 23x102x+3 10 = 2x+3 = A + B 2 x 2 3x x+5 x 2 x 5 x =A B x 5B 2A1 1x 5 x 2x 5 x 2原式 =11dxx5 x 2=In x 23x 10 +C总结: 假分式分母可以因式分解, 将被积函数化为部分分式之和的形式, 然后用基本积分公4式进行运算 .x2 dx例 3.22x 1x 2 x 1原式 =2xdx2x 1 x 2 x111 2x 1 1=d 2x 1 - 2x 2 x 2dx 2x 11=1 d 2x 11x21 d x 2x 1112dx 2x 12 x121 3x24=In2x 1 - 1In x2x 1+ 1arctan x1+C232总结:遇到被积函数是复杂的有理函数,用拆分法将其分解为自己熟悉的函数,灵活变换.x 3dx 例 3.3x 2x 1 1=x 3dxx 2x11x 2 1 dxx 2 2x 1 x11 2x 2112 dxx 22xdx1 x11 x2 1 d x22x 11 2 dx1dx 2 2x 1x 1x1Inx1 x 1 Cx 11总结: 此题能够得出一个重要结论, 分母因式分解要求为各个因式之间无公约数,以此为标 准进行因式分解,拆项除此之外, 常见的还有, 可化为有理函数的积分 . 例如利用三角函数的万能公式,将被积函数中含有三角函数的分式函数,例:1+sin xdx . 例如被积函数中含有cos xsin x 1nax b 或 nax b时用换元法将根号去掉,例:x 1 xdx , 1dx . 虽然形式cxd1 x3x15各种各样 , 但只要熟练掌握以上各种类型的积分,那么在被积函数为有理分式函数时应对起来应当是信手拈来,甚是轻松6。

【考研数学】高数有理分式积分法

【考研数学】高数有理分式积分法

第四节1•基本积分法: 直接积分法;换元积分法;分部积分法•初等函数求导初等函数积分一、有理函数的积分二、可化为有理函数的积分举例有理函数的积分本节内容:第四章n1m>时,为真分式为假分式;n简单分式:形如3456789解:(1) 用拼凑法111-)1(--x x10112C +42-=B已知1⎡1=1213原式x x 22⎰+=)22(21+x 如何求变形方法同例3, 并利用上一节课件例1415⎰+++=x x x x x d 4552243⎰++x x 52416原式⎰+=x x 2(2)22(2++x x172arctan2211xx -=21-221 ln 21-+x x 21++x x C+比较系数定a , b , c , d . 得化为部分分式. 即令比较系数定A , B , C , D..此解法较繁18xcos-x sinxA=xsin)(cos++⎰x(sinR,20212223⎰=原式xxd 2cos 1⎰=tan d 12425xb cos +⎢⎣⎡2+b a a sin 22ba +x ba +tan(12226=Ct +-31C x +cos 22728uu d 1)1(32⎰+-=29为去掉被积函数分母中的根式6 ,t x =令30t t td )1(222--内容小结31 1. 可积函数的特殊类型有理函数分解多项式及部分分式之和三角函数有理式万能代换简单无理函数三角代换根式代换2.特殊类型的积分按上述方法虽然可以积出,但不一定要注意综合使用基本积分法,简便计算.简便,32:1.⎰-=233()(d 31a x 原式a x a x a +--=33333ln 61ax ax a -+33333ln 61作业33P218 1-2434⎰11t551t -=t -d x =511113x x +35前式令arctan21u=; 后式配元13cos x+cos x2tanxu =2d u ⋅1。

有理式积分公式

有理式积分公式

有理式积分公式有理式积分是数学中的一个重要概念,也是咱们在学习积分运算时经常会碰到的。

先来说说什么是有理式。

简单来讲,有理式就是两个多项式的比。

比如,\(\frac{x^2 + 3x + 2}{x + 1}\)就是一个有理式。

那有理式积分呢,就是对这样的式子进行积分运算。

咱们先从简单的说起,像\(\int \frac{1}{x} dx\),这个大家都熟悉,答案就是\(\ln|x| + C\)。

这就像是数学世界里的一把小钥匙,能帮咱们打开有理式积分的大门。

我记得之前给学生们讲这部分内容的时候,有个小家伙特别有意思。

他叫小明,平时上课总是一副迷迷糊糊的样子。

讲到有理式积分的时候,我在黑板上写了一道例题\(\int \frac{2x + 1}{x^2 + x} dx\),然后问大家该怎么做。

其他同学都在认真思考,小明却在那抓耳挠腮。

我走到他身边,问他是不是没听懂。

他可怜巴巴地看着我,说:“老师,我感觉这些式子就像一群调皮的小怪兽,我怎么都抓不住它们。

”我笑着跟他说:“别着急,咱们一起来驯服这些小怪兽。

”然后我就带着大家一步一步地分析,先把分母分解因式,变成\(\int \frac{2x + 1}{x(x + 1)} dx\)。

接下来,咱们用分式分解的方法,设\(\frac{2x + 1}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1}\),然后通分得到\(2x + 1 = A(x + 1) + Bx\)。

通过代入特殊值,算出\(A = 1\),\(B = 1\),式子就变成了\(\int (\frac{1}{x} + \frac{1}{x + 1}) dx\),然后分别积分,就得到\(\ln|x| + \ln|x + 1| + C\)。

讲完这道题,我再看小明,他的眼睛里突然有了光,兴奋地说:“老师,我好像懂了,原来这些小怪兽也没那么可怕!”再复杂一点的有理式积分,比如\(\int \frac{x^3 + 2x^2 + 3x + 4}{x^2 + 2x + 1} dx\),咱们就得先把分子除以分母,得到一个整式和一个真分式的和,然后再对真分式进行分式分解,最后积分。

有理函数积分的求解方法

有理函数积分的求解方法

高等教育40学法教法研究课程教育研究两个多项式的商称为有理函数,当分子多项式的次数小于分母多项式的次数时,称为真分式,否则,称为假分式[1]。

假分式总可以分解为多项式与真分式之和的形式,多项式是容易求积分的[1,2],关键是把真分式化为部分分式之和,本文主要讨论有理真分式的不定积分。

通常使用待定系数法求解部分分式中各分子的系数,该方法可以说是万能的,但是需要解多元线性方程组,计算量很大,很麻烦[3]。

对于一些特殊的情况,可以使用赋值法[4]。

利用求导的方法也可以比较快速的求解出系数[3,5],并且在文献中[3]和[5]中给出求系数的公式,便于掌握,且使计算变得更简单、更有效。

本文给出分母为不同类型时待定系数法,赋值法和利用导数法[3,5]三种方法对系数的计算。

通过各方法的比较,读者可根据被积函数的特点,选择适合的方法。

另外,本文还推导出一类有理函数积分的求解公式,该公式使该类积分计算变得更简单,更有效,同时也为上机编程提供可能性。

例1解关键在于求系数,上式两端去掉分母后,得方法一:待定系数法,比较上式两端同次幂的系数,有得方法二:赋值法。

在式(1)式两边分别取,得;取,得;取,得。

[3,5]1时,以上三种方法一:待定系数法,比较上式两端同次幂的系数,有得方法二:赋值法在(2)式两边取,得,在(2)式两边求导:取,得上式再求导,得,,利用待定系数可以求出系数,而赋值法不像例1直接赋特殊值,也需要结合导数运算,但是方法三结合导数运算,代入计算公式,使计算更简便。

,下面给出分母是一次因式和二次不可约因式的乘积,同时因式的重数均为1时有理函数的不定积分的公式,便于掌握和:有理函数积分的求解方法冯玉玲 杨小飞(河南科技学院 河南 新乡 453003)【摘要】求有理函数积分的关键是把真分式分解为部分分式之和,即求各分式分子多项式的系数。

该文总结了待定系数法,赋值法和利用导数法三种求解系数的方法,且推导出一类有理函数积分的求解公式,该公式使计算变得更简单,更有效,同时也为上机编程提供可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
机动 目录 上页 下页 返回 结束
例6. 求
( x 2 x 2) (2 x 2) dx 解: 原式 2 2 ( x 2 x 2)
2
dx d( x 2 2 x 2) 2 2 ( x 1) 1 ( x 2 x 2) 2
1 arctan(x 1) 2 C x 2x 2

5 6 原式 x2 x 3
10
机动 目录 上页 下页 返回 结束
(3) 混合法
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
4 A (1 2 x) 原式 1 x 2 5 4 1 C 5 1 4 BC 6 15 2
例. 求
A(cos x sin x) B(cos x sin x) ( A B) cos x ( A B) sin x 令 a cos x b sin x A B 3 比较同类项系数 x d sin x) , B(c A 1,B 2 x) 故 cos x d sin A(c cos A B 1 d(cos x sin x) ∴ 原式 dx 2 cos x sin x
16
机动 目录 上页 下页 返回 结束
dx 例7. 求 4 x 1 1 ( x 2 1) ( x 2 1) 解: 原式 dx 4 2 x 1
1 2
1 x2 2 x 12 x
1
1 dx 2
1 x2 2 x 12 x
1
注意本题技巧
dx
按常规方法较繁

1
2t
2t 1t 2
1t 2 ) 2 (1 1t 1t 2
22 1 t
1 1 dt t 2 2 t
dt
1 1 2 t 2t ln t C 2 2
1 2x x x 1 tan tan ln tan C 4 2 2 2 2
x2 p x q ( x )( x ) 其中B1 , Bk , C1 , Ck 为待定系数.
4
机动 目录 上页 下页 返回 结束
P( x) 都可分解成若干个 根据上述的结论,一个真分式 Q( x)
简单分式之和,而这些简单分式不外乎为以下四种类型:
A (1) xa A (2) (k 2,3, 4 ) k ( x a)
1 4 2x 1 原式 = 5 1 2x 1 x2
11
机动 目录 上页 下页 返回 结束
2 B 5 1 C 5
例2. 求 解: 已知
1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
x ln cos x sin x C a cos x b sin x dx 的积分. 说明: 此技巧适用于形为 c cos x d sin x
解: 令 3 cos x sin x
二 、可化为有理函数的积分举例
1. 三角函数有理式的积分 设
表示三角函数有理式 , 则
R(sin x , cos x) dx
求四种类型的不定积分:
A (1) dx A ln | x a | C xa A A (2) dx ( x a) k 1 C (k 2,3, 4, ) ( x a)k k 1 Ap (B )dx Ax B A d ( x 2 p x q) 2 (3) 2 dx 2 p 2 p2 2 x pxq x pxq ( x ) (q ) 2 4
的分式.(其中A、a、M、N、p、q为常数)
3
机动 目录 上页 下页 返回 结束
P( x) ( P( x), Q( x) 无公因子)都可 定理. 任何一个真分式 Q( x)
分解成若干个简单分式之和,并且 (1) 若Q(x)=0有k重实根a (即把Q(x)在实数范围内因式分 解,含有 ( x a)k 因子), 则分解时必含有以下的分式:
Ax B (3) 2 ( p 2 4q 0) x pxq Ax B (4) 2 ( p 2 4q 0, k 2,3, 4 ) ( x p x q)k
于是,求任何一个真分式的不定积分问题,也就转化为求
以上四种类型的不定积分.
5
机动 目录 上页 下页 返回 结束
t x 2
A Ap dt p2 2 k 1 a q ( x p x q) ( B ) 2 2 k Ik 4 2(k 1) 2 (t a )
四种类型的不定积分 都为初等函数
上一节例9 1 t 2 n 1 I k 1 2 n a 2 (t 2 a 2 ) n 2 n a 2 I k I 1 arctan t C 1 a a
9
机动 目录 上页 下页 返回 结束
(2) 用赋值法
x3 x3 A B 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
x3 A (x 2) 原式 5 x 2 x 3 x 2 x3 6 B (x 3) 原式 x 3 x2 x 3
第四节 有理函数的积分
第四章
• 基本积分法 : 直接积分法 ; 换元积分法 ; 分部积分法
• 初等函数
求导
积分
初等函数
本节内容: 一、有理函数的积分 二、可化为有理函数的积分举例
1
机动 目录 上页 下页 返回 结束
有理函数 rational function 真分式 假分式 proper fraction improper fraction
7
机动 目录 上页 下页 返回 结束
有理函数的不定积分: 有理函数
相除
多项式 + 真分 式
分解
若干部分分式之和 其中部分分式的形式为
A MxN 2 ; ( k N , p 4q 0 ) k 2 k ( x a) ( x p x q)
结论: 有理函数的不定积分为初等函数.
8
机动 目录 上页 下页 返回 结束
例1. 将下列真分式分解为部分分式 :
解: (1) 用拼凑法
1 x ( x 1) 2 x( x 1) x( x 1) 2
1 1 2 ( x 1) x( x 1)
1 x ( x 1) 2 x( x 1) ( x 1) 1 1 1 2 x 1 x ( x 1)
一、 有理函数的积分
有理函数:
a0 x a1x P( x) R( x) Q( x)
n
n1
an
为真分式.
m n 时,
为假分式; m n 时,
简单分式: 形如
A MxN ; ( k N , p 2 4q 0 ) k 2 k ( x a) ( x p x q)
A 2 B AP 2x p 2 ln( x p x q) arctan C 2 4q p 2 4q p 2
6
机动 目录 上页 下页 返回 结束
求四种类型的不定积分:
Ap (B )dx Ax B A d ( x 2 p x q) 2 (4) 2 dx 2 p 2 p2 k 2 ( x p x q)k ( x p x q)k [( x ) (q )] 2 4p
1 1 2 ( x 1 )2 2 2 ( x 1 )2 2
x x
d( x 1 ) x
d( x 1 ) x
(见P348公式21)

1 2 2
arctan
x1 x
1 1 C ln 2 22 2 x1 2 x
17
常规 目录 上页 下页 返回 结束
x1 2 x
例3. 求 解: 原式
1 ( 2 x 2) 3 2
x 2x 3
2
2
dx
d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
Ak A1 A2 2 ( x a) ( x a) ( x a) k
其中 A1 , A2 , Ak 为待定系数. (2) 若Q(x)=0有一对k重共轭复根 和 , (即把Q(x)在实数 范围内因式分解,含有 ( x2 p x q)k 因子),则分解时必含有 Bk x Ck B1 x C1 B2 x C2 2 2 2 2 ( x p x q) ( x p x q) ( x p x q) k
x 令 t tan 2
万能代换
t 的有理函数的积分
20
机动 目录 上页 下页 返回 结束
1 sin x dx . 例8. 求 sin x(1 cos x) x 解: 令 t tan , 则 2 x x x 2 sin 2 cos 2 2 tan 2 2t sin x 2 x x x sin 2 cos 2 2 1 tan 2 2 1 t 2
2 d(1 2 x) 1 d(1 x 2 ) 1 dx 原式 2 5 1 2x 5 1 x2 5 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
12
例1(3) 目录 上页 下页 返回 结束
得 A 1, B 1, C 1.
1 1 1 dx ∴ 原式 2 x 1 ( x 1) x 1
x 1 1 ln C x 1 x 1
14
相关文档
最新文档