第三章刚体力学基础 ppt课件
合集下载
第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。
《刚体力学基础》课件
2
刚体在作用力学和运动学中的应用
说明刚体在作用力学和运动学研究中的应用,如力的分析和刚体的运动分析。
3
刚体力学与其他学科的关系
探讨刚体力学与其他学科的关系,如力学、工程学和物理学等的联系。
六、总结
1 刚体力学基础的重要性
总结刚体力学基础的重要性,强调其在物体运动研究中的价值。
2 接下来的深入研究方向
介绍刚体力学研究中所采用 的基本假设和运动条件,以 便准确描述刚体的运动。
二、刚体的运动学
1
刚体的平动运动和定点运动
讲解刚体的平动运动和定点运动,包括平移和旋转的概念以及运动轨迹。
2
刚体的旋转运动和欧拉角
解释刚体的旋转运动和欧拉角的概念,阐明旋转的自由度和描述方法。
3
刚体的复合运动
讲述刚体的复合运动,即平动和旋转运动的组合,展示不同运动方式的例子。
ห้องสมุดไป่ตู้
刚体静力学的经典问题
介绍刚体的平衡和力的平衡条件, 解释如何使刚体保持静止。
探讨刚体静力学中的经典问题, 如杠杆原理和平衡木问题。
牛顿第三定律在刚体上的 应用
讲解牛顿第三定律在刚体运动中 的应用,如碰撞和反作用力。
五、实际应用
1
刚体在机械和结构工程中的应用
展示刚体在机械和结构工程中的应用案例,如建筑物和机械装置。
提出刚体力学研究中的深入方向,如刚体动力学和非线性刚体力学。
3 刚体力学研究的意义
归纳刚体力学研究的意义,展示其对工程和科学领域的贡献。
三、刚体的动力学
牛顿第二定律在刚体 上的应用
探讨牛顿第二定律在刚体力学 中的应用,包括力和加速度的 关系。
刚体的角动量和角动 量定理
理论力学第三章刚体力学 ppt课件
正常转动,赝张量的变换多出一个负号。
对于张量,可定义如下运算:
1)相等。
设A和B为两个同阶张量,如果它们的所有分量相等,
即
A ... B ... ,则称它们相等,记为A = B.
2)加法。
两个同阶张量A和B的和定义为 C ...=A ...+B ... 它仍为一个张量,记为 C=A+B
L
a
L
a AL L )(a L
a L
a
B L
L
)
a L aa L a AL L BL L (a a )
a L aa L a ( AL L BL L )
nr nr nr nr
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运动 §3.8 刚体绕固定点的运动 §3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
§3.1 刚体运动的分析
1. 描写刚体位置的独立变量
将两个矢量Av和Bv按顺序并在一起,不作任何运算
得到的量称为并矢,记为
vv AB
A
B ev ev
第三章刚体力学基础[1]PPT课件
注意: F应该理解为外力在转动平面内的分力
如果有几个外力矩作用在刚体上,则合力矩等于
各个力矩的代数和
Mi riFi
i
i
力是引起质点运动状态变化的原因,而力矩是引起
转动物体运动状态变化的原因
二 刚体绕定轴的转动定律
刚体转动定律可由牛顿第二定律直接导出
F ifi m iai
外力的合力
内力的合力
假设 Fi和fi 都是位于质
点i所在的转动平面内
得到:
质点i的加速度 Z Mz
df
dF
Odr
dm
dF
F i fi m ia i m ir i
转动平面
dFn
转动定律
将力分解为作用在质量元△m上
的切向力和法向力
Z Mz
Fifim iai
dF df
Finfinmiain
将切向分量式两边同乘r,
例1、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。
解: J r2dm
Z
R 2dm R 2 dm m2R O
J是可加的,所以若为薄圆筒 (不计厚度)结果相同。
R dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
•转轴的位置
布,与转轴的位置结合决定转
•刚体的形状
轴到每个质元的矢径。
单个质点的转动惯量 J miri2 n
质点系的转动惯量 J (miri2)
i1
质量连续分布的刚 体的转动惯量
J r2dm m
国际单位制中转动惯量的单位为千克·米2(kg·m2)
转动惯量的定义及物理意义
第3章-刚体 大学物理课件
2020/10/29
例4. 质量为M =16 kg的实心滑轮,半径为R = 0.15 m。 一根细绳绕在滑轮上,一端挂一质量为m的物体。
求(1)由静止开始1秒钟后,物体下降的距离。(2)
绳子的张力。
解: (1) T
M
M
m
mg
m
2020/10/29
TR1MR2 a 2R
T
mgTma
T 1 Ma 2
m
NT
2
2
m2g
m2 g
a
T2
Ny
rom
Nx
mg T 1
T1
m1 a
列方程如下:
m 1g T1 m 1a
T2 m 2g m 2a
T1r
T2r
1 2
mr
2
a r
m1 g
可求解
解:在地面参考系中,选取m1 、 m2和滑轮m为研 究对象,分别运用牛顿定律和刚体定轴转动定律得。
2020/10/29
2020/10/29
(2) 由刚体的机械能守恒得:
mgl 1 J2
22
1 ml22
6
3g l
A
c
o
B
0
零势点
2020/10/29
例11. 长为 l 的均质细直杆OA,一端悬于O点铅直下
垂,如图所示。一单摆也悬于O点,摆线长也为l,摆
球质量为m。现将单摆拉到水平位置后由静止释放,
摆球在 A 处与直杆作完全弹性碰撞后恰好静止。试
转轴固定不动的转动。
2020/10/29
定轴转动的特点:
• 各质点都作圆周运动; • 各质点圆周运动的平面垂直于轴线,圆心
在轴线上; • 各质点的矢径在相同的时间内转过的角度
刚体力学优质课件
解 根据定义,飞轮的角速度为 d 2π 0t dt
飞轮的角加速度为 b d 20π dt
距转轴r处质点的切向加速度 at rb 2π 0r
法向加速度
an r2 40π20r2t
例 船用螺旋桨的正常转速为120r/min。从静止启动均匀地到
此转速需时40s。当转速为84r/min时运动系统出现振动,
方成正比。
求 在这段时间内,转子转过的圈数。
解 根据题意,设 b kt2(k为比例常量)
由角加速度的定义,有
b dkt2
dt
分离变量并积分,有
d tkt2dt
➢ 说明
刚体作平动时,刚体上各点的轨迹可以是直线,也可以是曲线; 刚体作平动时,刚体上所有质点都具有相同的位移、速度和加速度,
各点的运动轨迹都相同; 刚体平动的运动规律完全符合质点运动规律; 刚体质心的运动代表平动刚体的运动。
3. 刚体的转动 转动: 刚体上的各质点都绕同一直线作圆周运动的运动形式。 转动轴: 刚体转动围绕的那条直线(转轴可以是固定的或变化的)。
y
确定刚体绕瞬时轴转过的角度j 。
O
当刚体受到某些限制——自由度减少。
x i = 3+2+1= 6
§3.2 刚体定轴转动的运动学规律
主要内容:
1. 描述刚体定轴转动的物理量 2. 定轴转动刚体上一点的速度和加速度与角量的关系 3. 刚体定轴转动运动学的两类问题
3.2.1 描述刚体定轴转动的物理量
角坐标
任选刚体上的任意点P点为参考点
刚体定轴转动的运动方程
(t)
角位移
若P在t 和t 后的角坐标为1和2,则
角速度
21
平均角速度
t
瞬时角速度 d dt
飞轮的角加速度为 b d 20π dt
距转轴r处质点的切向加速度 at rb 2π 0r
法向加速度
an r2 40π20r2t
例 船用螺旋桨的正常转速为120r/min。从静止启动均匀地到
此转速需时40s。当转速为84r/min时运动系统出现振动,
方成正比。
求 在这段时间内,转子转过的圈数。
解 根据题意,设 b kt2(k为比例常量)
由角加速度的定义,有
b dkt2
dt
分离变量并积分,有
d tkt2dt
➢ 说明
刚体作平动时,刚体上各点的轨迹可以是直线,也可以是曲线; 刚体作平动时,刚体上所有质点都具有相同的位移、速度和加速度,
各点的运动轨迹都相同; 刚体平动的运动规律完全符合质点运动规律; 刚体质心的运动代表平动刚体的运动。
3. 刚体的转动 转动: 刚体上的各质点都绕同一直线作圆周运动的运动形式。 转动轴: 刚体转动围绕的那条直线(转轴可以是固定的或变化的)。
y
确定刚体绕瞬时轴转过的角度j 。
O
当刚体受到某些限制——自由度减少。
x i = 3+2+1= 6
§3.2 刚体定轴转动的运动学规律
主要内容:
1. 描述刚体定轴转动的物理量 2. 定轴转动刚体上一点的速度和加速度与角量的关系 3. 刚体定轴转动运动学的两类问题
3.2.1 描述刚体定轴转动的物理量
角坐标
任选刚体上的任意点P点为参考点
刚体定轴转动的运动方程
(t)
角位移
若P在t 和t 后的角坐标为1和2,则
角速度
21
平均角速度
t
瞬时角速度 d dt
第3章 刚体力学基础
刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R
⑤
J 1 mR2
刚体力学基础 ppt课件
k
O
F1
F
F2
F 对转轴的力矩
M rF2 sin
r
17
PPT课件
第三章 刚体力学
17
§3.2 刚体定轴转动的转动定律 二、转动定律 质点绕轴作圆周运 动,根据牛顿第二定律沿 切线方向的分量式
O
z
ri
Fii
mi
i
i
Fie
Fie sin i Fii sin i mi ait mi ri
z
O
r *
P
F
M Fr sin
0 π
π 2π
sin 0 力矩为正.
sin 0 力矩为负.
15
15
0 或 π sin 0 力矩为零. PPT课件 第三章 刚体力学
§3.2 刚体定轴转动的转动定律
力臂: 点 O 至力 F
的作用线的垂直距离.
3
PPT课件
第三章 刚体力学
3
教学基本要求
四 了解力矩的功和刚体转动动能的概念。
五 理解刚体对定轴的角动量概念,理解 刚体定轴转动的角动量定理,理解角动量守 恒定律。 六 了解经典力学的适用范围。
4
PPT课件
第三章 刚体力学
4
§3.1
刚体 刚体定轴转动的描述
一、刚体的平动和定轴转动 刚体:在力的作用下,大小和形状都保持不变的物体. 刚体最基本的运动形式是平动和定轴转动.
n n
18
18
§3.2 刚体定轴转动的转动定律
n 2 Fie ri sin i Fii ri sin i mi ri i 1 i 1 i 1
O
F1
F
F2
F 对转轴的力矩
M rF2 sin
r
17
PPT课件
第三章 刚体力学
17
§3.2 刚体定轴转动的转动定律 二、转动定律 质点绕轴作圆周运 动,根据牛顿第二定律沿 切线方向的分量式
O
z
ri
Fii
mi
i
i
Fie
Fie sin i Fii sin i mi ait mi ri
z
O
r *
P
F
M Fr sin
0 π
π 2π
sin 0 力矩为正.
sin 0 力矩为负.
15
15
0 或 π sin 0 力矩为零. PPT课件 第三章 刚体力学
§3.2 刚体定轴转动的转动定律
力臂: 点 O 至力 F
的作用线的垂直距离.
3
PPT课件
第三章 刚体力学
3
教学基本要求
四 了解力矩的功和刚体转动动能的概念。
五 理解刚体对定轴的角动量概念,理解 刚体定轴转动的角动量定理,理解角动量守 恒定律。 六 了解经典力学的适用范围。
4
PPT课件
第三章 刚体力学
4
§3.1
刚体 刚体定轴转动的描述
一、刚体的平动和定轴转动 刚体:在力的作用下,大小和形状都保持不变的物体. 刚体最基本的运动形式是平动和定轴转动.
n n
18
18
§3.2 刚体定轴转动的转动定律
n 2 Fie ri sin i Fii ri sin i mi ri i 1 i 1 i 1
最新大学物理第3章-刚体力学基础课件ppt
对所有质元的同样的式子求和:
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定轴转动:转轴固定不动,即既不改变方向 又不发生平移。该转轴称为固定轴。
4 首页 上页 下页退出
三、刚体定轴转动的描述
垂直于固定轴的平面为转动平面.显然,转动平 面不止一个,而有无数多个。如果以某转动平面 与转轴的交点为原点,则该转动平面上的所有质 元都绕着这个原点作圆周运动。
刚体定轴转动的基本特征是:轴上所有各点都保 持不动,轴外所有各点在同一时间间隔内转过的 角度都一样。
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用
任一对作用力和反作用力(内力)对同点(同轴)的
力矩之和为零:
M i0 M j0 r i f i jr j fji f ij f ji
rj
f ji
M i0 M j0 ( r j r i) fji
rjifji0
ri
f ij
M的大小、方向均与参考点的选择有关
MFsrin
※在直角坐标系中,其表示式为
M r F ( x i y j z k ) ( F x i F y j F z k )
( y z z F y ) i F ( z x x F z ) j F ( x y y F x ) k
3 首页 上页 下页退出
2、刚体的转动
若刚体上各个质元都绕同一直线作 圆周运动,这样的运动称作刚体的 转动(rotation),这条直线称为转 轴(这根轴可在刚体之内,也可在 刚体之外)。
非定轴转动:在刚体转动过程中,转轴的方 向或位置随时间变化。该转轴称为转动瞬 轴.如陀螺的旋进、车轮的滚动等。
角位移、角速度和角加速度
转动平面上任一质元对原点的位矢r与极轴的夹角
称为角位置θ。刚体在一段时间内转过的角度
Δθ=θ2-θ1 称为角位移
5
首页 上页 下页退出
在时刻t到t+Δt时间内的角位移Δθ与Δt之比称为
刚体的平均角速度
t
当Δt→0时,平均角速度的极限称为瞬时角速度,简 称角速度,用ω表示:
14
首页 上页 下页退出
J r2dm
注意:(1)刚体的转m动惯量
与刚体的质量有关, 与刚体的质量分布有关, 与轴的位置有关。 (2)质量元的选取:
线分布 dm d(x 或 d)l
面分布 dmds
体分布 dmdv
(3)由于刚体是一个特殊质点系,即各质点之间无相 对位移,即对于给定的刚体其质量分布不随时间变化 ,故对于给定轴而言,刚体的转动惯量是一个常数。
11 首页 上页 下页退出
二、刚体定轴转动的转动定律
在刚体上任取一质元Δmi,半径为 ri,设它所受的合外力为Fi,合内 力为fi,它们与矢径ri的夹角分别 为φi和θi.设刚体绕轴转动的角速 度和角加速度分别为ω和α.根据 牛顿第二定律,采用自然坐标系, 可得质元Δmi的法向和切向方程, 分别为
MJ
上式为刚体定轴转动的转动定律:绕定轴转动的刚 体的角加速度与作用于刚体上的合外力矩成正比, 与刚体的转动惯量成反比。
牛顿第二定律:F=ma。
三、转动惯量的计算
J miri2
单位:千克·米2(kg·m2)
对于单个质点
J mr2
n
质点系
J m i ri2
i1
若物体质量连续分布, J r2dm m
第3章 刚体力学基础
§ 3.1 刚体 刚体定轴转动的描述 § 3.2 力矩 刚体定轴转动的转动定律 § 3.3 刚体定轴转动的动能定理 § 3.4 刚体定轴转动的角动量定理和角动量守恒 定律
1 首页 上页 下页退出
3.1 刚体 刚体定轴转动的描述 一、刚体的引入
刚体(rigid body) :即形状和大小完全不变的 物体。是一理想模型。
通常把刚体分成许多部分,每一部分都小到可 看作质点,叫作刚体的质元。 由于刚体不变形,各质元间距离不变。
2 首页 上页 下页退出
二、刚体的基本运动 刚体最基本的运动方式是平动和转动 。
1、刚体的平动 在运动过程中,若刚体内部任意两质元间的 连线在各个时刻的位置都和初始时刻的位置 保持平行,这样的运动称为刚体的平动.
M x i M yj M z k
i jk M x y z
Mx yFz zFy My zFx xFz
Fx Fy Fz
Mz xFy yFx
9 首页 上页 下页退出
2、力对轴的矩:
力矩在x,y,z轴的分量式,或称力对
轴的矩。例如上面所列Mx,My,,Mz,即
为力对X轴、Y轴、Z轴的矩。
Mz
r F //
( F ico i fis co i) s m ia i n m ir i 2 F isi i n fisi i n m ia i m ir i
12 首页 上页 下页退出
切向方程: F isi i n fisi i n m ia i m ir i
ห้องสมุดไป่ตู้
将切向方程的两边各乘以ri,可得
F irisiin firisiin m iri2
把上式对刚体所有质元求和,并考虑到各质元角加
速度相同,有
F ir isii nfir isii n ( m ir i2 )
i
i
i
因为
firi sini 0
i
令:
M Firi sini
i
J miri2
i
合外力矩 转动惯量
MJ
13 首页 上页 下页退出
litm 0 t
d
dt
平均角加速度
t
瞬时角加速度,简称角加速度 ltim 0 t ddt
6 首页 上页 下页退出
刚体定轴转动的特点: 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
vi ri
ai ri ani ri 2
7 首页 上页 下页退出
3.2 力矩 刚体定轴转动的转动定律
F
· F
若设力F的作用点到Z轴的位矢为r,则力对Z轴的
力矩为
Mz rFsin
rsinF F rFsin rF
式中为力F到轴的距离
力对固定点的力矩为零的情况:
力F等于零,
力F的作用线与矢径r共线(力F的作用线穿过0点, 即
,有心力对力心的力矩恒为零)。
10
首页 上页 下页退出
力对固定轴的力矩为零的情况:
一、力矩
1、力对固定点的力矩
1)定义:作用于质点的
力对惯性系中某参考点的
力矩,等于力的作用点对
该点的位矢与力的矢积,
即
M r F
M
o•
rF
m
力矩是矢量,M的方向垂直于r和 F所决定的平面 ,其指向用右手螺旋法则确定。
2)力矩的单位: 牛·米(N·m)
8 首页 上页 下页退出
3)力矩的计算:
4 首页 上页 下页退出
三、刚体定轴转动的描述
垂直于固定轴的平面为转动平面.显然,转动平 面不止一个,而有无数多个。如果以某转动平面 与转轴的交点为原点,则该转动平面上的所有质 元都绕着这个原点作圆周运动。
刚体定轴转动的基本特征是:轴上所有各点都保 持不动,轴外所有各点在同一时间间隔内转过的 角度都一样。
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用
任一对作用力和反作用力(内力)对同点(同轴)的
力矩之和为零:
M i0 M j0 r i f i jr j fji f ij f ji
rj
f ji
M i0 M j0 ( r j r i) fji
rjifji0
ri
f ij
M的大小、方向均与参考点的选择有关
MFsrin
※在直角坐标系中,其表示式为
M r F ( x i y j z k ) ( F x i F y j F z k )
( y z z F y ) i F ( z x x F z ) j F ( x y y F x ) k
3 首页 上页 下页退出
2、刚体的转动
若刚体上各个质元都绕同一直线作 圆周运动,这样的运动称作刚体的 转动(rotation),这条直线称为转 轴(这根轴可在刚体之内,也可在 刚体之外)。
非定轴转动:在刚体转动过程中,转轴的方 向或位置随时间变化。该转轴称为转动瞬 轴.如陀螺的旋进、车轮的滚动等。
角位移、角速度和角加速度
转动平面上任一质元对原点的位矢r与极轴的夹角
称为角位置θ。刚体在一段时间内转过的角度
Δθ=θ2-θ1 称为角位移
5
首页 上页 下页退出
在时刻t到t+Δt时间内的角位移Δθ与Δt之比称为
刚体的平均角速度
t
当Δt→0时,平均角速度的极限称为瞬时角速度,简 称角速度,用ω表示:
14
首页 上页 下页退出
J r2dm
注意:(1)刚体的转m动惯量
与刚体的质量有关, 与刚体的质量分布有关, 与轴的位置有关。 (2)质量元的选取:
线分布 dm d(x 或 d)l
面分布 dmds
体分布 dmdv
(3)由于刚体是一个特殊质点系,即各质点之间无相 对位移,即对于给定的刚体其质量分布不随时间变化 ,故对于给定轴而言,刚体的转动惯量是一个常数。
11 首页 上页 下页退出
二、刚体定轴转动的转动定律
在刚体上任取一质元Δmi,半径为 ri,设它所受的合外力为Fi,合内 力为fi,它们与矢径ri的夹角分别 为φi和θi.设刚体绕轴转动的角速 度和角加速度分别为ω和α.根据 牛顿第二定律,采用自然坐标系, 可得质元Δmi的法向和切向方程, 分别为
MJ
上式为刚体定轴转动的转动定律:绕定轴转动的刚 体的角加速度与作用于刚体上的合外力矩成正比, 与刚体的转动惯量成反比。
牛顿第二定律:F=ma。
三、转动惯量的计算
J miri2
单位:千克·米2(kg·m2)
对于单个质点
J mr2
n
质点系
J m i ri2
i1
若物体质量连续分布, J r2dm m
第3章 刚体力学基础
§ 3.1 刚体 刚体定轴转动的描述 § 3.2 力矩 刚体定轴转动的转动定律 § 3.3 刚体定轴转动的动能定理 § 3.4 刚体定轴转动的角动量定理和角动量守恒 定律
1 首页 上页 下页退出
3.1 刚体 刚体定轴转动的描述 一、刚体的引入
刚体(rigid body) :即形状和大小完全不变的 物体。是一理想模型。
通常把刚体分成许多部分,每一部分都小到可 看作质点,叫作刚体的质元。 由于刚体不变形,各质元间距离不变。
2 首页 上页 下页退出
二、刚体的基本运动 刚体最基本的运动方式是平动和转动 。
1、刚体的平动 在运动过程中,若刚体内部任意两质元间的 连线在各个时刻的位置都和初始时刻的位置 保持平行,这样的运动称为刚体的平动.
M x i M yj M z k
i jk M x y z
Mx yFz zFy My zFx xFz
Fx Fy Fz
Mz xFy yFx
9 首页 上页 下页退出
2、力对轴的矩:
力矩在x,y,z轴的分量式,或称力对
轴的矩。例如上面所列Mx,My,,Mz,即
为力对X轴、Y轴、Z轴的矩。
Mz
r F //
( F ico i fis co i) s m ia i n m ir i 2 F isi i n fisi i n m ia i m ir i
12 首页 上页 下页退出
切向方程: F isi i n fisi i n m ia i m ir i
ห้องสมุดไป่ตู้
将切向方程的两边各乘以ri,可得
F irisiin firisiin m iri2
把上式对刚体所有质元求和,并考虑到各质元角加
速度相同,有
F ir isii nfir isii n ( m ir i2 )
i
i
i
因为
firi sini 0
i
令:
M Firi sini
i
J miri2
i
合外力矩 转动惯量
MJ
13 首页 上页 下页退出
litm 0 t
d
dt
平均角加速度
t
瞬时角加速度,简称角加速度 ltim 0 t ddt
6 首页 上页 下页退出
刚体定轴转动的特点: 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
vi ri
ai ri ani ri 2
7 首页 上页 下页退出
3.2 力矩 刚体定轴转动的转动定律
F
· F
若设力F的作用点到Z轴的位矢为r,则力对Z轴的
力矩为
Mz rFsin
rsinF F rFsin rF
式中为力F到轴的距离
力对固定点的力矩为零的情况:
力F等于零,
力F的作用线与矢径r共线(力F的作用线穿过0点, 即
,有心力对力心的力矩恒为零)。
10
首页 上页 下页退出
力对固定轴的力矩为零的情况:
一、力矩
1、力对固定点的力矩
1)定义:作用于质点的
力对惯性系中某参考点的
力矩,等于力的作用点对
该点的位矢与力的矢积,
即
M r F
M
o•
rF
m
力矩是矢量,M的方向垂直于r和 F所决定的平面 ,其指向用右手螺旋法则确定。
2)力矩的单位: 牛·米(N·m)
8 首页 上页 下页退出
3)力矩的计算: