智能循迹避障小车的设计与制作

合集下载

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。

循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。

本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。

二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。

2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。

3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。

4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。

5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。

三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。

(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。

(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。

(4)添加温湿度传感器和光照传感器,以提供环境感知功能。

(5)将无线模块与控制器连接,以实现远程控制功能。

2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。

(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。

(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。

四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。

2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。

3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。

4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。

5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。

循迹避障蓝牙小车设计思路与方案

循迹避障蓝牙小车设计思路与方案

循迹避障蓝牙小车设计思路与方案近年来,随着科技的飞速发展,智能机器人逐渐走进我们的生活。

其中,循迹避障蓝牙小车成为了人们关注的焦点之一。

它不仅可以通过循迹技术实现沿指定路径行驶,还能够通过避障技术避免与环境中的障碍物发生碰撞。

本文将介绍循迹避障蓝牙小车的设计思路与方案。

一、硬件设计1. 主控模块:选择一块性能稳定、功能丰富的主控板,如Arduino Uno。

它具有较强的扩展性,能够满足蓝牙通信和传感器接口的需求。

2. 电机驱动模块:选择合适的电机驱动模块,如L298N。

它能够提供足够的电流和电压来驱动小车的电机。

3. 电机:选择高性能的直流电机,根据小车的重量和所需速度进行合理选择。

4. 轮胎:选择具有较好摩擦力和抓地力的轮胎,以确保小车能够稳定行驶。

5. 循迹模块:选择适用的循迹模块,如红外传感器或巡线传感器。

它可以通过检测地面上的黑线来实现循迹功能。

6. 避障模块:选择合适的避障模块,如超声波传感器或红外避障传感器。

它可以通过检测前方的障碍物来实现避障功能。

7. 电源模块:选择合适的电源模块,如锂电池或干电池。

它能够为整个系统提供稳定的电源供应。

二、软件设计1. 循迹算法:利用循迹模块检测地面上的黑线,通过编程实现小车沿着指定的路径行驶。

可以采用PID控制算法来调整小车的转向角度,保持在黑线上行驶。

2. 避障算法:利用避障模块检测前方的障碍物,通过编程实现小车避开障碍物。

可以采用距离测量和路径规划算法来确定避障的方向和距离。

3. 蓝牙通信:通过蓝牙模块与手机或电脑进行通信,实现对小车的控制和监控。

可以编写相应的手机应用或电脑软件来实现远程控制和实时监测。

三、系统集成1. 连接硬件:将主控模块、电机驱动模块、电机、循迹模块、避障模块和电源模块按照设计连接起来,确保各模块正常工作。

2. 编程调试:编写相应的程序代码,并进行调试。

通过串口或无线通信方式将程序烧录到主控模块中,保证系统的稳定性和可靠性。

智能小车避障系统的设计与实现

智能小车避障系统的设计与实现

智能小车避障系统的设计与实现智能小车避障系统是一种基于人工智能技术的智能设备,能够实现自主避免障碍物并沿着预设路径行驶的功能。

本文将介绍智能小车避障系统的设计原理和实现过程。

一、引言随着人工智能技术的发展,智能小车逐渐成为智能家居和智能工业设备中的重要组成部分。

智能小车避障系统是其中一个重要的功能之一,它能够通过传感器对周围环境进行感知,并根据感知结果做出相应的避障决策。

本文将详细介绍智能小车避障系统的实现过程。

二、设计原理智能小车避障系统的设计原理主要包括传感器模块、决策模块和执行模块。

1. 传感器模块传感器模块是智能小车避障系统中最重要的组成部分之一,它能够实时感知周围环境的障碍物位置和距离。

常用的传感器包括红外线传感器、超声波传感器和摄像头等。

通过这些传感器模块,智能小车能够获取周围环境的相关信息。

2. 决策模块决策模块是智能小车避障系统中的核心部分,它根据传感器模块获取到的环境信息进行处理和分析,并做出相应的决策。

常见的决策算法包括模糊逻辑算法、神经网络算法和遗传算法等。

通过这些算法,智能小车可以根据环境信息做出合理的避障决策。

3. 执行模块执行模块是智能小车避障系统中的最终执行部分,它负责根据决策模块的输出结果进行相应的控制。

通常,执行模块包括电机模块、舵机模块和通信模块等。

通过这些模块,智能小车能够根据避障决策结果自主行驶并避免障碍物。

三、实现过程智能小车避障系统的实现过程主要包括硬件搭建和软件编程两个步骤。

1. 硬件搭建硬件搭建是智能小车避障系统实现的第一步,它主要包括选择合适的传感器和执行模块,并进行连接和组装。

首先,选择适合的传感器模块,如红外传感器和超声波传感器,并将其连接到相应的接口。

然后,选择合适的执行模块,如电机模块和舵机模块,并进行连接和组装。

最后,将所有的模块连接到主控板,并确保其正常工作。

2. 软件编程软件编程是智能小车避障系统实现的关键步骤,它主要包括传感器数据处理、避障决策算法和执行控制程序的编写。

智能循迹避障小车设计说明

智能循迹避障小车设计说明

智能循迹避障小车设计说明智能循迹避障小车是一种基于微控制器控制的智能小车,它能够根据预设程序进行自主行驶、循迹和避障。

下面是对智能循迹避障小车的设计说明:1.硬件设计智能循迹避障小车的硬件设计包括以下组成部分:1.1 微控制器:使用单片机实现小车的控制和决策,采用常见的单片机有STC、ATmega、STM32等。

1.2 传感器:使用光电传感器进行循迹,超声波传感器进行避障。

在循迹方面,一般采用两个光电传感器,安装在小车底部,分别检测黑线和白色地面;在避障方面,一般采用超声波传感器,安装在小车前方,检测前方物体距离。

1.3 驱动电机:小车驱动电机一般采用直流减速电机,通过H桥驱动电路实现正反转控制。

1.4 电源:小车电源采用锂电池或干电池供电。

1.5 其他:小车还需要一些辅助元件,如LED指示灯、蜂鸣器等。

2.软件设计智能循迹避障小车的软件设计包括以下几个方面:2.1 循迹算法:根据光电传感器检测到的黑线和白色地面的信号,判断小车当前位置,控制小车朝着黑线方向运动。

2.2 避障算法:根据超声波传感器检测到的前方距离信息,判断小车前方是否有障碍物,避免碰撞。

2.3 控制逻辑:根据传感器数据计算得出的小车状态,进行控制决策。

比如,避障优先还是循迹优先,小车如何避障等。

2.4 通信协议:如果需要远程控制或传输数据,需要设计相应的通信协议。

3.功能实现基于硬件和软件设计,实现智能循迹避障小车以下功能:3.1 循迹:小车能够自主行驶,按照预设的循迹算法进行路径规划和执行。

3.2 避障:小车能够根据预设的避障算法,自主避开前方障碍物,避免碰撞。

3.3 情境感知:小车能够通过传感器感知环境,根据感知到的信息做出相应的控制决策。

3.4 远程控制:如果需要,可以通过通信模块实现小车的远程控制和数据传输。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。

四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。

在选择车体结构时,需要根据实际应用场景和需求进行权衡。

为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。

同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。

2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。

常见的循迹传感器有光电传感器和红外传感器。

光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。

在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。

为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。

通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。

(2)避障传感器避障传感器主要用于检测小车前方的障碍物。

常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。

超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。

在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。

一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。

3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。

常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。

单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。

在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。

4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案一、设计目标:1.实现智能循迹功能,能够沿着预定轨迹自动行驶。

2.具备避障功能,能够识别前方的障碍物并及时避开。

3.具备远程遥控功能,方便用户进行操作和控制。

4.具备数据上报功能,能够实时反馈运行状态和数据。

二、硬件设计:1.主控模块:使用单片机或者开发板作为主控模块,负责控制整个小车的运行和数据处理。

2.传感器模块:-光电循迹传感器:用于检测小车当前位置,根据光线的反射情况确定移动方向。

-超声波传感器:用于检测前方是否有障碍物,通过测量障碍物距离来判断是否需要避开。

3.驱动模块:-电机和轮子:用于实现小车的运动,可选用直流电机或者步进电机,轮子要具备良好的抓地力和摩擦力。

-舵机:用于实现小车的转向,根据循迹传感器的信号来控制舵机的角度。

4.通信模块:-Wi-Fi模块:用于实现远程遥控功能,将小车与遥控设备连接在同一个无线网络中,通过网络通信进行控制。

-数据传输模块:用于实现数据上报功能,将小车的运行状态和数据通过无线通信传输到指定的接收端。

三、软件设计:1.循迹算法:根据光电循迹传感器的反馈信号,确定小车的行进方向。

为了提高循迹的精度和稳定性,可以采用PID控制算法进行修正。

2.避障算法:通过超声波传感器检测前方障碍物的距离,当距离过近时,触发避障算法,通过调整小车的行进方向来避开障碍物。

3.遥控功能:通过Wi-Fi模块与遥控设备建立连接,接收遥控指令并解析,根据指令调整小车的运动状态。

4.数据上报功能:定时采集小车的各项运行数据,并通过数据传输模块将数据发送到指定的接收端,供用户进行实时监测和分析。

四、系统实现:1.硬件组装:根据设计要求进行硬件的组装和连接,确保各个模块之间的正常通信。

2.软件编程:根据功能要求,进行主控模块的编程,实现循迹、避障、遥控和数据上报等功能。

3.调试测试:对整个系统进行调试和测试,确保各项功能正常运行,并进行性能和稳定性的优化。

4.用户界面设计:设计一个用户友好的界面,实现对小车的远程控制和数据监测,提供良好的用户体验。

智能寻迹避障小车寻迹系统设计

智能寻迹避障小车寻迹系统设计

智能寻迹避障小车寻迹系统设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第二章智能寻迹避障小车寻迹系统设计1.任务任务一:产生智能寻迹避障小车沿黑线转圈的控制程序;任务二:产生智能寻迹避障小车带状态显示沿黑线转圈的控制程序;2.要求(1)能控制智能寻迹避障小车沿黑线实现转圈功能;(2)行走过程中小车一直压着黑线走,不得冲出黑线圆圈之外或之内;(3)智能寻迹避障小车可以从小于90度的任意方向寻找到黑线圆圈;项目描述该项目的主要内容是:在智能寻迹避障小车电机控制系统之上扩展寻迹电路,然后运用C语言对系统进行编程,使智能寻迹避障小车实现沿黑线转圆圈的功能,并且在行走过程中小车一直压着黑线走,不得冲出黑线圆圈之外或之内;当人为将小车拿开,再从小于90度的任意方向放置小车,小车应能重新找回轨道,并沿黑线继续转圈。

通过该项目的学习与实践,可以让读者获得如下知识和技能:继续掌握单片机I/O端口的应用;掌握红外线收、发对管的工作原理与控制方法;掌握数码管的工作原理与控制方法;掌握单片机C语言的编程方法与技巧;能够编写出智能寻迹避障小车沿黑线实现转圈功能的控制函数;必备知识2.1.1 关于红外线传感器红外线定义:在光谱中波长自至400微米的一段称为红外线,红外线是不可见光线。

所有高于绝对零度(℃)的物质都可以产生红外线。

现代物理学称之为热射线。

医用红外线可分为两类:近红外线与远红外线。

红外线发射器:红外线发射管在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。

根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。

如:红外线遥控器、光电开关、光电计数设备等。

红外线对管应用:本项目中,小车的寻迹功能采用红外线收、发对管实现。

具体工作过程如下:两对红外线收、发对管安装在智能寻迹避障小车底盘正前方,红外发射管一直发射信号,接收管时刻准备接收信号。

循迹避障智能小车设计(2023最新版)

循迹避障智能小车设计(2023最新版)

循迹避障智能小车设计
循迹避障智能小车设计文档范本:
⒈摘要
本文档旨在详细介绍循迹避障智能小车的设计方案。

介绍了小车的硬件组成、软件设计和算法实现,以及测试结果和优化方案。

⒉引言
介绍循迹避障智能小车的背景和应用场景,解释设计的目的和意义。

⒊系统架构
详细介绍循迹避障智能小车的系统组成,包括传感器模块、控制器、执行器等硬件部分,以及软件部分的整体架构。

⒋传感器设计
说明循迹避障智能小车所使用的传感器,包括红外线传感器、超声波传感器等的选择原因和工作原理,以及如何与控制器进行连接。

⒌控制器设计
介绍循迹避障智能小车的控制器设计,包括主控芯片的选择、引脚分配以及与传感器和执行器的连接方式。

⒍执行器设计
详细说明循迹避障智能小车的执行器设计,包括电机控制模块、转向模块等的选择和工作原理。

⒎算法设计
阐述循迹避障智能小车所采用的算法设计,包括循迹算法和避障算法的原理和实现方法。

⒏系统测试与优化
描述循迹避障智能小车的测试方法和实验结果分析,以及针对存在的问题进行的优化措施。

⒐结论
总结循迹避障智能小车设计的成果,评估其性能和应用前景,并展望未来的发展方向。

⒑附件
提供循迹避障智能小车的原理图、源代码、测试数据等附件,以供读者参考使用。

1⒈法律名词及注释
在文档末尾提供相关法律名词的注释,并进行对应解释,以确保读者对相关法律概念的理解和使用的合法性。

《2024年智能小车避障系统的设计与实现》范文

《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言智能小车避障系统作为人工智能在车辆技术上的一个应用,其在当前及未来的技术发展趋势中,显得尤为关键和重要。

这一系统的核心目的是确保小车在未知的环境中可以自动、智能地避障,减少可能的碰撞危险。

本文主要对智能小车避障系统的设计与实现进行了深入的研究和探讨。

二、系统设计1. 硬件设计硬件部分主要包括小车底盘、电机驱动、传感器模块(如超声波传感器、红外传感器等)、微控制器(如Arduino或Raspberry Pi)等。

其中,传感器模块负责检测障碍物,微控制器负责处理传感器数据并控制电机驱动,使小车能够根据环境变化做出反应。

2. 软件设计软件部分主要分为传感器数据处理、路径规划和避障算法三个模块。

传感器数据处理模块负责收集并处理来自传感器模块的数据;路径规划模块根据环境信息和目标位置规划出最优路径;避障算法模块则根据实时数据调整小车的行驶方向和速度,以避免碰撞。

三、系统实现1. 传感器数据处理传感器数据处理是避障系统的关键部分。

我们采用了超声波和红外传感器,这两种传感器都能有效地检测到一定范围内的障碍物。

通过读取传感器的原始数据,我们可以计算出障碍物与小车的距离,进而做出相应的反应。

2. 路径规划路径规划模块使用Dijkstra算法或者A算法进行路径规划。

这两种算法都可以根据已知的地图信息和目标位置,规划出最优的路径。

在小车行驶过程中,根据实时数据和新的环境信息,路径规划模块会实时调整规划出的路径。

3. 避障算法避障算法是智能小车避障系统的核心部分。

我们采用了基于PID(比例-积分-微分)控制的避障算法。

这种算法可以根据障碍物的位置和速度信息,实时调整小车的行驶方向和速度,以避免碰撞。

同时,我们还采用了模糊控制算法进行辅助控制,以提高系统的稳定性和鲁棒性。

四、系统测试与结果分析我们对智能小车避障系统进行了全面的测试,包括在不同环境下的避障测试、不同速度下的避障测试等。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计一、设计背景随着自动化技术和人工智能的不断发展,智能小车在工业生产、物流运输、家庭服务等领域的应用越来越广泛。

循迹避障智能小车作为其中的一种,能够在预设的轨道上自主行驶,并避开途中的障碍物,具有很高的实用价值。

例如,在工厂的自动化生产线中,它可以完成物料的搬运工作;在家庭中,它可以作为智能清洁机器人,自动清扫房间。

二、硬件设计1、控制器控制器是智能小车的核心部件,负责整个系统的运算和控制。

我们选用了 STM32 系列单片机,它具有高性能、低功耗、丰富的外设接口等优点,能够满足智能小车的控制需求。

2、传感器(1)循迹传感器为了实现小车的循迹功能,我们选用了红外对管传感器。

将多个红外对管传感器安装在小车底部,通过检测地面反射的红外线强度来判断小车是否偏离轨道。

(2)避障传感器超声波传感器是实现避障功能的常用选择。

它通过发射和接收超声波来测量与障碍物之间的距离,当距离小于设定的阈值时,小车会采取相应的避障措施。

3、电机驱动模块电机驱动模块用于控制小车的电机运转。

我们选用了 L298N 电机驱动芯片,它能够提供较大的电流驱动能力,保证小车的动力充足。

4、电源模块电源模块为整个系统提供稳定的电源。

考虑到小车的工作环境和功耗要求,我们选用了可充电锂电池作为电源,并通过降压模块将电压转换为各个模块所需的工作电压。

三、电路设计1、控制器电路STM32 单片机的最小系统电路包括时钟电路、复位电路、电源电路等。

此外,还需要连接外部的下载调试接口,以便对程序进行烧写和调试。

2、传感器电路红外对管传感器和超声波传感器的电路设计相对简单,主要包括信号调理电路和接口电路。

信号调理电路用于将传感器输出的模拟信号转换为数字信号,以便单片机进行处理。

3、电机驱动电路L298N 电机驱动芯片的电路连接需要注意电机的正反转控制和电流限制。

同时,为了提高电路的稳定性,还需要添加滤波电容和续流二极管等元件。

四、软件编程1、编程语言我们使用 C 语言进行编程,它具有语法简洁、可移植性强等优点,适合于单片机的开发。

《2024年智能小车避障系统的设计与实现》范文

《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言智能小车避障系统是一项将先进科技与现实生活相结合的创新性项目,通过采用精确的传感器、有效的算法和可靠的控制系统,小车能够实现自动避障,提高行驶的安全性和效率。

本文将详细介绍智能小车避障系统的设计与实现过程,包括系统架构、硬件设计、软件设计以及实验结果等。

二、系统架构设计智能小车避障系统主要由传感器模块、控制模块和执行模块三部分组成。

传感器模块负责检测周围环境中的障碍物,控制模块根据传感器数据做出决策并控制执行模块的动作。

系统采用模块化设计,便于后期维护和升级。

三、硬件设计1. 传感器模块:传感器模块包括超声波测距传感器和红外线避障传感器。

超声波测距传感器用于测量小车与障碍物之间的距离,红外线避障传感器用于检测障碍物的位置和大小。

这些传感器通过I/O接口与控制模块相连,实时传输数据。

2. 控制模块:控制模块采用高性能的微控制器,负责接收传感器数据、处理数据并做出决策。

此外,控制模块还负责与执行模块进行通信,控制其动作。

3. 执行模块:执行模块包括小车的电机驱动系统和转向系统。

电机驱动系统根据控制模块的指令驱动小车前进、后退、左转或右转;转向系统则根据电机驱动系统的输出进行相应调整,保证小车的稳定行驶。

四、软件设计1. 数据采集与处理:软件首先通过传感器模块采集周围环境中的障碍物数据,然后对数据进行预处理和滤波,以提高数据的准确性和可靠性。

2. 路径规划与决策:根据处理后的数据,软件采用适当的算法进行路径规划和决策。

例如,可以采用基于规则的决策方法或基于机器学习的决策方法。

3. 控制输出:根据决策结果,软件通过控制模块向执行模块发出指令,控制小车的动作。

五、实现过程1. 硬件组装:将传感器模块、控制模块和执行模块进行组装,完成小车的搭建。

2. 软件编程:编写软件程序,实现数据采集、处理、路径规划和决策等功能。

3. 系统调试:对小车进行调试,确保各部分正常工作且能够协同完成避障任务。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计循迹避障智能小车设计1:引言本文档旨在详细描述循迹避障智能小车的设计方案,包括硬件设计、软件设计以及系统测试等内容。

该智能小车可以通过识别地面上指定的轨迹进行行驶,并通过传感器实现避障功能,是一个具有潜在商业价值的项目。

2:项目概述2.1 项目背景2.2 项目目标2.3 可行性分析2.4 技术要求3:硬件设计3.1 微控制器选择与连接3.2 电机驱动电路设计3.3 传感器选择与接口设计3.4 电源管理设计3.5 小车结构设计4:软件设计4.1 系统架构设计4.2 循迹算法设计4.3 避障算法设计4.4 控制算法设计4.5 用户界面设计5:系统测试5.1 单元测试5.2 集成测试5.3 系统性能测试6:项目进度计划6.1 里程碑计划6.2 任务分解与时间安排7:风险分析与管理7.1 风险识别7.2 风险评估7.3 风险应对策略8:项目质量保证8.1 质量计划8.2 质量控制措施8.3 问题追踪与修复9:项目资源需求及管理9.1 人力资源需求9.2 设备与工具需求9.3 成本管理10:知识产权保护10.1 法律法规概述10.2 知识产权保护措施11:参考文献附件:1、循迹避障智能小车电路原理图2、循迹避障智能小车源代码3、循迹避障智能小车外观图法律名词及注释:1、知识产权:指人们在创作或发现新的想法、概念、技术等方面所享有的权益。

2、版权:指对创作的原创作品享有的独立的、排他的经济权利。

3、知识产权保护措施:指通过法律手段确保知识产权的权益不受侵犯的措施。

智能循迹避障小车设计说明

智能循迹避障小车设计说明

智能循迹避障小车设计说明
一、前言
智能循迹避障小车是一种使用智能科学技术控制的小型机器人,它可以实现自主循迹路径,避障等功能。

目前,智能循迹避障小车已经成为机器人领域的一个重要研究对象,因为它在工业自动化,服务机器人,教育科研,安防监控等领域具有广泛的应用前景。

本文首先介绍智能循迹避障小车的组成结构以及其主要控制系统,并介绍其核心算法:循迹算法、避障算法以及路径规划算法。

最后,本文还将介绍智能循迹避障小车的应用前景。

二、智能循迹避障小车结构及控制系统
智能循迹避障小车是由电机、接收器、传感器等组成的小型机器人。

它的主要控制系统由微处理器,控制板,传感器,电机驱动器,定位器,电池等组成。

其中,微处理器是智能循迹避障小车的核心控制部件,它负责控制和协调整个系统的工作,是小车实现智能控制的基础。

它可以完成小车自主导航的控制,使小车自行实现向指定点前进,避开障碍物以及避免崩溃。

传感器可以检测所处环境的信息,包括距离、方向、颜色等。

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32微控制器的智能机器人车,它具有智能避障、循迹导航等功能。

它通过使用红外传感器、超声波传感器等传感器来感知周围环境,并通过STM32微控制器来实现对传感器数据的处理和控制小车的运动。

本文将介绍基于STM32的智能循迹避障小车的原理、设计和制作过程。

一、智能循迹避障小车的原理1.1 系统架构智能循迹避障小车主要由STM32微控制器、电机驱动模块、传感器模块和电源模块组成。

STM32微控制器用于控制小车的运动和感知周围环境;电机驱动模块用于控制小车的电机运动;传感器模块用于感知周围环境,包括红外传感器、超声波传感器等;电源模块用于为整个系统提供电源供应。

1.2 工作原理智能循迹避障小车主要工作原理是通过传感器模块感知周围环境的障碍物和地面情况,然后通过STM32微控制器对传感器数据进行处理,再控制电机驱动模块完成小车的运动。

在循迹导航时,小车可以通过红外传感器感知地面情况,然后根据传感器数据进行反馈控制,使小车能够按照预定路径行驶;在避障时,小车可以通过超声波传感器感知前方障碍物的距离,然后通过控制电机的速度和方向来避开障碍物。

2.1 硬件设计智能循迹避障小车的硬件设计主要包括电路设计和机械结构设计。

电路设计中,需要设计STM32微控制器和传感器、电机驱动模块的连接电路,以及电源模块的电源供应电路;机械结构设计中,需要设计小车的外观和结构,以及安装电机、传感器等模块的位置和方式。

2.2 软件设计智能循迹避障小车的软件设计主要包括STM32程序设计和智能控制算法设计。

STM32程序设计中,需要编写STM32微控制器的程序,包括对传感器数据的采集和处理,以及对电机的控制;智能控制算法设计中,需要设计循迹导航算法和避障算法,以使小车能够智能地进行循迹导航和避障。

2.3 制作过程制作智能循迹避障小车的过程主要包括电路焊接、机械结构装配、程序编写和调试等步骤。

智能循迹避障小车设计

智能循迹避障小车设计

智能循迹避障小车设计智能循迹避障小车设计1.简介1.1 背景随着智能技术的不断发展,智能循迹避障小车在各个领域中得到了广泛应用。

此文档旨在提供一个详细的设计方案,以实现智能循迹避障小车的功能。

1.2 目标本设计的目标是开发一款智能小车,能够根据预设的路径行驶,并能够自动避开障碍物。

2.设计概述2.1 硬件设计2.1.1 主控制模块2.1.1.1 微控制器选择根据功能需求和成本考虑,选择一款适合的微控制器作为主控制模块。

2.1.1.2 传感器接口设计适当的传感器接口,用于连接循迹和避障传感器。

2.1.2 驱动模块2.1.2.1 电机驱动器选择根据电机参数和电源需求,选择合适的电机驱动器。

2.1.2.2 电机控制接口设计适当的电机控制接口,用于根据输入信号控制电机的运行。

2.1.3 电源模块2.1.3.1 电源选择根据整体电路的功耗需求,选择合适的电源供应方案。

2.1.3.2 电源管理电路设计设计合适的电源管理电路,用于提供稳定的电源给各个模块。

2.2 软件设计2.2.1 循迹算法设计设计一种有效的循迹算法,使小车能够按照预设路径行驶。

2.2.2 避障算法设计设计一种智能避障算法,使小车能够根据传感器信息自动避开障碍物。

3.实施计划3.1 硬件实施计划3.1.1 购买所需材料和组件根据设计需求,购买合适的硬件材料和组件。

3.1.2 组装硬件模块按照设计要求,组装各个硬件模块,并进行必要的连接。

3.2 软件实施计划3.2.1 开发循迹算法设计和开发循迹算法,并进行模拟和测试。

3.2.2 开发避障算法设计和开发避障算法,并进行模拟和测试。

4.测试和验证4.1 硬件测试使用适当的测试方法,验证硬件模块的功能和性能。

4.2 软件测试使用合适的测试方法,验证软件算法的正确性和可靠性。

5.总结与展望根据测试结果,对整个设计方案进行总结,并提出可能的改进方向。

附件:(此处列出本文档所涉及的附件名称和描述)法律名词及注释:(此处列出本文所涉及的法律名词及其相应的解释和注释)。

《2024年智能小车避障系统的设计与实现》范文

《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车避障系统在日常生活及各种工业领域的应用愈发广泛。

通过应用人工智能技术,这类系统可以在没有人工操作的情况下自动避障。

本文旨在深入探讨智能小车避障系统的设计理念和实现过程。

二、系统设计目标与基本原理1. 设计目标:本系统设计的主要目标是实现小车的自主避障,提高小车在复杂环境中的运行效率和安全性。

2. 基本原理:系统主要依赖于传感器进行环境感知,通过算法对获取的信息进行处理,从而实现避障功能。

三、系统设计1. 硬件设计硬件部分主要包括小车底盘、电机驱动、传感器(如超声波传感器、红外传感器等)、微控制器等。

其中,传感器负责获取环境信息,微控制器则负责处理这些信息并发出控制指令。

(1) 小车底盘:选用轻便且稳定的底盘,以适应各种路况。

(2) 电机驱动:采用高性能的电机驱动,保证小车的运动性能。

(3) 传感器:选用精确度高、抗干扰能力强的传感器,如超声波传感器和红外传感器。

(4) 微控制器:选用处理速度快、功耗低的微控制器,如Arduino或Raspberry Pi。

2. 软件设计软件部分主要包括传感器数据采集、数据处理、路径规划、控制指令发出等模块。

(1) 传感器数据采集:通过传感器实时获取环境信息,如障碍物的位置、距离等。

(2) 数据处理:微控制器对获取的信息进行处理,识别出障碍物并判断其位置和距离。

(3) 路径规划:根据处理后的信息,规划出避开障碍物的路径。

(4) 控制指令发出:根据路径规划结果,发出控制指令,驱动小车运动。

四、系统实现1. 传感器数据采集与处理:通过传感器实时获取环境信息,利用微控制器的处理能力对信息进行筛选、分析和处理,识别出障碍物并判断其位置和距离。

这一过程主要依赖于编程语言的运算和逻辑处理能力。

2. 路径规划:根据传感器获取的信息,结合小车的当前位置和目标位置,通过算法规划出避开障碍物的最优路径。

这一过程需要考虑到小车的运动性能、环境因素以及实时性要求等因素。

《2024年智能小车避障系统的设计与实现》范文

《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言在当代科技的迅猛发展中,无人驾驶与自动控制技术正逐步改变我们的生活方式。

智能小车避障系统作为无人驾驶技术的重要组成部分,其设计与实现对于提升小车的自主导航能力和安全性具有重要意义。

本文将详细阐述智能小车避障系统的设计思路、实现方法及其实验结果。

二、系统设计1. 硬件设计智能小车避障系统硬件部分主要包括小车底盘、电机驱动模块、传感器模块和电源模块。

其中,传感器模块是避障系统的核心,通常包括红外线传感器、超声波传感器或摄像头等,用于检测前方障碍物。

(1)小车底盘:采用轻质材料制成,保证小车在行驶过程中的稳定性和灵活性。

(2)电机驱动模块:采用舵机或直流电机驱动小车行驶。

(3)传感器模块:根据需求选择合适的传感器,如红外线传感器可检测近距离障碍物,超声波传感器适用于检测较远距离的障碍物。

(4)电源模块:为整个系统提供稳定的电源供应。

2. 软件设计软件部分主要包括控制系统和算法部分。

控制系统采用微控制器或单片机作为核心处理器,负责接收传感器数据并输出控制指令。

算法部分则是避障系统的关键,包括障碍物检测、路径规划和控制策略等。

(1)障碍物检测:通过传感器实时检测前方障碍物,并将数据传输至控制系统。

(2)路径规划:根据传感器数据和小车的当前位置,规划出最优的行驶路径。

(3)控制策略:根据路径规划和传感器数据,输出控制指令,控制小车的行驶方向和速度。

三、实现方法1. 传感器选择与安装根据实际需求选择合适的传感器,并安装在合适的位置。

例如,红外线传感器可安装在车头,用于检测前方近距离的障碍物;超声波传感器可安装在车体侧面或顶部,用于检测较远距离的障碍物。

2. 控制系统搭建搭建控制系统硬件平台,包括微控制器、电机驱动模块等。

将传感器与控制系统连接,确保数据能够实时传输。

3. 算法实现编写算法程序,实现障碍物检测、路径规划和控制策略等功能。

可采用C语言或Python等编程语言进行编写。

(完整word版)智能循迹避障小车报告(word文档良心出品)

(完整word版)智能循迹避障小车报告(word文档良心出品)

摘要:本智能识别小车以STC89C52单片机为控制芯片,以直流电机,光电传感器,超声波传感器,电源电路以及其他电路构成。

系统由STC89C52通过IO口,通过红外传感器检测黑线,利用单片机输出PWM脉冲控制直流电机的转速和转向,循迹由TCRT5000型光电对管完成。

一、系统设计1、小车循迹,避障原理这里的循进是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。

红外探测法,即利用红外a在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地板时,发生漫反射反射光被装在小车上的按收管按收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

红外探测器探测距离有限一殷最大不应超过3cm。

而避障则是通过超声波模块不断向前方发射超声波信号,通过接收反射回来的超声波信号,从而实现的避障。

当前方有障碍物时,超声波会向单片机串口发送一串数字,这些数字就是当前小车距离障碍物得距离。

当串口接收到信号时,会引发串口中断,单片机通过读取距离值,并且对此数值进行分析是不是距离小车很近,是的话就进行转向;否则继续循迹。

当小车遇到第一个障碍后,就计数一次,这样当遇到第二个障碍物时,小车就可以以不同的形式躲避障碍物了。

2、选用方案(1):采用成品的小车地盘,通过改装来完成任务;(2):采用STC89C52单片机作为主控制器;(3):采用7V电源经7805稳压芯片降压后为其他芯片及器件供电。

(4):采用TCRT5000型红外传感器进行循迹;(5):L298N作为直流电机的驱动芯片;(6):通过对L298N使能端输入PWM来控制电机转速和转向;3、系统机构框图如下所示:超声波模块主控制芯片STC89C52红外传感器直流电机L298N稳压电源模块电压比较器二、硬件实现及单元电路设计与分析1、微控制模块设计与分析微控制器模块我们采用STC89C52。

《2024年智能小车避障系统的设计与实现》范文

《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言随着科技的不断发展,智能小车作为一种新兴的科技产品,在日常生活和工业生产中得到了广泛的应用。

避障系统作为智能小车的重要组成部分,其设计与实现对于提高小车的智能化程度和安全性具有重要意义。

本文将详细介绍智能小车避障系统的设计与实现过程,包括系统架构、硬件设计、软件设计和实验测试等方面的内容。

二、系统架构设计智能小车避障系统的架构设计主要分为硬件和软件两部分。

硬件部分包括传感器、控制器、驱动器等;软件部分则包括操作系统、算法等。

整个系统通过传感器获取环境信息,通过控制器处理信息并控制驱动器实现避障功能。

三、硬件设计1. 传感器设计传感器是智能小车避障系统的核心部件,主要用于获取环境信息。

常见的传感器包括红外传感器、超声波传感器、摄像头等。

本系统采用红外传感器和超声波传感器相结合的方式,以提高避障的准确性和可靠性。

红外传感器主要用于检测近距离内的障碍物,而超声波传感器则用于检测远距离内的障碍物。

2. 控制器设计控制器是智能小车的“大脑”,负责处理传感器获取的信息并控制驱动器实现避障功能。

本系统采用STM32F4系列微控制器,具有高性能、低功耗等特点,可满足智能小车的高效运行需求。

3. 驱动器设计驱动器是智能小车的执行部件,负责将控制器的指令转化为机械运动。

本系统采用直流电机和电机驱动模块,可实现小车的快速、精确运动。

四、软件设计1. 操作系统选择本系统采用实时操作系统(RTOS)作为小车的操作系统,以保证系统的高效性和实时性。

RTOS具有任务调度、内存管理、中断处理等功能,可满足智能小车的复杂控制需求。

2. 算法设计算法是智能小车避障系统的关键部分,直接影响到避障的准确性和可靠性。

本系统采用基于传感器的避障算法,包括红外避障算法和超声波避障算法。

此外,还采用路径规划算法,以实现小车的自主导航和避障功能。

五、实验测试为了验证智能小车避障系统的设计与实现效果,我们进行了多轮实验测试。

基于STM32智能循迹避障小车(设计报告)

基于STM32智能循迹避障小车(设计报告)

基于STM32智能循迹避障小车(设计报告)具有丰富的外设和存储器资源,能够满足本设计的需求。

在硬件方面,采用了红外对管和超声波传感器来检测道路上的轨迹和障碍物,并通过PWM调速来控制电动小车的速度。

在软件方面,采用MDK(keil)软件进行编程,实现对小车的自动循迹和避障,快慢速行驶,以及自动停车等功能。

设计方案本设计方案主要分为硬件设计和软件设计两个部分。

硬件设计部分主要包括电路原理图的设计和PCB的制作。

在电路原理图的设计中,需要将stm32芯片、红外对管、超声波传感器、电机驱动模块等元器件进行连接。

在PCB的制作中,需要将电路原理图转化为PCB布局图,并进行钻孔、贴片等工艺流程,最终得到完整的电路板。

软件设计部分主要包括程序的编写和调试。

在程序的编写中,需要先进行芯片的初始化设置,然后分别编写循迹、避障、速度控制等功能的代码,并将其整合到主函数中。

在调试过程中,需要通过串口调试工具来进行数据的监测和分析,以确保程序的正确性和稳定性。

实验结果经过多次实验测试,本设计方案实现了对电动小车的自动循迹和避障,快慢速行驶,以及自动停车等功能。

在循迹和避障方面,红外对管和超声波传感器的检测精度较高,能够准确地控制小车的运动方向和速度;在速度控制方面,PWM调速的方式能够实现小车的快慢速行驶,且速度控制精度较高;在自动停车方面,通过超声波传感器检测到障碍物后,能够自动停车,确保了小车的安全性。

结论本设计方案采用stm32为控制核心,利用红外对管和超声波传感器实现对电动小车的自动循迹和避障,快慢速行驶,以及自动停车等功能。

在硬件方面,电路结构简单,可靠性能高;在软件方面,采用MDK(keil)软件进行编程,实现了程序的稳定性和正确性。

实验测试结果表明,本设计方案能够满足题目的要求,具有一定的实用性和推广价值。

内核采用ARM32位Cortex-M3 CPU,最高工作频率为72MHz,1.25DMIPS/MHz,具有单周期乘法和硬件除法功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本设计是一种基于单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。

小车以AT89C52 为控制核心,利用车前三个红外探头检测周围信息,以及循迹模块对路面黑色轨迹进行检测,并将路面检测信号反馈给单片机。

单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够自动避障和沿着黑色轨迹自动行驶,实现小车自动避障寻迹的目的。

关键词:AT89C51;直流电机;红外探头;循迹模块AbstractThe design is based on single chip microcomputer control automatic tracing system, including system hardware and software design method of car. The car takes AT89C52 as the control core, using the front three infrared probe detection of peripheral information, and tracking module on pavement black locus were detected, and the pavement detection signal feedback to the microcontroller. Single chip signal gives the analysis judgment, to control the drive motor to adjust the car steering, so that the car can automatically avoid obstacles and along the black path automatic driving, realize automatic obstacle avoidance tracing purposes.Key words: AT89C51; infrared sensor; tracking module目录摘要 (4)第一章前言 (1)1.1本选题的意义 (1)1.2智能小车的发展现状及未来趋势 (2)1.3智能小车的研究意义 (2)第二章寻迹避障小车工作原理 (3)2.1壁障寻迹小车工作原理 (3)2.2控制系统总体设计 (3)2.2.1 AT98C52单片机 (4)2.2.2 红外探头避障模块 (4)2.2.3 寻迹模块 (6)2.2.4 电源模块 (6)2.2.5 电机及驱动模块 (6)第三章硬件设计 (8)3.1总体设计 (8)3.2驱动电路 (9)3.3信号检测模块 (10)3.4主控电路 (11)第四章软件设计 (13)4.1主程序框图: (13)4.2寻迹模块程序设计 (14)4.2.1 寻迹程序框图及其真值表 (14)4.4避障模块程序设计 (15)4.4.1 避障框图及其真值表 (15)结束语 (17)致谢 (18)附录一硬件原理图 (19)附录二程序清单 (20)参考文献 (25)第一章前言1.1 本选题的意义自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。

近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。

人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。

随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。

视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。

视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。

但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。

机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。

避障控制系统是基于自动导引小车(A VG —auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。

使用传感器感知路线和障碍并作出判断和相应的执行动作。

该智能小车可以作为机器人的典型代表。

它可以分为三大组成部分:传感器检测部分、执行部分、CPU。

机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。

可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。

基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。

智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。

单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。

考虑到实际情况,本文选择第二种方案。

CPU使用STC89C52单片机,配合软件编程实现。

1.2 智能小车的发展现状及未来趋势现智能小车发展很快,从智能玩具到其它各行业都有实质成果。

其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系统发展。

比较出名的飞思卡尔智能小车更是走在前列。

我此次的设计主要实现循迹避障这两个功能。

1.3智能小车的研究意义随着我国科学技术的进步,智能化和自动化技术越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。

智能小车是一个多种高新技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,涉及到当今许多前沿领域的技术。

而智能电动车正是智能机器人的一种,具有不可估量的实际意义。

其避障寻迹技术的研究可以带来交通运输的巨大改革,也为车辆的自主导航能力的实现和无人自动驾驶车辆的实现提供了重要技术。

第二章寻迹避障小车工作原理2.1 壁障寻迹小车工作原理工作原理:避障寻迹小车是通过红外探头以及寻迹模块感知外围状况,将所感知到的数据以1、0的信号形式返回给单片机,然后再通过单片机针对不同的情况进行控制,从而实现避障寻迹的功能。

2.2控制系统总体设计图2-1 主控系统结构图1、主控制电路模块:用AT89C52单片机2、红外检测模块:红外探头传感器3、寻迹模块:红外对管传感器4、电源模块:双路开关电源5、电机及驱动模块:电机驱动芯片L298N、两个直流电机2.2.1 AT98C52单片机图2-2 AT89C52电路图采用单片机作为整个系统的核心,用其控制行进中的小车,以实现其既定的性能指标。

充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势——控制简单、方便、快捷。

这样一来,单片机就可以充分发挥其资源丰富、有较为强大的控制功能及可位寻址操作功能、价格低廉等优点。

因此,这种方案是一种较为理想的方案。

2.2.2 红外探头避障模块采用三只红外探头分别置于小车的前端两侧以及正前端放向,对小车与障碍物相对距离和方位能作出较为准确的判别和及时反应,再向没有检测都障碍物的一方行走。

图3-4 红外避障原理接电源(a) 发射器图2-3 加调制的发射管2.2.3 寻迹模块采用五只红外对管,一只置于轨道中间,四只置于轨道外侧,当小车脱离轨道时,即当置于中间的一只光电开关脱离轨道时,等待外面任一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道),若外面两只红外对管检测到黑线,则向反方向转弯,再恢复正向行驶。

图2-5 红外避障原理2.2.4 电源模块采用8支1.5V电池双电源分别给单片机与电机供电可解决方案二的问题且能让小车完成其功能。

2.2.5 电机及驱动模块采用功率三极管作为功率放大器的输出控制直流电机。

线性型驱动的电路结构和原理简单,加速能力强,采用由达林顿管组成的 H型桥式电路(如图2.1)。

用单片机控制达林顿管使之工作在占空比可调的开关状态下,精确调整电动机转速。

这种电路由于工作在管子的饱和截止模式下,效率非常高,H型桥式电路保证了简单的实现转速和方向的控制,电子管的开关速度很快,稳定性也极强,是一种广泛采用的 PWM调速技术。

现市面上有很多此种芯片,我选用了L298N(如图2.2)。

这种调速方式有调速特性优良、调整平滑、调速范围广、过载能力大,能承受频繁的负载冲击,还可以实现频繁的无级快速启动、制动和反转等优点。

因此决定采用使用功率三极管作为功率放大器的输出控制直流电机。

图2-6 H桥式电路图2-7 L298N第三章硬件设计3.1总体设计智能小车采用前轮驱动,前轮左右两边各用一个电机驱动,调制前面两个轮子的转速起停从而达到控制转向的目的,后轮是万象轮,起支撑的作用。

将循迹对管装在车体下的前端,一开始小车自动开始寻迹功能,当搜索不到黑线的时候就自动进入壁障模式,知道再次搜索到黑线。

图3-1 主板设计框图3.2驱动电路电机驱动一般采用H桥式驱动电路,L298N内部集成了H桥式驱动电路,从而可以采用L298N电路来驱动电机。

通过单片机给予L298N电路PWM信号来控制小车的速度,起停。

其引脚、驱动原理图如下图:图3-2 L298N引脚图图3-3 电机驱动电路图3.3信号检测模块小车循迹原理是小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。

笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。

红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。

在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号,再通过LM324作比较器来采集高低电平,从而实现信号的检测。

避障亦是此原理。

图3-4 循迹原理图3.4主控电路本模块主要是对采集信号进行分析,同时给出PWM波控制电机速度,起停。

以及再检测到障碍报警等作用。

其电路图如图。

图3-5主控电路第四章软件设计4.1主程序框图:图4-1 主程序程序框图4.2 寻迹模块程序设计4.2.1 寻迹程序框图及其真值表图4-2 寻迹程序框图注:Q1、Q2、Q3、Q4、Q5分别代表小车寻迹模块上的5个红外感应器,Q1到Q5从左到右排列。

相关文档
最新文档