【安徽省合肥市】2017年高考二模数学(文科)试卷
高三数学(文)二模金卷分项解析:专题11-数学文化(含答案)
【备战2017高考高三数学全国各地二模试卷分项精品】一、选择题【2017湖南娄底二模】我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的八等人和九等人两人所得黄金之和( )A. 多712斤B. 少712斤C. 多16斤D. 少16斤 【答案】D【解析】设这十等人所得黄金的重量从大到小依次组成等数列{}n a ,则123789104,3a a a a a a a ++=+++=,由等差数列的性质得28943,32a a a =+=, ()289431326a a a -+=-=-,故选D. 【2017重庆二诊】《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( )A. 10日B. 20日C. 30日D. 40日【答案】B【2017安徽黄山二模】在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯? ” (加增的顺序为从塔顶到塔底). 答案应为 ( )A. 6B. 5C. 4D. 3【答案】D【解析】设顶层有x 盏灯,根据题意得: 2481632643813x x x x x x x x ++++++=⇒=故选D.点睛:这一个等比数列的实际运用,认真审题然后分析列式即可【2017安徽池州4月联考】在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得其关,”意思是某人要走三百七十八里的路程,第一天脚步轻快有力,走了一段路程,第二天脚痛,走的路程是第一天的一半,以后每天走的路程都是前一天的一半,走了六天才走完这段路程,则下列说法错误的是( )A. 此人第二天走了九十六里路B. 此人第一天走的路程比后五天走的路程多六里C. 此人第三天走的路程占全程的18D. 此人后三天共走了42里路【答案】C【2017安徽合肥二模】中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶()()()226n a c b c a d d b ⎡⎤++++-⎣⎦个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为( )A. 1260B. 1360C. 1430D. 1530【答案】B【解析】由题可知2,1,16,15,a b c d ====所以木桶的个数为()()15[221612162151413606⨯⨯+⨯+⨯+⨯+=,故本题选.B【河南郑州、平顶山。
【安徽省合肥市】2017年高考二模数学(文科)试卷-答案
当 a 0 时,解得 2 x 6 ,函数 f (x) 的定义域为{x | 2 x 6} ;
aa
aa
当 a 0 时,解得 6 x 2 ,函数 f (x) 的定义域为{x | 6 x 2} .
由 0<e<1,则 e2=2﹣ ,
故选 C. 9.【考点】三角函数的化简求值;正弦函数的图象.
【分析】把已知函数解析式变形,由 f(x1)<f(x2),得 sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由 x1,
x2 的范围可得|2x1|>|2x2|,即|x1|>|x2|,得到
`
20.解:(1)由
xA
2
得
y
2 A
4
,故
2 pxA
4
,
p
1.
于是,抛物线 E 的方程为 y2 2x .
(2)设 C(
y12 2
,
y1)
,
D(
y22 2
,
y2 )
,切线 l1
:
y1
y2
k(x
y12 2
)
,
代入
y2
2x 得 ky2
2y 2y1
ky12
0 ,由△ 0 解得 k
.
【解答】解:f(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=
.
由 f(x1)<f(x2),得
,
∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,
(完整word)安徽省2017年高考文科数学试题和答案(Word版)(1)
安徽省2017年高考文科数学试题及答案(Word 版)要求的。
1 .已知集合A= x|x2 , B= x|3 2x0,则3A . A l B= x|x2 3 C. A U B x|x -2 B . A l B D . A U B=R 2 .为评估一种农作物的种植效果, 选了 n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x i , X 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A . x i , X 2,…,X n 的平均数 C. X i , X 2,…,X n 的最大值 3 •下列各式的运算结果为纯虚数的是 2 A . i (1+i ) B 2C. (1+i )DB . X i , X 2,…,X n 的标准差 D. X i , X 2,…,X n 的中位数 2 .i (i-i) .i(i+i)如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白色部分关于正方形 的中心成中心对称•在正方形内随机取一点,则此点取自黑色部分的概率是 i A.— 4D.2已知F 是双曲线C : x 2-乞=i 的右焦点,3P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(i,3).则厶APF的面积为 i A.- 31 B.- 2如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M, N, Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNC 不平行的是、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目x 3y 3,7 .设x, y满足约束条件x y 1,则z=x+y的最大值为y 0,A. 0B. 1C. 2D. 38..函数y Sin2x的部分图像大致为1 cosxA. f (x)在(0,2 )单调递增B. f (x)在(0,2 )单调递减C. y= f (x)的图像关于直线x=1对称D. y= f (x)的图像关于点(1,0 )对称10•如图是为了求出满足3n 2n 1000的最小偶数和匚二]两个空白框中,可以分别填入CW)厂/^人』尸o/A=V-2fl[ 是n,那么在O叫/输出丹/(W)二、填空题:本题共 4小题,每小题5分,共20分。
2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)
2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
合肥市高三下学期第二次教学质量检测数学试题(文科)含答案
合肥市2017高三下学期第二次教学质量检测数学试题(文)第I卷(共60 分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的1.已知 i 为虚数单位,2.已知集合则口 (3 i2 i x 2 4 ,1 2i -A. (1,2)• [1,2)(1,2)1,2)3.已知命题R,x 2 0,则( A.命题q : R,x 2 0为假命题命题 q : x R, x 20为真命题 C.命题q :R , x 2为假命题命题 q :x R, x 2 0为真命题4.设变量x yy 满足约束条件 x y,则目标函数z x 2 y 的最大值为(132.120A. 5B(D.6 C.6.设向量a,b满足a b 4, a b 1,则a b ( )A. 2B.2.3C.3 D . 2.. 57.1已知-是等差数万[[曰a11,a44,则a10( ) 是等差数列,且a nA.454D13• 1B C.541342 28.已知椭圆x y2 21(ab0)的左,右焦点为F1, F2,离心率为e. P是椭圆上一点,a2 b2满足PF? F1F2,点Q在线段PF i上,且F1Q2QP.若RP F?Q 0 ,则e2( )A. 2 1B.2-、、2C. 2 - . 3D.5 29.已知函数f(x).4 4sin x cos x, x [,],若4 4f(X1)f(X2),则一定有()2 2 2 2A x1x2B.x1x2 C.x-1 x2D.x-1 x210. 中国古代数学有着很多令人惊叹的成就•北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术•隙积术意即:将木捅一层层堆放成坛状,最上一层长有a个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶n[(2a c)b (2c a)d (d b)].假设最上层有长2宽1共2个木桶,每一层的6长宽各比上一层多一个,共堆放15层.则木桶的个数为()A. 1260 B . 1360 C. 1430 D . 153011. 锐角ABC中,内角A , B , C的对边分别为a , b , c,且满足a b sin A sin B c b sinC,若a ,3,则b2 c2的取值范围是()A.5,6B3,5 C.3,6 D . 5,612.已知函数f(x)1 xe a 2 x(a1)x a(a 0),其中e为自然对数的底数.若函数e2y f(x)与y f[f(x)]有相同的值域,则实数a的最大值为()A. e B . 2 C. 1 D .-2第U卷(共90分)、填空题(每题5分,满分20分,将答案填在答题纸上)2 213.已知双曲线冷爲1(a 0,b 0)的离心率为,3,则该双曲线的渐近线方程a b为14.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是15. 几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为__________ .216. 已知数列a n中,a1 2,且也4(a n 1a n)(n N),则其前9项的和S9 _________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f (x) sin x cos x( 0)的最小正周期为(1)求函数y f (x)图像的对称轴方程;(2)讨论函数f (x)在[0,?]上的单调性.18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关附:K22n ab beabedacbd,其中n a bed.P K2k。
【安徽省合肥市】2017年高考二模数学(文科)试卷-答案
17.解:(1)∵π()sin cos )4f x x x x w w w =--,且πT =,∴2w =.于是π())4f x x =-,令ππ2π42x k -=+,得π3π()28k x k =+∈Z , 即函数()f x 的对称轴方程为π3π()k x k =+∈Z .注意到[0,]2x ∈,令0k =,得函数()f x 在π[0,]上的单调增区间为3π[0,];18.解:(1)从高一年级学生中随机抽取1人,抽到男生的概率约为105718012=.(2)根据统计数据,可得列联表如下:2180(60453045)36 5.1429 5.0241057590907K ⨯⨯-⨯==≈>⨯⨯⨯,所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.19.证明:(1)在CDE △中,∵CD ED ==,5cos 7EDC ∠=,∴由余弦定理得225(7)(7)27727CE =+-⨯⨯⨯=. 连接AC ,∵2AE =,60AEC ∠=o ,∴2AC =. 又∵3AP ,∴在AE △中,222PA AE PE +=, 即AP AE ⊥. 同理,AP AC ⊥,∵AC ABCE ⊂平面,AE ABCE ⊂平面, 且AC AE A =I , 故AP ABCE ⊥平面;(2)∵AB CE ∥,且CE PCE ⊂平面,AB PCE ⊄平面, ∴AB PCE ∥平面,又平面PAB PCE l =I 平面, ∴AB l ∥.`20.解:(1)由2A x =得24A y =,故24A px =,1p =.于是,抛物线E 的方程为22y x =.(2)设211(,)2y C y ,222D(,)2y y ,切线1l :2112()2y y y k x -=-,代入22y x =得2211220ky y y ky -+-=,由0=△解得11k y =, ∴1l 方程为1112y k x y =+,同理2l 方程为2212y y x y =+, 联立11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121222y y x y y y ⎧=⎪⎪⎨+⎪=⎪⎩g ,易得CD 方程为008x x y y +=,其中0x ,0y 满足22008x y +=,[2,22]x ∈,联立方程20028y xx x y y ⎧=⎪⎨+=⎪⎩得2002160x y y y +-=,则0120120216y y y x y y x ⎧+=-⎪⎪⎨⎪=-⎪⎩g ,∴()M x y ,满足0008x x y y x ⎧=-⎪⎪⎨⎪=⎪⎩,即点M 为0008(,)y x x --.点M 到直线CD :008x x y y +=的距离222088|88|161616y y x x d ----++-+===关于0x 单调减,21.解:(1)∵()ln f x x x m =-+,∴1()1f x x=-,由'()0f x =得1x =, 且01x <<时,'()0f x >,1x >时,'()0f x <.故函数()f x 的单调递增区间为(01),,单调递减区间为(1,)+∞. 所以,函数()f x 的极大值为(1)1f m =-,无极小值. (2)由()()ln()g x f x m x m x =+=+-, ∵1x ,2x 为函数()g x 是两个零点,∴1122ln()ln()x m x x m x +=⎧⎨+=⎩,即1212xx x m e x m e⎧+=⎪⎨+=⎪⎩, 令()h x ex x =-,则()h x m =有两解1x ,2x . 令'()10h x ex =-=得0x =,∴0m x -<<时,()0h x '<,当0x >时,()0h x '>, ∴()h x 在(,0)m -上单调递减,在(0,)+∞上单调递增. ∵()h x m =的两解1x ,2x 分别在区间(,0)m -和(0)+∞,上, 不妨设120x x <<, 要证120x x +<,考虑到()h x 在(0,)+∞上递增,只需证21()()h x h x <-,由21()()h x h x =知,只需证11()()h x h x <-, 令()()()e 2e x x r x h x h x x -=--=--, 则1()20x xr x e e '=+-≥, ∴()r x 单调递增,∵10x <,∴1()(0)0r x r <=,即11()()h x h x <-成立, 即120x x +<成立.22.解:(1)由4cos r q =得24cos r r q =,即2240x y x +-=,即圆C 的标准方程为22(2)4x y +=-.当0a >时,解得26x a a-≤≤,函数()f x 的定义域为26{|}x x a a -≤≤;当0a <时,解得62x a a≤≤-,函数()f x 的定义域为62{|}x x a a ≤≤-.(2)|()123|f x ax ≥⇔-≤,记|()2|g x ax =-,∵1[]0,x ∈,∴需且只需(0)3(1)3g g ≤⎧⎨≤⎩,即23|2|3a ≤⎧⎨-≤⎩,解得15a -≤≤,又0a ≠,∴15a ≤≤-,且0a ≠.安徽省合肥市2017年高考二模数学(文科)试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:1i(1i)(3i)24i12i3-i(3-i)(3i)105+++++===+.故选:D.2.【考点】交集及其运算.【分析】解不等式化简集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x2<4}={x|﹣2<x<﹣1或1<x<2},B={x|x﹣1≥0}={x|x≥1},则A∩B={x|1<x<2}=(1,2).故选:A.3.【考点】命题的否定.【分析】本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定,再进行判断即可.【解答】解:∵命题q:∀x∈R,x2>0,∴命题¬q:∃x∈R,x2≤0,为真命题.故选D.4.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+2y为y=﹣.由图可知,当直线y=﹣过A时,直线在y轴上的截距最大,z有最大值为.故选:C.5.【考点】程序框图.【分析】先根据已知循环条件和循环体判定循环的规律,然后根据运行的情况判断循环的次数,从而得出所求.【解答】解:第一次循环,s=1,a=5≥3,s=5,a=4;第二次循环,a=4≥3,s=20,a=3;第三次循环,a=3≥3,s=60,a=2,第四次循环,a=2<3,输出s=60,故选:C.6.【考点】平面向量数量积的运算.【分析】可以得到,这样代入即可求出的值,从而得出的值.【解答】解:===16﹣4=12;∴.故选:B.7.【考点】等差数列的通项公式.【分析】根据题意,设等差数列{}的公差为d,结合题意可得=1,=,计算可得公差d的值,进而由等差数列的通项公式可得的值,求其倒数可得a10的值.【解答】解:根据题意,{}是等差数列,设其公差为d,若a1=1,a4=4,有=1,=,则3d=﹣=﹣,即d=﹣,则=+9d=﹣,故a10=﹣;故选:A.8.【考点】椭圆的简单性质.【分析】由题意求得P点坐标,根据向量的坐标运算求得Q点坐标,由=0,求得b4=2c2a2,则b2=a2﹣c2,根据离心率的取值范围,即可求得椭圆的离心率.【解答】解:由题意可知:PF2⊥F1F2,则P(c,),由,(x Q+c,y Q)=2(c﹣x Q,﹣y Q),则Q(,),=(2c,),=(﹣,),由=0,则2c×(﹣)+×=0,整理得:b4=2c2a2,则(a2﹣c2)2=2c2a2,整理得:a4﹣4c2a2+c4=0,则e4﹣4e2+1=0,解得:e2=2±,由0<e<1,则e2=2﹣,故选C.9.【考点】三角函数的化简求值;正弦函数的图象.【分析】把已知函数解析式变形,由f(x1)<f(x2),得sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由x1,x2的范围可得|2x1|>|2x2|,即|x1|>|x2|,得到.【解答】解:f(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=.由f(x1)<f(x2),得,∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,∵x1∈[﹣],x2∈[﹣],∴2x1∈[﹣,],2x2∈[﹣],由|sin2x1|>|sin2x2|,得|2x1|>|2x2|,即|x1|>|x2|,∴.故选:D.10.【考点】等差数列的前n项和.【分析】由已知条件求出a,b,c,d,代入公式能求出结果.【解答】解:∵最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.∴最底层长有c=a+15=17个,宽有d=b+15=16个则木桶的个数为:=1 530.故选:D.11.【考点】正弦定理;余弦定理.【分析】由已知利用正弦定理可得b2+c2﹣a2=bc.再利用余弦定理可得cosA,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B﹣),利用B的范围,可求2B﹣的范围,利用正弦函数的图象和性质可求其范围.【解答】解:∵(a﹣b)(sinA+sinB)=(c﹣b)sinC,由正弦定理可得:(a﹣b)(a+b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∴A为锐角,可得A=,∵,∴由正弦定理可得:,∴可得:b2+c2=(2sinB)2+[2sin(﹣B)]2=3+2sin2B+sin2B=4+2sin(2B﹣),∵B∈(,),可得:2B﹣∈(,),∴sin(2B﹣)∈(,1],可得:b2+c2=4+2sin(2B﹣)∈(5,6].故选:A.12.【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导数,得到函数f(x)的值域,问题转化为即[1,+∞)⊆[,+∞),得到关于a的不等式,求出a的最大值即可.【解答】解:f(x)=﹣(a+1)x+a(a>0),f′(x)=•e x+ax﹣(a+1),a>0,则x<1时,f′(x)<0,f(x)递减,x>1时,f′(x)>0,f(x)递增,而x→+∞时,f(x)→+∞,f(1)=,即f(x)的值域是[,+∞),恒大于0,而f[f(x)]的值域是[,+∞),则要求f(x)的范围包含[1,+∞),即[1,+∞)⊆[,+∞),故≤1,解得:a≤2,故a的最大值是2,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【考点】双曲线的简单性质.【分析】运用离心率公式和a,b,c的关系,可得b==a,即可得到所求双曲线的渐近线方程.【解答】解:由题意可得e==,即c=a,b==a,可得双曲线的渐近线方程y=±x,即为y=±x.故答案为:y=±x.14.【考点】极差、方差与标准差.【分析】根据平均数与方差的计算公式,计算即可.【解答】解:五次考试的数学成绩分别是110,114,121,119,126,∴它们的平均数是=×=118,方差是s2=[2+2+2+2+2]=30.8.故答案为:30.8.15.【考点】由三视图求面积、体积.【分析】几何体为四棱锥,棱锥的高为俯视图三角形的高,底面为直角梯形.【解答】解:由三视图可知,几何体为四棱锥,棱锥的高为俯视图中等边三角形的高,棱锥的底面为直角梯形,梯形面积为(1+2)×1=.∴V==.故答案为.16.【考点】数列的求和.【分析】由题意整理可得:a n+1=2a n,则数列{a n}以2为首项,以2为公比的等比数列,利用等比数列的前n项和公式,即可求得S9.【解答】解:由题意可知a n+12=4a n(a n+1﹣a n),则a n+12=4(a n a n+1﹣a n2),a n+12﹣4a n a n+1+4a n2=0整理得:(a n+1﹣2a n)2=0,则a n+1=2a n,∴数列{a n}以2为首项,以2为公比的等比数列,则前9项的和S9===1 022.故答案为:1 022.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的周期性求得ω,可得其解析式,利用正弦函数的图象的对称求得函数y=f(x)图象的对称轴方程.(2)利用正弦函数的单调性求得函数f(x)在上的单调性.18.【考点】独立性检验的应用.【分析】(1)根据从高一年级学生中随机抽取180名学生,其中男生105名,求出抽到男生的概率;(2)填写2×2列联表,计算观测值K2,对照数表即可得出结论.19.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)在△CDE中,由已知结合余弦定理得CE.连接AC,可得AC=2.在△PAE中,由PA2+AE2=PE2,得AP⊥AE.同理,AP⊥AC,然后利用线面垂直的判定可得AP⊥平面ABCE;(2)由AB∥CE,且CE⊂平面PCE,AB⊄平面PCE,可得AB∥平面PCE,又平面PAB∩平面PCE=l,结合面面平行的性质可得AB∥l.20.【考点】抛物线的简单性质.【分析】(1)由2px A=4,p=1.即可求得p的值,求得抛物线方程;(2)分别求得直线l1,l2方程,联立,求得交点M坐标,求得足,,利用点到直线的距离公式,根据函数的单调性即可求得点M到直线CD距离的最大值.21.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)利用导数判断f(x)的单调性,得出f(x)的极值;(2)由g(x1)=g(x2)=0可得,故h(x)=e x﹣x有两解x1,x2,判断h(x)的单调性得出x1,x2的范围,将问题转化为证明h(x1)﹣h(﹣x1)<0,在判断r(x1)=h(x1)﹣h(﹣x1)的单调性即可得出结论.22.【考点】简单曲线的极坐标方程.【分析】(1)由ρ=4cosθ得ρ2=4ρcosθ,即可求出圆C的直角坐标方程;(2)l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,即可求实数m的最大值.23.【考点】函数恒成立问题;函数的定义域及其求法.【分析】(1)由根式内部的代数式大于等于0,求解绝对值的不等式,进一步分类求解含参数的不等式得答案;(2)把不等式f(x)≥1恒成立转化为|ax﹣2|≤3,记g(x)=|ax﹣2|,可得,求解不等式组得答案.11/ 11。
【安徽省合肥市】2017年高考二模数学(理科)试卷(附答案)
安徽省合肥市2017年高考二模数学(理科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,题目要求的.i为虚数单位,若复数(l+mi)(i+2)是纯虚数,则实数m=()£2只有一项是符合1.A.1B.-1C.D.22. A.己知人=[1,+8),B=(xeR||<x<2a-l),B.[|,H若A B尹0,则实数1的取值范围是()3.A. 4.[l,+oo) C.「2、L-,+°o) D.(1,+8)已知变量工,y满足约束条件B.1x-y>2x+y<4,y>-l则目标函数z=x-2y的最小值为()-1若输入«=4,执行如图所示的程序框图,C.3D.7输出的s=(A.10B.16C.20D.355.若中心在原点,焦点在y轴上的双曲线离心率为右,则此双曲线的渐近线方程为()A.y=±x72F-B.y=-C.y-±yJ2xD.y=±—x26.等差数列{%}的前〃项和为S,,且$3=6,$6=3,则关二()A. 7.110一个几何体的三视图及其尺寸如图所示,则该几何体的体积为(B.0C.TOD.-15B2成D.22+6a/3.38.对函数/(x),如果存在此力0使得/(x o)=-/(-^o)>则称(x0>/(x0))与(-A:0,/(-x0))^函数图象的一组奇对称点.若f(x)=ex-a(e为自然数的底数)存在奇对称点,则实数。
的取值范围是()A.(-oo,l)B.(1,+8)C,(e,+oo) D.[!,+<»)9.若平面a截三棱锥所得截面为平行四边形,则该三棱锥与平面。
平行的棱有()A.0条B.1条C.2条D.1条或2条10.己知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为x,则Ex=()712A.3B.-C.—D.42511.锐角/XABC中,内角A,B,。
(2021年整理)合肥市2017年高三第二次教学质量检测试卷及答案
(完整)合肥市2017年高三第二次教学质量检测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)合肥市2017年高三第二次教学质量检测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)合肥市2017年高三第二次教学质量检测试卷及答案的全部内容。
合肥市2017年高三第二次教学质量检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i为虚数单位,若复数()()12mi i++是纯,则实数m=( )A.1 B.1- C.12- D.22.已知[)1,A=+∞,1|212B x x a⎧⎫=∈≤≤-⎨⎬⎩⎭R,若A Bφ≠,则实数a的取值范围是()A.[)1,+∞ B.1,12⎡⎤⎢⎥⎣⎦C.2,3⎡⎫+∞⎪⎢⎣⎭D.()1,+∞3.已知变量x,y满足约束条件241x yx yy-≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y=-的最小值为()A.1- B.1 C.3 D.74.若输入4n=,执行如图所示的程序框图,输出的s=()A .10B .16C 。
20D .355。
若中心在原点,焦点在y 轴上的双曲线离心率为3,则此双曲线的渐近线方程为( ) A .y x =± B .2y x =±C.2y x =± D .12y x =± 6。
等差数列{}n a 的前n 项和为n S ,且36S =,63S =,则10S =( ) A .110B .0 C.10- D .15- 7.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A .283B .2823。
2017年安徽省合肥市高考数学二模试卷(文科)(解析版)
2017年安徽省合肥市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,则=()A. B. C.D.2.已知集合A={x|1<x2<4},B={x|x﹣1≥0},则A∩B=()A.(1,2) B.[1,2) C.(﹣1,2)D.[﹣1,2)3.已知命题q:∀x∈R,x2>0,则()A.命题¬q:∀x∈R,x2≤0为假命题B.命题¬q:∀x∈R,x2≤0为真命题C.命题¬q:∃x∈R,x2≤0为假命题D.命题¬q:∃x∈R,x2≤0为真命题4.设变量x,y满足约束条件,则目标函数z=x+2y的最大值为()A.5 B.6 C.D.75.执行如图所示的程序框图,输出的s=()A.5 B.20 C.60 D.1206.设向量满足,则=()A.2 B.C.3 D.7.已知{}是等差数列,且a1=1,a4=4,则a10=()A.﹣ B.﹣ C.D.8.已知椭圆=1(a>b>0)的左,右焦点为F1,F2,离心率为e.P是椭圆上一点,满足PF2⊥F1F2,点Q在线段PF1上,且.若=0,则e2=()A.B.C.D.9.已知函数,若f(x1)<f(x2),则一定有()A.x1<x2B.x1>x2C.D.10.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a 个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为()A.1260 B.1360 C.1430 D.153011.锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若,则b2+c2的取值范围是()A.(5,6]B.(3,5) C.(3,6]D.[5,6]12.已知函数f(x)=﹣(a+1)x+a(a>0),其中e为自然对数的底数.若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的最大值为()A.e B.2 C.1 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知双曲线的离心率为,则它的渐近线方程为.14.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是.15.几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为.16.已知数列{a n}中,a1=2,且,则其前9项的和S9=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=sinωx﹣cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象的对称轴方程;(2)讨论函数f(x)在上的单调性.18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计男生女生合计附:,其中n=a+b+c+d.0.500.400.250.150.100.050.0250.0100.0050.001 P(K2≥k0)K00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828 19.如图1,平面五边形ABCDE中,AB∥CE,且,.将△CDE沿CE折起,使点D到P的位置如图2,且,得到四棱锥P﹣ABCE.(1)求证:AP⊥平面ABCE;(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.20.如图,已知抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.(1)求抛物线E的方程;(2)求点M到直线CD距离的最大值.21.已知f(x)=lnx﹣x+m(m为常数).(1)求f(x)的极值;(2)设m>1,记f(x+m)=g(x),已知x1,x2为函数g(x)是两个零点,求证:x1+x2<0.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求出圆C的直角坐标方程;(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.[选修4-5:不等式选讲]23.已知函数.(1)求函数f(x)的定义域;(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.2017年安徽省合肥市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,则=()A. B. C.D.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:===.故选:D.2.已知集合A={x|1<x2<4},B={x|x﹣1≥0},则A∩B=()A.(1,2) B.[1,2) C.(﹣1,2)D.[﹣1,2)【考点】交集及其运算.【分析】解不等式化简集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x2<4}={x|﹣2<x<﹣1或1<x<2},B={x|x﹣1≥0}={x|x≥1},则A∩B={x|1<x<2}=(1,2).故选:A.3.已知命题q:∀x∈R,x2>0,则()A.命题¬q:∀x∈R,x2≤0为假命题B.命题¬q:∀x∈R,x2≤0为真命题C.命题¬q:∃x∈R,x2≤0为假命题D.命题¬q:∃x∈R,x2≤0为真命题【考点】命题的否定.【分析】本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定,再进行判断即可.【解答】解:∵命题q:∀x∈R,x2>0,∴命题¬q:∃x∈R,x2≤0,为真命题.故选D.4.设变量x,y满足约束条件,则目标函数z=x+2y的最大值为()A.5 B.6 C.D.7【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+2y为y=﹣.由图可知,当直线y=﹣过A时,直线在y轴上的截距最大,z有最大值为.故选:C.5.执行如图所示的程序框图,输出的s=()A.5 B.20 C.60 D.120【考点】程序框图.【分析】先根据已知循环条件和循环体判定循环的规律,然后根据运行的情况判断循环的次数,从而得出所求.【解答】解:第一次循环,s=1,a=5≥3,s=5,a=4;第二次循环,a=4≥3,s=20,a=3;第三次循环,a=3≥3,s=60,a=2,第四次循环,a=2<3,输出s=60,故选:C.6.设向量满足,则=()A.2 B.C.3 D.【考点】平面向量数量积的运算.【分析】可以得到,这样代入即可求出的值,从而得出的值.【解答】解:===16﹣4=12;∴.故选:B.7.已知{}是等差数列,且a1=1,a4=4,则a10=()A.﹣ B.﹣ C.D.【考点】等差数列的通项公式.【分析】根据题意,设等差数列{}的公差为d,结合题意可得=1,=,计算可得公差d的值,进而由等差数列的通项公式可得的值,求其倒数可得a10的值.【解答】解:根据题意,{}是等差数列,设其公差为d,若a1=1,a4=4,有=1,=,则3d=﹣=﹣,即d=﹣,则=+9d=﹣,故a10=﹣;故选:A.8.已知椭圆=1(a>b>0)的左,右焦点为F1,F2,离心率为e.P是椭圆上一点,满足PF2⊥F1F2,点Q在线段PF1上,且.若=0,则e2=()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意求得P点坐标,根据向量的坐标运算求得Q点坐标,由=0,求得b4=2c2a2,则b2=a2﹣c2,根据离心率的取值范围,即可求得椭圆的离心率.【解答】解:由题意可知:PF2⊥F1F2,则P(c,),由,(x Q+c,y Q)=2(c﹣x Q,﹣y Q),则Q(,),=(2c,),=(﹣,),由=0,则2c×(﹣)+×=0,整理得:b4=2c2a2,则(a2﹣c2)2=2c2a2,整理得:a4﹣4c2a2+c4=0,则e4﹣4e2+1=0,解得:e2=2±,由0<e<1,则e2=2﹣,故选C.9.已知函数,若f(x1)<f(x2),则一定有()A.x1<x2B.x1>x2C.D.【考点】三角函数的化简求值;正弦函数的图象.【分析】把已知函数解析式变形,由f(x1)<f(x2),得sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由x1,x2的范围可得|2x1|>|2x2|,即|x1|>|x2|,得到.【解答】解:f(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=.由f(x1)<f(x2),得,∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,∵x1∈[﹣],x2∈[﹣],∴2x1∈[﹣,],2x2∈[﹣],由|sin2x1|>|sin2x2|,得|2x1|>|2x2|,即|x1|>|x2|,∴.故选:D.10.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a 个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为()A.1260 B.1360 C.1430 D.1530【考点】等差数列的前n项和.【分析】由已知条件求出a,b,c,d,代入公式能求出结果.【解答】解:∵最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.∴最底层长有c=a+15=17个,宽有d=b+15=16个则木桶的个数为:=1530.故选:D.11.锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若,则b2+c2的取值范围是()A.(5,6]B.(3,5) C.(3,6]D.[5,6]【考点】正弦定理;余弦定理.【分析】由已知利用正弦定理可得b2+c2﹣a2=bc.再利用余弦定理可得cosA,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B ﹣),利用B的范围,可求2B﹣的范围,利用正弦函数的图象和性质可求其范围.【解答】解:∵(a﹣b)(sinA+sinB)=(c﹣b)sinC,由正弦定理可得:(a﹣b)(a+b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∴A为锐角,可得A=,∵,∴由正弦定理可得:,∴可得:b2+c2=(2sinB)2+[2sin(﹣B)]2=3+2sin2B+sin2B=4+2sin(2B﹣),∵B∈(,),可得:2B﹣∈(,),∴sin(2B﹣)∈(,1],可得:b2+c2=4+2sin(2B﹣)∈(5,6].故选:A.12.已知函数f(x)=﹣(a+1)x+a(a>0),其中e为自然对数的底数.若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的最大值为()A.e B.2 C.1 D.【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导数,得到函数f(x)的值域,问题转化为即[1,+∞)⊆[,+∞),得到关于a的不等式,求出a的最大值即可.【解答】解:f(x)=﹣(a+1)x+a(a>0),f′(x)=•e x+ax﹣(a+1),a>0,则x<1时,f′(x)<0,f(x)递减,x>1时,f′(x)>0,f(x)递增,而x→+∞时,f(x)→+∞,f(1)=,即f(x)的值域是[,+∞),恒大于0,而f[f(x)]的值域是[,+∞),则要求f(x)的范围包含[1,+∞),即[1,+∞)⊆[,+∞),故≤1,解得:a≤2,故a的最大值是2,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知双曲线的离心率为,则它的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】运用离心率公式和a,b,c的关系,可得b==a,即可得到所求双曲线的渐近线方程.【解答】解:由题意可得e==,即c=a,b==a,可得双曲线的渐近线方程y=±x,即为y=±x.故答案为:y=±x.14.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是30.8.【考点】极差、方差与标准差.【分析】根据平均数与方差的计算公式,计算即可.【解答】解:五次考试的数学成绩分别是110,114,121,119,126,∴它们的平均数是=×=118,方差是s2= [2+2+2+2+2]=30.8.故答案为:30.8.15.几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为.【考点】由三视图求面积、体积.【分析】几何体为四棱锥,棱锥的高为俯视图三角形的高,底面为直角梯形.【解答】解:由三视图可知,几何体为四棱锥,棱锥的高为俯视图中等边三角形的高,棱锥的底面为直角梯形,梯形面积为(1+2)×1=.∴V==.故答案为.16.已知数列{a n}中,a1=2,且,则其前9项的和S9=1022.【考点】数列的求和.【分析】由题意整理可得:a n+1=2a n,则数列{a n}以2为首项,以2为公比的等比数列,利用等比数列的前n项和公式,即可求得S9.【解答】解:由题意可知a n+12=4a n(a n+1﹣a n),则a n+12=4(a n a n+1﹣a n2),a n+12﹣4a n a n+1+4a n2=0整理得:(a n+1﹣2a n)2=0,则a n+1=2a n,∴数列{a n}以2为首项,以2为公比的等比数列,则前9项的和S9===1022,故答案为:1022.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=sinωx﹣cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象的对称轴方程;(2)讨论函数f(x)在上的单调性.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的周期性求得ω,可得其解析式,利用正弦函数的图象的对称求得函数y=f(x)图象的对称轴方程.(2)利用正弦函数的单调性求得函数f(x)在上的单调性.【解答】解:(1)∵,且T=π,∴ω=2.于是,令,得,即函数f(x)的对称轴方程为.(2)令,得函数f(x)的单调增区间为.注意到,令k=0,得函数f(x)在上的单调增区间为;同理,求得其单调减区间为.18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计男生6045105女生304575合计9090180附:,其中n=a+b+c+d.P(K20.500.400.250.150.100.050.0250.0100.0050.001≥k0)K00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828【考点】独立性检验的应用.【分析】(1)根据从高一年级学生中随机抽取180名学生,其中男生105名,求出抽到男生的概率;(2)填写2×2列联表,计算观测值K2,对照数表即可得出结论.【解答】解:(1)从高一年级学生中随机抽取1人,抽到男生的概率约为.(2)根据统计数据,可得列联表如下:选择自然科学类选择社会科学类合计男生6045105女生304575合计9090180,所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.19.如图1,平面五边形ABCDE中,AB∥CE,且,.将△CDE沿CE折起,使点D到P的位置如图2,且,得到四棱锥P﹣ABCE.(1)求证:AP⊥平面ABCE;(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)在△CDE中,由已知结合余弦定理得CE.连接AC,可得AC=2.在△PAE中,由PA2+AE2=PE2,得AP⊥AE.同理,AP⊥AC,然后利用线面垂直的判定可得AP⊥平面ABCE;(2)由AB∥CE,且CE⊂平面PCE,AB⊄平面PCE,可得AB∥平面PCE,又平面PAB∩平面PCE=l,结合面面平行的性质可得AB∥l.【解答】证明:(1)在△CDE中,∵,,∴由余弦定理得CE==2.连接AC,∵AE=2,∠AEC=60°,∴AC=2.又∵,∴在△PAE中,PA2+AE2=PE2,即AP⊥AE.同理,AP⊥AC,∵AC⊂平面ABCE,AE⊂平面ABCE,且AC∩AE=A,故AP⊥平面ABCE;(2)∵AB∥CE,且CE⊂平面PCE,AB⊄平面PCE,∴AB∥平面PCE,又平面PAB∩平面PCE=l,∴AB∥l.20.如图,已知抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.(1)求抛物线E的方程;(2)求点M到直线CD距离的最大值.【考点】抛物线的简单性质.【分析】(1)由2px A=4,p=1.即可求得p的值,求得抛物线方程;(2)分别求得直线l1,l2方程,联立,求得交点M坐标,求得足,,利用点到直线的距离公式,根据函数的单调性即可求得点M到直线CD距离的最大值.【解答】解:(1)由x A=2得,故2px A=4,p=1.于是,抛物线E的方程为y2=2x.(2)设,,切线l1:,代入y2=2x得,由△=0解得,∴l1方程为,同理l2方程为,联立,解得,易得CD方程为x0x+y0y=8,其中x0,y0满足,,联立方程得,则,∴M(x,y)满足,即点M为.点M到直线CD:x0x+y0y=8的距离,关于x0单调减,故当且仅当x0=2时,.21.已知f(x)=lnx﹣x+m(m为常数).(1)求f(x)的极值;(2)设m>1,记f(x+m)=g(x),已知x1,x2为函数g(x)是两个零点,求证:x1+x2<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)利用导数判断f(x)的单调性,得出f(x)的极值;(2)由g(x1)=g(x2)=0可得,故h(x)=e x﹣x有两解x1,x2,判断h(x)的单调性得出x1,x2的范围,将问题转化为证明h(x1)﹣h(﹣x1)<0,在判断r(x1)=h(x1)﹣h(﹣x1)的单调性即可得出结论.【解答】解:(1)∵f(x)=lnx﹣x+m,∴,由f'(x)=0得x=1,且0<x<1时,f'(x)>0,x>1时,f'(x)<0.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).所以,函数f(x)的极大值为f(1)=m﹣1,无极小值.(2)由g(x)=f(x+m)=ln(x+m)﹣x,∵x1,x2为函数g(x)是两个零点,∴,即,令h(x)=e x﹣x,则h(x)=m有两解x1,x2.令h'(x)=e x﹣1=0得x=0,∴﹣m<x<0时,h′(x)<0,当x>0时,h′(x)>0,∴h(x)在(﹣m,0)上单调递减,在(0,+∞)上单调递增.∵h(x)=m的两解x1,x2分别在区间(﹣m,0)和(0,+∞)上,不妨设x1<0<x2,要证x1+x2<0,考虑到h(x)在(0,+∞)上递增,只需证h(x2)<h(﹣x1),由h(x2)=h(x1)知,只需证h(x1)<h(﹣x1),令r(x)=h(x)﹣h(﹣x)=e x﹣2x﹣e﹣x,则r′(x)=e x+﹣2≥0,∴r(x)单调递增,∵x1<0,∴r(x1)<r(0)=0,即h(x1)<h(﹣x1)成立,即x1+x2<0成立.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求出圆C的直角坐标方程;(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l'.若直线l'上存在点P使得∠APB=90°,求实数m的最大值.【考点】简单曲线的极坐标方程.【分析】(1)由ρ=4cosθ得ρ2=4ρcosθ,即可求出圆C的直角坐标方程;(2)l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,即可求实数m的最大值.【解答】解:(1)由ρ=4cosθ得ρ2=4ρcosθ,即x2+y2﹣4x=0,即圆C的标准方程为(x﹣2)2+y2=4.(2)l:y=2x关于点M(0,m)的对称直线l'的方程为y=2x+2m,而AB为圆C 的直径,故直线l'上存在点P使得∠APB=90°的充要条件是直线l'与圆C有公共点,故,于是,实数m的最大值为.[选修4-5:不等式选讲]23.已知函数.(1)求函数f(x)的定义域;(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.【考点】函数恒成立问题;函数的定义域及其求法.【分析】(1)由根式内部的代数式大于等于0,求解绝对值的不等式,进一步分类求解含参数的不等式得答案;(2)把不等式f(x)≥1恒成立转化为|ax﹣2|≤3,记g(x)=|ax﹣2|,可得,求解不等式组得答案.【解答】解:(1)要使原函数有意义,则|ax﹣2|≤4,即﹣4≤ax﹣2≤4,得﹣2≤ax≤6,当a>0时,解得,函数f(x)的定义域为;当a<0时,解得,函数f(x)的定义域为.(2)f(x)≥1⇔|ax﹣2|≤3,记g(x)=|ax﹣2|,∵x∈[0,1],∴需且只需,即,解得﹣1≤a≤5,又a≠0,∴﹣1≤a≤5,且a≠0.2017年4月11日。
(全优试卷)安徽省合肥市高三第二次教学质量检测文数试题 Word版含答案
合肥市2017年高三第二次教学质量检测数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则=-+ii31( ) A .52i - B .52i + C .521i - D .521i +2.已知集合{}412<<=x x A ,{}01≥-=x x B ,则=B A ( ) A .)2,1( B .)2,1[ C .)2,1(- D .)2,1[- 3.已知命题0,:2>∈∀x R x q ,则( )A .命题0,:2≤∈∀⌝x R x q 为假命题 B .命题0,:2≤∈∀⌝x R x q 为真命题 C .命题0,:2≤∈∃⌝x R x q 为假命题 D . 命题0,:2≤∈∃⌝x R x q 为真命题4.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≥-241y y x y x ,则目标函数y x z 2+=的最大值为( )A .5B .6 C.213D .7 5.执行如图所示的程序框图,输出的s =( )A .5B .20 C.60 D .1206.设向量,1,4=⋅=+b a =( ) A .2 B .32 C. 3 D .527.已知⎭⎬⎫⎩⎨⎧n a 1是等差数列,且4,141==a a ,则=10a ( ) A .54-B .45- C. 134 D .413 8.已知椭圆)0(12222>>=+b a by a x 的左,右焦点为21,F F ,离心率为e .P 是椭圆上一点,满足212F F PF ⊥,点Q 在线段1PF 上,且QP Q F 21=.若021=⋅Q F P F ,则=2e ( ) A .12- B .22- C.32- D .25- 9.已知函数]4,4[,cos sin )(44ππ-∈+=x x x x f ,若)()(21x f x f <,则一定有( )A .21x x <B .21x x > C.2221x x < D .2221x x >10.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦澳笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶.每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶6)]()2()2[(b d d a c b c a n -++++个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为( ) A .1260 B .1360 C.1430 D .1530 11.锐角..ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足()()()sin sin sin a b A B c b C -+=-,若a =22b c +的取值范围是( )A .(]5,6B .()3,5 C.(]3,6 D .[]5,6 12.已知函数)0()1(21)(2>++-+⋅=a a x a x a e e x f x ,其中e 为自然对数的底数.若函数)(x f y =与)]([x f f y =有相同的值域,则实数a 的最大值为( )A .eB .2 C. 1 D .2e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知双曲线)0,0(12222>>=-b a by a x 的离心率为3,则该双曲线的渐近线方程为 .14.某同学在高三学年的五次阶段性考试中,数学成绩依次为126,119,121,114,110,则这组数据的方差是 .15.几何体三视图如图所示,其中俯视图为边长为1的等边三角形,则此几何体的体积为 .16.已知数列{}n a 中,21=a ,且))((4121*++∈-=N n a a a a n n nn,则其前9项的和=9S .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数)0(cos sin )(>-=ωωωx x x f 的最小正周期为π. (1)求函数)(x f y =图像的对称轴方程; (2)讨论函数)(x f 在]2,0[π上的单调性.18. 某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?(2)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过025.0的前提下认为科类的选择与性别有关?附:()()()()()22n ab bc K a b c d a c b d -=++++,其中n a b c d =+++.19. 如图,平面五边形ABCDE 中,AB ∥CE ,且7,60,2===∠=ED CD AEC AE,75cos =∠EDC .将CDE ∆沿CE 折起,使点D 到P 的位置,且3=AP ,得到四棱锥ABCE P -.(1)求证:⊥AP 平面ABCE ;(2)记平面PAB 与平面PCE 相交于直线l ,求证:AB ∥l .20. 如图,已知抛物线)0(2:2>=p px y E 与圆8:22=+y x O 相交于B A ,两点,且点A 的横坐标为2.过劣弧AB 上动点),(00y x P 作圆O 的切线交抛物线E 于D C ,两点,分别以D C ,为切点作抛物线E 的切线21,l l ,1l 与2l 相交于点M .(1)求抛物线E 的方程;(2)求点M 到直线CD 距离的最大值. 21. 已知m x x x f +-=ln )((m 为常数). (1)求)(x f 的极值;(2)设1>m ,记)()(x g m x f =+,已知21,x x 为函数)(x g 是两个零点,求证:021<+x x .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=.(1)求出圆C 的直角坐标方程;(2)已知圆C 与x 轴相交于A ,B 两点,直线l :2y x =关于点()()0,0M m m ≠对称的直线为'l .若直线'l 上存在点P 使得 90=∠APB ,求实数m 的最大值. 23.选修4-5:不等式选讲已知函数())0f x a ≠. (1)求函数()f x 的定义域;(2)若当[]0,1x ∈时,不等式()1f x ≥恒成立,求实数a 的取值范围.合肥市2017年高三第二次教学质量检测数学试题(文)参考答案一、选择题1-5:DADCC 6-10:BACDB 11、12:AB二、填空题13.x y 2±= 14.8.30 15.4316.1022 三、解答题17.解:(1))4sin(2cos sin )(πωωω-=-=x x x x f ,且π=T ,∴2=ω.于是)42sin(2)(π-=x x f ,令242πππ+=-k x ,得)(832Z k k x ∈+=ππ,即函数)(x f 的对称轴方程为)(832Z k k x ∈+=ππ.(2)令224222πππππ+≤-≤-k x k ,得函数)(x f 的单调增区间为)](83,8[Z k k k ∈+-ππππ.注意到]2,0[π∈x ,令0=k ,得函数)(x f 在]2,0[π上的单调增区间为]83,0[π;同理,其单调减区间为]2,83[ππ.18.(1)从高一年级学生中随机抽取1人,抽到男生的概率约为127180105=.(2)根据统计数据,可得列联表如下:()2218060453045365.1429 5.024*********7K ⨯⨯-⨯==≈>⨯⨯⨯, 所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关. 19.解:(1)在CDE ∆中,∵7==ED CD ,75cos =∠EDC ,由余弦定理得2=CE . 连接AC ,∵2,60,2=∴=∠=AC AEC AE.又∵3=AP ,∴在PAE ∆中,222PE AE PA =+,即AE AP ⊥.同理,AC AP ⊥,⊂AE AC ,平面ABCE ,A AE AC = ,故⊥AP 平面ABCE . (2)∵AB ∥CE ,且⊂CE 平面PCE ,⊄AB 平面PCE , ∴AB ∥平面PCE ,又平面 PAB 平面PCE l =,∴AB ∥l . 20.解:(1)由2=A x 得42=A y ,故1,42==p px A . 于是,抛物线E 的方程为x y 22=.(Ⅱ)设211,2y C y ⎛⎫ ⎪⎝⎭,222,2y D y ⎛⎫ ⎪⎝⎭,切线1l :2112y y y k x ⎛⎫-=- ⎪⎝⎭,代入22y x =得2211220ky y y ky -+-=,由0∆=解得11k y =, 1l ∴方程为1112y y x y =+,同理2l 方程为2212y y x y =+, 联立11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121222y y x y y y ⋅⎧=⎪⎪⎨+⎪=⎪⎩,易得CD 方程为008x x y y +=,其中0x ,0y 满足2208x y +=,0x ⎡∈⎣, 联立方程20028y x x x y y ⎧=⎪⎨+=⎪⎩得2002160x y y y +-=,则0120120216y y y x y y x ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩,∴(),M x y 满足0008x x y y x ⎧=-⎪⎪⎨⎪=-⎪⎩,即点M 为),8(000x y x --.点M 到直线CD :008x x y y +=的距离2216822168221688000200202020020+-=+-=+=+---=x x x x x y y x x y d关于0x 单调减,故当且仅当20=x 时,2292218max ==d . 21.解:(1)11)(,ln )(-=∴+-=xx f m x x x f ,由0)(='x f 得1=x , 且10<<x 时,()'0f x >,1>x 时,()'0f x <.故函数()f x 的单调递增区间为)1,0(,单调递减区间为),1(+∞. 所以,函数()f x 的极大值为1)1(-=m f ,无极小值.(2)由)()(m x f x g +=及(1)知)(x g 的单调递增区间为)1,(m m --,单调递减区间为),1(+∞-m .由条件知()()1122ln ln x m mx x m mx ⎧+=⎪⎨+=⎪⎩,即1212mxmx x m e x m e ⎧+=⎪⎨+=⎪⎩, 构造函数x e x h x -=)(,知x e x h x-=)(与y m =图像两交点的横坐标为1x ,2x ,1)(-='x e x h ,由0)(='x h 得0=x ,易知函数)(x h 的单调递减区间为)0,(m -,单调递减区间为),0(+∞.欲证120x x +<,只需证12x x -<,不妨设210x x <<, 考虑到)(x h 在),0(+∞上递增,只需证)()(12x h x h -<, 由)()(12x h x h =知,只需证)()(11x h x h -<, 令xxe x e x h x h x r ---=--=2)()()(,则02121ln)1()(≥-+=--='x x x x ee e e e x r , 即)(x r 单调增,注意到0)0(=r ,结合01<x 知0)(1<x r ,即)()(11x h x h -<成立,即120x x +<成立.22.解:(1)由4cos ρθ=得24cos ρρθ=,即2240x y x +-=,即圆C 的标准方程为()2224x y -+=.(2)l :2y x =关于点()0,M m 的对称直线'l 的方程为22y x m =+,而AB 为圆C 的直径,故直线'l 上存在点P 使得90APB ∠=的充要条件是直线'l 与圆C 有公共点,2≤,于是,实数m 2.23.解:(1)2442426ax ax ax -≤⇔-≤-≤⇔-≤≤, 当0a >时,函数()f x 的定义域为26|x x a a ⎧⎫-≤≤⎨⎬⎩⎭;当0a <时,函数()f x 的定义域为62|x x aa ⎧⎫≤≤-⎨⎬⎩⎭.(2)()123f x ax ≥⇔-≤,记()2f x ax =-,因为[]0,1x ∈,所以需且只需()()03,23,23,15232313g a a a g ⎧≤≤≤⎧⎧⎪⎪⎪⇔⇔⇔-≤≤⎨⎨⎨-≤-≤≤⎪⎪⎪⎩⎩⎩,又0a ≠,所以,15a -≤≤,且0a ≠.。
2017届安徽省合肥市高三第二次教学质量检测文科综合试题(图片版)
合肥市2017年高三第二次教学质量检测文科综合试题参考答案及评分标准第Ⅰ卷(共140分,每小题4分)第Ⅱ卷(共160分)36.(22分)(1)厄瓜多尔玫瑰主产区位于赤道地区,每天昼长约12小时,大都满足8小时日照时数;位于高原和山间盆地,海拔高,(上升气流较弱,对流雨较少)光照充足;纬度低、海拔高, 全年温和(或气温年较差小),气温日较差大;受火山活动影响,火山灰覆盖,土壤肥沃。
(答对两点得6分,答对三点得8分)(2)互联网科技减少了鲜花销售的中间环节,提高了效率;科技促使交通运输朝高速化、大型化、专业化方向发展,节省了运输时间和费用;冷藏保鲜技术进步,可以保证鲜花品质。
(每点2分,答对三点得6分)(3)海运运量大,适应急剧增长的玫瑰花市场需求;科技进步延长了鲜花保鲜时间,提高了海运速度;厄瓜多尔玫瑰花不易凋谢,保存时间较长。
(答对两点得6分,答对三点得8 分)37.(24分)(1)与阿勒泰气象站相比,森塔斯气象站最大积雪深度较大,出现的时间较迟。
(2分) 森塔斯气象站海拔较高,对西风气流的抬升作用更明显,降水(雪)量较大;(2分)森塔斯气象站海拔较高,气温较低,降雪开始较早,融雪较迟,积雪时间较长,最大积雪深度大,出现时间较迟。
(2分)(或从阿勒泰气象站的角度答亦可)(2)冬季气温在0℃以下且降水量较大,累积积雪量大;随着气温回升,5月积雪大量融化,径流量大;6-7月融雪补给锐减,径流量减小;5-7月,气温升高,蒸发量增大。
(答对两点得6分,答对三点得8分)(3)深居内陆,降水稀少;气候干燥,蒸发旺盛;乌伦古湖为内流湖,乌伦古河带来盐分在湖中不断积累,形成咸水湖。
(每点2分,答对三点得6分)(4)问题①:(5-6月)额尔齐斯河径流量较大;额尔齐斯河距离乌伦古湖近,(海拔差异小)工程量小;增加乌伦古湖水量,稀释并净化湖水。
(每点2分,答对2点得4分) 问题②:控制种植业规模,发展节水灌溉技术,增加入湖水量;减少化肥农药的使用,改善河水水质;发展林业,扩大水源涵养林;控制牧区载畜量;减少利用饲料喂养渔业的规模。
安徽省合肥市2017届高三第二次教学质量检测文科综合试题(优秀范文5篇)
安徽省合肥市2017届高三第二次教学质量检测文科综合试题(优秀范文5篇)第一篇:安徽省合肥市2017届高三第二次教学质量检测文科综合试题安徽省合肥市2017届高三第二次教学质量检测文科综合试题本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
西江千户苗寨是中国最大的苗族古村寨,位于黔东南某断层谷地。
层层落落的木质吊脚楼依山而建,呈梯状逐级抬升,与自然和诸共融,成为名符其实的“生态建筑”。
下图示意西江千户苗寨吊脚楼分布。
据此完成1-3题。
1.造成河流两岸吊脚楼数量差异的主要因素是 A.热量B.光照C.降水D.地形 2.吊脚楼与自然环境的和谐共融体现在①可就地取材建房且室内冬暖夏凉②能获得较多光照且节约建筑用地③底层架空以利于防涝且通风透气④底部支柱长短的选择可适应地形A.①②③B.①②④C.①③④D.②③④3.某游客中秋节去西江千户苗寨旅游,见到的农业景观与下列诗句最吻合的是 A.家家打稻趁霜晴B.新雨山头荔枝熟C.小麦登场雨熟梅D.梨花淡白柳深青目前,工业机器人广泛应用于焊接、刷漆、组装、产品检测等生产环节。
2015年中国政府公布“中国制造2025”计划,提出加快工业机器人在制造业领城中的应用。
2016年我国某知名家电企业收购了德国某机器人公司。
据此完成4-6题4.工业机器人目前广泛应用于A.建筑设计B.汽车生产C.桥梁建设D.矿山开采5.我国政府加快工业机器人应用的原因有①劳动力性别比失衡②人口老龄化加剧③劳动力工资上涨④人口素质提高A.①②③B.①②④C.①③④D.②③④6.我国某知名家电企业收购德国工业机器人公司的主要目的是A.增强品牌影响B.加强家电研发C.扩展国际市场D.实现转型升级下图示意某年6月球东沿海某地理事物分布(图甲)和海水表层等温线分布(图乙)。
据此完成7-9题。
7.六月,琼东沿海的盛行风是A.东北风B.东南风C.西南风D.西北风 8.根据乙图推断甲图所示地理事物最可能是A.浮游生物B.降水总量C.光照资源D.风能资源 9.与甲图所示地理事物时空分布最相似的海区是 A.澳大利亚西部沿海 B.秘鲁西部沿海 C.索马里东部沿海 D.美国东部沿海平顶山顶部沉积物的厚度与沉积物底部基岩的陡缓密切相关。
2017年安徽省江南十校高考数学二模试卷(文科)(解析版)
2017年安徽省江南十校高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)集合A={x∈N|x2﹣4x﹣5<0},B={x|log2(x﹣2)≤1},则A∩B=()A.(﹣1,4]B.(2,4]C.(3,4)D.{3,4}2.(5分)设i是虚数单位,复数z满足z•(1+i)=﹣i,则复数z的虚部等于()A.﹣B.C.2D.﹣3.(5分)设向量,是互相垂直的两个单位向量,且|﹣3|=m|+|,则实数m的值为()A.B.±C.D.±4.(5分)设命题p:∀x∈R,e x≥x+1,则¬p为()A.∀x∈R,e x<x+1B.∃x0∈R,e x0<x0+1C.∃x0∈R,e x0≤x0+1D.∃x∈R,e x0≥x0+15.(5分)连续两次抛掷一枚骰子,记录向上的点数,则向上的点数之差的绝对值为3的概率是()A.B.C.D.6.(5分)“a=﹣1”是“直线ax+3y+3=0与直线x+(a﹣2)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)某程序框图如图所示,若输出的S=29,则判断框内应填()A.k>5?B.k>4?C.k>7?D.k>6?8.(5分)已知函数f(x)=x2+bx过(1,3)点,若数列{}的前n项和为S n,则S n 的值为()A.B.C.﹣D.﹣9.(5分)双曲线﹣=1(a>0,b>0)上任意一点M与左右顶点A1、A2连线的斜率之积为,则双曲线的离心率为()A.B.C.D.10.(5分)函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有x2f (x1)>x1f(x2),记a=f(2),b=f(1),c=﹣f(﹣3),则a,b,c之间的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b 11.(5分)如图,已知A、B分别是函数f(x)=cos(ωx﹣)(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=,则为了得到函数y=sin(x+)的图象,只需把函数y=f(x)的图象()A.向左平行移动个单位长度B.向左平行移动个单位长度C.向左平行移动个单位长度D.向左平行移动个单位长度12.(5分)已知函数f(x)=e|ln2x|﹣|x﹣|,若f(x1)=f(x2)且x1≠x2,则下面结论正确的是()A.x1+x2﹣1>0B.x1+x2﹣1<0C.x2﹣x1>0D.x2﹣x1<0二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知x,y满足约束条件则目标函数z=的最大值为.14.(5分)已知数列{a n}满足a1=1,=+,则数列{a n}的通项a n=.15.(5分)如图是某多面体的三视图,则该几何体的外接球体积为.16.(5分)某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区,已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向;此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向,有下列判断:①甲所在方向是B方向②乙所在方向是D方向③丙所在方向是D方向④丁所在方向是C方向其中判断正确的序号是.三、解答题(共5小题,满分60分)17.(12分)已知a,b,c分别为△ABC三个内角A、B、C的对边,c=2,且(2+b)(sin C ﹣sin B)=a(sin A﹣sin B).(Ⅰ)求∠C的大小;(Ⅱ)求△ABC周长l的最大值.18.(12分)下表是某位理科学生连续5次月考的物理、数学的成绩,结果如下:(Ⅰ)求该生5次月考物理成绩的平均分和方差;(Ⅱ)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.(小数点后保留一位有效数字)参考公式:=,=﹣,,表示样本均值参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.19.(12分)如图,四边形ABCD是正方形,四边形ABEG是平行四边形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,设线段CD、AE的中点分别为P、M.(Ⅰ)求证:EF⊥平面BCE;(Ⅱ)求证:MP∥平面BCE;(Ⅲ)若∠EAF=30°,求三棱锥M﹣BDP和三棱锥F﹣BCE的体积之比.20.(12分)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8在第一象限内的交点为M,抛物线C与圆O在点M处的切线斜率分别为k1,k2,且k1+k2=1.(Ⅰ)求抛物线C的方程;(Ⅱ)设抛物线C在点M处的切线为l,过圆O上任意一点P作与l夹角为45°的直线,交l于A点,求|P A|的最大值.21.(12分)设函数f(x)=﹣alnx(e为自然对数的底数).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=e x(x2﹣3x+3),当a≤1时,若存在x1∈(0,+∞),使得对任意x2∈(0,+∞),都有f(x1)≤g(x2),求a的取值范围.四、选修4-4:坐标系与参数方程22.(10分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,曲线C的极坐标方程是ρ2=.(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C截得的弦长.五、选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|x+1|(x∈R).(Ⅰ)当a=1时,解不等式f(x)≥3;(Ⅱ)若不等式f(x)≥对任意实数x与任意非零实数m都恒成立,求a 的取值范围.2017年安徽省江南十校高考数学二模试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)集合A={x∈N|x2﹣4x﹣5<0},B={x|log2(x﹣2)≤1},则A∩B=()A.(﹣1,4]B.(2,4]C.(3,4)D.{3,4}【解答】解:集合A={x∈N|x2﹣4x﹣5<0}={x∈N|﹣1<x<5}={0,1,2,3,4},B={x|log2(x﹣2)≤1}={x|0<x﹣2≤2}={x|2<x≤4},∴A∩B={3,4}.故选:D.2.(5分)设i是虚数单位,复数z满足z•(1+i)=﹣i,则复数z的虚部等于()A.﹣B.C.2D.﹣【解答】解:z•(1+i)=﹣i,∴z•(1+i)(1﹣i)=﹣i(1﹣i),∴3z=﹣2﹣i,即z=﹣﹣i.则复数z的虚部等于﹣.故选:A.3.(5分)设向量,是互相垂直的两个单位向量,且|﹣3|=m|+|,则实数m的值为()A.B.±C.D.±【解答】解:因为向量,是互相垂直的两个单位向量,所以=0,,|﹣3|=m|+|,所以|﹣3|2=m2|+|2,展开得10=2m2,又由题意,m≥0,所以m =;故选:C.4.(5分)设命题p:∀x∈R,e x≥x+1,则¬p为()A.∀x∈R,e x<x+1B.∃x0∈R,e x0<x0+1C.∃x0∈R,e x0≤x0+1D.∃x∈R,e x0≥x0+1【解答】解:因为全称命题的否定是特称命题,所以命题p:∀x∈R,e x≥x+1,则¬p为∃x0∈R,e x0<x0+1,故选:B.5.(5分)连续两次抛掷一枚骰子,记录向上的点数,则向上的点数之差的绝对值为3的概率是()A.B.C.D.【解答】解:连续两次抛掷一枚骰子,记录向上的点数,基本事件总数n=6×6=36,向上的点数之差的绝对值为3包含的基本事件有:(1,4),(4,1),(2,5),(5,2),(3,6),(6,3),共6个,∴向上的点数之差的绝对值为3的概率p=.故选:A.6.(5分)“a=﹣1”是“直线ax+3y+3=0与直线x+(a﹣2)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当a=﹣1时,两直线方程为﹣x+3y+3=0和x﹣3y﹣3=0,此时两直线重合,不满足条件.若直线ax+3y+3=0与直线x+(a﹣2)y﹣3=0平行,若a=0时,两直线方程为3y+3=0和x﹣2y﹣3=0,此时两直线相交,不满足条件.若a≠0,若两直线平行,则,由得a(a﹣2)=3,即a2﹣2a﹣3=0,得a=﹣1或a=3,当a=﹣1时,两直线重合,∴a=3,则“a=﹣1”是“直线ax+3y+3=0与直线x+(a﹣2)y﹣3=0平行”的既不充分也不必要条件,故选:D.7.(5分)某程序框图如图所示,若输出的S=29,则判断框内应填()A.k>5?B.k>4?C.k>7?D.k>6?【解答】解:程序在运行过程中各变量值变化如下表:k S是否继续循环循环前1 1/第一圈2 5 是第二圈3 11 是第三圈4 19 是第四圈5 29 否故退出循环的条件应为k>4.故选:B.8.(5分)已知函数f(x)=x2+bx过(1,3)点,若数列{}的前n项和为S n,则S n 的值为()A.B.C.﹣D.﹣【解答】解:函数f(x)=x2+bx过(1,3)点,可得:3=1+b,解得b=2,可知:f(n)=n(n+2),∴,∴S n==﹣.故选:D.9.(5分)双曲线﹣=1(a>0,b>0)上任意一点M与左右顶点A1、A2连线的斜率之积为,则双曲线的离心率为()A.B.C.D.【解答】解:设M(m,n),由题意可得:,,并且:,可得=,所以==,∴=,e=.故选:C.10.(5分)函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有x2f (x1)>x1f(x2),记a=f(2),b=f(1),c=﹣f(﹣3),则a,b,c之间的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b【解答】解:函数f(x)是定义在R上的奇函数,且对任意两个正数x1,x2(x1<x2),都有x2f(x1)>x1f(x2),∴>;设g(x)=,g(x)在(0,+∞)上是单调减函数;又a=f(2)=,b=f(1)=,c=﹣f(﹣3)=f(3)=,∴g(1)>g(2)>g(3),即b>a>c.故选:B.11.(5分)如图,已知A、B分别是函数f(x)=cos(ωx﹣)(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=,则为了得到函数y=sin(x+)的图象,只需把函数y=f(x)的图象()A.向左平行移动个单位长度B.向左平行移动个单位长度C.向左平行移动个单位长度D.向左平行移动个单位长度【解答】解:函数f(x)=cos(ωx﹣)=sinωx,设函数f(x)的周期为T,则点A(,)、B(,﹣),根据∠AOB=,可得=﹣3=0,∴T=4=,∴ω=,f(x)=sinx.由于函数y=sin(x+)=sin(x+),故只需把函数y=f(x)的图象向左平行移动个单位长度,故选:C.12.(5分)已知函数f(x)=e|ln2x|﹣|x﹣|,若f(x1)=f(x2)且x1≠x2,则下面结论正确的是()A.x1+x2﹣1>0B.x1+x2﹣1<0C.x2﹣x1>0D.x2﹣x1<0【解答】解:∵f(x)=e|ln2x|﹣|x﹣|=,∴f(x)=x+(x>0),∵f(x1)=f(x2)且x1≠x2,∴不妨设x1<x2,则0<x1<<x2.故1﹣x1>.∴f(x2)﹣f(1﹣x1)=f(x1)﹣f(1﹣x1).设g(x)=f(x)﹣f(1﹣x)(0<x<).则g(x)=2x+.g′(x)=<0.∴g(x)在(0,)内为减函数.得g(x)>g()=0,从而f(x2)﹣f(1﹣x1)=f(x1)﹣f(1﹣x1)>0.故f(x2)>f(1﹣x1).又f(x)=x+在(,+∞)上为增函数,∴x2>1﹣x1,即x1+x2﹣1>0.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知x,y满足约束条件则目标函数z=的最大值为2.【解答】解:x,y满足约束条件,表示的可行域如图:目标函数z=,目标函数的几何意义是可行域的点与(﹣2,0)斜率的2倍,由题意可知:DA的斜率最大.由,可得A(2,4),则目标函数的最大值为:=2.故答案为:2.14.(5分)已知数列{a n}满足a1=1,=+,则数列{a n}的通项a n=3n ﹣2(n∈N*).【解答】解:数列{a n}满足a1=1,=+,可得:a n+1=3a n+4,即a n+1+2=3(a n+2),所以数列{a n+2}是以3为首项以3为公比的等比数列,所以a n+2=3n,可得a n=3n﹣2(n∈N*).故答案为:3n﹣2(n∈N*).15.(5分)如图是某多面体的三视图,则该几何体的外接球体积为4π.【解答】解:由三视图得到几何体由棱长位的正方体截去两个侧棱长为2 的正三棱锥P﹣ABC和E﹣BCD得到,如图所以几何体的外接球与正方体的外接球是同一个球,所以体积为;故答案为:4.16.(5分)某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区,已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向;此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向,有下列判断:①甲所在方向是B方向②乙所在方向是D方向③丙所在方向是D方向④丁所在方向是C方向其中判断正确的序号是①③.【解答】解:由题意,丁所在方向是A方向,又如果丙所在方向不是D方向,那么丁所在方向就不是A方向,所以丙所在方向是D方向,从而乙所在方向就不是C方向,所以甲所在方向是B方向,故正确判断①③.故答案为:①③.三、解答题(共5小题,满分60分)17.(12分)已知a,b,c分别为△ABC三个内角A、B、C的对边,c=2,且(2+b)(sin C ﹣sin B)=a(sin A﹣sin B).(Ⅰ)求∠C的大小;(Ⅱ)求△ABC周长l的最大值.【解答】解:(I)由c=2,且(2+b)(sin C﹣sin B)=a(sin A﹣sin B).由正弦定理可得:(c+b)(c﹣b)=a(a﹣b),化为:a2+b2﹣c2=ab.∴cos C==,C∈(0,π).∴C=.(II)由(I)可得:A+B=.∴B=﹣A.由正弦定理可得:====.∴a=sin A,b=sin B.∴a+b+c=sin A+sin B+2=[sin A+sin(﹣A)]+2=(sin A+cos A)+2=4sin+2.故当A+=时,△ABC周长l的最大值为6.18.(12分)下表是某位理科学生连续5次月考的物理、数学的成绩,结果如下:(Ⅰ)求该生5次月考物理成绩的平均分和方差;(Ⅱ)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.(小数点后保留一位有效数字)参考公式:=,=﹣,,表示样本均值参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.【解答】解:(Ⅰ)计算月考物理成绩的平均分为=×(90+85+74+68+63)=76,方差为s2=×[++…+]=×[(90﹣76)2+(85﹣76)2+…+(63﹣76)2]=102.8;(Ⅱ)计算=×(130+125+110+95+68+90)=110,回归系数为==≈1.5,=﹣=110﹣1.5×76=﹣4,所以变量x,y的线性回归方程为=1.5x﹣4.19.(12分)如图,四边形ABCD是正方形,四边形ABEG是平行四边形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,设线段CD、AE的中点分别为P、M.(Ⅰ)求证:EF⊥平面BCE;(Ⅱ)求证:MP∥平面BCE;(Ⅲ)若∠EAF=30°,求三棱锥M﹣BDP和三棱锥F﹣BCE的体积之比.【解答】(Ⅰ)证明:∵平面ABCD⊥平面ABEG,平面ABCD∩平面ABEG=AB,由ABCD为正方形,得BC⊥AB,∴BC⊥平面ABEG,又EF⊂平面ABEG,∴EF⊥BC.又四边形ABEG为平行四边形,EF⊥AG,∴EF⊥BE,又BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴EF⊥平面BCE;(Ⅱ)证明:设线段AB的中点为N,连接MN,PN.∵线段CD、AE的中点分别为P、M,∴MN∥BE,PN∥BC,则平面MNP∥平面BCE,故MP∥平面BCE;(Ⅲ)解:设正方形ABCD的边长为a,连接MB,MD,BD,BP,∵∠EAF=30°,则EF=,∠AEB=30°,∴BE=2AB=2a,∴=.同理,连接FB,FC,则=.∴V M﹣BDP:V F﹣BCE=1:4.20.(12分)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8在第一象限内的交点为M,抛物线C与圆O在点M处的切线斜率分别为k1,k2,且k1+k2=1.(Ⅰ)求抛物线C的方程;(Ⅱ)设抛物线C在点M处的切线为l,过圆O上任意一点P作与l夹角为45°的直线,交l于A点,求|P A|的最大值.【解答】解:(Ⅰ)设M(x0,y0),x0>0,y0>0,由y=,y′=,故k1=,由k2=﹣,k1+k2=1,,解得:,∴抛物线C的方程为x2=2y;(Ⅱ)由(Ⅰ)可得直线l的方程2x﹣y﹣2=0,设点P到直线l的距离d,则丨P A丨==d,d max=+2,∴|P A|的最大值(+2)=+4.21.(12分)设函数f(x)=﹣alnx(e为自然对数的底数).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=e x(x2﹣3x+3),当a≤1时,若存在x1∈(0,+∞),使得对任意x2∈(0,+∞),都有f(x1)≤g(x2),求a的取值范围.【解答】解:f(x)的定义域是(0,+∞),f′(x)=,(Ⅰ)a≤1时,则e x﹣a≥0,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1,∴f(x)在(0,1)递减,在(1,+∞)递增,当1<a<e时,由f′(x)>0,得0<x<lna或x>1,由f′(x)<0,得lna<x<1,故f(x)在(lna,1)递减,在(0,lna),(1,+∞)递增,a=e时,f′(x)≥0,f(x)在(0,+∞)递增,a>e时,由f′(x)>0,得0<a<1或x>lna,由f′(x)<0,得1<x<lna,故f(x)在(1,lna)递减,在(0,1),(lna,+∞)递增,(Ⅱ)∵x∈(0,+∞),a≤1,故由(Ⅰ)得f(x)在(0,+∞)上的最小值是f(1)=e﹣a,又g′(x)=x(x﹣1)e x,故x∈(0,1)时,g′(x)<0,x∈(1,+∞)时,g′(x)>0,故g(x)min=g(1)=e,由题意得:e﹣a≤e,即a≥0,故0≤a≤1即a的范围是[0,1].四、选修4-4:坐标系与参数方程22.(10分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,曲线C的极坐标方程是ρ2=.(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C截得的弦长.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数),∴消去参数t,得直线l的普通方程为2x﹣y﹣1=0.∵曲线C的极坐标方程是ρ2=,∴由ρ2=x2+y2,y=ρsinθ,得曲线C的直角坐标方程为=1.(Ⅱ)设直线l被曲线C截得的弦为AB,A(x1,y1),B(x2,y2),则,得或,∴|AB|==.五、选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|x+1|(x∈R).(Ⅰ)当a=1时,解不等式f(x)≥3;(Ⅱ)若不等式f(x)≥对任意实数x与任意非零实数m都恒成立,求a 的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)≥3⇔|x﹣1+|x+1|≥3.当x>1时,f(x)=2x≥3,解得≥;当﹣1≤x≤1时,f(x)=2≥3,不等式无解.当x<﹣1时,f(x)=﹣2x≥3,解得x≤﹣;综上所述,不等式解集为(﹣∞,﹣]∪[,+∞).(Ⅱ)∵≤,又f(x)=|x﹣a|+|x+1|≥|(x﹣a)﹣(x+1)|=|a+1|∴|a+1|≥3,解得a≥2或a≤﹣4.即a的取值范围为:(﹣∞,﹣4]∪[2,+∞)。
【解析版】全国普通高等学校2017届高考数学二模试卷(文科)
2017年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={y|y=x2+2x﹣1,x∈R},B={x|x2﹣1≤0},则A∩B=()A.[﹣2,+∞)B.[﹣1,+∞)C.[﹣1,1]D.[﹣2,1]2.若复数z=(i是虚数单位),则=()A.i B.2i C.3i D.5i3.已知p:a>2,q:a2>4,则¬p是¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知分段函数y=,若执行如图所示的程序框图,则框图中的条件应该填写()A.x≥1?B.x≥﹣1?C.﹣1≤x≤2?D.x≤1?5.已知函数f(x)=2x+x﹣4,g(x)=e x+x﹣4,h(x)=lnx+x﹣4的零点分别是a,b,c,则a,b,c的大小顺序是()A.a<b<c B.c<b<a C.b<a<c D.c<a<b6.若点P是以F1,F2为焦点的双曲线x2﹣=1(b>0)上一点,PF1⊥PF2,且|PF1|=2|PF2|,则此双曲线的标准方程是()A.x2﹣=1 B.x2﹣=1 C.x2﹣=1 D.x2﹣=17.设等比数列{a n}的前n项和为S n,若a1=2,=21,则数列{}的前4项和为()A.或B.或C.或D.或8.某几何体的三视图如图所示(单位:cm),则这个几何体的体积为()A.16cm3B.20cm3C.24cm3D.30cm39.我国自主研制的第一个月球探测器﹣﹣“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为()A.B.C.D.10.已知O是坐标原点,点P(2,1),若M(x,y)满足约束条件,且的最大值为10,则实数a的值是()A.﹣3 B.﹣10 C.4 D.1011.已知函数f(x)=,若方程f(x2﹣x)=a有六个根,则实数a的取值范围是()A.(1,2)B.(﹣1,2)C.(1,+∞)D.(2,+∞)12.已知函数f(x)=sin(ωx﹣)﹣(ω>0),函数图象的对称中心到对称轴的最小距离为,将函数f(x)的图象向右平移个单位长度得到函数g(x)的图象,若g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,则实数m 的取值范围是()A.[﹣2,1]B.[﹣5,1]C.[﹣2,4]D.[﹣5,4]二、填空题:本题共4小题,每小题5分.13.已知函数f(x)=,则f(﹣2017)=.14.观察下列式子:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述规律,则83=.15.已知正方形ABCD边长为2,E为AB边上一点,则•的最小值为.16.已知数列{a n}满足a n=(2n+m)+(﹣1)n(3n﹣2)(m∈N*,m与n无关),≤k2﹣2k﹣1对任意的m∈N*恒成立,则正实数k的取值范围为.若a2i﹣1三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)已知△ABC的三个内角A,B,C所对的边分别为a,b,c.设向量=(a﹣c,a﹣b),=(a+b,c),且∥.(Ⅰ)求∠B;(Ⅱ)若M是BC的中点,且AM=AC,求sin∠BAC的值.18.(12分)互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6.(Ⅰ)请将下面的列联表补充完整:(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.下面的临界值表供参考:(参考公式:K2=,其中n=a+b+c+d)19.(12分)在多面体ABCDEFG中,四边形ABCD与ADEF是边长均为a的正方形,四边形ABGH是直角梯形,AB⊥AF,且FA=2FG=4FH.(1)求证:平面BCG⊥平面EHG;(2)若a=4,求四棱锥G﹣BCEF的体积.20.(12分)在平面直角坐标系xOy中,圆C的方程是x2+y2=4.(Ⅰ)过点(5,3)作直线l与圆C相交于E,F两点,若OE⊥OF,求直线l的斜率;(Ⅱ)如图,设M(x1,y1),P(x2,y2)是圆C上两个动点,点M关于原点的对称点为M1,关于x轴的对称点为M2,若直线PM1,PM2与y轴的交点坐标分别为(0,m)和(0,n),试问:mn是否是定值?若是,求出该定值;若不是,请说明理由.21.(12分)已知函数f(x)=lnx﹣ax+a,a∈R.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)当a=﹣1时,关于x的方程2m[f(x)﹣a]=x2(m>0)有唯一实数解,求实数m的值.四、请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsin(θ+)=.(Ⅰ)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;(Ⅱ)设点P在曲线C上,求点P到直线l的最大距离.五、[选修4-5:不等式选讲]23.设实数a,b,c满足a2+b2+c2=1.(Ⅰ)证明:ab+bc+ac≤1;(Ⅱ)若a+b+2c≤|x﹣1|+|x+m|对任意的实数a,b,c,x恒成立,求实数m的取值范围.2017年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={y|y=x2+2x﹣1,x∈R},B={x|x2﹣1≤0},则A∩B=()A.[﹣2,+∞)B.[﹣1,+∞)C.[﹣1,1]D.[﹣2,1]【考点】1E:交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出结果.【解答】解:∵集合A={y|y=x2+2x﹣1,x∈R}={y|y=(x+1)2﹣2}={y|y≥﹣2},B={x|x2﹣1≤0}={x|﹣1≤x≤1},∴A∩B=[﹣1,1].故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若复数z=(i是虚数单位),则=()A.i B.2i C.3i D.5i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则化简复数z,利用共轭复数的性质可得:,进而得出.【解答】解:复数z===﹣i,==.则==5i.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.已知p:a>2,q:a2>4,则¬p是¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由a2>4,可得a>2,或a<﹣2.可得¬q:﹣2≤a≤2.¬p:a≤2.即可判断出关系.【解答】解:由a2>4,可得a>2,或a<﹣2.∴¬q:﹣2≤a≤2.¬p:a≤2.∴¬p是¬q的必要不充分条件.故选:B.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.已知分段函数y=,若执行如图所示的程序框图,则框图中的条件应该填写()A.x≥1?B.x≥﹣1?C.﹣1≤x≤2?D.x≤1?【考点】EF:程序框图.【分析】根据函数的解析式,分析程序中各变量、各语句的作用,即可得解.【解答】解:根据函数的解析式,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知中间的条件应该填写x≤1?.故选:D.【点评】本题主要考查了程序框图的应用,考查了分类讨论思想,属于基础题.5.已知函数f(x)=2x+x﹣4,g(x)=e x+x﹣4,h(x)=lnx+x﹣4的零点分别是a,b,c,则a,b,c的大小顺序是()A.a<b<c B.c<b<a C.b<a<c D.c<a<b【考点】52:函数零点的判定定理.【分析】转化函数的零点与函数的图象的交点的横坐标,利用数形结合转化求解判断即可.【解答】解:在同一个坐标系中画出3个函数函数f(x)=2x,g(x)=e x,h(x)=lnx的图象,函数y=4﹣x的图象与3个函数的图象的交点的横坐标,就是已知的3个函数的零点,易知b<a<c.故选:C.【点评】本题考查函数的零点判定定理的应用,考查转化思想以及数形结合思想的应用,考查计算能力.6.若点P是以F1,F2为焦点的双曲线x2﹣=1(b>0)上一点,PF1⊥PF2,且|PF1|=2|PF2|,则此双曲线的标准方程是()A.x2﹣=1 B.x2﹣=1 C.x2﹣=1 D.x2﹣=1【考点】KC:双曲线的简单性质.【分析】利用勾股定理,结合双曲线的定义,即可求出双曲线的方程.【解答】解:∵|PF1|=2|PF2|,∴|PF1|﹣|PF2|=2a,∴|PF1|=4a,|PF2|=2a,∵PF1⊥PF2,|F1F2|=2c,∴+=,∴c2=5a2,∵a=1,∴c2=5,b2=4,故双曲线的x2﹣=1,故选:A.【点评】本题考查双曲线的标准方程,考查学生的计算能力,属于基础题.7.设等比数列{a n}的前n项和为S n,若a1=2,=21,则数列{}的前4项和为()A.或B.或C.或D.或【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式可得公比q,再利用等比数列的前n项和公式即可得出数列{}的前4项和.【解答】解:设等比数列{a n}的公比为q,则由a1=2,=21,得==21,整理得q4+q2﹣20=0,解得q=2或q=﹣2,∴或.当时,数列{}的前4项和为:,当时,数列{}的前4项和为:=.故选:C.【点评】本题考查等比数列的前4项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8.某几何体的三视图如图所示(单位:cm),则这个几何体的体积为()A.16cm3B.20cm3C.24cm3D.30cm3【考点】L!:由三视图求面积、体积.【分析】三视图可知该几何体就是以俯视图为底面的四棱柱,四棱柱的体积为V=底面积×高,即可求得V.【解答】解:三视图可知令该几何体就是以俯视图为底面的四棱柱,则四棱柱的体积为V=底面积×高=(3×3+×1×3×2)×2=24(cm3)故答案选:C【点评】本题考查三视图与几何体的直观图的关系,判断三视图复原的几何体的形状是解题的关键.9.我国自主研制的第一个月球探测器﹣﹣“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为()A.B.C.D.【考点】K4:椭圆的简单性质;K5:椭圆的应用.【分析】根据题意,由椭圆的几何性质分析可得a==,c=OF1=﹣﹣R=R,由椭圆的离心率公式计算可得答案.【解答】解:根据题意,卫星近地点,远地点离地面的距离分别是,,则a==,c=OF1=﹣﹣R=R,则e===;故选:A.【点评】本题考查椭圆的几何性质,关键是分析题意中的实际问题,得到a、c 的关系.10.已知O是坐标原点,点P(2,1),若M(x,y)满足约束条件,且的最大值为10,则实数a的值是()A.﹣3 B.﹣10 C.4 D.10【考点】7C:简单线性规划.【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【解答】解:不等式组约束条件,它的可行域如图:O为坐标原点,点A的坐标为(2,1),点P(x,y),z==2x+y,的最大值为10,可得2x+y=10,如图:红线,经过可行域的A,由:可得A(3,4),(3,4)代入y=a,可得a=4.故选:C.【点评】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,是中档题.11.已知函数f(x)=,若方程f(x2﹣x)=a有六个根,则实数a的取值范围是()A.(1,2)B.(﹣1,2)C.(1,+∞)D.(2,+∞)【考点】54:根的存在性及根的个数判断.【分析】令x2﹣x=t,得出关于x的方程x2﹣x=t的解得分布情况,作出f(t)的函数图象,讨论关于t的方程f(t)=a的解得情况,从而得出方程f(x2﹣x)=a 的解的个数.【解答】解:f(x)的定义域为{x|x≠0},令x2﹣x=t(x≠0),则t≥﹣,且t=﹣或t=0时,方程x2﹣x=t只有一解,当﹣<t<0或t>0时,方程x2﹣x=t有两解,∴f(t)=,∴f(t)在[﹣,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,作出y=f(t)的函数图象如图所示:由图象可知,当a<2时,关于t的方程f(t)=a无解,∴方程f(x2﹣x)=a无解,不符合题意;当a=2时,关于t的方程f(t)=a有两解t1=﹣,t2=1,∵x2﹣x=﹣只有一解,x2﹣x=1有两解,∴方程f(x2﹣x)=a有三解,不符合题意;当a>2时,关于t的方程f(t)=a有三解,不妨从t1<t2<t3,显然﹣<t1<0,0<t2<1,t3>1,又关于x的方程x2﹣x=t i(i=1,2,3)都有两解,∴方程f(x2﹣x)=a有六解,符合题意.故选D.【点评】本题考查了方程的根与函数图象的关系,属于中档题.12.已知函数f(x)=sin(ωx﹣)﹣(ω>0),函数图象的对称中心到对称轴的最小距离为,将函数f(x)的图象向右平移个单位长度得到函数g(x)的图象,若g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,则实数m 的取值范围是()A.[﹣2,1]B.[﹣5,1]C.[﹣2,4]D.[﹣5,4]【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据图象的对称中心到对称轴的最小距离为,可得周期T=π,求出ω,利用函数y=Asin(ωx+φ)的图象变换规律,求出g(x),x∈[0,]上,求出g(x)范围,可得m的范围.【解答】解:由题意,图象的对称中心到对称轴的最小距离为,∴周期T=π,即∴ω=2,∴f(x)=sin(2x﹣)﹣.f(x)的图象向右平移个单位长度,得到:sin(2x﹣﹣)﹣=sin(2x﹣)=g(x);∵x∈[0,]上,∴2x﹣∈[,]sin(2x﹣)∈[,]则g(x)∈[﹣2,1]要使g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,则:1﹣3≤m≤﹣2+3,可得:﹣2≤m≤1,故选A.【点评】本题主要考查三角函数的性质求解析式,函数y=Asin(ωx+φ)的图象变换规律,恒成立的问题转化为最值为,属于中档题.二、填空题:本题共4小题,每小题5分.13.已知函数f(x)=,则f(﹣2017)=e.【考点】3T:函数的值.【分析】由已知得f(﹣2017)=f(2017)=f(504×4+1)=f(1),由此能求出结果.【解答】解:∵函数f(x)=,∴f(﹣2017)=f(2017)=f(504×4+1)=f(1)=e1=e.故答案为:e.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.14.观察下列式子:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述规律,则83= 57+59+61+63+65+67+69+71.【考点】F1:归纳推理.【分析】观察可看出:观察题目等式可知,第8个等式的右边是8个连续的奇数之和,所以可以逐行写出,最终可求得结果.【解答】解:观察题目等式可知,第8个等式的右边是8个连续的奇数之和,13=123=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,63=31+33+35+37+39+41,73=43+45+47+49+51+53+55,83=57+59+61+63+65+67+69+71,故答案为:57+59+61+63+65+67+69+71【点评】这是一道考查归纳推理的问题,一般是根据前面的几项(或式子),找出一般性的规律,然后再对所求的情况求解,本题因为8不大,所以可以采用列举法.15.已知正方形ABCD边长为2,E为AB边上一点,则•的最小值为3.【考点】9R:平面向量数量积的运算.【分析】以B点为原点,建立如图所示的坐标系,根据向量的坐标运算即可求出答案.【解答】解:以B点为原点,建立如图所示的坐标系,∵正方形ABCD的边长为2,点E是AB边上的点,设E(0,y),则y∈[0,2];又D(2,2),C(2,0),∴=(2,2﹣y),=(2,﹣y),∴•=2×2+(2﹣y)×(﹣y)=y2﹣2y+4=(y﹣1)2+3,当y=1时,•取得最小值为3.故答案为:3.【点评】本题考查向量数量积的计算问题,解题时要注意数形结合法的合理运用.16.已知数列{a n}满足a n=(2n+m)+(﹣1)n(3n﹣2)(m∈N*,m与n无关),若a2i≤k2﹣2k﹣1对任意的m∈N*恒成立,则正实数k的取值范围为[3,﹣1+∞).【考点】8E:数列的求和.【分析】由已知可得,再由等差数列的前n 项和可得a 2i ﹣1=m (4﹣2m )≤2,结合a 2i ﹣1≤k 2﹣2k ﹣1可得k 2﹣2k﹣1≥2,求解不等式得答案. 【解答】解:由题意, =﹣2i +(m +3),故a 2i ﹣1=[﹣2i +(m +3)]=.当m ∈N *时,a 2i ﹣1=m (4﹣2m )≤2.又a 2i ﹣1≤k 2﹣2k ﹣1对任意m ∈N *恒成立,∴k 2﹣2k ﹣1≥2,解得k ≥3或k ≤﹣1. 故正实数k 的取值范围为[3,+∞). 故答案为:[3,+∞).【点评】本题考查数列求和,考查数学转化思想方法,训练了一元二次不等式的解法,是中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•衡水金卷二模)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .设向量=(a ﹣c ,a ﹣b ),=(a +b ,c ),且∥. (Ⅰ)求∠B ;(Ⅱ)若M 是BC 的中点,且AM=AC ,求sin ∠BAC 的值.【考点】HT :三角形中的几何计算;9R :平面向量数量积的运算.【分析】(Ⅰ)由∥.得a 2+c 2﹣b 2=ac .即cosB=,求得B .(Ⅱ).M 是BC 的中点,且AM=AC ,可得4bcosC=a ,,,sinC=,cosC=.×=.【解答】解:(Ⅰ)∵ =(a ﹣c ,a ﹣b ),=(a +b ,c ),且∥. ∴(a ﹣c )c=(a +b )(a ﹣b ),∴a 2+c 2﹣b 2=ac . 由余弦定理得cosB=.又因为0<B <π,∴.(Ⅱ)∵M 是BC 的中点,且AM=AC ,∴4bcosC=a ,∴,∴2sinC=⇒3cosC=sinC ,∴,sinC=,cosC=.×=.【点评】本题考查了向量数量积、正余弦定理,三角恒等变换,属于中档题.18.(12分)(2017•衡水金卷二模)互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6. (Ⅰ)请将下面的列联表补充完整:(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.下面的临界值表供参考:(参考公式:K 2=,其中n=a +b +c +d )【考点】BO :独立性检验的应用;CC :列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)由题意,喜欢外卖的人数为50×0.6=30,不喜欢外卖的人数为20,我们易得到表中各项数据的值.(Ⅱ)我们可以根据列联表中的数据,代入参考公式,计算出K 2值,然后代入离散系数表,比较即可得到答案(Ⅲ)本小题考查的知识点是古典概型,关键是要找出满足条件抽到6或10号的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解.【解答】解:(Ⅰ)由题意,喜欢外卖的人数为50×0.6=30,不喜欢外卖的人数为20,(Ⅱ)根据列联表中的数据,得到K 2=≈8.333>7.879,因此能在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关; (Ⅲ)设“抽到6或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有(1,1)、(1,2)、(1,3)…(6,6),共36个. 事件A 包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、(5,1)、(4,6)、(5,5)、(6、4),共8个,∴P(A)==.【点评】独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式K2,计算出K值,然后代入离散系数表,比较即可得到答案.19.(12分)(2017•衡水金卷二模)在多面体ABCDEFG中,四边形ABCD与ADEF是边长均为a的正方形,四边形ABGH是直角梯形,AB⊥AF,且FA=2FG=4FH.(1)求证:平面BCG⊥平面EHG;(2)若a=4,求四棱锥G﹣BCEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.【分析】(1)连接BH,推导出HG⊥GB,从而CB⊥平面ABGF,进而CB⊥HG,由此能证明HG⊥平面BCG,从而平面EHG⊥平面BCG.(2)过B作AF的平行线交于FG的延长线于点P,连接AP、FB交于点O,过G 作GK⊥FB于K,由此能求出四棱锥G﹣BCEF的体积.【解答】证明:(1)连接BH,由AH=,AB=a,知:HB==,HG==,GB==,∴HB2=HG2+GB2,从而HG⊥GB,…(3分)∵DA⊥AF,DA⊥AB,∴DA⊥平面ABGH,又∵CB∥DA,∴CB⊥平面ABGF,∴CB⊥HG,∴HG⊥平面BCG,∵HG⊥平面EHG,∴平面EHG⊥平面BCG.…(6分)解:(2)过B作AF的平行线交于FG的延长线于点P,连接AP、FB交于点O,过G作GK⊥FB于K,则GK=PO=,…(8分)∴四边形BCEF的面积S=4×,…(10分)==.…(12分)故V G﹣BCEF【点评】本题考查面面垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•衡水金卷二模)在平面直角坐标系xOy中,圆C的方程是x2+y2=4.(Ⅰ)过点(5,3)作直线l与圆C相交于E,F两点,若OE⊥OF,求直线l的斜率;(Ⅱ)如图,设M(x1,y1),P(x2,y2)是圆C上两个动点,点M关于原点的对称点为M1,关于x轴的对称点为M2,若直线PM1,PM2与y轴的交点坐标分别为(0,m)和(0,n),试问:mn是否是定值?若是,求出该定值;若不是,请说明理由.【考点】J9:直线与圆的位置关系.【分析】(Ⅰ)设直线l的斜率为k,则直线l的方程为y﹣3=k(x﹣5),即kx﹣y﹣5k+3=0,利用圆心到直线l的距离为,建立方程,即可求直线l的斜率;(Ⅱ)先求出M1和点M2的坐标,用两点式求直线PM1和PM2的方程,根据方程求得他们在y轴上的截距m、n的值,计算mn的值,可得结论.【解答】解:(Ⅰ)由题意,C(0,0),半径r=2,点(5,3)在圆外,设直线l的斜率为k,则直线l的方程为y﹣3=k(x﹣5),即kx﹣y﹣5k+3=0,∵圆心到直线l的距离为,∴=,∴k=1或,∴直线l的斜率为1或;(Ⅱ)由于M(x1,y1)、P(x2,y2)是圆O上的两个动点,则可得M1(﹣x1,﹣y1)、M2(x1,﹣y1),且x12+y12=4,x22+y22=4.根据PM1的方程为=,令x=0求得y=m=.根据PM2的方程为=,令x=0求得y=n=∴mn=•==4为定值.【点评】本题主要考查直线和圆相交的性质,点到直线的距离公式,用两点式求直线的方程、求直线在y轴上的截距,属于中档题.21.(12分)(2017•衡水金卷二模)已知函数f(x)=lnx﹣ax+a,a∈R.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)当a=﹣1时,关于x的方程2m[f(x)﹣a]=x2(m>0)有唯一实数解,求实数m的值.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的递增区间即可;(Ⅱ)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m.【解答】解:(Ⅰ)由题意得,f(x)的定义域是(0,+∞),f′(x)=﹣a=,a>0时,由f′(x)>0,解得:0<x<,a≤0时,f′(x)>0恒成立,综上,a>0时,f(x)在(0,)递增,a≤0时,f(x)在(0,+∞)递增;(Ⅱ)因为方程2m[f(x)﹣a]=x2有唯一实数解,所以x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,则g′(x)=,令g′(x)=0,x2﹣mx﹣m=0.因为m>0,x>0,所以x1=<0(舍去),x2=,当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减,当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增,当x=x2时,g(x)取最小值g(x2).则即,所以2mlnx2+mx2﹣m=0,因为m>0,所以2lnx2+x2﹣1=0(*),设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,即=1,解得:m=.【点评】本题主要考查了利用导数研究函数的极值,以及利用导数研究函数在闭区间上的最值,是一道综合题,有一定的难度,属于中档题.四、请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)(2017•衡水金卷二模)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsin(θ+)=.(Ⅰ)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;(Ⅱ)设点P在曲线C上,求点P到直线l的最大距离.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可得出结论;(Ⅱ)设P(2cosθ,sinθ),利用点到直线的距离公式及正弦函数的单调性即可得出.【解答】解:(Ⅰ)曲线C的参数方程是(α为参数),普通方程为=1;直线l的极坐标方程为ρsin(θ+)=,即,直角坐标方程为x+y﹣2=0;(Ⅱ)设P(2cosθ,sinθ),则点P到直线l距离d==.∴点P到直线l距离的最大值为=+.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式及正弦函数的单调性,属于中档题.五、[选修4-5:不等式选讲]23.(2017•衡水金卷二模)设实数a,b,c满足a2+b2+c2=1.(Ⅰ)证明:ab+bc+ac≤1;(Ⅱ)若a+b+2c≤|x﹣1|+|x+m|对任意的实数a,b,c,x恒成立,求实数m的取值范围.【考点】RA:二维形式的柯西不等式;R6:不等式的证明.【分析】(Ⅰ)利用基本不等式可得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加即得结论.由(Ⅱ)柯西不等式,我们易结合a2+b2+c2=1,得到a+b+2c≤3,再由a+b+2c≤|x﹣1|+|x+m|对任意的实数a,b,c,x恒成立,得到3≤|x﹣1|+|x+m|,进而解绝对值不等式,即可得到答案.【解答】(Ⅰ)证明:由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加即得a2+b2+c2≥ab+bc+ca,又a2+b2+c2=1,所以ab+bc+ca≤1.(Ⅱ)解:∵(a+b+2c)2≤(2+3+4)(a2+b2+c2)=9∴a+b+2c≤3又∵a+b+2c≤|x﹣1|+|x+m|对任意的实数a,b,c,x恒成立,∴3≤|x﹣1|+|x+m|,∵|x﹣1|+|x+m|≥|m+1|,∴|m+1|≥3解得m≤﹣4或m≥2.【点评】本题考查不等式的证明,考查基本不等式的运用,考查柯西不等式、绝对值不等式求解,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B =(
A .5
B .20
C .60 6.设向量a ,b 满足||4a b +=,1a b =,则||a b -=( 1
}是等差数列,且
10a b >>()
的左,右焦点为1,上,且12FQ QP =.若120FQ F Q =,则ππ
2
1e e 2
x a x +-
16.已知数列{}n a 中,1a =三、解答题(本大题共5
小题,共17.已知函数()sin cos (0)f x x x =->的最小正周期为π. (1)求函数()y f x =图象的对称轴方程; 18.某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这名180学生中选择社会科学类的男生、女生均为45名. (1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?
60,CD ,得到四棱锥P
(1)求证:AP ABCE ⊥平面;
(2)记平面PAB 与平面PCE 相交于直线l ,求证:AB l ∥.
20.如图,已知抛物线E :220y px p =>()与圆O :228x y +=相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点00()P x y ,作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线
1l ,2l ,1l 与2l 相交于点M .
(1)求抛物线E 的方程;
(2)求点M 到直线CD 距离的最大值.
21.已知()ln f x x x m =-+(m 为常数). (1)求()f x 的极值;
(2)设1m >,记()()f x m g x +=,已知1x ,2x 为函数()g x 是两个零点,求证:120x x +<. [选修4-4:坐标系与参数方程]
22.在直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为
4cos =.
(1)求出圆C 的直角坐标方程;
(2)已知圆C 与x 轴相交于A ,B 两点,直线l :2y x =关于点(0,)(0)M m m ≠对称的直线为'l .若直线'
l
上存在点P 使得90APB ∠=,求实数m 的最大值. [选修4-5:不等式选讲]
23.已知函数()0)f x a =≠. (1)求函数()f x 的定义域;
(2)若当1[]0,x ∈时,不等式()1f x ≥恒成立,求实数a 的取值范围.。