选择最佳的光学设计软件

合集下载

光学设计软件介绍

光学设计软件介绍

光学设计软件介绍光学设计软件是一种用于设计、模拟和优化光学系统的专业软件。

它能够帮助光学工程师在设计过程中进行复杂的光学分析和计算,以实现更好的系统性能和结果。

在本文中,我将介绍几款常用的光学设计软件,并分别对它们的特点和应用领域进行详细介绍。

首先,我们来介绍一款被广泛应用的商业光学设计软件,Zemax。

Zemax是一款集成了光学设计工具、分析和优化功能的软件。

它提供了丰富的光学元件和材料库,用户可以通过拖放功能轻松搭建光学系统,并实时进行光束跟踪和模拟。

Zemax具有强大的快速优化功能,能够自动优化光学系统的参数,极大地提高了光学系统的设计效率。

此外,Zemax还提供了光学系统的散射和散射分布模拟功能,可用于高级光学分析和设计。

Zemax广泛应用于光学器件、成像系统、激光系统等领域。

另一款值得关注的光学设计软件是CODEV。

CODEV是光学工程师和设计师们非常喜欢使用的一款商业软件。

它提供了先进的面片拟合分析算法,可以模拟光学表面的形状和光线传输。

CODEV具有非常强大的工程优化功能,可以自动找到最优的光学系统参数,以满足特定的设计需求。

该软件还支持干涉仪的设计和分析,能够帮助用户进行光波前传播分析和高级光学性能计算。

CODEV广泛应用于天文望远镜、光纤通信和半导体设备等领域。

另外,我们还有一款开源软件,OpenFST。

OpenFST是一种用于模拟和优化光学系统的自由软件。

它具有高性能和高效的光束跟踪算法,能够精确模拟光线的传输和变换。

OpenFST还支持多种优化算法,可以自动最佳的光学参数。

此外,它还提供了基于几何和波动原理的分析工具,可用于高级光学模拟和计算。

OpenFST广泛应用于光学设备、光纤通信和太阳能电池等领域。

综上所述,光学设计软件在现代光学工程中起着重要的作用。

由于不同软件具有不同的优势和特点,适合不同领域和需求的光学设计。

通过选择适合的软件,光学工程师能够更加高效、准确地进行光学系统设计和优化,从而实现更好的技术和应用效果。

CATIA光学设计

CATIA光学设计

CATIA光学设计CATIA光学设计是一种在计算机辅助设计软件CATIA中应用光学原理来进行光学系统设计与分析的技术。

该技术在工业制造、航空航天、汽车、医疗器械等领域得到广泛应用,并为光学工程师提供了强大的设计和模拟工具。

一、概述CATIA光学设计主要包括以下几个方面的内容:光学系统建模、光线追迹、非几何光学分析、光学元件设计等。

1. 光学系统建模CATIA光学设计首先需要根据实际需求,创建光学系统的模型。

通过CATIA提供的建模工具,可以准确构建光学系统的各个组成部分,如透镜、反射镜等。

在建模过程中,要考虑光学系统的几何形状、物理参数以及材料特性等因素。

2. 光线追迹在光学系统建模完成后,需要进行光线的追迹。

CATIA提供了光线追迹功能,可以模拟光线在光学系统中的传播路径和特性。

通过光线追迹,可以得到反射、折射、散射等光学现象,并进一步分析光线的强度、偏振以及相位等参数。

3. 非几何光学分析除了光线追迹外,CATIA还支持非几何光学分析。

这种分析方法基于光学传输理论,使用波动光学、光束传播等方法,对光学系统的性能进行评估和优化。

通过非几何光学分析,可以得到光学系统的像差、色差、MTF(调制传递函数)等参数,并帮助光学工程师改善系统的性能。

4. 光学元件设计CATIA光学设计还提供了光学元件的设计功能。

在设计过程中,可以根据特定的应用需求,选择合适的透镜曲面,确定适当的曲率半径、厚度和折射率等参数,并通过模拟和优化,改善光学元件的成像质量和光学性能。

二、应用领域1. 工业制造在工业制造领域,CATIA光学设计可用于激光切割、焊接、雕刻等工艺的优化。

通过准确的光学系统建模和分析,可以提高激光加工的精度和效率,降低能耗和材料损耗。

2. 航空航天在航空航天领域,光学系统被广泛应用于飞行器的导航、通信和成像等方面。

CATIA光学设计能够帮助工程师设计和优化光学传感器、望远镜、光纤通信系统等设备,提高飞行器的性能和可靠性。

信息光学中的光学设计及仿真软件比较

信息光学中的光学设计及仿真软件比较

信息光学中的光学设计及仿真软件比较信息光学是研究光在信息科学、通信、计算等领域中的应用的学科。

在信息光学中,光学设计和仿真软件起到了重要的作用,可以帮助工程师们进行光学系统的设计、优化和仿真分析。

本文将对几种常用的光学设计和仿真软件进行比较,包括Zemax、Code V和LightTools。

1. ZemaxZemax是一款功能强大且广泛使用的光学设计和仿真软件。

它提供了丰富的光学元件库,包括透镜、棱镜、镜片等,同时也可以自定义设计光学元件。

Zemax具有直观的用户界面和可视化的设计流程,可以帮助用户快速进行光学系统的设计和优化。

此外,Zemax还提供了各种分析工具和优化算法,用于评估和改善光学系统的性能。

2. Code VCode V是一款专业的光学设计和仿真软件,主要用于非球面光学元件和复杂光学系统的设计。

Code V具有强大的非球面曲面建模和优化算法,可以实现更高级别的光学设计。

它拥有丰富的分析工具和优化方法,可帮助用户定量评估光学系统的性能,并进行合理的优化。

Code V的用户界面相对较为复杂,需要一定的学习和使用成本。

3. LightToolsLightTools是一款基于光线追迹的光学设计和仿真软件,主要用于一维和二维光学系统的设计和分析。

LightTools的特点是能够高精度地处理光学系统中的散射、衍射、反射等效应。

它提供了直观的用户界面和灵活的设计工具,可快速建立光学系统,并进行系统性能的仿真和分析。

LightTools还具有丰富的材料库和光源模型,以支持用户进行更真实的仿真。

综合比较:Zemax、Code V和LightTools是信息光学领域常用的光学设计和仿真软件,它们各自有着优势和适用范围。

Zemax相对而言更适用于一般光学系统的设计和分析,有着丰富的功能和用户友好的界面。

Code V则更适用于非球面光学元件和复杂系统的设计,并具备高级的设计和优化算法。

LightTools则更适用于对散射、衍射等光学效应有较高要求的系统设计。

zemax光学设计案例

zemax光学设计案例

zemax光学设计案例
Zemax光学设计案例。

在光学设计领域,Zemax是一个非常优秀的光学设计软件,它能够帮助工程师
们进行光学系统的设计、优化和分析。

下面,我们将介绍一个使用Zemax进行光
学设计的案例,以便更好地了解Zemax软件的应用和优势。

在这个案例中,我们需要设计一个具有特定光学性能的摄像头透镜系统。

首先,我们需要明确设计要求和约束条件,然后利用Zemax软件进行光学系统的建模和
优化。

在建模过程中,我们需要考虑透镜的曲率、厚度、材料等参数,同时还需要考虑系统的光路布局、光学元件的位置和角度等因素。

利用Zemax的光学设计工具,我们可以对透镜系统进行快速而准确的建模和分析。

通过Zemax的光学优化算法,我们可以对系统的光学性能进行优化,以满足
设计要求。

同时,Zemax还提供了丰富的光学分析工具,可以对系统的像差、光学传递函数、热像模拟等进行全面的分析和评估。

在这个案例中,我们利用Zemax软件成功设计出了一个具有优秀光学性能的摄像头透镜系统。

通过对系统的建模、优化和分析,我们实现了对系统光学性能的精确控制和调节,最终达到了设计要求。

这充分展示了Zemax软件在光学设计领域
的强大功能和广泛应用价值。

总的来说,Zemax是一款非常优秀的光学设计软件,它能够帮助工程师们实现
复杂光学系统的设计、优化和分析。

通过这个案例,我们可以更好地了解Zemax
软件的应用和优势,相信在未来的光学设计工作中,Zemax将会发挥越来越重要的作用,为光学工程领域的发展做出更大的贡献。

zemax光学设计例子

zemax光学设计例子

在光学设计中,Zemax是一款非常受欢迎的软件,它提供了强大的工具和功能,可以帮助设计师轻松地完成各种光学设计任务。

本文将通过一个具体的例子,向大家展示如何使用Zemax进行光学设计。

一、设计背景我们假设需要设计一款望远镜,需要观察远处的星空。

望远镜的主要性能指标包括放大倍率、像差和亮度。

我们需要通过Zemax软件,找到最佳的光学系统方案,以达到最佳的观察效果。

二、设计步骤1.建立基本光学系统模型:在Zemax中,我们需要建立一个基本的光学系统模型,包括望远镜的主镜和次镜。

可以通过手动输入镜片数据或者使用预设的镜片库来建立模型。

2.调整参数:在Zemax中,我们可以调整各种参数来优化望远镜的性能。

例如,可以通过调整放大倍率和亮度参数来找到最佳的观察效果。

3.检测像差:在调整参数后,我们需要检测望远镜的像差。

Zemax 提供了强大的像差检测功能,可以帮助我们找到镜片上的缺陷和误差。

4.优化镜片:根据检测结果,我们可以对镜片进行优化。

可以通过添加或删除镜片、调整镜片位置和角度等方式来改善望远镜的性能。

5.模拟观察:在完成镜片优化后,我们可以模拟观察望远镜的成像效果。

可以通过调整望远镜的焦距和观察角度来查看不同情况下的成像效果。

6.调整和优化:根据模拟观察结果,我们可以再次调整和优化望远镜的设计。

直到达到满意的观察效果为止。

三、设计结果经过一系列的设计和优化步骤,我们得到了一个满意的光学设计方案。

该方案包括两片反射镜,放大倍率为10倍,像差在可接受范围内,亮度较高。

通过Zemax模拟观察,成像效果清晰、稳定,符合我们的预期。

四、总结通过这个具体的例子,我们展示了如何使用Zemax进行光学设计。

虽然只是一个简单的望远镜设计,但是它涵盖了光学设计的基本步骤和技巧。

在实际应用中,光学设计需要考虑的因素很多,例如环境因素、成本预算、材料选择等。

Zemax提供了丰富的工具和功能,可以帮助设计师轻松应对各种挑战。

ZEMAX光学设计软件

ZEMAX光学设计软件

Agilent.89600.Vector.Signal.Analyzer.v10.01-ISO 1CD
Aspen EDR v7.1 Cumulative 1CD
Aspen Hysys v7.1 1CD
Maplesoft.Maple.v13.0 1CD
DesignCAD Pro 5000 1CD
COMSOL.Multiphysics.v3.5a.MultiLanguage-ISO 1DVD
LS-DYNA.v9.71.R4.2 1CD
Sysdrill v3.0 1CD
Vulcan 7.5 & SP6 1DVD
ICEM.Surf.v4.8.1-ISO 2CD
的软件.
目前版本以日期为版本,每月更新版本数次,版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential).
▲★○●。。。▲★○●。。。。▲★○●。。。。▲★○●。。。▲★○●
做软件行业多年,用诚信节约企业成本,本站所有软件亲测,完整无限制
可以联系王小姐
A
按CTRL+F搜索
◎●◎★☆★☆★◎●◎---◎●◎★☆★☆★◎●◎---◎●◎★☆★☆★◎●◎
亲测完整好用亲测完整好用亲测完整好用亲测完整好用亲测完整好用亲测完整好用
在线客服:/
QQ:394623568
电话:13294332477
CSC Ftrak v15.0 SP4-ISO 1CD
Magma v2005.05.12 Linux 1CD
SynaptiCAD.Product.Suite.v14.00a 1CD
WorkNC G3 v19.13-ISO 1CD

常见光学仿真设计软件

常见光学仿真设计软件

常见光学仿真设计软件排版整理1.APSS.v2.1.Winall.Cracked光子学设计软件,可用于光材料、器件、波导和光路等的设计2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。

注:另附9张光源库3.Pics3d.v____.1.28.winall.cracked电子.光学激光2D/3D有限元分析及模形化装置软件stip.v____.1.28.winall.cracked半导体激光装置2D模拟软件5.Apsys.2D/3D.v____.1.28.winall.cracked激光二极管3D模拟器6.PROCOM.v____.1.2.winall.cracked化合物半导体模拟软件7.Zema_.v____.winall.cracked/EEZEMA_ 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。

8.ZEBASE Zema_镜头数据库9.OSLO.v6.24.winall.licensed/Premium OSLO是一套处理光学系统的布局和优化的代表性光学设计软件。

最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。

除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。

10.TracePro.v324.winall.licensed/E_pert TracePro一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。

它是第一套以符合工业标准的 ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。

ZEMAX-概况

ZEMAX-概况

ZEMAX概况ZEMAX是一套综合性的光学设计软件。

它集成了光学系统所有的概念、设计、优化、分析、公差分析和文档整理功能。

具有直观、功能强大、灵活、快速、容易使用等优点。

3种不同的版本:SE, XE,和EE。

ZEMAX可以模拟Sequential和non-sequential成像系统和非成像系统。

序列性(Sequential)光线追迹大多数成像系统都可以由一系列顺序排列的光学面来描述。

光线按面的顺序进行追迹。

如相机镜头、望远镜镜头、显微镜头等。

它有很多优点,如光线追迹速度快、可以直接优化和进行公差预算。

ZEMAX中的光学面可以是反射面、折射面或衍射面。

也可以建立因为光学薄膜引起的有不同透射率的光学面特性。

面之间的介质可以是各向同性的,如玻璃或空气。

也可以是任意的渐变折射率分布,折射率可以是位置、波长、温度或其它特性参数的函数。

也支持双折射材料,它的折射率是偏振态和光线角度的函数。

ZEMAX中,所有描述面的特性参数,包括形状、折射、反射、折射率、渐变折射率、热系数、透射率和衍射率都可以自定义。

非序列性(Non-sequential)光线追迹很多重要的光学系统不能用sequential光线追迹的模式描述,如复杂的棱镜、光管、照明系统、小面反射镜、非成像系统或任意形状的物件等。

而且散射和杂光也不能用序列性分析的模式。

这些系统要求用non-sequential模式,此时光线以任意的顺序打到物件上。

Non-sequential模式可以对光线传播进行更细节的分析,包括散射光或部分反射光。

进行non-sequential追迹时,ZEMAX用3D solid models光学元件,可以是任意的形状。

支持散射、衍射、渐变折射率、偏振和薄膜。

用光度学和辐射度学的单位。

Sequential 和non-sequential系统ZEMAX还可以在同一个系统中使用sequential和non-sequential光线追迹模式。

《Zemax光学设计软》课件

《Zemax光学设计软》课件

性。
02 Zemax软件基本操作
界面介绍
菜单栏
包含所有可用的命 令和选项。
工具栏
提供常用命令的快 捷方式。
标题栏
显示软件名称和当 前打开的文件名。
工作区
用于显示和编辑光 学设计的相关数据 和图形。
状态栏
显示当前操作的状 态和提示信息。
文件操作
新建文件
创建一个新的光学设计项目。
打开文件
打开一个已存在的光学设计项目。
高效的照明模拟
Zemax可以模拟各种光源和照明条件下的光学系统性能,帮助设 计师优化照明设计。
软件应用领域
光学仪器设计
01
Zemax广泛应用于望远镜、显微镜、照相机等光学仪器的设计
和优化。
摄像头和投影仪设计
02
Zemax可以帮助设计师优化摄像头和投影仪的性能,提高成像
质量。
照明设计和分析
03
Zemax可以用于照明系统的设计和分析,提高照明效率和均匀
光学性能分析
分辨率分析
分析光学系统的分辨率,评估系统对 细节的分辨能力。
光束孔径分析
研究光束孔径大小对成像质量的影响 ,优化光束孔径配置。
波前分析
波前畸变
研究光波经过光学系统后的波前畸变情况,分析其对成像质 量的影响。
波前重建
利用Zemax软件对波前进行重建,了解光波的传播特性和变 化规律。
05
保存文件
将当前光学设计项目保存到磁盘上。
另存为
将当前光学设计项目以不同的文件名或格式保存。
工具栏介绍
01
视图工具栏
用于控制工作区的视图,包括放大 、缩小、旋转等操作。
绘图工具栏
提供绘制各种光学元件和光路的功 能。

2024版光学设计软件Zemax中文教程

2024版光学设计软件Zemax中文教程

在Zemax中引入偏振器件,如偏振片、波片 等,进行光学系统的偏振设计。
通过仿真分析,评估偏振设计对光学系统性 能的改善程度。
自定义操作数编写技巧
了解自定义操作数基本概念
自定义操作数是指用户根据实际需求,在 Zemax中自定义的光学性能评价指标。
调试自定义操作数
在编写过程中,需要对自定义操作数进行调试和 验证,确保其正确性和可靠性。
它具有强大的光学仿真功能,可以模拟各种光学现象,如光的传播、反射、折射、 散射等。
Zemax还提供了丰富的光学元件库和优化的算法,使得用户可以更加高效地进行光 学设计。
软件安装步骤及注意事项 01
下载Zemax安装程序,并双击运行。
02
按照提示完成软件的安装过程,注 意选择正确的安装路径和组件。
安装完成后,需要激活软件,输入 正确的许可证密钥。
02 智能化、自动化将成为光学设计的重要发 展方向。
03
新材料、新工艺的不断涌现将为光学设计 提供更多可能性。
04
光学设计将与机械、电子、计算机等多学 科进一步交叉融合。
下一讲预告及预备工作
下一讲将介绍光学系统 的公差分析与优化方法。
01
02
建议学员多阅读相关文 献和资料,加深对光学 设计理论的理解。
属性栏显示了当前选中对 象的各种属性,用户可以 在这里进行修改和调整。
设计区域是用户进行光学 设计的主要场所,可以在 这里绘制和编辑光学系统。
初学者常见问题解答
问题1
01
如何启动Zemax软件?
解答
02
双击桌面上的Zemax图标或者在开始菜单中找到Zemax程序并
单击启动。
问题2
03
如何新建一个光学设计项目?

CODE V光学设计软件简介

CODE V光学设计软件简介

CODE V光学设计软件简介!CODE V是一个光学系统设计和分析优化软件,广泛使用于照相设备、摄影机和医疗器具等,功能强大使用简单灵活。

[attachment=136]CODE V是美国著名的Optical Research Associates(ORA®)公司研制的具有国际领先水平的大型光学工程软件。

自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用。

一. 包罗万象的适用范围CODE V可以分析优化各种非对称非常规复杂光学系统。

这类系统可带有三维偏心和/或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。

程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。

40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。

近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。

[attachment=137]图1. 带有非顺序面的系统及梯度折射率元件示例二. 空前强大的自动设计能力光学设计的第一步是要为系统确定合理的初始结构。

为此CODE V提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。

CODE V软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。

光学设计软件介绍

光学设计软件介绍

光学设计软件介绍1. Zemax:Zemax是当今最为流行和广泛应用的光学设计软件之一、它提供了强大的功能和易于使用的界面,可以用于设计和优化各种类型的光学系统,如透镜、反射器、光栅等。

Zemax还提供了先进的仿真和分析工具,能够帮助用户评估光路损耗、光场分布、成像质量等关键指标。

2. Code V:Code V是由Synopsys公司开发的一款全面的光学设计和分析软件。

它拥有丰富的设计功能和优化算法,可用于设计复杂的光学系统,如显微镜、望远镜、光纤耦合器等。

Code V支持各种非球面和广角光学元件,具有高度的灵活性和可扩展性。

3. TracePro:TracePro是一款用于进行光学和照明系统设计的综合仿真软件。

它提供了全面的光线追迹和散射分析功能,能够准确模拟和预测光学系统的性能。

TracePro还具备友好的用户界面和强大的可视化工具,可帮助用户直观地分析和优化光学系统。

4. LightTools:LightTools是一款由Synopsys公司开发的全面的光学设计和分析软件。

它支持多种光学元件和材料,可用于设计和优化光纤、LED照明、激光器等光学系统。

LightTools还提供了先进的光学建模、优化和分析工具,可帮助设计师快速获得最佳的光学系统设计。

5. OpticStudio:OpticStudio是一款由Zemax公司开发的全面的光学设计软件。

它提供了丰富的光学元件库和设计工具,可用于设计和优化各种类型的光学系统。

OpticStudio还具备强大的仿真和分析功能,能够帮助用户评估光学系统的成像质量、光路损耗等性能参数。

6.FRED:FRED是一款用于计算光学传输和成像效果的先进光学仿真软件。

它提供了全面的光学建模和优化工具,可用于设计和分析复杂的光学系统。

FRED还具备强大的散射、波面传播和光学杂散等分析功能,可帮助用户评估光学组件和系统的性能。

以上是一些常见的光学设计软件的介绍。

每款软件都有其特点和适用领域,用户可以根据具体需求选择适合自己的软件。

ZEMAX光学设计报告

ZEMAX光学设计报告

ZEMAX光学设计报告一、引言光学设计是光学工程师进行光学系统设计的重要工作。

在光学设计中使用的软件工具众多,其中一种常用的软件是ZEMAX。

本报告将介绍使用ZEMAX进行光学设计的方法,并通过一个实例来展示其应用。

二、ZEMAX光学设计1.建模在使用ZEMAX进行光学设计之前,首先需要进行系统的物理建模。

在ZEMAX中,通过定义光学元件(如透镜、镜面等)的物理属性和位置来建立光学系统模型。

可以通过输入几何参数、折射率、表面形态等信息来定义各个光学元件,并通过图形界面进行可视化设置。

2.优化光学系统的优化是光学设计的核心任务之一、在ZEMAX中,可以通过调整光学元件的位置、物理参数等来优化系统的性能。

可以设置优化目标,比如最小化像差、最大化能量聚焦等,然后通过ZEMAX的优化算法进行自动求解,得到最优解。

3.分析ZEMAX还提供了各种分析工具,可以对光学系统进行性能评估。

例如,可以通过光线追迹分析来研究几何光学传输过程,可以通过波前分析来评估系统的像差,可以通过MTF(调制传递函数)分析来评估系统的分辨力等。

这些分析工具有助于工程师对设计系统的性能进行评估和改进。

三、实例展示为了更好地展示ZEMAX的应用,我们以光学显微镜的设计为例进行介绍。

1.建模首先,在ZEMAX中建立光学系统模型。

我们可以通过输入光学元件的参数,比如透镜的曲率半径、厚度等来定义系统的物理属性。

然后,使用图形界面将这些光学元件拖拽到适当的位置,形成光学系统的结构。

2.优化接下来,我们可以通过优化光学系统的性能来改进设计。

比如,可以通过调整透镜的位置、厚度等参数来最小化系统的像差、最大化系统的分辨率等。

在ZEMAX中,可以设置优化目标并选择适当的优化算法,然后让软件自动进行求解。

在求解过程中,可以通过ZEMAX提供的分析工具对系统进行实时评估。

3.分析最后,我们可以使用ZEMAX提供的分析工具对设计好的系统进行性能评估。

比如,可以通过光线追迹分析来确定光学系统的传输特性,可以通过MTF分析来评估系统的分辨能力等。

oslo光学设计软件介绍

oslo光学设计软件介绍

OSLO 软件简介1.OSLO 概述OSLO 是 Optics Software for Layout and Optimization 的缩写。

OSLO 主要用于照相机、通讯系统、军事/空间应用、科学仪器中的光学系统设计,特别当需要确定光学系统中光学元件的最佳大小和外形时,该软件能够体现出强大的优势。

此外,OSLO也用于模拟光学系统的性能,并且能够作为一种开发软件去开发其他专用于光学设计、测试和制造的软件工具。

2.OSLO 的设计能力几乎任何一个涉及到光波传播的光学系统都可以使用OSLO进行设计,以下是一些典型的应用示例:·常规镜头Conventional Lenses·缩放镜头Zoom Lenses·高斯光束/激光腔Gaussian Beam/Laser Cavities·光纤耦合光学Fiber Coupling Optics·照明系统Illumination Systems·非连续传播系统Non-Sequential Propagation Systems·偏振光学Polarization-Sensitive Optics·高分辨率成像系统High-Resolution Imaging Systems此外,OSLO还可以设计具有梯度折射率表面、非球面、衍射面和光学全息、透镜矩阵、干涉测量仪等光学系统。

OSLO不适于波导设计,也不适于眼镜设计。

3.OSLO 的主要特征OSLO 是一个具有上千条内部命令和函数的非常大的程序,而且, OSLO的可执行模块能够被用户按规则进行修改和重新编译,因而,其功能非常强大。

以下是OSLO的一些总体特征概括:·具有透镜和材质数据库Lens and Material Databases·具有特殊表面数据Special Surface Data·缩放和多配置系统Zoom and Multiconfiguration Systems·透镜矩阵和非连续组件Arrays and Non-Sequential Groups·特殊孔径Special Apertures·公差和元件数据Tolerance and Element Data·偏振和光学薄膜Polarization and Thin Film Coatings·光线追迹Ray tracing·衍射和部分相干Diffraction and Partial Coherence·优化方法Optimization Methods·误差分析Tolerance Analysis·激光、光纤和高斯光束Lasers, Fibers, and Gaussian Beams·照明系统Illumination Analysis·完美透镜Perfect Lenses and Eikonals4.OSLO 与其他软件的比较尽管大多数光学设计软件具有一定的相似性,但是在功能上和设计方法上还是存在很大的差异。

常用光学设计软件

常用光学设计软件

常用光学设计软件常用光学设计软件介绍1. ZEMAX可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。

2. CODE V !变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。

3. OSLO一套标准建构系统及最佳化的光学软件。

4. LENSVIEW光学设计的数据库,并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。

5. ASAP专为仿真成像或光照明的应用而设计。

6. TRACEPRO一套普遍用于照明系统、光学分析、辐射分析及光度分析的光线仿真软件。

7. TFCALC ?一个著名的光学薄膜设计软件。

8. OPTISYS_DESIGN一种开创性的光通信系统仿真软件包,用于在大部分光网络物理层上绝大多数的光连接形式(包括从模拟视频广播系统到洲际骨干网)的设计、测试和优化。

9. OPTIAMP_DESIGN使用于EDFA工程师面临的从光器件搭配优化到系统互联和功率损耗的估计的各个应用方面。

10. BPM_是一种强大的,界面友好,应用于各种集成器件和光纤导波计算的计算机辅助设计软件包。

11. IFO_GRATINGS是用于带有光栅的集成或光纤器件建模的强大而界面友好的设计软件。

12. FIBER_CAD为设计或使用光纤、光器件和光通信系统的工程师、科学家和学生们推出的,通过融合光纤色散、损耗和偏振模色散(PMD)各个模型计算所得的数值解来解决光纤模式传输问题。

13. HS_DESIGN一个动态的计算机辅助工程程序,通过基于物理层对异质结结构电学光学的特性仿真来??协助半导体光器件的设计。

14. FDTD_CAD是用于高级有源和无源光器件的计算机辅助设计的强大而界面友好的软件。

常用光学设计软件介绍

常用光学设计软件介绍

常用光学设计软件介绍1. Zemax OpticStudio:Zemax OpticStudio 是一个功能强大的光学设计和仿真软件,广泛应用于光学元件和系统的设计、优化和验证。

它提供了完整的光学设计工作流程,包括光学母玻璃选取、曲面设计、光学系统优化、光学散射分析等。

OpticStudio 还包含了先进的非顺序光线追溯功能,可以模拟多个光学元件间的光学相互作用。

此外,它还提供了强大的图形用户界面,方便用户进行直观的光学分析和优化。

2.CODEV:CODEV是一种广泛使用的光学设计软件,特别适用于复杂的光学系统设计。

它提供了多种先进的光学设计和分析功能,包括非球面表面设计、自由曲面设计、非线性优化等。

CODEV还提供了强大的光学系统分析和优化工具,可以根据用户需求快速生成光学系统的性能和传递函数图。

此外,CODEV还支持自定义脚本和插件开发,满足用户独特的光学设计需求。

3. LightTools:LightTools 是用于高级光学系统设计和仿真的全面软件套件。

它提供了直观的图形用户界面和实时的光学仿真功能,可以帮助用户进行精确的光学系统建模和分析。

LightTools 包括了多种光学元件和材料的建模工具,以及先进的光学系统优化和分析功能。

此外,LightTools 还支持蒙特卡罗光线追踪和光学散射分析,可以模拟光在复杂表面和散射材料上的传输和反射特性。

4.FRED:FRED(Fast Reverse Engineering Design)是一种用于光学系统设计和分析的先进软件。

它提供了一系列强大的光学设计工具,包括光线追迹、非顺序光线追踪、光学优化等。

FRED 还支持自由曲面设计和非球面镜设计,在复杂光学系统的建模和优化中具有重要的应用。

此外,FRED 还提供了丰富的光学分析工具,可以帮助用户评估光学系统的性能和优化方案。

5.ASAP:ASAP(Advanced Systems Analysis Program)是一个广泛使用的光学设计和仿真软件。

常见光学仿真设计软件

常见光学仿真设计软件

常见光学仿真设计软件光学仿真设计软件是指通过计算机模拟光学系统的光学性能和传输特性,帮助设计师优化光学系统设计的工具。

以下是一些常见的光学仿真设计软件。

1.ZEMAX:ZEMAX是一款功能强大的光学设计软件,用于设计复杂的光学系统。

它提供了完整的光学设计和分析工具,包括光束追迹、像差分析、光学优化等功能。

ZEMAX还具有友好的图形用户界面和丰富的光学库,方便用户快速建立和优化光学系统。

2.CODEV:CODEV是光学设计和分析软件的行业标准。

它提供了广泛的功能,包括光束追迹、像差分析、优化、散射分析等。

CODEV还具有强大的排版功能,可以生成专业的光学设计报告和文档,并支持与其他软件的集成。

3. TracePro:TracePro是一款全面的光学设计和分析软件,主要用于照明和显示系统的设计。

它具有强大的光线追迹和散射分析功能,并支持多种光学材料和纹理的模拟。

TracePro还具有直观的用户界面和先进的优化算法,方便用户进行系统优化和性能评估。

4.FRED:FRED是一款广泛使用的光学系统设计和分析软件,可用于设计各种类型的光学系统,包括光学投影仪、显微镜、望远镜等。

FRED提供了强大的光束追迹和像差分析工具,并具有直观的图形用户界面和丰富的资源库,方便用户进行系统模拟和优化。

5. ASAP:ASAP(Advanced Systems Analysis Program)是一款专门用于光学系统设计和光学材料研究的软件。

它提供了完整的光线追迹和像差分析功能,并支持多种计算方法和优化算法。

ASAP还具有强大的散射分析和材料模拟功能,可用于研究各种材料的光学性能。

6. LightTools:LightTools是一款功能强大的光学系统设计和优化软件,主要用于照明和光学显示系统的设计。

它提供了广泛的光束追迹和像差分析工具,并支持光能损耗和光学材料的模拟。

LightTools还具有直观的用户界面和灵活的优化算法,方便用户进行系统设计和性能评估。

一些常用的光学软件介绍

一些常用的光学软件介绍

一些常用光学设计软件及其应用方向介绍【①】LensVIEW 2003、1-ISO 1CD(世界著名的光学设计数据库) 【②】LensVIEW 2001-ISO 1CD(世界著名的光学设计数据库) Focus、Software产品:Zemax v2003-1-6 with manuals & tutorial(专业光学CAD软件,解密,好用的版本)Zemax 用的中国玻璃库Zemax使用说明书(总计526页)Focus Floor Covering Software 2、0cOptical Research Associates产品:Code V 9、5(世界上应用的最广泛的光学设计与分析软件)Code V 英文使用手册(总计112MBREAULT产品:ASAP v8、0-ISO 1CD(光学分析设计软件合集完全版,包括用户手册、使用实例,解密完全)ASAP 正版光源库9CDASAP v8、0中文入门指南ReflectorCAD 1、5(中文汉化,ASAP的配套软件,专门用于车灯灯罩设计) Lighting、Technologies产品:PhotoPIA v2、0(快速且精确的光度分析程序)LAS-CAD GmbH产品:LASCAD 3、02(德国LAS-CAD GmbH所开发之固态激光仿真设计分析软件,它就是世界上第一套可分析固态激光中光与热特性的多重物理交互作用效应的软件,LASCAD可用来设计传统的气态(Gas)激光,闪光灯(Flash Lamp)激发式固态激光(SSL)与二极管激发式固态激光(DPSSL-Diode Pumped Solid State Laser)RSoft, Inc产品:BeamPROP、v5、1、9、vs、ullwave、v3、0、9、BandSOLVE、v1、3、4、DiffractMOD、1、0、1、GratingMOD、v1、1、3 BeamPROP、v5、1、9、vs集成光导器件的设计及模拟的软件,用类似CAD的界面进行设计,器件的输出能对不同输入光信号进行模拟Fullwave:对复杂光器件进行时域限差模拟,能得到准确的答案BandSolve:光晶体元件的设计及模拟GraingMOD:能设计任意基于集成光导的光栅与滤波器并能根据输入光普推导出光栅的设计Optiwave产品:OptiFDTD 5、0(时域光子学仿真软件,用来模拟先进的被动元件与非线性光电元件)OptiBPM v6、0(用于设计及解决不同的积体及光纤导波问题,光束传播法,或称为BPM就是OptiBPM的核心,而其就是一种一步接着一步来模拟光通过任何波导物质的行为,BPM可以允许观察任一点被模拟出的光场分布,而且可以容许同时检查辐射光及被传播的光场) OptiSystem 3、0(光通信系统模拟软件,可以设计、测试,与最佳化几乎任何一种在光网路系统的宽谱中的物理层次光连结)TracePro 3、2、2专家版-ISO 1CD(光学机构仿真软件,普遍用于照明系统、光学分析、辐射分析及光度分析的光线仿真)Agi32、v1、61、50(最新照明设计软件)Apollo、Photonic、Suite、v2、2、WinALL(光子学设计软件,可用于光材料、器件、波导与光路等的设计)DynaLS v2、0(粒子及光谱分析软件)PVSOL N 2、5(光电系统)Rayfront 1、04(灯具设计开发包)Radiant ProMetric v8、1、32(就是一款基于Windows的CCD影像光度与色度测量系统)SigView v1、9、0、1(实时光谱分析软件)Glastik、Professional、v1、0、79(玻璃厚度演算的有限元软件) TracePro 3、2、4 Update onlyTracePro 3、0 用户手册扫描书334MB(扫面效果一般) 1CD TracePro source、光源灯泡库Radiant Prometric 8、1、19(光学测量工业工具)Radiant Prometric Imaging v8、0(CCD亮度、颜色测试、测量与制造QC/QA系统软件)Lighttools V4、0(基于三维立体模型的照明与光学设计软件,可用于模拟照明系统)LucidShape v1、2(光学设计仿真分析)LucidShape 中文学习资料OSLO Light 6、2-ISO 1CD(光学软件,带中文说明书)RSoft LinkSIM v3、4a(光学通讯模拟软件包。

光学设计必须了解的那些软件

光学设计必须了解的那些软件

海拉之光是⼀款功能强⼤的3D光学设计软件,⽤于照明以及光学产品的计算机辅助设计。

直接⽀持数模格式igs、3dm、stp。

直接⽀持光型格式 ies 、krs(OPTRONIK公司格式)、lmt(LMT公司格式)、以及其余各个⼚家光型格式、asap格式、光线⽂件格式。

⽀持与CATIA、犀⽜交互操作,超⽜!
图:LUCIDSHAPE操作界⾯。

图:LUCIDSHAPE有很强的3D建模功能。

图:使⽤LUCIDSHAPE模拟汽车前⼤灯跑光效果。

UG
当光学做好后怎么办了?要做结构设计了!做了结构,才能⽣成模型图、模具图,继⽽开模⽣产。

这时就要会⽤到3D软件UG。

图:光学模型建好后,做好结构就是完整的光学器件。

总结
做透镜和反光杯这类⽐较简单的设计,⼀般⽤ LIGHTTOOLS 都能够胜任。

如果要设计车灯这样⾼
标准的欧标近光灯光学系统等复杂光学组件,就要⽤到LUCIDSHAPE(德国海拉之光)这样的强⼤
软件。

欢迎感兴趣的朋友共同讨论~。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择最佳的光学设计软件作为公司决策人,需要为解决公司的盈亏问题做出明智选择时,您会选择哪一种光学设计软件呢?如果光学系统的性能攸关产品成败,那么答案将是 CODE V ®。

CODE V 能够增进设计团队的设计效率,提高首次设计和制造的成功率,加快产品上市时间,让您的产品具有所向披靡的竞争优势。

CODE V 软件由 Optical Research Associates (ORA ®) 开发而成。

四十多年来,ORA 帮助许多客户走上成功之路:• ORA 拥有世界上规模最大的商业光学工程软件开发队伍。

• ORA 利用最先进的软件配置管理方法,将软件开发流程形式化,确保在这样的开发环境下能够产生创新算法,以提供高质量、高可靠性、高度精确的结果。

• ORA 的客户支持员工具有 50 多人年的工程经验,专门致力于帮助客户成功应用我们的产品。

这是他们的全职工作,而不是额外承担的责任。

• ORA 拥有专业软件测试员工。

我们的测试人员每天会构造和评估成百上千的测试案例,对开发中的代码进行测试。

• ORA 的内部工程服务小组会在最尖端的真实工程应用中验证 CODE V 的每个版本。

• ORA 的员工中包括三名 OSA 研究员和四名SPIE 研究员。

ORA 的工程师们已发表 300 多篇学术论文,有些人还是与光学系统有关的近 100 项专利的发明人或共同发明人。

ORA 以开发世界一流的光学工程软件产品为己任。

在这种力创一流的精神指引下,我们的产品使客户受益颇多,下面是其中的几个方面。

增进设计团队的设计效率CODE V 的开发宗旨是帮助光学工程师完成从概念到制造的整个设计周期。

Windows 标准图形用户界面有助于新用户快速掌握 CODE V 的强大功能。

CODE V 还支持命令行输入、易于学习的宏编辑功能以及 COM 应用编程接口 (API)。

所有这些将能让您的工程师们以最有效的方式使用程序,并且允许将 CODE V 与支持 COM 的其它工程软件工具整合使用。

CODE V 图形用户界面 (GUI)CODE V 有能力让工程师们为极其复杂的系统建模并进行分析。

CODE V 支持多种不同的用户可编程子程序(例如:用户编程的表面形状和用户编程的表面属性等),以充分运用系统建模的灵活性。

任何基本表面形状均可应用衍射属性,以便进行光栅、kinoform 、二元光学系统等的建模。

通过焦点分析、真实无焦建模(非常适合于设计目视系统)及其它功能,CODE V 支持像散光源、偏振器件、单轴晶体双折射材料、应力双折射建模。

CODE V 含有数种独特、快速的算法,而其它软件要么不包括这些算法,要么实施得不够好。

CODE V 的全局优化使用了 ORA 发明的算法。

该算法是唯一一种能够在复杂光学系统,包括变焦镜头上产生有用结果的商用算法。

工程师们可以使用这个功能生成初始设计,或者确认最终候选设计是否确实是最好的方案。

CODE V 的 MTF 优化算法与使用有限差分算法的同类方案相比,速度更快且更加精确。

CODE V 的玻璃优化更是无出其右,尤其是对可见光谱带以外的光谱带。

CODE V 的主要公差功能使用波前差分算法,使得公差成为设计过程的一部分,而不是在设计结束时进行分析。

该算法可以比同类算法快好几个数量级,具体取决于系统的复杂程度。

利用这一超凡能力,工程师们在设计周期的最早期阶段即可确定能得到最佳实际制造性能的设计概念,从而获得最佳的产品设计。

让您高枕无忧的CODE V 精确度和演算结果设计过程中如果出现错误,就需要重新进行设计,由此可能会耽误工期,并增加成本。

光学建模软件的精确度必须超过自身产品必须达到的精确度要求,这一点很关键。

CODE V 利用了目前可用的最精确算法,并实施了质量保证程序来保持这一精确度。

作为 CODE V 高精确度的最佳证明,NASA(美国宇航局)要求所有与哈勃太空望远镜维修任务用校正光学系统有关的设计评估都要使用 CODE V。

实际上,正是 ORA 的工程服务部门设计了 WFPC2 相机和 COSTAR 校正光学系统的测试光学系统。

在包括离轴变形非球面的系统模型中(即 COSTAR 所用的模型),要成功完成这些测试光学系统的设计,单个Zernike 系数的计算精度至少需要达到 0.01 波长。

现在HST已经返回了高度清晰的图像,证明了那次维修任务是非常成功的。

CODE V 中包括了广义光束传播功能,它会精确计算整个光学系统的衍射效应。

假设一个物体受从不相干到完全相干的光线照射,那么利用 CODE V 的部分相干分析功能,用户将能够精确预测物体的空间图像结构。

利用 CODE V 的偏振光线追迹能力,可以精确计算包括输入偏振效应在内的系统性能以及系统引起的偏振效应。

在所有光学设计软件中,只有 CODE V 优化能始终如一地产生最佳结果。

举例来说,对于光学设计软件而言,微光刻系统(即用于生产集成电路的光学系统)是要求最苛刻的应用之一,而 CODE V 恰恰是微光刻工业使用的主要优化软件。

CODE V 的默认约束优化方法使用了一个出色的拉格郎日乘数方案,使得性能优化函数能够在最少约束模式下收敛,同时仍然满足所有包装约束条件。

CODE V 能够为其分析和优化功能提供智能的、基于设计的默认值,这一点已广为人知。

此外,当 CODE V 检测到系统可能违反了分析算法的某一假设时,它会发出警告。

这意味着如果 CODE V 没有报错,工程师们便可以放心地继续工作,以从 CODE V 获得有用且精确的结果,而不需要执行其它软件有时所需的额外设置工作。

四反射镜离轴系统和全视场像点列图 – 优化前四反射镜离轴系统和全视场像点列图 – 优化后(在PIII 650 Mhz PC 上约需 7 秒)CODE V 为制造过程提供支持CODE V 旨在用于攸关产品成败的光学系统的设计工作。

CODE V 的主要优势之一是以最小的经常成本和非经常成本实现最有效的实际制造光学设计,它的许多功能都是针对这一目标而开发的。

如上文所述,利用 CODE V 快速、精确的波前差分公差功能,在设计过程的最早期就可以对实际制造考虑因素进行评估。

这样得到的系统将具有优异的性能,而其制造成本则可以降低,因为公差更宽松,所选的公差补偿调整值得到了优化。

CODE V 的独特对准优化功能可以用来自动确定适当的硬件调整值,以便根据测得的系统干涉图重新对准光学系统。

这一功能为许多公司和机构节省了不计其数的对准时间。

1此外,CODE V 还包括以下功能:自动使镜头半径适应样板;根据熔体配合数据精确模拟玻璃折射率变化;自动计算变焦镜头的 CAM 位置;以及按照 ISO10110 或中国国家格式创建镜头图。

CODE V 能够加快产品上市时间CODE V 灵活的用户界面、更高效的算法、智能的默认值以及为制造过程提供支持的功能,无不是为了更快地开发并合成最佳设计。

下面是一些值得注意的例子:• 用真实玻璃取代优化玻璃时,CODE V 能够针对感兴趣的光谱带适当地定义虚拟玻璃色散属性,从而节省时间,并获得更高的性能。

• CODE V 全局优化算法 (Global Synthesis ®) 的执行时间与变量和约束条件数大致上成线性比例关系,而在某些同类方案中则是使用模拟退火和遗传算法,其执行时间与变量和约束条件数大致上成指数比例关系。

在 ORA 工程小组的最近一次应用中,Global Synthesis 仅运行一夜就为一个八元件转像系统产生了 66 个不同的配置,其中两个被选取作进一步开发。

•CODE V 的波前差分公差算法比基于有限差分或蒙特卡罗方法的公差算法快很多。

以一个六元件物镜为例,波前差分算法要快 70 到 1800 倍。

2 波前差分算法会产生关于单个公差灵敏度的信息(像有限差分一样),而且实际上,对于因公差引起微小性能损失这一典型情况,波前差分算法的结果比有限差分更精确。

波前差分算法也会像蒙特卡罗算法一样精确地预测系统总体性能,因为这两种算法均考虑了相互作用的公差(即交叉项)的影响。

如需要,可以利用 CODE V 的有限差分和蒙特卡罗功能验证最终的公差结果。

•CODE V 的优化收敛控制功能可以加速极复杂系统的收敛,比不使用该功能时要快二到四倍。

3此外,如果您的工程师遇到问题,需要听取外部意见,ORA 技术支持人员将乐意提供帮助,它们每周五天、每天 10 小时提供服务。

CODE V 让您的产品具有所向披靡的竞争优势无论您的应用是微光学系统,还是工作在从远紫外区到远红外区的波长范围内的太空仪器,CODE V 的强大功能和算法都能够帮助您的设计团队开发、制造和交付最好的光学系统。

请记住,不能简单地通过比较同类软件产品的“功能列表”来断定软件功能性。

所有算法的创建都不尽相同。

另外,租用 CODE V 的成本不过是您每年投入在光学工程师上的资金的一个零头。

为您的设计团队配备 CODE V 吧,利用它,工程师们将如虎添翼,开发出最好的光学系统。

如果光学系统的好坏攸关产品的成败,那么CODE V 光学设计与分析软件将能帮助您获得成功。

注释1. K. Sugisaki 等人,“Assembly and alignment of three aspherical mirror optics for extreme ultraviolet projection lithography”(远紫外线投影光刻用三非球面反射镜光学系统的装配和对准),SPIE 年报第 3997 卷第 751 – 758 页 (2000 年)。

2. ORA 白皮书,CODE V Tolerancing: A Key to Product Cost Reduction(CODE V 公差:降低生产成本的关键一环)(2002)。

3. “Advanced Topics in CODE V”(CODE V 高级主题)培训备注,“Advanced Optimization Techniques”(高级优化技术)(2003)。

欲了解更多信息?Optical Research Associates 准备了更多信息,供您更好地了解 CODE V 的优点。

在网址/service_f.html上,您可以找到应用说明、白皮书、我们的电子通信CODE V Tips 的副本以及其它有用的材料和文档。

过去四十多年来,我们的工程服务部门在 4200 多个光学工程项目上广泛且成功地使用了CODE V 软件。

下面的网页上列出了 ORA 工程师们撰写的 50 多篇论文、演示文稿和出版作品:/engr/selected%20publications_f.html。

这些文章涵盖了各种领域的光学设计和工程应用,无论您是不是 CODE V 客户,均可以免费阅读。

相关文档
最新文档