2015年上海闵行区初三数学二模试卷与答案
2015初三二模数学试题参考答案
初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。
2015年上海市闵行区中考数学、语文、英语二模试卷及答案
2015年上海市闵行区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24)1.(4分)(2015•闵行区二模)下列各题中是无理数的是()A.B.C.D.2.(4分)(2015•闵行区二模)二次根式a+的有理化因式是()A.(a+)2B.(a﹣)2C.a﹣D.a+3.(4分)(2015•闵行区二模)下列方程中,有实数根的方程是()A.x4+3=0B.=﹣1C.=D.=﹣x4.(4分)(2015•闸北区模拟)如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人5.(4分)(2015•闵行区二模)下列四边形中,是轴对称但不是中心对称的图形是()A.矩形B.菱形C.平行四边形D.等腰梯形6.(4分)(2015•闵行区二模)下列命题中假命题是()A.平分弦的半径垂直于弦B.垂直平分弦的直线必经过圆心C.垂直于弦的直径平分这条弦所对的弧D.平分弧的直径垂直平分这条弧所对的弦二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2015•闵行区二模)计算:=.8.(4分)(2015•闵行区二模)计算:a3•a﹣1=.9.(4分)(2015•闵行区二模)在实数范围内分解因式:x3﹣4x2=.10.(4分)(2015•闵行区二模)不等式组的解集是.11.(4分)(2015•闵行区二模)已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是.12.(4分)(2015•闵行区二模)将直线y=x+1向下平移2个单位,那么所得到的直线表达式是.13.(4分)(2015•闵行区二模)如图,已知在梯形ABCD中,AB∥CD,且AB=3CD,设=,=,那么(用,的式子表示)14.(4分)(2015•闵行区二模)在Rt△ABC中,∠C=90°,AC=3,BC=4,如果以点C为圆心,r为半径的圆与直线AC相切,那么r=.15.(4分)(2015•闵行区二模)从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率是.16.(4分)(2015•闵行区二模)某校几位九年级同学准备学业考试结束后结伴去周庄旅游,预计共需费用1200元,后来又有2位同学参加进来,但总的费用不变,每人可少分担30元.试求共有几位同学准备去周庄旅游?如果设共有x位同学准备去周庄旅游,那么根据题意可列出方程为.17.(4分)(2015•闵行区二模)小丽在大楼窗口A测得校园内旗杆底部C的俯角为α度,窗口离地面高度A=h(米),那么旗杆底部与大楼的距离BC=米(用α的三角比和h的式子表示)18.(4分)(2015•闵行区二模)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=.三.解答题19.(10分)(2015•闵行区二模)计算:+(﹣)+.20.(10分)(2015•闵行区二模)解方程:.21.(10分)(2015•闵行区二模)如图,已知在△ABC中,AB=AC=2,sin∠B=,D为边BC的中点,E为边BC的延长线上一点,且CE=BC.联结AE,F为线段AE的中点.求:(1)线段DE的长;(2)∠CAE的正切值.22.(10分)(2015•闵行区二模)货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y (升)与行驶时间x(时)之间的关系:行驶时间x(时)01234余油量y(升)150120906030(1)如果y关于x的函数是一次函数,求这个函数解析式(不要求写出自变量的取值范围)(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回会D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)23.(12分)(2015•闵行区二模)如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.24.(12分)(2015•闵行区二模)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2ax ﹣4与x轴交于A、B两点,与y轴相交于点C,其中点A的坐标为(﹣3.,0),点D在线段AB上,AD=AC.(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以DB为半径的圆D与圆C外切,求圆C的半径;(3)设点M在线段AB上,点N在线段BC上,如果线段MN被直线CD垂直平分,求的值.25.(14分)(2015•闵行区二模)如图1,已知在梯形ABCD中,AD∥BC,AB=DC=5,AD=4,M、N分别是边AD、BC上的任意一点,联结AN、DN,点E、F分别在线段AN、DN上,且ME∥DN,MF∥AN,联结EF.(1)如图2,如果EF∥BC,求EF的长;(2)如果四边形MENF的面积是△ADN的面积的,求AM的长;(3)如果BC=10,试探索△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.2015年上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24)1.(4分)(2015•闵行区二模)下列各题中是无理数的是()A.B.C.D.【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=2,是无理数.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(4分)(2015•闵行区二模)二次根式a+的有理化因式是()A.(a+)2B.(a﹣)2C.a﹣D.a+【考点】分母有理化.【分析】根据平方差公式,可分母有理化.【解答】解:(a+)(a﹣)=a2﹣b,故选:C.【点评】本题考查了分母有理化,利用平方差公式是分母有理化的关键.3.(4分)(2015•闵行区二模)下列方程中,有实数根的方程是()A.x4+3=0B.=﹣1C.=D.=﹣x【考点】无理方程;分式方程的解.【分析】根据非负数的性质判断A和B选项;解分式方程判断C选项;两边平方,解无理方程判断D选项.【解答】解:A、x4+3=0,方程无解,此选项错误;B、=﹣1,方程无解,此选项错误;C、=,解得x=1,是方程的增根,此选项错误;D、=﹣x,解得x=,此选项正确;故选D.【点评】本题主要考查了无理方程与分式方程的知识,解答本题的关键是掌握解答无理方程的步骤,此题比较简单.4.(4分)(2015•闸北区模拟)如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【考点】扇形统计图.【专题】数形结合.【分析】先求出九(1)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.【解答】解:由扇形图知乘车的人数是20人,占总人数的50%,所以九(1)班有20÷50%=40人,所以骑车的占12÷40=30%,步行人数=40﹣12﹣20=8人,所占的圆心角度数为360°×20%=72°,如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有150人.故选:B.【点评】本题主要考查扇形统计图及用样本估计总体等知识.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体的知识.5.(4分)(2015•闵行区二模)下列四边形中,是轴对称但不是中心对称的图形是()A.矩形B.菱形C.平行四边形D.等腰梯形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(4分)(2015•闵行区二模)下列命题中假命题是()A.平分弦的半径垂直于弦B.垂直平分弦的直线必经过圆心C.垂直于弦的直径平分这条弦所对的弧D.平分弧的直径垂直平分这条弧所对的弦【考点】命题与定理.【分析】根据垂径定理及其推论分别进行判断.【解答】解:A、平分弦(非直径)的半径垂直于弦,所以A为假命题;B、垂直平分弦的直线必经过圆心,所以B选项为真命题;C、垂直于弦的直径平分这条弦所对的弧,所以C选项为真命题;D、平分弧的直径垂直平分这条弧所对的弦,所以D选项为真命题.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2015•闵行区二模)计算:=2.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根,解答出即可;【解答】解:根据算术平方根的定义,得,==2.故答案为:2.【点评】本题考查了算术平方根的定义,一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.8.(4分)(2015•闵行区二模)计算:a3•a﹣1=a2.【考点】负整数指数幂.【分析】根据同底数幂的乘法,可得答案.【解答】解:原式=a3+(﹣1)=a2.故答案为:a2.【点评】本题考查了负整数指数幂,利用同底数幂的乘法计算是解题关键.9.(4分)(2015•闵行区二模)在实数范围内分解因式:x3﹣4x2=x2(x﹣4).【考点】实数范围内分解因式.【专题】计算题.【分析】原式提取公因式即可得到结果.【解答】解:原式=x2(x﹣4).故答案为:x2(x﹣4).【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.10.(4分)(2015•闵行区二模)不等式组的解集是≤x<2.【考点】解一元一次不等式组.【分析】先求出不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x≥,∴不等式组的解集为≤x<2,故答案为:≤x<2.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.11.(4分)(2015•闵行区二模)已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是m<﹣1.【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2﹣2x﹣m=0没有实数根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案为:m<﹣1.【点评】本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,能根据题意得出(﹣2)2﹣4×1×(﹣m)<0是解此题的关键.12.(4分)(2015•闵行区二模)将直线y=x+1向下平移2个单位,那么所得到的直线表达式是y=x﹣1.【考点】一次函数图象与几何变换.【分析】根据平移k值不变及上移加,下移减可得出答案.【解答】解:由题意得:平移后的解析式为:y=x+1﹣2,即y=x﹣1.故答案为:y=x﹣1.【点评】本题考查一次函数图象与几何变换,掌握平移规律“左加右减,上加下减”是解题的关键.13.(4分)(2015•闵行区二模)如图,已知在梯形ABCD中,AB∥CD,且AB=3CD,设=,=,那么+(用,的式子表示)【考点】*平面向量.【分析】由AB∥CD,且AB=3CD,可求得,然后利用三角形法则求得,再由AB∥CD,证得△AOB∽△COD,根据相似三角形的对应边成比例,求得答案.【解答】解:∵AB∥CD,且AB=3CD,∴==,∴=+=+,∵AB∥CD,∴△AOB∽△COD,∴,∴==×(+)=+.故答案为:+.【点评】此题考查了平面向量的知识与相似三角形的判定与性质.注意掌握三角形法则的应用.14.(4分)(2015•闵行区二模)在Rt△ABC中,∠C=90°,AC=3,BC=4,如果以点C为圆心,r为半径的圆与直线AC相切,那么r=.【考点】直线与圆的位置关系.【分析】由∠C=90°,AC=3,BC=4,根据勾股定理求出AB的长,⊙C与AB相切,则圆心C到AB的距离就是半径的长,根据面积公式求出点C到AB的距离即可.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB=5,设圆心C到AB的距离为d,则×3×4=×5×d,d=,根据⊙C与AB相切,则圆心C到AB的距离就是半径的长,r=,故答案为:.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成.15.(4分)(2015•闵行区二模)从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率是.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出选中小敏和小杰的情况数,即可求出所求的概率.【解答】解:小敏,小杰还有其他同学分别用1,2,3表示,列表得:1231﹣﹣﹣(1,2)(1,3)2(2,1)﹣﹣﹣(2,3)3(3,1)(1,3)﹣﹣﹣所有等可能的情况有6种,其中选中小敏和小杰情况有2种,则P==,故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2015•闵行区二模)某校几位九年级同学准备学业考试结束后结伴去周庄旅游,预计共需费用1200元,后来又有2位同学参加进来,但总的费用不变,每人可少分担30元.试求共有几位同学准备去周庄旅游?如果设共有x位同学准备去周庄旅游,那么根据题意可列出方程为﹣=30.【考点】由实际问题抽象出分式方程.【分析】设共有x位同学准备去周庄旅游,则后来有(x+2)位同学准备去周庄旅游,根据题意可得,加入2名同学之后每人可少分担30元,列方程即可.【解答】解:设共有x位同学准备去周庄旅游,则后来有(x+2)位同学准备去周庄旅游,由题意得,﹣=30.故答案为:﹣=30.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.(4分)(2015•闵行区二模)小丽在大楼窗口A测得校园内旗杆底部C的俯角为α度,窗口离地面高度A=h(米),那么旗杆底部与大楼的距离BC=米(用α的三角比和h的式子表示)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可得,∠ACB=α,AB=h,然后利用三角函数求出BC的长度.【解答】解:在Rt△ABC中,∵∠ACB=α,AB=h,∴BC=.故答案为:.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,利用三角函数的知识求解.18.(4分)(2015•闵行区二模)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=﹣1.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,∠C=90°,AC=BC=1,得到∠CAB=∠ABC=45°,由△ADC′是将△ABC沿直线AD翻折得到的,求出∠CAD=∠C′AD,于是得到∠ABF=135°,求得∠F=30°,根据直角三角形的性质即可得到结果.【解答】解:∵在Rt△ABC中,∠C=90°,AC=BC=1,∴∠CAB=∠ABC=45°,∵△ADC′是将△ABC沿直线AD翻折得到的,∴∠CAD=∠C′AD,∵∠DAB=∠BAF,∴∠BAD=∠DAC=∠BAC=15°,∵∠ABF=135°,∴∠F=30°,∴CF==,∴BF=CF﹣BC=﹣1,故答案为:﹣1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,锐角三角函数,正确的作出图形是解题的关键.三.解答题19.(10分)(2015•闵行区二模)计算:+(﹣)+.【考点】二次根式的混合运算.【分析】先进行二次根式的化简和乘法运算,然后合并.【解答】解:原式=+1+3﹣3+=4﹣.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简和乘法法则.20.(10分)(2015•闵行区二模)解方程:.【考点】高次方程.【分析】把②通过因式分解化为两个二元一次方程,把这两个二元一次方程分别与①组成方程组,求解即可.【解答】解:,由②得,x﹣y=0,x﹣2y=0,把这两个方程与①组成方程组得,,,解得,.故方程组的解为:,.【点评】本题考查的是二元二次方程组的解法,解答时,用代入法比较简单,如果其中的二元二次方程可以因式分解化为两个二元一次方程,与另一个方程组成两个二元一次方程组,解答更简单.21.(10分)(2015•闵行区二模)如图,已知在△ABC中,AB=AC=2,sin∠B=,D为边BC的中点,E为边BC的延长线上一点,且CE=BC.联结AE,F为线段AE的中点.求:(1)线段DE的长;(2)∠CAE的正切值.【考点】解直角三角形.【分析】(1)连接AD,根据等腰三角形性质求出∠ADC=90°,解直角三角形求出AD,求出BD和CD,即可得出答案;(2)过C作CM⊥AE于M,则∠CMA=∠CME=90°,在Rt△ADE中,由勾股定理求出AE,由勾股定理得出方程(2)2﹣AM2=42﹣(2﹣AM)2,求出AM,求出CM,即可求出答案.【解答】解:(1)如图,连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AB=AC=2,sin∠B=,∴=,∴AD=4,由勾股定理得:BD=2,∴DC=BD=2,BC=4,∵CE=BC,∴CE=4,∴DE=2+4=6;(2)过C作CM⊥AE于M,则∠CMA=∠CME=90°,在Rt△ADE中,由勾股定理得;AE===2,∵由勾股定理得;CM2=AC2﹣AM2=CE2﹣EM2,∴(2)2﹣AM2=42﹣(2﹣AM)2,解得:AM=,CM===,∴∠CAE的正切值是==.【点评】本题考查了等腰三角形的性质,解直角三角形,勾股定理的应用,解此题的关键是构造直角三角形,并进一步求出各个线段的长,有一定的难度.22.(10分)(2015•闵行区二模)货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y (升)与行驶时间x(时)之间的关系:行驶时间x(时)01234余油量y(升)150120906030(1)如果y关于x的函数是一次函数,求这个函数解析式(不要求写出自变量的取值范围)(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回会D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)【考点】一次函数的应用.【分析】(1)设x与y之间的函数关系式为y=kx+b,将点(0,150)和(1,120)代入求k和b值;(2)利用路程关系建立在D处加油的一元一次不等式,求在D处至少加油量.【解答】解:(1)把5组数据在直角坐标系中描出来,这5个点在一条直线上,所以y与x 满足一次函数关系,设y=kx+b,(k≠0)则,解得:,∴y=﹣30x+150.(2)设在D处至少加W升油,根据题意得:150﹣4×30﹣×30+W≥×30×2+10(3分)即:150﹣120﹣6+W≥118解得W≥94,答:D处至少加94升油,才能使货车到达灾区B地卸物后能顺利返回D处加油.【点评】本题考查了一次函数的应用,解决本题的关键是用待定系数法求函数解析式,要注意自变量的取值范围还必须使实际问题有意义.23.(12分)(2015•闵行区二模)如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.【考点】相似三角形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)过D作DG⊥BC于G,构造成矩形,然后通过三角形全等得到结论.(2)根据等腰三角形的性质三线合一,证得线段的垂直平分线,由等边对等角得到∠FEC=∠FCE,通过三角形相似得到∠BEF=∠FCE,于是得出∠BEF=∠CEF.【解答】(1)证明:过D作DG⊥BC于G,∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABGD是矩形,∴∠ADG=90°,DG=AB,∵∠EDC=90°,∴∠ADE=∠CDG,在△AED与△GCD中,,∴△AED≌△GCD,∴DE=CD;(2)由(1)知:DE=CD,∵DF平分∠EDC,∴DF⊥CE,∴EF=CF,∴∠FEC=∠FCE,∵BE2=BF•BC,∴=,∵∠B=∠B,∴△EFB∽△CEB,∴∠BEF=∠FCE,∴∠BEF=∠CEF.【点评】本题考查了矩形的判定和性质,全等三角形的判定与性质,线段的垂直平分线的性质,相似三角形的判定和性质,辅助线的作法是解题的关键.24.(12分)(2015•闵行区二模)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2ax ﹣4与x轴交于A、B两点,与y轴相交于点C,其中点A的坐标为(﹣3.,0),点D在线段AB上,AD=AC.(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以DB为半径的圆D与圆C外切,求圆C的半径;(3)设点M在线段AB上,点N在线段BC上,如果线段MN被直线CD垂直平分,求的值.【考点】二次函数综合题.【分析】(1)把点A的坐标代入函数解析式,利用方程求得a的值;然后利用抛物线解析式来求对称轴方程;(2)根据抛物线解析式可以求得点B、C的坐标,结合已知条件“AD=AC”可以得到点D的坐标,由点的坐标与图形的性质来求圆C的半径;(3)利用等腰△ACD、线段垂直平分线的性质得到∠AMC=∠BND,然后由三角形内角和推知∠180°﹣∠ACM﹣∠AMC=180°﹣∠B﹣∠BND,则∠A=∠BDN,易得DN∥AC,所以,根据平行线分线段成比例求得==.【解答】解:(1)把(﹣3,0)代入y=ax2﹣2ax﹣4得:9a+6a﹣4=0,解得:a=,则抛物线的解析式是:y=x2﹣x﹣4,对称轴是x=﹣=1,即x=1;(2)在y=x2﹣x﹣4中,令y=0,得x2﹣x﹣4=0,解得:x=﹣3或5.则B的坐标是(5,0).在y=x2﹣x﹣4中令x=0,解得:y=﹣4,则C的坐标是(0,﹣4).AC===5,则D的坐标是(2,0),∴CD=2,BD=3.当两圆外切时,R C+BD=CD,R C=2﹣3.则圆C的半径是:2﹣3;(3)∵AC=AD,∴∠ADC=∠ACD,又∵线段MN被直线CD垂直平分,∴∠DCB=∠DCM,∴∠ACM=∠B.又∵∠DNC=∠DMC,∴∠AMC=∠BND,∴∠180°﹣∠ACM﹣∠AMC=180°﹣∠B﹣∠BND,∴∠A=∠BDN,∴DN∥AC,∴==.【点评】本题着重考查了待定系数法求二次函数解析式、等腰三角形判定和性质、点的坐标与图形的性质以及线段垂直平分线的性质等知识点,综合性强,考查学生数形结合的数学思想方法.(3)中弄清DN∥AC是解题的关键.25.(14分)(2015•闵行区二模)如图1,已知在梯形ABCD中,AD∥BC,AB=DC=5,AD=4,M、N分别是边AD、BC上的任意一点,联结AN、DN,点E、F分别在线段AN、DN上,且ME∥DN,MF∥AN,联结EF.(1)如图2,如果EF∥BC,求EF的长;(2)如果四边形MENF的面积是△ADN的面积的,求AM的长;(3)如果BC=10,试探索△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.【考点】相似形综合题.【分析】(1)利用平行线分线段成比例得到EF是△AND的中位线,利用三角形中位线定理进行解答即可;(2)设AM=x.利用(1)中相似三角形的性质得到==,==,利用图中相关图形的面积间的数量关系和已知条件列出=S△AND.由此求得x的值;关于x的方程[1﹣﹣]S△AND(3)如答图2,过点A作AP⊥BC于P,过点D作DQ⊥BC于Q.需要分类讨论:当△ABN∽△DCN、△ABN∽△NCD两种情况,利用相似三角形的对应边成比例求得BN=CN=5,然后利用勾股定理计算AM的长度.【解答】解:(1)如答图1,∵EF∥BC,AD∥BC,∴EF∥AD,又∵ME∥DN,MF∥AN,∴===,∴AE=EN.同理,NF=FD,∴EF是△AND的中位线,∴EF=AD=2;(2)设AM=x.则==,==,=[1﹣﹣]S△AND=S△AND.∴S四边形MENF解得x1=1,x2=3,∴AM的长度是1或3;(3)如答图2,过点A作AP⊥BC于P,过点D作DQ⊥BC于Q,则PQ=AD=4,BP=CQ=3.当△ABN∽△DCN时,==1,∴BN=CN=5.∴DN=AN==5.又===,∴△NAD∽△BAN∽△CDN.当△ABN∽△NCD时,=,解得BN=CN=5,∴DN=AN==5.综上所述,当△ABN、△AND、△DNC两两相似时,AN=5.【点评】本题考查了相似综合题.该题综合性比较强,涉及到了三角形中位线定理,相似三角形的判定与性质,勾股定理等知识点,解题时,运用了“数形结合”和“分类讨论”的数学思想.参与本试卷答题和审题的老师有:caicl;2300680618;733599;lbz;gsls;wangjc3;sks;zjx111;HJJ;zcx;1286697702;sjzx;王学峰;sdwdmahongye;dbz1018(排名不分先后)菁优网2015年12月7日考点卡片1.算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.无理数(1)、定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)、无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.②所有的有理数都可以写成两个整数之比;而无理数不能.(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303003000300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.3.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x2﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解x2﹣2=x2﹣()2=(x+)(x﹣)4.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.5.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①1a=aa•a=aa;②1a+b=a﹣b(a+b)(a﹣b)=a﹣ba﹣b.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:2﹣3的有理化因式可以是2+3,也可以是a(2+3),这里的a可以是任意有理数.6.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.8.高次方程(1)高次方程的定义:整式方程未知数次数最高项次数高于2次的方程,称为高次方程.(2)高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理.换句话说,只有三次和四次的高次方程可用根式求解.9.无理方程(1)定义:方程中含有根式,且开方数是含有未知数的代数式,这样的方程叫做无理方程.(2)有理方程和根式方程(无理方程)合称为代数方程.(3)解无理方程关键是要去掉根号,将其转化为整式方程.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配。
2015年上海中考各区二模数学试题及答案汇总
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)
2024届上海市闵行区初三二模数学试卷(含答案)
2024届上海市闵行区初三二模数学试卷一、选择题1.下列实数中,有理数是( )A.3π−B. 1−C.D.2.下列运算正确的是( )A. 2a a a+= B. 2a a a⋅= C. ()3328a a= D. ()326aa −=3.下列函数中,y 的值随着x 的值增大而增大的是( )A. 1y x=B. 2y x =−+C. 2y x =−D. 1y x=−4.某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是( ) A. 150,150 B. 155,155 C. 150,160 D. 150,1555.在Rt ABC 中,∠CAB=90°,AB=5,AC=12,以点A ,点B ,点C 为圆心的,,A B C 的半径分别为5、10、8,那么下列结论错误的是( ) A. 点B 在A 上B. A 与B 内切C. A 与C 有两个公共点D. 直线BC 与A 相切6.在矩形ABCD 中,AB<BC ,点E 在边AB 上,点F 在边BC 上,联结DE 、DF 、EF ,,AB a BE CF b ===,DE=c ,∠BEF=∠DFC ,以下两个结论:①()()222a b a b c ++−=②2a b c +>其中判断正确的是( ) A. ①②都正确 B. ①②都错误C. ①正确,②错误D. ①错误,②正确二、填空题7.计算:124=_____________8.单项式22xy 的次数是_______________ 9.不等式组2620x x <⎧⎨−>⎩的解集是______________10.计算:()()32523a b a b −++=________________11.分式方程2111x x x =−−的解是______________ 12.已知关于x 的方程220x x m ++=没有实数根,那么m 的取值范围是______________13.《九章算术》中记载:“今有牛五、羊二,直金十九两,牛二、羊五,直金十六两,牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两,2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x 两,1只羊值金y 两,那么可列方程组为_______________14.某校在实施全员导师活动中,对初三(1)班学生进行调查问卷:学生最期待的一项方式是:A 畅谈交流心得;B 外出郊游骑行;C 开展运动比赛;D 互赠书签贺卡。
上海市闵行区中考数学二模试卷含答案解析
上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD 中,AB ∥CD ,∠DAB=90°,AB=12,DC=7,cos ∠ABC=,点E 在线段AD 上,将△ABE 沿BE 翻折,点A 恰巧落在对角线BD 上点P 处,那么PD= .三、解答题:(本大题共7题,满分78分) 19.(10分)计算: +(﹣1)﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x +4的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC=90°,tan ∠ABC=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得2S △ABM =S △ABC ,求点M 的坐标.22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x +4的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC=90°,tan ∠ABC=. (1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得2S △ABM =S △ABC ,求点M 的坐标.【解答】解:(1)令y=0,则﹣2x +4=0,解得x=2,∴点A 坐标是(2,0).令x=0,则y=4,∴点B 坐标是(0,4).∴AB===2.∵∠BAC=90°,tan ∠ABC==,∴AC=AB=.如图1,过C 点作CD ⊥x 轴于点D ,∠BAO +∠ABO=90°,∠BAO +∠CAD=90°,∵∴∠ABO=∠CAD ,,∴△OAB ∽△DAC . ∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C 坐标是(4,1).(2)S △ABC =AB•AC=×2×=5.∵2S △ABM =S △ABC ,∴S △ABM =.∵M (1,m ),∴点M 在直线x=1上;令直线x=1与线段AB 交于点E ,ME=m ﹣2; 如图2,分别过点A 、B 作直线x=1的垂线,垂足分别是点F 、G ,∴AF +BG=OA=2;∴S △ABM =S △BME +S △AME =ME•BG +ME•AF=ME (BG +AF ) =ME•OA=×2×ME=,∴ME=,m ﹣2=, m=,∴M (1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x 千米/时. 根据题意,列方程得﹣=,解得:x 1=15,x 2=﹣30.经检验,x 1=15是原方程的根,且符合题意,x 2=﹣30不符合题意舍去. 答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF•BC=AB•BD ;(2)求证:四边形ADGF 是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形21 /21。
2015年区二模数学答案
3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
闵行区中考数学二模试卷及答案
闵行区2015学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式22n a b c 是六次单项式,那么n 的值取 (A )6;(B )5;(C )4;(D )3.2(A(B(C1;(D1.3.下列函数中,y 随着x 的增大而减小的是(A )3y x =;(B )3y x =-;(C )3y x =; (D )3y x=-. 4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是(A )平均数;(B )中位数; (C )众数; (D )方差.5.下列图形中,既是轴对称又是中心对称图形的是 (A )正五边形; (B )等腰梯形; (C )平行四边形; (D )圆.6.下列四个命题,其中真命题有 (1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形; (3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a ,那么边心距为sin 20a ⋅o .(A )1个; (B )2个; (C )3个; (D )4个. 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .学校_____________________ 班级__________ 准考证号_________ 姓名______________ …………………………密○………………………………………封○………………………………………○线…………………………8.在实数范围内分解因式:32a a -= ▲ . 92=的解是 ▲ . 10.不等式组30,43x x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知关于x 的方程20x x m --=没有实数根,那么m 的取值范围是 ▲ .12.将直线213y x =-+向下平移3个单位,那么所得到的直线在y 轴上的截距为 ▲ .13.如果一个四边形的两条对角线相等,那么称这个四边 形为“等对角线四边形”.写出一个你所学过的特殊 的等对角线四边形的名称 ▲ .14.如图,已知在梯形ABCD 中,AD // BC ,且BC = 3AD ,点E 是边DC 的中点.设AB a =uu u r r ,AD b =uuu r r ,那么AE =u u u r▲ (用a r 、b r 的式子表示). 15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 ▲ .16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ . 17.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP1819.(本题满分10分)11212(cos60)32--++-o. 20.(本题满分10分)解方程:222421242x x x x x x-+=+--. 21.(本题满分10分,其中每小题各5分)如图,已知在△ABC 中,∠ABC = 30o ,BC = 8,sin A ∠=,BD 是AC 边上的中线. 求:(1)△ABC 的面积; (2)∠ABD 的余切值.ABD C(第14题图)E(第16题图)学生出行方式扇形统计图师生出行方式条形统计图 BCD(第21题图)22.(本题满分10分,其中每小题各5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i =1∶512,且AB = 26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53o 时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长. (2)为了消除安全隐患,学校计划将斜坡 AB 改造成AF (如图所示),那么BF 至少是 多少米?(结果精确到1米)(参考数据:sin530.8≈o ,cos530.6≈o ,tan53 1.33≈o ,cot 530.75≈o ).23.(本题满分12分,其中每小题各6分) 如图,已知在矩形ABCD 中,过对角线AC 的中点O 作 AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于 点G ,交边AB 于点H .联结AF ,CE . (1)求证:四边形AFCE 是菱形; (2)如果OF = 2GO ,求证:2GO DG GC =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax xc =++与x 轴交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线l .(1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直 线l 的对称点为N ,试证明四边形CDAN (3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,求点P 的坐标.25.(本题满分14分,其中第(1)小题各4如图,已知在△ABC 中,AB = AC = 6,且AD = 2,联结CD 交AH 于点E .(1)如图1,如果AE = AD ,求AH (2)如图2,⊙A 是以点A 为圆心,AD 边BC 上一点,如果以点P 为圆心,BP 半径的圆与⊙A 内切,求边BC 的长;(3)如图3,联结DF .设DF = x ,△ABC 的面积为y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围.(第25题图3)AB DC E (第22题图)F (第25题图2)(第24题图) (第23题图)AB CD EG OH闵行区2015学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.D;2.B;3.B;4.C;5.D;6.A.二、填空题:(本大题共12题,每题4分,满分48分)7.4;8.(a a a;9.12x=;10.335x-<≤;11.14m<-;12.2-;13.矩形,等腰梯形,正方形(任一均可);14.122a b+r r;15.13;16.15;17.3;18.135.三、解答题:(本大题共7题,满分78分)19.解:原式112+…………………………………………………(8分)12=………………………………………………………………(2分)20.解:(4)(2)22x x x x--+=+.…………………………………………………(2分)26822x x x x-++=+.…………………………………………………(2分)2560x x-+=.………………………………………………………(2分)13x=,22x=.……………………………………………………(2分)经检验3x=是原方程的解,2x=是增根,舍去.………………………(1分)所以原方程的解是3x=.……………………………………………………(1分)21.解:(1)过点C作CE⊥AB,垂足为点E.∵CE⊥AB,∴∠CEB =∠CEA = 90o.在Rt△CBE中,∵∠ABC = 30o,BC = 8,∴CE = 4.………………(1分)利用勾股定理,得BE=.…………(1分)在Rt△CEA中,∵CE = 4,sin A∠=,∴sinCEACA==∠∴8AE=.……………………………(1分)∴8AB AE EB=+=+……………………………………………(1分)∴11(841622ABCS AB CE=⋅=⨯+⨯=+V1分)(2)过点D作DF⊥AB,垂足为点F.∵CE⊥AB,DF⊥AB,∴∠DF A=∠CEA = 90o,∴DF // CE.……(1分)又∵BD是AC边上的中线,∴12AD DF AFAC CE AE===.………………(1分)又∵CE = 4,AE = 8,BE=DF = 2,AF = 4,EF = 4.……(1分)∴4BF=+.………………………………………………………(1分)在Rt △DFB 中,∴cot 2BF ABD DF ∠===+…………(1分)22.解:(1)在Rt △BEA 中,222AE BE AB +=.∵i =1∶512,∴设AE = 5k ,BE = 12k .………………………………(1分)又∵AB =26,∴222(5)(12)26k k +=,…………………………………(1分)解得2k =.………………………………………………………………(1分) ∴AE = 10,BE = 24. …………………………………………………(1分) 答:改造前坡顶与地面的距离BE 的长为24米.……………………(1分) (2)过点F 作FH ⊥AD ,垂足为点H . ∵BC // AD ,BE ⊥AD ,FH ⊥AD ,∴24FH BE ==.……………………………………………………(1分)在Rt △FHA 中,∴cot AHFAH FH∠=. 又∵∠F AH = 53o ,∴cot cot 530.7524AHFAH ∠==≈o .……………(1分)∴18AH =.……………………………………………………………(1分) ∴18108HE AH AE =-=-=.∵FH // BE ,BC // AD ,∴BF = EH = 8.……………………………(1分)答:BF 至少是8米.…………………………………………………(1分)23.证明:(1)∵矩形ABCD ,∴AE // CF .∴∠AEO =∠CFO .…………………(1分)又∵点O 为对角线AC 的中点,∴AO = CO .………………………(1分) 又∵∠AOE =∠COF ,∴△EOA ≌ △FOC .………………………(1分) ∴EO = FO .…………………………………………………………(1分) ∴四边形AFCE 是平行四边形.……………………………………(1分) 又∵EF ⊥AC ,∴四边形AFCE 是菱形.……………………………(1分) (2)∵EO = FO ,OF = 2GO ,∴EG = GO .……………………………(1分)∵矩形ABCD ,EF ⊥AC ,∴∠EDC =∠EOC = 90o .又∵EGD CGO ∠=∠,∴△EGD ∽△CGO .………………………(2分)∴EG GC DG GO=.………………………………………………………(1分) 又∵EG = GO ,∴GO GCDG GO=.………………………………………(1分) ∴2GO DG GC =⋅.…………………………………………………(1分) 24.解:(1)抛物线22y ax x c =++经过点C (0,3),∴3c =.…………………………………………………………………(1分) 抛物线223y ax x =++经过点A (-1,0), ∴2(1)230a ⨯--+=.解得 1a =-.∴所求抛物线的关系式为 223y x x =-++.………………………(1分) 抛物线的对称轴是直线1x =.…………………………………………(1分)顶点坐标M (1,4).…………………………………………………(1分) (2)直线y kx b =+经过C 、M 两点,点C (0,3),点M (1,4), ∴34b k b =⎧⎨=+⎩,解得13k b =⎧⎨=⎩,∴直线CD 的解析式为3y x =+.……(1分)∴点D 的坐标为(-3,0).∴AD = 2.………………………………(1分) ∵点C 关于直线l 的对称点为N , ∴点N 的坐标为(2,3).……………………………………………(1分) ∴CN = 2=AD .又∵CN // AD ,∴四边形CDAN 是平行四边形.……………………(1分) (3)过点P 作PH ⊥CD ,垂足为点H .∵ 以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,∴PH = AP ,即:22PH AP =.………………………………………(1分) 设点P 的坐标为(1,t ),∴4PM t =-,2222AP t =+.∵在Rt △MED 中,点D 的坐标为(-3,0),点M 的坐标为(1,4),∴DE = ME = 4.∴∠DME = 45o .∴4PH MH t ==-. 即得 2214(4)2t t +=-.………………………………………………(1分)∴ 解得4t =-±.…………………………………………………(1分)∴点P 的坐标为(1,4-+1,4--.……………(1分)25.解:(1)过点H 作HG // CD ,交AB 于点G .∵AB = AC ,AH ⊥BC ,∴BH = CH .…………………………………(1分) 又∵HG // CD ,AB = 6,AD = 2,∴DG = BG = 2.…………………(1分) 又∵HG // CD ,∴AE = EH = 2.………………………………………(1分) ∴AH = 4.………………………………………………………………(1分) (2)联结AP ,设BP = t .∵以点P 为圆心,BP 为半径的圆与⊙A 外切,∴2AP t =+.…………………………………………………………(1分) ∵以点P 为圆心,CP 为半径的圆与⊙A 内切,∴2AP PC =-.………………………………………………………(1分)∴4PC t =+.∴24BC t =+.∴122BH BC t ==+.∴2HP =.………………………………………………………………(1分)在Rt △ABH 中,222AH AB BH =-, 在Rt △APH 中,222AH AP HP =-,可得22226(2)(2)2t t -+=+-.………………………………………(1分)解得:2t =±(负值舍去)∴BC =1分) 另解:联结AP ,设BP = a ,BC = b .∵以点P 为圆心,BP 为半径的圆与⊙A 外切,∴2AP a =+.…………………………………………………………(1分)∵以点P 为圆心,CP 为半径的圆与⊙A 内切,∴2AP PC =-.………………………………………………………(1分) ∴22a b a +=--.即24b a =+.①…………………………………(1分) 在Rt △APH 中,222AH AP HP =-,在Rt △BCH 中,222AH AC CH =-,可得22211(2)()36()22a b a b +--=-,即:4320a ab +-=.②………………………………………………(1分) 把方程①代入方程②得24160a a +-=解得:2a =±(负值舍去)∴BC b ==.………………………………………………………(1分) (3)过点B 作BM // DF ,交AH 的延长线于点M .∵BM // DF ,AB = 6,AD = 2,DF = x , ∴13AD AF DF AB AM BM ===.即:3BM x =,AM = 6.…………………(1分) 设HM k =.在Rt △ABH 中,222BH AB AH =-,在Rt △BHM 中,222BH BM MH =-,∴22226(6)(3)k x k --=-,即234k x =,∴2223(3)()4BH x x =-,2364AH x =-.……………………………(1分)∴322BC BH ==1分)∴21133(6)2224y BC AH x =⋅=⨯-=∴y 关于x 的函数解析式为:y =………………(1分)自变量x 的取值范围为0x <………………………………(1分)。
2015闵行初三数学二模考试卷(word版)及答案,
闵行区2015年九年级二模数学试卷2015-4-22(考试时间100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24) 1.下列各题中是无理数的是( )(A )9 (B )2π (C )247(D )8 2.二次根式a b +的有理化因式是( )(A )()2a b + (B )()2a b - (C )a b - (D )a b + 3.下列方程中,有实数根的方程是( ) (A )430x += (B )21x -=- (C )22111x x x =-- (D )1x x +=- 4.如图,反映的是某中学九(3)班外出方式(乘车,步行,骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是( ) (A )九(3)班外出的学生共有42人; (B )九(3)班外出步行的学生有8人;(C )在扇形图中,步行的学生人数所占的圆心角为82度;(D )如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人.5.下列四边形中,是轴对称但不是中心对称的图形是( )(A )矩形 (B )菱形 (C )平行四边形 (D )等腰梯形 6.下列命题中假命题是( ) (A )平分弦的半径垂直于弦; (B )垂直平分弦的直线必经过圆心; (C )垂直于弦的直径平分这条弦所对的弧; (D )平分弧的直径垂直平分这条弧所对的弦.二、填空题(本大题共12题,每题4分,满分48分) 7.计算:124= 8.计算:31a a -⋅=9.在实数范围内分解因式:324x x -=10.不等式组34222x x x x -<⎧⎪⎨+≤⎪⎩的解集是11.已知关于x 的方程220x x m --=没有实数根,那么m 的取值范围是 12.将直线113y x =+向下平移2个单位,那么所得到的直线表达式是13.如图,已知在梯形ABCD 中,AB ∥CD ,且AB=3CD,设,,AB a AD b →→==那么AO →= (用,a b的式子表示)14.在Rt △ABC 中,∠C=90º,AC=3,BC=4,如果以点C 为圆心,r 为半径的圆与直线AC 相切,那么r=15.从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率是16.某校几位九年级同学准备学业考试结束后结伴去周庄旅游,预计共需费用1200元,后来又有2位于同学参加进来,但总的费用不变,每人可少分担30元.试求共有几位同学准备去周庄旅游?如果设共有x 位同学准备去周庄旅游,那么根据题意可列出方程为 17.小丽在大楼窗口A 测得校园内旗杆底部C 的俯角为α度,窗口离地面高度A=h (米),那么旗杆底部与大楼的距离BC= 米(用α的三角比和h 的式子表示)18. 如图,已知在Rt △ABC 中,∠C=90º,AC=BC=1,点D 在边BC 上,将△ABC 沿直线AD 翻折,使点C 落在点C ¹处,联结AC ¹,直线AC ¹与边CB 的延长线相交于点F.如果∠DAB=∠BAF,那么BF= 三.解答题19.(本题满分10分) 计算:()1336821+-+-20. (本题满分10分) 解方程:22212320x y x xy y +=⎧⎨-+=⎩21. (本题满分10分,其中每小题各5分) 如图,已知在△ABC 中, AB=AC=25,25sin 5B ∠=,D 为边BC 的中点,E 为边BC 的延长线上一点,且CE=BC.联结AE ,F 为线段AE 的中点. 求:(1)线段DE 的长;(2)∠CAE 的正切值.22. (本题满分10分,其中每小题各5分)货车在公路A 处加满油后,以每小时60千米的速度匀速行驶,前往与A 处相距360千米的B 处.下表记录的是货车一次加满油后油箱剩余油量y (升)与行驶时间x (时)之间的关系: 行驶时间x (时) 0 1 2 3 5 余油量y (升)150120906030(1)如果y 关于x 的函数是一次函数,求这个函数解析式(不要求写出自变量的取值范围) (2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达B 处卸货后能顺利返回会D 处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)23. (本题满分12分,其中每小题各6分)如图,已知在梯形ABCD中,AD∥BC, ∠A=90º,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果2BE BF BC=⋅,求证:∠BEF=∠CEF.24. (本题满分12分,其中每小题各4分)如图,一直在平面直角坐标系xoy中,抛物线224y ax ax=--与x轴相交于A、B两点,与y轴相交于点C,其中点A的坐标为(-3,0),点D在线段AB上,AD=AC.(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以DB为半径的圆D与圆C外切,求圆C的半径;(3)设点M在线段AB上,点N在线段BC上,如果线段MN被直线CD垂直平分,求BNCN 的值.25. (本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在梯形ABCD中,AD∥BC,AB=DC=5,AD=4,M、N分别是边AD、BC 上的任意一点,联结AN、DN,点E、F分别在线段AN、DN上,且ME∥DN,MF∥AN,联结EF.(1)如图1,如果EF∥BC,求EF的长;(2)如果四边形MENF的面积是△ADN的面积的38,求AM的长;(3)如果BC=10,试探索△ABN、△AND、△DNC能否两两相似?如果能,求AN 的长;如果不能,请说明理由.参考答案下面是诗情画意的句子欣赏,不需要的朋友可以编辑删除!!谢谢1. 染火枫林,琼壶歌月,长歌倚楼。
2023年上海市闵行区中考二模数学试题(含答案解析)
2023年上海市闵行区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________【分析】根据一次函数的图像经过第一、二、三象限可知0,0k b >>,然后问题可求解.【详解】解:由一次函数()0y kx b k =+≠的图像经过第一、二、三象限可知0,0k b >>,所以符合题意的只有A 选项;故选A .【点睛】本题主要考查一次函数的图像与性质,熟练掌握一次函数的图像与性质是解题的关键.4.下列命题是真命题的是()A .平行四边形的邻边相等;B .平行四边形的对角线互相平分;C .平行四边形内角都相等;D .平行四边形是轴对称图形.【答案】B【分析】根据平行四边形的性质可进行求解.【详解】解:由平行四边形的性质可知:平行四边形的两组对边相等;平行四边形的对角线互相平分;平行四边形的对角相等;平行四边形是中心对称图形;故选B .【点睛】本题主要考查平行四边形的性质及真命题,熟练掌握平行四边形的性质是解题的关键.5.在平面直角坐标系中,如果把抛物线22y x =向下平移3个单位得到一条新抛物线,那么下列关于这两条抛物线的描述中不正确的是()A .开口方向相同;B .对称轴相同;C .顶点的横坐标相同;D .顶点的纵坐标相同.【答案】D【分析】根据二次函数的平移及性质可进行求解.【详解】解:把抛物线22y x =向下平移3个单位得到新的二次函数解析式为223y x =-,∴这两条抛物线的开口方向都是向上,对称轴都为直线0x =,顶点的横坐标都为0,顶点的纵坐标一个为0,一个为3-;故选D .【点睛】本题主要考查二次函数图象的平移及性质,熟练掌握二次函数的平移及性质是解题的关键.6.如图,在ABC 中,90ACB ∠=︒.用尺规作图的方法作出直角三角形斜边上的中线CP ,那么下列作法一定正确的是()A .B .C .D .【答案】C【分析】根据线段垂直平分线的作图、角平分线的作图及直角三角形斜边中线定理可进行求解.【详解】解:A 、由作图可知CP BC =,不满足点P 是AB 的中点,故不符合题意;B 、由作图可知BP BC =,不满足点P 是AB 的中点,故不符合题意;C 、由作图可知点P 是AB 的中点,故符合题意;D 、由作图可知CP 平分ACB ∠,故不符合题意;故选C .【点睛】本题主要考查直角三角形斜边中线定理及线段垂直平分线的作图、角平分线的作图,熟练掌握尺规作图是解题的关键.二、填空题7.计算:23a a +=______.【答案】5a【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解:23a a +(23)a =+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.【答案】500【分析】根据该校喜欢③太空趣味饮水实验的初中学生有【详解】解:由题意知,该校喜欢③太空趣味饮水实验的初中学生有故答案为:500.【答案】8-【分析】当1x =,22y x ==,即于C ,则2AC =,1OC =,D 是∴2AC =,1OC =,∵四边形OAPB 是矩形,∴D 是AB 中点,【答案】3【分析】如图,旋转、菱形的性质可知,由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】253【分析】由题意可分:①设种情况不符合题意;②设∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,三、解答题【答案】31x -≤<,数轴见详解【点睛】本题主要考查一元一次不等式组的解法,(1)求线段CD的长;(2)求CDDE的值.(1)求隧道两端B 、C 之间的距离(精确到个位)(参考数据:sin 370.60︒≈,cos370.80︒≈,tan (2)原计划单向开挖,但为了加快施工进度,从作效率提高了20%,结果提前2天完工.问原计划单向开挖每天挖多少米?【答案】(1)1200米(2)原计划单向开挖每天挖100米=;(1)求证:DE CF(2)设点Р为 CD的中点,连接CD∥,求证:四边形MNED 果PO DE【答案】(1)见详解(2)见详解【分析】(1)由题意易得 AC=进而问题可求证;(2)由(1)可知: AC BD=,DE CF =,然后可得扇形AOB 关于OP 对称,则有EF CD ,进而问题可求证.【详解】(1)证明:∵ AD CB=, CD 是公共弧,∴ AC BD=,∴FOC EOD ∠=∠,∵OF OE =,OC OD =,∴()SAS FOC EOD ≌,∴DE CF =;(2)解:如图所示:由(1)可知: AC BD=,DE CF =,∵点Р为 CD的中点,∴ ,PCPD OP CD =⊥,∴扇形AOB 关于OP 对称,∴90ONE OMD ∠=∠=︒,∴EF CD ,∵PO DE ∥,∴四边形MNED 是平行四边形,∵90OMD ∠=︒,∴平行四边形MNED 是矩形.【点睛】本题主要考查垂径定理、圆的基本性质及矩形的判定,熟练掌握垂径定理、圆的基本性质及矩形的判定是解题的关键.24.在平面直角坐标系xOy 中,抛物线2y x mx n =-++经过点()3,0A 、()0,3B ,与x 轴的负半轴交于点C .(1)求该抛物线的表达式及点C的坐标;(2)设点D在该抛物线上(位于对称轴右侧部分),连接CD.∠的正切值;①如果CD与线段AB交于点E,且2BE AE=,求ACD,与以DB为半径的②如果CD与y轴交于点F,以CF为半径的C的坐标.()1,0C-过点E 作EG AC ⊥于点G ,∴EG OB ,∴AEG ABO △△∽,∴EG AE =,∵以CF 为半径的C 与以DB 为半径的(1)求证:A ABD∠=∠;(2)设点E为边BC的中点,连结求边AC的长;(3)设AB x=,CD y=,求【答案】(1)见详解∵点E为边BC的中点,且=,∴CD BD=,∵BD BC==,∴BD BC CD是等边三角形,∴BDC过点C 作CH AB ⊥于点H ,∴90BHC DFB ∠=∠=︒,EF 由(1)可知A ABD ∠=∠,∵A ABC HCB ABC ∠+∠=∠+∠∴A HCB FBD ∠=∠=∠,由(1)可知A ABD ∠=∠,∴ACB BMD ∽,∴,DB DM ABC BDM AB BC∠=∠=∵1BD BC ==,AB x =,1DM =。
2024年上海市闵行区中考数学二模试卷及答案解析
2024年上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列实数中,有理数是()A.π﹣3B.﹣1C.D.2.(4分)下列运算正确的是()A.a+a=a2B.a•a=2a C.(2a)3=8a3D.(﹣a2)3=a6 3.(4分)下列函数中,y的值随着x的值增大而增大的是()A.B.y=﹣x+2C.y=x﹣2D.4.(4分)某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是()A.150,150B.155,155C.150,160D.150,155 5.(4分)在Rt△ABC中,∠CAB=90°,AB=5,AC=12,以点A,点B,点C为圆心的⊙A,⊙B,⊙C的半径分别为5、10、8,那么下列结论错误的是()A.点B在⊙A上B.⊙A与⊙B内切C.⊙A与⊙C有两个公共点D.直线BC与⊙A相切6.(4分)在矩形ABCD中,AB<BC,点E在边AB上,点F在边BC上,联结DE、DF、EF,AB=a,BE=CF=b,DE=c,∠BEF=∠DFC,以下两个结论:①(a+b)2+(a ﹣b)2=c2;②.其中判断正确的是()A.①②都正确B.①②都错误C.①正确,②错误D.①错误,②正确二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:=.8.(4分)单项式2xy2的次数为.9.(4分)不等式组的解集是.10.(4分)计算:=.11.(4分)分式方程的解是.12.(4分)已知关于x的方程x2+2x+m=0没有实数根,那么m的取值范围是.13.(4分)《九章算术》中记载:“今有牛五、羊二,直金十九两.牛二、羊五,直金十六两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x两,1只羊值金y两,那么可列方程组为.14.(4分)某校在实施全员导师活动中,对初三(1)班学生进行调查问卷,学生最期待的一项方式是:A畅谈交流心得;B外出郊游骑行;C开展运动比赛;D互赠书签贺卡.根据问卷数据绘制统计图如图,扇形统计图中表示D的扇形圆心角的度数为.15.(4分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD互相垂直,,那么梯形ABCD的中位线长为.16.(4分)已知二次函数的解析式为y=x2+bx+1,从数字0,1,2中随机选取一个数作为b的值,得到的二次函数图象的顶点在坐标轴上的概率是.17.(4分)如图,在△ABC中,BC、AC上的中线AE、BD相交于点F,如果∠BAE=∠C,那么的值为.18.(4分)在Rt△ABC中,∠B=90°,AB=6,,D为边AB上一动点,将DA 绕点D旋转,使点A落在边AC上的点E处,过点E作EF⊥DE交边BC于点F,联结DF,当△DEF是等腰三角形时,线段CF的长为.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)先化简,再求值:,其中.21.(10分)如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,GD∥AC,∠DGF=∠DEF,∠B=∠GFE.(1)求证:四边形EDGF是平行四边形;(2)求证:.22.(10分)某条东西方向道路双向共有三条车道,在早晚高峰经常会拥堵,数学研究小组希望改善道路拥堵情况,他们对该路段的交通量(辆/分钟)和时间进行了统计和分析,得到下列表格,并发现时间和交通量的变化规律符合一次函数的特征.时间x8时11时14时17时20时y1自西向东交通量(辆/分钟)1016222834y2自东向西交通量(辆/分钟)2522191613(1)请用一次函数分别表示y1与x、y2与x之间的函数关系.(不写定义域)(2)如图,同学们希望设置可变车道来改善拥堵状况,根据车流量情况改变可变车道的行车方向.单位时间内双向交通总量为v=y1+y2,车流量大的方向交通量为v m,经查总阅资料得:当,需要使可变车道行车方向与拥堵方向相同,以改善交通情况.该路段从8时至20时,如何设置可变车道行车方向以缓解交通拥堵,并说明理由.23.(12分)沪教版九年级第二学期的教材给出了正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.同时还提到了一种用直尺和圆规作圆的内接正六边形和圆的内接正五边形的方法,但课本上并未证明.我们现开展下列探究活动.活动一:如图1,展示了一种用尺规作⊙O的内接正六边形的方法.①在⊙O上任取一点A,以A为圆心、AO为半径作弧,在⊙O上截得一点B;②以B为圆心,AO为半径作弧,在⊙O上截得一点C;再如此从点C逐次截得点D、E、F;③顺次联结AB、BC、CD、DE、EF、FA.(1)根据正多边形的定义,我们只需要证明,.(请用符号语言表示,不需要说明理由),就可证明六边形ABCDEF是正六边形.活动二:如图2,展示了一种用尺规作⊙O的内接正五边形的方法.①作⊙O的两条互相垂直的直径PQ和AF;②取半径OP的中点M;再以M为圆心、MA为半径作弧,和半径OQ相交于点N;③以点A为圆心,以AN的长为半径作弧,与⊙O相截,得交点B.如此连续截取3次,依次得分点C、D、E,顺次联结AB、BC、CD、DE、EA,那么五边形ABCDE是正五边形.(2)已知⊙O的半径为2,求边AB的长,并证明五边形ABCDE是正五边形.(参考数据:,,,,si.)24.(12分)在平面直角坐标系xOy中,已知抛物线,与x轴相交于A(﹣1,0)、B两点,且与y轴交于点C(0,﹣2).(1)求抛物线的表达式;(2)如果点D是x轴正半轴上一点,∠ADC=2∠ACO,且四边形AQCD是菱形,请直接写出点D和点Q的坐标(不需要说明理由);(3)由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形,对于平面内的一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做“凸多边形”;否则叫做“凹多边形”.如果点E是抛物线对称轴上的一个动点,纵坐标为t,且四边形ACBE是凹四边形(线段AE与线段BC不相交),求t的取值范围.25.(14分)如图,OB是⊙O的半径,弦AB垂直于弦BC,点M是弦BC的中点,过点M 作OB的平行线,交⊙O于点E和点F.(1)如图1,当AB=BC时.①求∠ABO的度数;②联结OE,求证:∠OEF=30°;(2)如图2,联结OE,当AB≤BC时,tan∠OEF=x,,求y关于x的函数关系式并直接写出定义域.2024年上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【分析】整数和分数统称为有理数,据此进行判断即可.【解答】解:π﹣3、、是无理数,﹣1是有理数.故选:B.【点评】本题考查有理数的识别,熟练掌握其定义是解题的关键.2.【分析】A.根据合并同类项法则进行合并,然后判断即可;B.根据同底数幂相乘法则进行计算,然后判断即可;C.根据积的乘方法则进行计算,然后判断即可;D.根据积的乘方和幂的乘方法则进行计算,然后判断即可.【解答】解:A.∵a+a=2a,∴此选项计算错误,故此选项不符合题意;B.∵a•a=a2,∴此选项计算错误,故此选项不符合题意;C.∵(2a)3=8a3,∴此选项计算正确,故此选项符合题意;D.∵(﹣a2)3=﹣a6,∴此选项计算错误,故此选项不符合题意;故选:C.【点评】本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂相乘法则、积的乘方和幂的乘方法则.3.【分析】根据一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=是反比例函数,∵1>0,故在每一象限内y随x的增大而减小,不符合题意;B、y=﹣x+2是一次函数,k=﹣2<0,故y随着x增大而减小,不符合题意;C、y=x﹣2是一次函数,k=2>0,故y随着x增大而增大,符合题意;D、y=﹣是反比例函数,∵﹣1<0,故在第一象限内y随x的增大而增大,不符合题意;故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数的性质,一次函数的性质是解题的关键.4.【分析】根据中位数和算术平均数的定义列式求解即可.【解答】解:这组数据的平均数为×(166+160+160+150+134+130)=150,中位数为=155,故选:D.【点评】本题主要考查算术平均数和中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据点圆的位置关系的判定方法,圆与圆的位置关系的判定方法以及切线的判定方法逐项进行判断即可.【解答】解:A.⊙A的圆心到点B的距离AB=5,而⊙A的半径是5,因此点B在⊙A 上,所以选项A不符合题意;B.⊙A的半径AB=5,而⊙B的半径为10,两个圆心之间的距离AB=10﹣5=5,所以⊙A与⊙B内切,因此选项B不符合题意;C.⊙A的半径AB=5,而⊙C的半径为8,两个圆心之间的距离AC=12,有12﹣5<AC <12+5,即7<AC<17,所以⊙A与⊙C相交,即⊙A与⊙C有两个公共点,因此选项C 不符合题意;D.⊙A的圆心A到BC的距离为≈4.62<5,所以直线BC与⊙A相交,因此选项D符合题意.故选:D.【点评】本题考查点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,掌握点与圆,直线与圆,圆与圆的位置关系的判定方法是正确解答的关键.6.【分析】根据矩形的性质得到∠B=∠C=90°,CD=AB=a,AD=BC根据全等三角形的性质得到BF=CD=a,EF=DF,求得BC=AD=BF+CF=a+b,推出△EFD是等腰直角三角形,根据勾股定理得到(a+b)2+(a﹣b)2=c2故①正确;根据三角形的三边关系得到.故②正确;【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=a,AD=BC,在△BEF与△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD=a,EF=DF,∴BC=AD=BF+CF=a+b,∵∠BEF+∠BFE=∠BFE+∠CFD=90°,∴△EFD是等腰直角三角形,在Rt△ADE中,∵AE2+AD2=DE2,∴(a+b)2+(a﹣b)2=c2故①正确;∵EF=DF=DE=c,BE+BF=a+b,BE+BF>EF,∴.故②正确;故选:A.【点评】本题考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的三边关系,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键,二、填空题:(本大题共12题,每题4分,满分48分)7.【分析】根据算术平方根的定义,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,解答出即可;【解答】解:根据算术平方根的定义,得,==2.故答案为:2.【点评】本题考查了算术平方根的定义,一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.8.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式2xy2的次数为:3.故答案为:3.【点评】此题主要考查了单项式,正确掌握单项式的次数确定方法是解题关键.9.【分析】求出各个不等式的解集,然后再根据判断不等式组解集的口诀“大小小大中间找”求出不等式组的解集即可.【解答】解:,解不等式①,得x<3,解不等式②,得x>2,故不等式组的解集为2<x<3.故答案为:2<x<3.【点评】本题主要考查了解一元一次不等式组,解题关键是熟练掌握解一元一次不等式组的一般步骤.10.【分析】实数的运算法则同样能应用于平面向量的计算过程中,所以根据实数的运算法则解答即可.【解答】解:=6﹣3+10+15=.故答案为:.【点评】本题主要考查了平面向量.此题属于平面向量的计算,属于基础题.11.【分析】先根据等式的基本性质,把分式方程化为整式方程,解方程求出x的值,然后进行检验,判断所求未知数是不是原分式方程的解即可.【解答】解:,方程两边同时乘x﹣1得:x2=1,x=±1,检验:当x=1时,x﹣1=0,∴x=1不是原分式方程的解,当x=﹣1时,x﹣1≠0,∴x=﹣1是原分式方程的解,故答案为:x=﹣1.【点评】本题主要考查了解分式方程,解题关键是熟练掌握解分式方程的一般步骤,注意:求出未知数的值后要检验.12.【分析】根据所给方程没有实数根,得出根的判别式小于零,据此可解决问题.【解答】解:由题知,因为关于x的方程x2+2x+m=0没有实数根,所以Δ=22﹣4m<0,解得m>1.故答案为:m>1.【点评】本题考查根的判别式,熟知一元二次方程根的判别式是解题的关键.13.【分析】根据“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两”,得到2个等量关系,即可列出方程组.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.【分析】首先用A组人数除以A组所占的比重,求出被调查的总人数;再根据条形统计图求出被调查的D组人数,接着用D组人数除以总人数可以求出D组所占的比重;最后根据部分扇形圆心角的度数=部分占总体的百分比×360°,即可求出扇形统计图中表示D的扇形圆心角的度数.【解答】解:(1)16÷40%=40(人)40﹣16﹣8﹣6=10(人)10÷40=25%25%×360°=90°故答案为:90°【点评】本题考查了条形统计图和扇形统计图,理解扇形统计图、条形统计图的意义和掌握部分扇形圆心角的度数=部分占总体的百分比×360°是解题的关键.15.【分析】作DE∥AC,从而得到四边形ACED为平行四边形,将两底的和转化为线段BE 的长,利用梯形的中位线定理求得答案即可.【解答】解:作DE∥AC交BC的延长线于点E,∵AD∥CE,∴四边形ACED为平行四边形,∴AD=CE,DE=AC=2,ED⊥BD,AD+BC=CE+BC=BE===4,∴梯形的中位线为:(AD+BC)=×4=2,故答案为:2.【点评】本题考查的知识比较全面,需要用到梯形和三角形中位线定理以及平行四边形的性质.16.【分析】二次函数y=x2+bx+1的顶点坐标为(,),则能使二次函数图象的顶点在坐标轴上的b的值为0和2,再利用概率公式计算即可.【解答】解:二次函数y=x2+bx+1的顶点坐标为(,),从数字0,1,2中随机选取一个数作为b的值,能使二次函数图象的顶点在坐标轴上的有:0,2,∴从数字0,1,2中随机选取一个数作为b的值,得到的二次函数图象的顶点在坐标轴上的概率是.故答案为:.【点评】本题考查概率公式、二次函数图象上点的坐标特征,熟练掌握概率公式、二次函数图象上点的坐标特征是解答本题的关键.17.【分析】连接DE,根据已知条件得到AD=CD,BE=CE,根据相似三角形的性质得到AF=2EF,求得AF=AE,AC=AE,于是得到结论.【解答】解:连接DE,∵BC、AC上的中线AE、BD相交于点F,∴AD=CD,BE=CE,∴DE∥AB,DE=,∴△DEF∽△BAF,∴=,∴AF=2EF,∴AF=AE,∵∠ABC=∠ABC,∠BAE=∠C,∴△ABE∽△CBA,∴,∵BC=2BE,∴AB=,∴==,∴AC=AE,∴的值为=,故答案为:.【点评】本题考查了三角形的中位线定理,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.18.【分析】先根据题意画出示意图,再分别过点D和点F作AC边的垂线,构造出全等三角形,利用全等三角形的性质结合∠A的正切值即可解决问题.【解答】解:分别过点D和点F作AC边的垂线,垂足分别为M和N,∵∠DEF=90°,DM⊥AC,FN⊥AC,∴∠DEM+∠FEN=∠DEM+∠MDE=90°,∠DME=∠ENF,∴∠MDE=∠FEN.在△DME和△ENF中,,∴△DME≌△ENF(AAS),∴FN=ME,EN=DM.在Rt△CNF中,sin C==,∴设CF=5x,FN=3x,则NC=.∴ME=NF=3x.在Rt△ABC中,sin C==,又∵AB=6,∴AC=10,∴BC=.∵DA=DE,DM⊥AC,∴AM=ME=3x.又∵EN=10﹣3x﹣3x﹣4x=10﹣10x,∴DM=EN=10﹣10x.在Rt△ABC中,tan A=.在Rt△ADM中,tan A=,∴,解得x=,经检验,x=是原方程的解.∴CF=5x=.故答案为:.【点评】本题考查旋转的性质及解直角三角形,根据题意画出示意图并通过作垂线构造出全等三角形是解题的关键.三、解答题:(本大题共7题,满分78分)19.【分析】首先计算零指数幂、负整数指数幂、开平方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣1+2+(2﹣)=2﹣1+2+2﹣=+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.【分析】根据分式的加法法则、除法法则把原式化简,把a的值代入计算即可.【解答】解:原式=+•=+=,当a=时,原式===3+2.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.21.【分析】(1)由点E、F在边AC上,GD∥AC,得GD∥EF,由∠DGF+∠GFE=180°,且∠DGF=∠DEF,得∠DEF+∠GFE=180°,所以DE∥FG,即可根据“两组对边分别平行的四边形是平行四边形”证明四边形EDGF是平行四边形;(2)由DE∥FG,得∠DEC=∠GFE,而∠B=∠GFE,所以∠DEC=∠B,而∠C=∠C,即可证明△DEC∽△ABC,得=,所以=.【解答】(1)证明:∵点E、F在边AC上,GD∥AC,∴GD∥EF,∴∠DGF+∠GFE=180°,∵∠DGF=∠DEF,∴∠DEF+∠GFE=180°,∴DE∥FG,∴四边形EDGF是平行四边形.(2)证明:DE∥FG,∴∠DEC=∠GFE,∵∠B=∠GFE,∴∠DEC=∠B,∵∠C=∠C,∴△DEC∽△ABC,∴=,∵DE=GF,∴=.【点评】此题重点考查平行线的性质、平行四边形的判定与性质、相似三角形的判定与性质等知识,推导出DE∥FG及△DEC∽△ABC是解题的关键.22.【分析】(1)利用待定系数法求解即可;=y1+y2,求出v总关于x的函数关系式,分y1≥v总,y2≥v总两种情况(2)根据v总讨论,求出对应x的取值范围即可.【解答】解:(1)设y1=k1x+b1(k1、b1为常数,且k1≠0).将x=8,y1=10和x=11,y1=16代入y1=k1x+b1,得,解得,∴y1=2x﹣6.设y2=k2x+b2(k2、b2为常数,且k2≠0).将x=8,y2=25和x=11,y2=22代入y2=k2x+b2,得,解得,∴y2=﹣x+33.=y1+y2=2x﹣6﹣x+33=x+27.(2)v总当y1≥v总时,即2x﹣6≥(x+27),解得x≥18;当y2≥v总时,即﹣x+33≥(x+27),解得x≤9.∴8时到9时,可变车道的方向设置为自东向西;18时到20时,可变车道的方向设置为自西向东.【点评】本题考查一次函数的应用,掌握待定系数法求函数表达式是解题的关键.23.【分析】(1)根据正多边形的定义可知需要证明AB=BC=CD=DE=EF=FA,∠A=∠B=∠C=∠D=∠E=∠F,就可证明六边形ABCDEF是正六边形;(2)连接BF,OB,OC,OD,OE,求出OM,AM,MN,可得ON,AN,即可知,由AF为⊙O直径,可得,故∠AFB=36°,证明△OAB≌△OBC(SSS),得到∠OBC=∠OCB=54°,同理可得△OCD≌△ODE≌△OAB,即可证明△EOA≌△AOB(SAS),从而AB=BC=CD=DE=EA,∠ABC =∠BCD=∠CDE=∠DEA=∠EAB=108°,五边形ABCDE是正五边形.【解答】解:(1)根据正多边形的定义,我们只需要证明AB=BC=CD=DE=EF=FA,∠A=∠B=∠C=∠D=∠E=∠F,就可证明六边形ABCDEF是正六边形;故答案为:AB=BC=CD=DE=EF=FA,∠A=∠B=∠C=∠D=∠E=∠F;(2)连接BF,OB,OC,OD,OE,如图:根据题意,可得AF⊥PQ,OP=OA=2,∵点M为半径OP的中点,∴,∴,∵以M为圆心、MA为半径作弧,和半径OQ相交于点N,∴,∴,∴,∵以点A为圆心,以AN的长为半径作弧,与⊙O相截得交点B,∴,∵AF为⊙O直径,∴∠ABF=90°,AF=2×2=4,∴,∴∠AFB=36°,∴∠AOB=2∠AFB=72°,∵OA=OB,∴,在△OAB和△OBC中,,∴△OAB≌△OBC(SSS),∴∠AOB=∠BOC=72°,∴∠OBC=∠OCB=54°,同理可得△OCD≌△ODE≌△OAB,∴∠AOB=∠BOC=∠COD=∠DOE=72°,∴∠EOA=360°﹣∠AOB﹣∠BOC﹣∠COD﹣∠DOE=72°=∠AOB,∵OE=OA,OA=OB,∴△EOA≌△AOB(SAS),∴EA=AB,∠OEA=∠OAE=54°,∴AB=BC=CD=DE=EA,∠ABC=∠BCD=∠CDE=∠DEA=∠EAB=54°×2=108°,∴五边形ABCDE是正五边形.【点评】本题考查圆的综合应用,涉及全等三角形判定与性质,正多边形的判定,解直角三角形等知识,解题的关键是读懂题意,掌握正多边形的定义.24.【分析】(1)把A(﹣1,0),C(0,﹣2)代入可解得b,c的值,即可得到抛物线的表达式为y=x2﹣x﹣2;(2)求出B(4,0),而A(﹣1,0),C(0,﹣2),可得AC2+BC2=AB2,∠ACB=90°,即得∠ACO=∠CBO,而∠ADC=2∠ACO,故∠ADC=2∠OBC,可得∠DCB=∠CBD,即可推得CD=AD=BD,D为AB的中点,从而D的坐标为(,0),由菱形性质,平移性质得Q的坐标为(﹣,﹣2);(3)由可得抛物线的对称轴为直线,求出直线BC的解析式为,直线BC与对称轴的交点F坐标为(,﹣),直线AC的解析式为:y=﹣2x﹣2,直线AC与抛物线对称轴的交点M坐标为(,﹣5),由图可得或<﹣5.【解答】解:(1)把A(﹣1,0),C(0,﹣2)代入得:,解得:,∴抛物线的表达式为y=x2﹣x﹣2;(2)如图:在中,令y=0得,解得:x1=﹣1,x2=4,∴B(4,0),∵A(﹣1,0),C(0,﹣2),∴AB=5,,,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵∠CBO+∠BCO=90°,∴∠ACO=∠CBO,∵∠ADC=2∠ACO,∴∠ADC=2∠OBC,∴∠ADC=∠DCB+∠CBD=2∠OBC,∴∠DCB=∠CBD,∴∠DCB=∠ACO,CD=BD,∠DCB+∠DCA=∠ACO+∠OAC=90°,∴∠DCA=∠OAC,∴CD=AD=BD,∴D为AB的中点,∴D的坐标为(,0),∵四边形AQCD是菱形,∴AQ∥CD,∵把点C先向右平移个单位,再向上平移2个单位得到点D,∴把点Q先向右平移个单位,再向上平移2个单位得到点A,∴Q的坐标为(﹣,﹣2);(3)如图:由可得抛物线的对称轴为直线,∴抛物线对称轴与x轴的交点D坐标为(,0),设直线BC的解析式为y=kx﹣2,把B(4,0)代入得:0=4k﹣2,解得:,∴直线BC的解析式为,当时,,∴直线BC与对称轴的交点F坐标为(,﹣),同法可得直线AC的解析式为:y=﹣2x﹣2,直线AC与抛物线对称轴的交点M坐标为(,﹣5),∵点E是抛物线对称轴上的一个动点,纵坐标为t,且四边形ACBE是凹四边形,∴当点E在D,F之间或点E在点M下方时,满足题意,∴或<﹣5.【点评】本题考查二次函数的综合应用,涉及待定系数法,等腰三角形性质及应用,菱形性质及应用,凹四边形等知识,解题的关键是画出图形,运用数形结合思想解决问题.25.【分析】(1)①依据题意,连接AO,CO,先证明∠AOB+∠BOC=180°,从而可得A,O,C三点共线,再结合AB=BC,OA=OC,可得OB平分∠ABC,又∠ABC=90°,进而可以得解;②依据题意,连接OE,由EF∥OB,OB⊥AC,可得EF⊥AC,又BM=MC,故,从而可得在Rt△OHE中,,最后可以判断得解;(2)依据题意,过点A作AG⊥OB与点G,过O点作OP⊥EF与点P.设半径为r,则OE=r,由tan∠OEF=x,故,再结合BM=MC,EF∥OB,进而证得△AOG﹣△ONP,故,从而AG=2OP=,又AO=r,进而可得,再由,可得,最后由AB≤BC,可得0<y≤1,则有:(3),进而可以得解.【解答】(1)①解:连接AO,CO,∵AO=BO,CO=BO.∴∠OAB=∠OBA,∠OBC=∠OCB.∵2∠OAB+2∠OBC=180°,且∠AOB=2∠OBC,∠BOC=2∠OAB,∴∠AOB+∠BOC=180°.∴A,O,C三点共线.∵AB=BC,OA=OC,∴OB平分∠ABC.∵∠ABC=90°,∴∠ABO=45°.②证明:连接OE,∵EF∥OB,OB⊥AC,∴EF⊥AC.∵BM=MC,∴.在Rt△OHE中,,∴∠OEF=30°.(2)解:过点A作AG⊥OB与点G,过O点作OP⊥EF与点P.设半径为r,则OE=r,∵tan∠OEF=x,∴.∵BM=MC,EF∥OB,∴,∠AOB=∠ONP.又∵∠AGO=∠OPN=90°,∴△AOG﹣△ONP.∴.∴AG=2OP=.∵AO=r,∴.∴.∵OB=OC,∴∠OCB=∠OBC,∵∠OBC+∠OBA=90°,∠GAB+∠OBA=90°,∴∠GAB=∠OBC=∠OCB.∴.∴.∵AB≤BC,∴0<y≤1,则有.∴.【点评】本题主要考查了圆的综合题,解题时要能熟练掌握并能灵活运用圆的相关性质解题是关键。
2015年上海中考数学二模24题整理
已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。
动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。
动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
2024年上海闵行区初三二模数学试卷和答案
2023-2024学年上海闵行区第二学期初三年级学业质量调研数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.本次考试不能用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()A.3π- B.1- C.D.2.下列运算正确的是()A.2a a a+= B.2a a a⋅= C.33(2)8a a = D.()326a a -=3.下列函数中,y 的值随着x 的值增大而增大的函数是()A.1y x=B.2y x =-+C.2y x =- D.1y x=-4.某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是()A.150,150B.155,155C.150,160D.150,1555.在Rt ABC △中,90CAB ∠=︒,5AB =,12AC =,以点A ,点B ,点C 为圆心的,,A B C 的半径分别为5、10、8,那么下列结论错误的是()A.点B 在A 上B.A 与B 内切C.A 与C 有两个公共点D.直线BC 与A 相切6.在矩形ABCD 中,AB BC <,点E 在边AB 上,点F 在边BC 上,联结DE 、DF 、EF ,,,,AB a BE CF b DE c BEF DFC ====∠=∠,以下两个结论:①222()()a b a b c ++-=;②2a b c +>.其中判断正确的是()A.①②都正确B.①②都错误;C .①正确,②错误D.①错误,②正确二、填空题:(本大题共12题,每题4分,满分48分)7.计算:124=____.8.单项式22xy 的次数为______.9.不等式组2620x x <⎧⎨->⎩的解集是______.10.计算:()()32523a b a b -++=________.11.分式方程2111x x x =--的解是______.12.若关于x 的方程220x x m ++=没有实数根,则m 的取值范围是_______.13.《九章算术》中记载:“今有牛五、羊二,直金十九两.牛二、羊五,直金十六两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x 两,1只羊值金y 两,那么可列方程组为______.14.某校在实施全员导师活动中,对初三(1)班学生进行调查问卷,学生最期待的一项方式是:A 畅谈交流心得;B 外出郊游骑行;C 开展运动比赛;D 互赠书签贺卡.根据问卷数据绘制统计图如下,扇形统计图中表示D 的扇形圆心角的度数为______.15.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC 与BD 互相垂直,2AC =,那么梯形ABCD 的中位线长为______.16.已知二次函数的解析式为21y x bx =++,从数字0,1,2中随机选取一个数作为b 的值,得到的二次函数图像的顶点在坐标轴上的概率是______.17.如图,在ABC 中,BC AC 、上的中线AE BD 、相交于点F ,如果BAE C ∠=∠,那么AFAC的值为______.18.在Rt ABC △中,3906sin 5B ABC ∠=︒==,,,D 为边AB 上一动点,将DA 绕点D 旋转,使点A 落在边AC 上的点E 处,过点E 作EF DE ⊥交边BC 于点F ,连接DF ,当DEF 是等腰三角形时,线段CF 的长为______.三、解答题:(本大题共7题,满分78分)19.01182024222-⎛⎫-++⎪⎝⎭.20.先化简,再求值:22111211a a a a a a a +++÷--+-,其中2a =21.如图,在ABC 中,点D 在边BC 上,点G 在边AB 上,点E 、F 在边AC 上,GD AC ∥,DGF DEF ∠=∠,B GFE ∠=∠.(1)求证:四边形EDGF 是平行四边形;(2)求证:GF CDAB AC=.22.某条东西方向道路双向共有三条车道,在早晚高峰经常会拥堵,数学研究小组希望改善道路拥堵情况,他们对该路段的交通量(辆/分钟)和时间进行了统计和分析,得到下列表格,并发现时间和交通量的变化规律符合一次函数的特征.时间x8时11时14时17时20时1y 自西向东交通量(辆/分钟)10162228342y 自东向西交通量(辆/分钟)2522191613(1)请用一次函数分别表示1y 与x 、2y 与x 之间的函数关系.(不写定义域)(2)如图,同学们希望设置可变车道来改善拥堵状况,根据车流量情况改变可变车道的行车方向.单位时间内双向交通总量为12v y y =+总,车流量大的方向交通量为m v ,经查阅资料得:当23m v v ≥总,需要使可变车道行车方向与拥堵方向相同,以改善交通情况,该路段从8时至20时,如何设置可变车道行车方向以缓解交通拥堵,并说明理由.23.沪教版九年级第二学期的教材给出了正多边形的定义.......:各边相等、各角也相等的多边形叫做正多边形.同时还提到了一种用直尺和圆规作圆的内接正六边形和圆的内接正五边形的方法,但课本上并未证明.我们现开展下列探究活动.活动一:如图1,展示了一种用尺规作O 的内接正六边形的方法.①在O 上任取一点A ,以A 为圆心、AO 为半径作弧,在O 上截得一点B ;②以B 为圆心,AO 为半径作弧,在O 上截得一点C ;再如此从点C 逐次截得点D 、E 、F ;③顺次连接AB 、BC 、CD 、DE 、EF 、FA .(1)根据正多边形的定义.........,我们只需要证明__________,________(请用符号语言表示,不需要说明理由),就可证明六边形ABCDEF 是正六边形.活动二:如图2,展示了一种用尺规作O 的内接正五边形的方法.①作O 的两条互相垂直的直径PQ 和AF;②取半径OP 的中点M ;再以M 为圆心、MA 为半径作弧,和半径OQ 相交于点N ;③以点A 为圆心,以AN 的长为半径作弧,与O 相截,得交点B .如此连续截取3次,依次得分点C 、D 、E ,顺次连接AB 、BC 、CD 、DE 、EA ,那么五边形ABCDE 是正五边形.(2)已知O 的半径为2,求边AB 的长,并证明五边形ABCDE 是正五边形.(参考数据:sin 22.5︒=,cos22.5︒=sin 36=︒51cos364︒=,sin 72=︒.)24.在平面直角坐标系xOy 中,已知抛物线212y x bx c =++与x 轴相交于()1,0A -、B 两点,且与y 轴交于点()0,2C -.(1)求抛物线的表达式;(2)如果点D 是x 正半轴上一点,2ADC ACO ∠=∠,且四边形AQCD 是菱形,请直接写出点D 和点Q 的坐标(不需要说明理由);(3)由平面内不在同一直线上的一些线段首尾顺次连接所组成的封闭图形叫做多边形,对于平面内的一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做“凸多边形”:否则叫做“凹多边形”.如果点E 是抛物线对称轴上的一个动点,纵坐标为t ,且四边形ACBE 是凹四边形(线段AE 与线段BC 不相交),求t 的取值范围.25.如图,OB 是O 的半径,弦AB 垂直于弦BC ,点M 是弦BC 的中点,过点M 作OB 的平行线,交O于点E 和点F .(1)如图1,当AB BC =时.①求ABO ∠的度数;②连接OE ,求证:30OEF ∠=︒;(2)如图2,连接OE ,当AB BC ≤时,tan ,OEF x ∠=ABy BC=,求y 关于x 的函数关系式并直接写出定义域.2023-2024学年第二学期初三年级学业质量调研数学试卷含答案(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.本次考试不能用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()A.3π- B.1- C.D.【答案】B 【解析】【分析】本题考查有理数的识别,整数和分数统称为有理数,据此进行判断即可.【详解】解:3π-1-是有理数,故选:B .2.下列运算正确的是()A.2a a a +=B.2a a a⋅= C.33(2)8a a = D.()326a a -=【答案】C 【解析】【分析】本题主要考查了整式运算,熟练掌握相关运算法则是解题关键.根据整式加法法则、单项式乘以单项式法则以及积的乘方运算法则逐项分析判断即可.【详解】解:A.2a a a +=,故本选项运算错误,不符合题意;B.2a a a ⋅=,故本选项运算错误,不符合题意;C.33(2)8a a =,本选项运算正确,符合题意;D.()326a a -=-,故本选项运算错误,不符合题意.故选:C .3.下列函数中,y 的值随着x 的值增大而增大的函数是()A.1y x=B.2y x =-+C.2y x =- D.1y x=-【答案】C 【解析】【分析】本题考查了反比例函数的性质,一次函数的性质.根据一次函数和反比例函数的性质分别进行判断即可.【详解】解:A 、1y x=是反比例函数,10k =>,在每个象限内,y 随x 的增大而减小,所以A 选项不合题意;B 、2y x =-+是一次函数,10k =-<,y 随x 的增大而减小,所以B 选项不合题意;C 、2y x =-是一次函数,10k =>,y 随x 的增大而增大,所以C 选项符合题意;D 、1y x=-是反比例函数,10k =-<,在每个象限内,y 随x 的增大而减增大,所以D 选项不合题意;故选:C .4.某班级的一个小组6名学生进行跳绳测试,得到6名学生一分钟跳绳个数分别为166,160,160,150,134,130,那么这组数据的平均数和中位数分别是()A.150,150 B.155,155C.150,160D.150,155【答案】D 【解析】【分析】本题主要考查算术平均数和中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据中位数和算术平均数的定义列式求解即可.【详解】解:这组数据的平均数为()11661601601501341301506⨯+++++=,中位数为1601501552+=,故选:D .5.在Rt ABC △中,90CAB ∠=︒,5AB =,12AC =,以点A ,点B ,点C 为圆心的,,A B C 的半径分别为5、10、8,那么下列结论错误的是()A.点B 在A 上B.A 与B 内切C.A 与C 有两个公共点D.直线BC 与A 相切【答案】D 【解析】【分析】首先利用勾股定理解得13BC =,然后根据点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系,逐项分析判断即可.【详解】解:∵90,5,12CAB AB AC ∠=︒==,∴13BC ===,∵5AB =,A 的半径为5,∴点B 在A 上,选项A 正确,不符合题意;∵, A B 的半径分别为5、10,且1055AB =-=,∴A 与B 内切,选项B 正确,不符合题意;∵125813AC =<+=,∴A 与C 相交,有两个公共点,选项C 正确,不符合题意;如下图,过点A 作AD BC ⊥于点D ,∵1122ABC S AC AB BC AD =⨯=⨯ ,∴111251322AD ⨯⨯=⨯⨯,解得6013AD =,∵60513AD =<,∴直线BC 与A 相交,选项D 错误,符合题意.故选:D .【点睛】本题主要考查了勾股定理、点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系等知识,熟练掌握相关知识是解题关键.6.在矩形ABCD 中,AB BC <,点E 在边AB 上,点F 在边BC 上,联结DE 、DF 、EF ,,,,AB a BE CF b DE c BEF DFC ====∠=∠,以下两个结论:①222()()a b a b c ++-=;②2a b c +>.其中判断正确的是()A.①②都正确B.①②都错误;C.①正确,②错误D.①错误,②正确【答案】A 【解析】【分析】先证明()ASA BEF CFD ≌,则,BFE CDF EF DF ∠=∠=,再证明DEF 是等腰直角三角形,则2222EF DF DE c===,进一步得到a =22212a b c +=,利用完全平方公式进行计算即可证明①正确,由22212a b c +=22c =,根据()222222a b a ab b a b +=++>+即可证明②正确.【详解】解:∵四边形ABCD 是矩形,∴90B C ∠=∠=︒,AB CD a ==∵,BE CF b BEF DFC ==∠=∠∴()ASA BEF CFD ≌,∴,BFE CDF EF DF ∠=∠=,∴90BFE CFD CDF CFD ∠+∠=∠+∠=︒,∴90EFD ∠=︒∴DEF 是等腰直角三角形,∴2222EF DF DE c ===,∴CD BF ====,∴a =∴22212a b c +=,∴()22222222221()()22222a b a b a ab b a ab b a bc c ++-=+++-+=+=⨯=,故①正确;∵22212a b c +=,22c =,∵()222222a b a ab b a b +=++>+,∴a b +>,∴2a b c +>故②正确,故选:A【点睛】此题考查了全等三角形的判定和性质、勾股定理、矩形的性质、二次根式的运算等知识,证明()ASA BEF CFD ≌是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:124=____.【答案】2【解析】【分析】根据算术平方根的计算法则进行计算,即可得到答案.【详解】1242=,故答案为2.【点睛】本题考查求算术平方根,解题的关键是掌握求算术平方根的方法.8.单项式22xy 的次数为______.【答案】3【解析】【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【详解】解:单项式22xy 的次数为:3.故答案为3.【点睛】本题考查了单项式,正确掌握单项式的次数确定方法是解题的关键.9.不等式组2620x x <⎧⎨->⎩的解集是______.【答案】23x <<##32x >>【解析】【分析】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法和步骤是解题关键.分别解两个不等式,然后按照“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则确定该不等式组的解集即可.【详解】解:2620x x <⎧⎨->⎩①②,解不等式①,可得3x <,解不等式②,可得2x >,所以,该不等式的解集为23x <<.故答案为:23x <<.10.计算:()()32523a b a b -++= ________.【答案】1612a b+r r 【解析】【分析】去括号,按照向量的加减法法则计算即可.【详解】原式=6310151612a b a b a b -++=+r r r r r r故答案为:1612a b +r r .【点睛】本题考查了向量的线性运算,熟练掌握向量的线性运算法则是解答本题的关键.数乘向量满足下列运算律:设λ,μ为实数,则①()a a a λμλμ+=+ ,②()a a λμλμ= ,③()a b a b λλλ+=+ .11.分式方程2111x x x =--的解是______.【答案】=1x -【解析】【分析】本题主要考查了解分式方程,解题关键是求解后必须检验是否为增根.等号两边同时乘以()1x -,求解并检验即可.【详解】解:2111x x x =--,等号两边同时乘以()1x -,可得21x =,解得1x =±,当1x =时,10x -=,所以,1x =是该分式方程的增根,当=1x -时,10x -≠,所以,=1x -是该分式方程的解,所以,分式方程2111x x x =--的解是=1x -.故答案为:=1x -.12.若关于x 的方程220x x m ++=没有实数根,则m 的取值范围是_______.【答案】1m >【解析】【分析】本题主要考查根的判别式和解一元一次不等式,根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】解: 关于x 的方程220x x m ++=没有实数根,440m \D =-<,解得:1m >.故答案为:1m >.13.《九章算术》中记载:“今有牛五、羊二,直金十九两.牛二、羊五,直金十六两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两,每头牛、每只羊各值金多少两?”根据题意,设1头牛值金x 两,1只羊值金y 两,那么可列方程组为______.【答案】52192516x y x y +=⎧⎨+=⎩【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,找到等量关系,列出相应的方程组.根据“5头牛、2只羊共值金19两.2头牛、5只羊共值金16两”,得到2个等量关系,即可列出方程组.【详解】解:设1头牛值金x 两,1只羊值金y 两,,由题意可得,52192516x y x y +=⎧⎨+=⎩,故答案为:52192516x y x y +=⎧⎨+=⎩.14.某校在实施全员导师活动中,对初三(1)班学生进行调查问卷,学生最期待的一项方式是:A 畅谈交流心得;B 外出郊游骑行;C 开展运动比赛;D 互赠书签贺卡.根据问卷数据绘制统计图如下,扇形统计图中表示D 的扇形圆心角的度数为______.【答案】90︒##90度【解析】【分析】本题主要考查了扇形统计图、条形统计图等知识,确定参与调查的学生总人数以及D 组人数是解题关键.首先根据扇形统计图和条形统计图确定参与调查的学生总人数,进而可得D 组人数,然后利用“360︒⨯D 组学生占比”求解即可.【详解】解:根据题意,可得,参与调查的学生总人数为1640%40÷=人,则D 组人数为40168610---=人,所以,扇形统计图中表示D 的扇形圆心角的度数为103609040︒⨯=︒.故答案为:90︒.15.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC 与BD 互相垂直,AC =,那么梯形ABCD 的中位线长为______.【答案】2【解析】【分析】本题主要考查了梯形的中位线定理、等腰直角三角形的判定与性质、平行四边形的判定与性质等知识,正确作出辅助线是解题关键.过A 作AE BD ∥交CB 的延长线于E ,证明四边形ADBE 是平行四边形,易得AE BD AC ==,进而可得ACE △是等腰直角三角形,然后根据等腰直角三角形的直角边的长求得斜边的长,从而利用中位线定义求得答案.【详解】解:过A 作AE BD ∥交CB 的延长线于E ,∵AD BC ∥,AE BD ∥,∴四边形ADBE 是平行四边形,∴AD BE =,AE BD =,∵等腰梯形ABCD 中,AC BD =,∴AE AC =,∵AC BD ⊥,AE BD ∥,∴AE AC ⊥,∴ACE △是等腰直角三角形,∵5AC =,∴24CE BC BE BC AD =+=+==,∴梯形的中位线122CE ==.故答案为:2.16.已知二次函数的解析式为21y x bx =++,从数字0,1,2中随机选取一个数作为b 的值,得到的二次函数图像的顶点在坐标轴上的概率是______.【答案】23【解析】【分析】本题主要考查了二次函数的图像与性质,简单概率计算等知识,熟练掌握相关知识是解题关键.首先确定当0b =、1b =和2b =时二次函数的顶点坐标,然后根据简单概率计算公式求解即可.【详解】解:当0b =时,该二次函数的解析式为21y x =+,其顶点坐标为()0,1,在y 轴上;当1b =时,该二次函数的解析式为2213124y x x x ⎛⎫=++=++ ⎪⎝⎭,其顶点坐标为13,24⎛⎫- ⎪⎝⎭,不在坐标轴上;当2b =时,该二次函数的解析式为()22211y x x x =++=+,其顶点坐标为()1,0-,在x 轴上.综上可知,从数字0,1,2中随机选取一个数作为b 的值,得到的二次函数图像的顶点在坐标轴上的是0,2,所以,得到的二次函数图像的顶点在坐标轴上的概率23P =.故答案为:23.17.如图,在ABC 中,BC AC 、上的中线AE BD 、相交于点F ,如果BAE C ∠=∠,那么AF AC 的值为______.【答案】3【解析】【分析】此题考查了相似三角形的判定和性质、平行线分线段成比例定理等知识,先证明23AD AH =,再证明ADF AHE ∽,则23AF AD AE AH ==,证明ABE CBA △∽△,则BE BA AE BA BC AC==,设BE CE k ==,则2BC k =,得到AB =(负值舍去),进一步得到2AE AC =,则2322AF AE ==,即可得到答案.【详解】解:过点E 作EH BD ∥于点H,∴CH CEDH BE =,∵BC AC 、上的中线AE BD 、相交于点F ,∴12BE CE BC ==,∴1122CH DH CD AD===∴23AD AH =,∵EH BD∥∴ADF AHE∽∴23AF ADAE AH ==∵BAE C ∠=∠,ABE CBA ∠=∠,∴ABE CBA△∽△∴BE BA AE BA BC AC==∴2=⋅AB BE BC设BE CE k ==,则2BC k =,∴2222AB BE BC k k k =⋅=⋅=,∴AB =(负值舍去),∴2222AE BA AC BC k ===∴2AE AC =,∴2322AF AE ==∴3AF AC =故答案为:318.在Rt ABC △中,3906sin 5B AB C ∠=︒==,,,D 为边AB 上一动点,将DA 绕点D 旋转,使点A 落在边AC 上的点E 处,过点E 作EF DE ⊥交边BC 于点F ,连接DF ,当DEF 是等腰三角形时,线段CF 的长为______.【答案】257【解析】【分析】本题考查的是等腰直角三角形的性质,勾股定理的应用,锐角三角函数的应用,先求解10AC =,8BC =,再判断DEF 为等腰三角形时,只有DE EF =,再证明DE DA CF EF ==,,再利用勾股定理建立方程可得答案.【详解】解:∵3906sin 5B AB C ∠=︒==,,,∴635AB AC AC ==,∴10AC =,8BC ==,∵DEF 为直角三角形,∴当DEF 为等腰三角形时,只有DE EF =,如图,设DE EF x ==时,而90DEF ∠=︒,∴DF =,90DEA CEF ∠+∠=︒,由旋转可得:AD DE x ==,∴A DEA ∠=∠,6BD x =-,∵90C A Ð+Ð=°,∴C CEF ∠=∠,∴EF CF x ==,∴8BF x =-,∴()())22268x x -+-=,解得:257x =,即257CF =;故答案为:257.三、解答题:(本大题共7题,满分78分)19.011202422-⎛⎫-++ ⎪⎝⎭.【答案】3+【解析】【分析】本题主要考查了二次根式运算、负整数指数幂、零指数幂、化简绝对值等知识,熟练掌握相关运算法则是解题关键.首先根据二次根式性质、零指数幂运算法则、负整数指数幂运算法则以及绝对值的性质进行运算,然后进行加减运算即可.【详解】解:原式122=++3=.20.先化简,再求值:22111211a a a a a a a +++÷--+-,其中a =【答案】11a a +-;3+【解析】【分析】本题主要考查分式的四则运算以及二次根式的化简求值,根据分式的加法法则,除法法则把原式化简,把a 的值代入计算即可.【详解】解:22111211a a a a a a a +++÷--+-()()2111111a a a a a a +-=+⋅-+-111a a a =+--11a a +=-;当a =213===+.21.如图,在ABC 中,点D 在边BC 上,点G 在边AB 上,点E 、F 在边AC 上,GDAC ∥,DGF DEF ∠=∠,B GFE ∠=∠.(1)求证:四边形EDGF 是平行四边形;(2)求证:GF CD AB AC=.【答案】(1)见详解(2)见详解【解析】【分析】本题主要考查了平行线的判定与性质、平行四边形的判定与性质、相似三角形的判定与性质等知识,证明四边形EDGF 是平行四边形是解题关键.(1)首先证明GF DE ∥,然后利用“两组对边分别平行的四边形是平行四边形”证明四边形EDGF 是平行四边形即可;(2)首先由平行四边形的性质可得DE GF =,DE GF ∥,进而证明CDE CAB ∽△△,由相似三角形的性质即可证明结论.【小问1详解】证明:∵GD AC ∥,∴180DGF GFE ∠+∠=︒,∵DGF DEF ∠=∠,∴180DEF GFE ∠+∠=︒,∴GF DE ∥,又∵GD AC ∥,∴四边形EDGF 是平行四边形;【小问2详解】证明:∵四边形EDGF 是平行四边形,∴DE GF =,DE GF ∥,∴GFE DEC ∠=∠,∵B GFE ∠=∠,∴B DEC ∠=∠,又∵C C ∠=∠,∴CDE CAB ∽△△,∴DE CDAB AC=,∵DE GF =,∴GF CDAB AC=.22.某条东西方向道路双向共有三条车道,在早晚高峰经常会拥堵,数学研究小组希望改善道路拥堵情况,他们对该路段的交通量(辆/分钟)和时间进行了统计和分析,得到下列表格,并发现时间和交通量的变化规律符合一次函数的特征.时间x8时11时14时17时20时1y 自西向东交通量(辆/分钟)10162228342y 自东向西交通量(辆/分钟)2522191613(1)请用一次函数分别表示1y 与x 、2y 与x 之间的函数关系.(不写定义域)(2)如图,同学们希望设置可变车道来改善拥堵状况,根据车流量情况改变可变车道的行车方向.单位时间内双向交通总量为12v y y =+总,车流量大的方向交通量为m v ,经查阅资料得:当23m v v ≥总,需要使可变车道行车方向与拥堵方向相同,以改善交通情况,该路段从8时至20时,如何设置可变车道行车方向以缓解交通拥堵,并说明理由.【答案】(1)()11110y k x b k =+≠,233y x =-+(2)8时到9时,可变车道的方向为自东向西;18时到20时,可变车道的方向为自西向东,理由见解析【解析】【分析】本题主要考查了一次函数的应用、解不等式的应用等知识,结合题意确定一次函数解析式是解题关键.(1)直接利用待定系数法求解即可;(2)结合(1)可知单位时间内双向交通总量为27v x =+总,分123y v ≥总和223y v ≥总两种情况讨论,分别建立关于x 的不等式,求解即可获得答案.【小问1详解】解:设自西向东交通量()11110y k x b k =+≠,将点()8,10、()20,34代入,可得11111083420k b k b =+⎧⎨=+⎩,解得1126k b =⎧⎨=-⎩,∴自西向东交通量126y x =-;设自东向西交通量()22220y k x b k =+≠,将点()8,25、()20,13代入,可得22222581320k b k b =+⎧⎨=+⎩,解得22133k b =-⎧⎨=⎩,∴自东向西交通量233y x =-+;【小问2详解】结合(1)可知,单位时间内双向交通总量为()12263327v y x x y x =-+-+=+=+总,当123y v ≥总,即()226273x x -≥+时,解得18x ≥;当223y v ≥总,即()233273x x -+≥+时,解得9x ≤.所以,8时到9时,可变车道的方向为自东向西;18时到20时,可变车道的方向为自西向东.23.沪教版九年级第二学期的教材给出了正多边形的定义.......:各边相等、各角也相等的多边形叫做正多边形.同时还提到了一种用直尺和圆规作圆的内接正六边形和圆的内接正五边形的方法,但课本上并未证明.我们现开展下列探究活动.活动一:如图1,展示了一种用尺规作O 的内接正六边形的方法.①在O 上任取一点A ,以A 为圆心、AO 为半径作弧,在O 上截得一点B ;②以B 为圆心,AO 为半径作弧,在O 上截得一点C ;再如此从点C 逐次截得点D 、E 、F ;③顺次连接AB 、BC 、CD 、DE 、EF 、FA .(1)根据正多边形的定义.........,我们只需要证明__________,________(请用符号语言表示,不需要说明理由),就可证明六边形ABCDEF 是正六边形.活动二:如图2,展示了一种用尺规作O 的内接正五边形的方法.①作O 的两条互相垂直的直径PQ 和AF;②取半径OP 的中点M ;再以M 为圆心、MA 为半径作弧,和半径OQ 相交于点N ;③以点A 为圆心,以AN 的长为半径作弧,与O 相截,得交点B .如此连续截取3次,依次得分点C 、D 、E ,顺次连接AB 、BC 、CD 、DE 、EA ,那么五边形ABCDE 是正五边形.(2)已知O 的半径为2,求边AB 的长,并证明五边形ABCDE 是正五边形.(参考数据:sin 22.5︒=,cos22.5︒=sin 36=︒1cos364︒=,sin 72=︒.)【答案】(1)AB BC CD DE EF FA =====,A B C D E F∠=∠=∠=∠=∠=∠(2)AB =,证明五边形ABCDE 是正五边形见详解【解析】【分析】(1)各边相等,各角也相等的多边形叫做正多边形,据此即可获得答案;(2)首先结合题意并根据勾股定理解得AM =,进而可得MN AM ==,易得1ON =,再在Rt AON △中,由勾股定理解得AN =,即可确定AB 的值;连接BF ,OB ,OC ,OD ,OE ,结合AF 为O 直径易得90ABF ∠=︒,利用三角函数可得36AFB ∠=︒,由圆周角定理可得72AOB ∠=︒,进而可得54OAB OBA ∠=∠=︒,然后利用全等三角形的性质可证明AB BC CD DE EA ====,108ABC BCD CDE DEA EAB ∠=∠=∠=∠=∠=︒,即可证明结论.【小问1详解】解:根据正多边形的定义,我们只需要证明AB BC CD DE EF FA =====,A B C D E F ∠=∠=∠=∠=∠=∠,就可证明六边形ABCDEF 是正六边形.故答案为:AB BC CD DE EF FA =====,A B C D E F ∠=∠=∠=∠=∠=∠;【小问2详解】解:根据题意,可得AF PQ ⊥,2OP OA ==,∵点M 为半径OP 的中点,∴112OM OP ==,∴在Rt AOM △中,AM ===,∵以M 为圆心、MA 为半径作弧,和半径OQ 相交于点N ,∴MN AM ==,∴1ON MN OM =-=,∴在Rt AON △中,AN ==∵以点A 为圆心,以AN 的长为半径作弧,与O 相截,得交点B ,∴AB AN ==;如下图,连接BF ,OB ,OC ,OD ,OE ,∵AF为O 直径,∴90ABF ∠=︒,224AF =⨯=,∵1025sin 4AB AFB AF-∠==∴36AFB ∠=︒,∴272AOB AFB ∠=∠=︒,∵OA OB =,∴()1180542OAB OBA AOB ∠=∠=︒-∠=︒,在OAB 和OBC △中,OA OB AB BC OB OC =⎧⎪=⎨⎪=⎩,∴OAB OBC ≌,∴72AOB BOC ∠=∠=︒,∴54OBC OCB ∠=∠=︒,同理可得OCD ODE OAB ≌≌,∴72AOB BOC COD DOE ∠=∠=∠=∠=︒,∴36072EOA AOB BOC COD DOE AOB ∠=︒-∠-∠-∠-∠=︒=∠,又∵OE OA =,OA OB =,∴()SAS EOA AOB ≌,∴EA AB =,54OEA OAE ∠=∠=︒,∴AB BC CD DE EA ====,542108ABC BCD CDE DEA EAB ∠=∠=∠=∠=∠=︒⨯=︒,∴五边形ABCDE 是正五边形.【点睛】本题主要考查了尺规作图、多边形的定义和性质、全等三角形的判定与性质、圆周角定理、解直角三角形等知识,正确理解题意,熟练掌握相关知识是解题关键.24.在平面直角坐标系xOy 中,已知抛物线212y x bx c =++与x 轴相交于()1,0A -、B 两点,且与y 轴交于点()0,2C -.(1)求抛物线的表达式;(2)如果点D 是x 正半轴上一点,2ADC ACO ∠=∠,且四边形AQCD 是菱形,请直接写出点D 和点Q 的坐标(不需要说明理由);(3)由平面内不在同一直线上的一些线段首尾顺次连接所组成的封闭图形叫做多边形,对于平面内的一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做“凸多边形”:否则叫做“凹多边形”.如果点E 是抛物线对称轴上的一个动点,纵坐标为t ,且四边形ACBE 是凹四边形(线段AE 与线段BC 不相交),求t 的取值范围.【答案】(1)213222y x x =--(2)3,02D ⎛⎫⎪⎝⎭,5,22Q ⎛⎫-- ⎪⎝⎭(3)504t <<-或5t <-【解析】【分析】(1)待定系数法求出函数解析式即可;(2)先求出B 点坐标,勾股定理逆定理求出90ACB ∠=︒,根据2ADC ACO ∠=∠,得到D 为AB 的中点,再根据菱形的性质,求出Q 点坐标即可;(3)求出直线,AC BC 的解析式,分别求出两条直线与对称轴的交点坐标,结合凹四边形的定义,讨论求解即可.【小问1详解】解:把()1,0A -,()0,2C -代入212y x bx c =++,得:()211022b c c ⎧⨯--+=⎪⎨⎪=-⎩,解得:322b c ⎧=-⎪⎨⎪=-⎩,∴213222y x x =--;【小问2详解】∵213222y x x =--,当2132022y x x =--=时,解得:121,4x x =-=,∴()4,0B ,∵()1,0A -,()0,2C -∴5,AB AC BC ===,∴222AC BC AB +=,∴90ACB ∠=︒,∴90ACO BCO ∠+∠=︒,∵90CBO BCO ∠+∠=︒,∵∠=∠ACO CBO ,∵2ADC ACO ∠=∠,∴2ADC OBC ∠=∠,连接CD ,则:2ADC DCB CBD OBC ∠=∠+∠=∠,∴DCB CBD ∠=∠,∴DCB ACO ∠=∠,CD BD =,∵90DCB DCA ACO OAC ∠+∠=∠+∠=︒,∴DCA OAC ∠=∠,∴CD AD BD ==,∴D 为AB 的中点,∴3,02D ⎛⎫⎪⎝⎭,∵AQCD 是菱形,∴AQ CD ∥,把点C 先向右平移32个单位,再向上平移2个单位得到点D ,∴把点Q 先向右平移32个单位,再向上平移2个单位得到点A ,∴5,22Q ⎛⎫-- ⎪⎝⎭;【小问3详解】∵213222y x x =--,∴对称轴为直线32x =,∴对称轴与x 轴的交点坐标为3,02D ⎛⎫⎪⎝⎭,∵()1,0A -,()4,0B ,()0,2C -,∴设直线BC 的解析式为2y kx =-,把()4,0B 代入,得:12k =,∴122y x =-,当32x =时,54y =-,∴直线BC 与对称轴的交点坐标为35,24F ⎛⎫-⎪⎝⎭,同法可得:直线AC 的解析式为:22y x =--,直线AC 与对称轴的交点坐标为3,52M ⎛⎫- ⎪⎝⎭,∵点E 是抛物线对称轴上的一个动点,纵坐标为t ,且四边形ACBE 是凹四边形,∴当点E 在,D F 之间或点E 在点M 下方时,满足题意,∴504t <<-或5t <-.。
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
上海中考各区二模数学试题及答案汇总
2014学年虹口区调研测试九年级数学。
(满分分,考试时间分钟)考生注意:1.本试卷含三个大题,共题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共题,每题分,满分分).计算的结果是().;.;.; ...下列代数式中,的一个有理化因式是( ).; .;.;...不等式组的解集是( ).; .;.;...下列事件中,是确定事件的是( ).上海明天会下雨;.将要过马路时恰好遇到红灯;.有人把石头孵成了小鸭;.冬天,盆里的水结成了冰..下列多边形中,中心角等于内角的是().正三角形;.正四边形; .正六边形;.正八边形..下列命题中,真命题是().有两边和一角对应相等的两个三角形全等;.有两边和第三边上的高对应相等的两个三角形全等;.有两边和其中一边上的高对应相等的两个三角形全等;.有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共题,每题分,满分分).据报道,截止年月某市网名规模达人。
请将数据用科学记数法表示为。
.分解因式:。
.如果关于的方程有两个相等的实数根,那么。
.方程的根是。
初三数学基础考试卷—1—初三数学基础考试卷—2—(第题图) (第题图) (第题图)(第题图).函数的定义域是 。
.在反比例函数的图像所在的每个象限中,如果函数值随自变量的值的增大而增大,那么常数的取值范围是 。
.为了了解某中学学生的上学方式,从该校全体学生名中,随机抽查了名学生,结果显示有名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学"。
.在中,,点是的重心,如果,那么斜边的长等于 。
.如图,在中,点、分别在边、上,∥,,若,,则 。
.如图,、的半径分别为、,圆心距为.将由图示位置沿直线向右平移,当该圆与内切时,平移的距离是 ..定义为函数的“特征数".如:函数“特征数”是,函数“特征数"是.如果将“特征数”是的函数图像向下平移个单位,得到一个新函数图像,那么这个新函数的解析式是 。
7、中考数学:2015 上海闵行区中考数学二模压轴题
图3 (2)如图 4,设 AM 的长为 x.
图4
S AM x . 由 ME//DF,得 △AEM S△AND AD 4
由 MF//DN,得
2
2
S△MFD DM 4 x . S△AND AD 4
思路点拨
1.由平行四边形 MENF 和平行四边形 AEFM,可以得到 E 是 AN 的中点. 2.第(2)题把四边形 MENF 与△AND 的面积比,转化为△AEM 与△MFD 的和与 △AND 的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程. 3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.
2
2
所以
S△AEM S△MFD x 2 (4 x)2 . S△AND 16
3 8
如果四边形 MENF 的面积是△AND 面积的 ,那么
x 2 (4 x) 2 5 = . 16 8
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
整理,得 x2-4x+3=0.解得 x=1,或 x=3. (3)在等腰梯形 ABCD 中,保持∠B=∠C,∠1=∠2,∠3=∠4. ①如图 5,如果∠B=∠3,那么∠B=∠4,AB//DN,此时四边形 ABND 是平行四边形. 这时△DNC 中,DC=DN=5,NC=6,它与△ABN 不相似. ②如图 6,如果∠B=∠AND,那么由∠ANC=∠B+∠BAN,∠ANC=∠AND+∠4, 可得∠BAN=∠4. 因此△ABN∽△NCD.所以
3 8
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
图1
图2
动感体验
请打开几何画板文件名 “15 闵行 25” , 拖动点 M 在 AD 上运动, 可以体验到, 当 EF//BC 时, EF 是△AND 的中位线. 还可以体验到, 当 N 是 BC 的中点时, △ABN、 △AND 和△DNC 是三个底角相等的学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闵行区2014学年第二学期九年级质量调研考试数 学 试 卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列各数中,是无理数的是(A(B )2π; (C )247; (D2.a(A)2(a ; (B)2(a ; (C)a (D)a3.下列方程中,有实数根的方程是(A )430x +=; (B1-;(C )22111x x x =--; (Dx =-. 4.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说确的是 (A )九(3)班外出的学生共有42人; (B )九(3)班外出步行的学生有8人;(C )在扇形图中,步行的学生人数所占的圆心角为82º; (D )如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人.5.下列四边形中,是轴对称但不是中心对称的图形是 (A )矩形; (B )菱形; (C )平行四边形; (D )等腰梯形.学校_____________________ 班级__________ 准考证号_________ 姓名______________ …………………………密○………………………………………封○………………………………………○线…………………………乘车50% 步行 x % 骑车 y %(第4题图)6.下列命题中假命题是(A )平分弦的半径垂直于弦;(B )垂直平分弦的直线必经过圆心;(C )垂直于弦的直径平分这条弦所对的弧; (D )平分弧的直径垂直平分这条弧所对的弦.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:124= ▲ . 8.计算:31a a -⋅= ▲ .9.在实数围分解因式:324x x -= ▲ . 10.不等式组34,222x x x x -<⎧⎪⎨+≤⎪⎩的解集是 ▲ .11.已知关于x 的方程220x x m --=没有实数根,那么m 的取值围是 ▲ .12.将直线113y x =+向下平移2个单位,那么所得到的直线表达式为 ▲ .13.如图,已知在梯形ABCD 中,AB // CD ,且AB = 3CD .设 AB a =u u u r r ,AD b =u u u r r ,那么AO =u u u r ▲ (用a r 、b r的式子表示).14.在Rt △ABC 中,∠C = 90º,AC = 3,BC = 4.如果以点C为圆心,r 为半径的圆与直线AB 相切,那么r = ▲ .15.从小敏、小杰等3名同学中任选2名同学担任校运动会的 志愿者,那么恰好选中小敏和小杰的概率为 ▲ .16.某校几位九年级同学准备学业考试结束后结伴去周庄旅游,预计共需费用1200元,后来又有2位同学参加进来,但总的费用不变,每人可少分担30元.试求共有几位同学准备去周庄旅游?如果设共有x 位同学准备去周庄旅游,那么根据题意可列出方程为 ▲ .17.小丽在大楼窗口A 处测得校园旗杆底部C 的俯角为α度,窗口离地面高度AB = h (米),那么旗杆底部与大楼的距离BC = ▲ 米(用α的三角比和h 的式子表示). 18.如图,已知在Rt △ABC 中,∠C = 90º,AC = BC = 1,点D 在边BC 上,将△ABC 沿直线AD 翻折,使点C 落在点C ′处,联结AC ′,直线AC ′与边CB 的延长线相交于点F .如果∠DAB =∠BAF ,那么BF = ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)AB C (第18题图) A BD C(第13题图)O(第17题图)20.(本题满分10分)解方程:22212,320.x y x x y y +=⎧⎨-+=⎩21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,AB AC ==sin B ∠=D 为边BC 的中点.E 为边BC 延长线上一点,且CE = BC .联结AE ,F 为线段AE 的中点.求:(1)线段DF 的长; (2)∠CAE 的正切值.22.(本题满分10分,其中每小题各5分)货车在公路A 处加满油后,以每小时60千米的速度匀速行驶,前往与A 处相距360千米的B 处.下表记录的是货车一次加满油后油箱剩余油量y (升)与行驶时间x (时)之间关系:取值围);(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达B 处卸货后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱剩余油量应随时不少于10升)23.(本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD // BC ,∠A = 90º,AB = AD .点E 在边AB 上,且DE ⊥CD ,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF . (1)求证:DE = DC ; (2)如果2BE BF BC =⋅,求证:∠BEF =∠CEF .A B C D E F (第21题图) (第23题图)A BCDEF24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线224y ax ax =--与x 轴相交于A 、B 两点,与y 轴相交于点C ,其中点A 的坐标为(-3,0).点D 在线段AB 上,AD = AC . (1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以DB 为半径的圆D 与圆C 外切,求圆C 的半径; (3)设点M 在线段AB 上,点N 在线段BC 上.如果线段MN 被直线CD 垂直平分,求BN CN 的值.25.(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.A B C D M N E F(图1)(第24题图) A B C D M NE F (第25题图)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-;12.113y x =-; 13.1233a b +r r;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13=+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分)把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分) 解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠=, 得sin 4AD AB B =⋅∠==. ……………………………(1分)∴2BD =.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分) 在Rt △ADE 中,利用勾股定理,得AE===又∵F是边AE的中点,∴12DF AE=.…………………(1分)(2)过点C作CH⊥AE,垂足为点H.∵CH⊥AE,AD⊥BC,∴∠CHE =∠ADE = 90º.……………(1分)又∵∠E =∠E,∴△CHE∽△ADE.……………………………(1分)∴CH EH CEAD DE AE==,即得46CH EH=.解得CH=EH.…………………………………(1分)∴AH AE EH=-=.………………………(1分)∴4tan7CHCAEAH∠===.…………………………………(1分)22.解:(1)设所求函数为y k x b=+.…………………………………………(1分)根据题意,得150,120.bk b=⎧⎨+=⎩…………………………………………(1分)解得30,150.kb=-⎧⎨=⎩………………………………………………………(2分)∴所求函数的解析式为30150y x=-+.………………………(1分)(2)设在D处至少加w升油.根据题意,得36046012150********60w-⨯--⨯+≥⨯⨯+.……(3分)解得94w≥.…………………………………………………………(1分)答:D处至少加94升油,才能使货车到达B处卸货后能顺利返回D处加油.…………………………………………………………………………………(1分)说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D作DH⊥BC,垂足为点H.∵AD // BC,∴∠ADH =∠DHC.……………………………(1分)∵DH⊥BC,∴∠ADH =∠DHC = 90º.即得∠ADH =∠EDC = 90º.……………………………………(1分)∵ADE ADH EDH∠=∠-∠,CDH EDC EDH∠=∠-∠,∴∠ADE =∠CDH.………………………………………………(1分)∵AD // BC,AB⊥BC,DH⊥BC,∴AB = DH.∵AB = AD,∴AD = DH.又∵∠A =∠DHC = 90º,∴△ADE≌△DHC.………………(2分)∴DE = DC.………………………………………………………(1分)(2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2BE BF BC =⋅,∴ BE BCBF BE=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分)解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得 5AC =.…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴ CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分)即得 3r =+.解得 3r =.……………………………………………………(1分)∴ 圆C 的半径长为3. (3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ BN BD NC DA=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35BN BD CN DA ==.……………………………………………………(1分)25.解:(1)∵AD // BC,EF // BC,∴EF // AD.……………………………(1分)又∵ME // DN,∴四边形EFDM是平行四边形.∴EF = DM.…………………………………………………………(1分)同理可证,EF = AM.…………………………………………………(1分)∴AM = DM.∵AD = 4,∴122EF AM AD===.……………………………(1分)(2)∵38ADNMENFS S∆=四边形,∴58AME DMF ADNS S S∆∆∆+=.即得58AME DMFADN ADNS SS S∆∆∆∆+=.……………………………………………(1分)∵ME // DN,∴△AME∽△AND.∴22AMEADNS AMS AD∆∆=.……………………………………………………(1分)同理可证,△DMF∽△DNA.即得22DMFADNS DMS AD∆∆=.……………(1分)设AM = x,则4DM AD AM x=-=-.∴22(4)516168x x-+=.………………………………………………(1分)即得2430x x-+=.解得11x=,23x=.∴AM的长为1或3.………………………………………………(1分)(3)△ABN、△AND、△DNC能两两相似.……………………………(1分)∵AD // BC,AB = DC,∴∠B =∠C.由AD // BC,得∠DAN =∠ANB,∠ADN =∠DNC.∴当△ABN、△AND、△DNC两两相似时,只有∠AND =∠B一种情况.……………………………………………………………………(1分)于是,由∠ANC =∠B +∠BAN,∠ANC =∠AND +∠DNC,得∠DNC =∠BAN.∴△ABN∽△DNC.又∵∠ADN =∠DNC,∴△AND∽△DNC.∴△ABN∽△AND∽△DNC.∴AB BNNC CD=,AN ADBN AN=.………………………………………(1分)设BN = x,则NC = 10 –x.∴5105xx=-.即得210250x x-+=.解得5x=.……………………………(1分)经检验:x = 5是原方程的根,且符合题意.∴5BN CN==.∴45ANAN=.即得AN=1分)∴当△ABN、△AND、△DNC两两相似时,AN的长为。