模糊综合评价法的应用

合集下载

模糊综合评价法在企业风险管理中的应用

模糊综合评价法在企业风险管理中的应用
法也存在一定的局限性。例如,在某些情况下,确定各因素的权重可能比较困难;此外 ,对于一些过于复杂的问题,可能难以建立合适的模糊隶属函数和模糊矩阵。因此,在使用模糊综合 评价法时,需要根据具体问题进行分析和选择。
02
模糊综合评价法在企业风险管 理中的应用
资源分配
在资源分配中,模糊综合评价法 可以综合考虑多种因素,如资源 的重要性、紧急性、可用性等, 为资源分配提供科学依据。
模糊综合评价法的优势与局限性
优势
模糊综合评价法能够处理不确定性和模糊性,综合考虑多种因素,得出客观、准确的评价结果。它适 用于多因素、多层次、复杂系统的评价问题。此外,模糊综合评价法还具有操作简单、易于理解等优 点。
模糊综合评价法在企业风险 管理中的应用
汇报人: 2024-01-09
目录
• 模糊综合评价法概述 • 模糊综合评价法在企业风险管
理中的应用 • 模糊综合评价法在企业风险管
理中的实践案例 • 模糊综合评价法在企业风险管
理中的改进与发展 • 结论与展望
01
模糊综合评价法概述
定义与特点
定义
模糊综合评价法是一种基于模糊数学 和模糊逻辑的综合性评价方法,它能 够处理具有模糊性的评价对象,综合 考虑多种因素,得出一个全面的评价 结果。
特点
模糊综合评价法能够处理不确定性和 模糊性,综合考虑多种因素,得出客 观、准确的评价结果。它适用于多因 素、多层次、复杂系统的评价问题。
模糊综合评价法的应用范围
企业风险管理
模糊综合评价法可以应用于企业 风险管理中,对企业的风险进行 评估和监控,帮助企业识别、评 估和控制风险。
投资决策
在投资决策中,模糊综合评价法 可以用于评估投资项目的风险和 收益,为投资者提供决策依据。

模糊综合评判法的应用案例精选全文完整版

模糊综合评判法的应用案例精选全文完整版

可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。

在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。

基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。

这些模型及算法相当复杂。

其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。

(2) 约束条件和变量多使问题的难度呈指数增长。

模糊综合评价方法是一种适合于物流中心选址的建模方法。

它是一种定性与定量相结合的方法,有良好的理论基础。

特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。

1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。

③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。

④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。

无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。

所以,需采用分层的办法来解决问题。

2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。

根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。

模糊综合评价法在企业风险管理中的应用

模糊综合评价法在企业风险管理中的应用

模糊综合评价法在企业风险管理中的重要性
提高风险管理水平
促进企业可持续发展
通过运用模糊综合评价法,企业能够 更全面地了解自身面临的风险,制定 更有效的风险管理策略,提高风险管 理水平。
通过持续改进风险管理,企业能够实 现可持续发展,为股东、员工和社会 创造更大的价值。
增强企业竞争力
有效的风险管理能够降低企业面临的 风险,提高企业的稳定性和竞争力, 使企业在激烈的市场竞争中立于不败 之地。
模糊关系矩阵
模糊关系矩阵
在模糊综合评价中,模糊关系矩阵是 一个重要的概念。它描述了各个因素 之间的相互关系,是一个由隶属度组 成的矩阵。
模糊关系矩阵的建立
通过比较各个因素之间的相互关系, 可以建立模糊关系矩阵。例如,如果 因素A对因素B有较大影响,则A与B的 隶属度较高;反之则较低。
模糊运算规则
案例一:某企业财务风险评估
财务指标体系构建
通过建立偿债能力、营运 能力、盈利能力和发展能 力等财务指标,全面评估 企业的财务风险。
模糊权重确定
根据各指标的重要程度, 确定相应的权重,为后续 的模糊综合评价提供依据 。
模糊综合评价
运用模糊综合评价法,将 各项指标的评分进行加权 平均,得出企业财务风险 的总体评价结果。
03
模糊综合评价法在企业风险管 理中的应用步骤
确定评价因素和评价标准
01
02
03
识别风险因素
对企业可能面临的风险因 素进行识别和分类,包括 市场风险、技术风险、财 务风险等。
确定评价因素
根据风险因素的特点和重 要性,确定相应的评价因 素,如风险发生的可能性 、影响程度等。
制定评价标准
针对每个评价因素,制定 相应的评价标准,以便对 风险进行量化评估。

模糊综合评价法举例

模糊综合评价法举例

模糊综合评价法举例模糊综合评价法是一种常见的决策方法,用于解决多属性决策问题。

它广泛应用于各个领域,如企业管理、市场调研、投资决策等。

本文将通过几个实例,详细介绍模糊综合评价法的应用。

首先,我们来看一个企业市场调研的实例。

假设某企业想要推出一款新产品,为了确定该产品的市场潜力,他们需要对市场进行调研和评估。

首先,该企业确定了几个要素,如市场容量、竞争情况、消费者需求等等。

然后,针对每个要素,他们设定了一些评价指标,如市场容量可以由市场规模和增长率来评估,竞争情况可以由竞争对手数量和市场份额来评估,消费者需求可以由消费者满意度和购买意愿来评估。

接下来,他们需要对每个评价指标进行模糊评价。

对于市场容量这个指标,他们可以设定为小、中、大三个模糊集合,分别代表市场容量较小、中等、较大。

然后,他们根据实际情况,将市场规模100万人、增长率10%作为划分市场容量的标准。

对于竞争情况这个指标,他们可以设定为低、中、高三个模糊集合,分别代表竞争情况较弱、一般、较强。

然后,他们根据竞争对手数量和市场份额的数据,将竞争情况划分为低、中、高三个水平。

接着,他们需要对每个评价指标设置权重。

按照某一专家的意见,他们将市场容量、竞争情况、消费者需求三个指标的权重分别设置为0.4、0.3、0.3。

然后,根据权重,计算每个评价指标的模糊评价函数。

最后,他们可以通过模糊综合评价法,对市场进行综合评价。

他们将每个指标的模糊评价函数进行加权平均,得到最终的评价结果。

根据结果,他们可以判断市场潜力是否足够大,是否值得推出新产品。

除了企业市场调研,模糊综合评价法在其他领域也有广泛的应用。

比如,在投资决策中,投资者可以利用该方法评估不同投资项目的风险和收益。

他们可以将投资项目的不同属性作为评价指标,根据专家意见设定权重,然后进行模糊评价,最终得出综合评价结果,从而作出更明智的投资决策。

综上所述,模糊综合评价法是一种重要的决策方法,可以帮助我们在多属性决策问题中做出合理的决策。

模糊综合评价方法及其应用研究

模糊综合评价方法及其应用研究

模糊综合评价方法及其应用研究一、本文概述本文旨在探讨模糊综合评价方法及其应用研究。

我们将对模糊综合评价方法进行概述,阐述其基本原理和特点。

接着,我们将深入探讨模糊综合评价方法在各种领域中的应用,包括但不限于企业管理、环境评估、医疗卫生等。

通过对实际案例的分析,我们将展示模糊综合评价方法在解决实际问题中的有效性和实用性。

我们还将对模糊综合评价方法的未来发展进行展望,以期为其在更多领域的应用提供参考和借鉴。

通过本文的研究,我们希望能够为相关领域的研究者和实践者提供有益的启示和帮助。

二、模糊综合评价方法理论基础模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)是一种基于模糊数学理论的评价方法,旨在解决那些难以用精确数学语言描述的问题。

这种方法最早由我国学者汪培庄于1983年提出,现已在多个领域得到了广泛应用。

模糊综合评价方法理论基础主要包括模糊集合理论、模糊运算规则和模糊关系矩阵。

其中,模糊集合理论是该方法的核心。

它允许在元素对集合的隶属程度不唯不精确的情况下进行定量描述,从而突破了传统集合理论中元素对集合的隶属关系必须明确的限制。

在模糊综合评价中,评价对象通常被视为一个模糊集合,而评价因素则构成该集合的多个子集。

每个子集都有一个隶属函数,该函数描述了评价对象在不同因素下的隶属程度。

通过对隶属函数进行计算和分析,可以得出评价对象在各个因素上的综合评价结果。

模糊运算规则是模糊综合评价方法的另一个重要组成部分。

它定义了模糊集合之间的运算方式,如并、交、补、差等,使得我们能够根据实际需求进行模糊集合的组合和转换。

模糊关系矩阵则用于描述评价对象与评价因素之间的模糊关系。

该矩阵中的元素表示评价对象在不同因素上的隶属度,是进行模糊综合评价的重要依据。

模糊综合评价方法理论基础包括模糊集合理论、模糊运算规则和模糊关系矩阵。

这些理论和方法为我们在复杂系统中进行综合评价提供了有效的工具。

模糊综合评价法案例

模糊综合评价法案例

模糊综合评价法案例模糊综合评价法是一种常用的多指标决策方法,它可以帮助决策者在具有多个评价指标的情况下,对各个方案进行综合评价,从而找到最优的决策方案。

下面我们通过一个案例来具体介绍模糊综合评价法的应用。

某公司需要选定一个供应商,以满足其原材料采购需求。

为了选择最优的供应商,公司需要考虑多个指标,包括价格、交货周期、质量等。

为了进行综合评价,公司决定采用模糊综合评价法。

首先,公司确定了三个评价指标,价格、交货周期和质量。

然后,针对每个指标,公司对供应商进行评价。

在评价过程中,由于供应商的表现可能存在一定的不确定性,公司采用了模糊数来描述评价结果。

比如,对于价格指标,公司可能认为某供应商的价格在便宜和昂贵之间存在一定的模糊性,于是可以用“价格便宜”的模糊数来描述其价格水平。

接下来,公司需要确定各个评价指标的权重。

在实际应用中,评价指标的重要性往往不同,因此需要对各个指标进行加权。

公司可以通过专家打分、层次分析法等方法来确定各个指标的权重。

然后,公司对每个供应商的评价结果进行模糊综合评价。

具体来说,对于每个供应商的每个指标,公司根据其模糊数和权重,计算出一个综合评价值。

最终,通过比较各个供应商的综合评价值,公司可以找到最优的供应商。

通过模糊综合评价法,公司成功地选择了最优的供应商,并在原材料采购中取得了良好的效果。

这个案例充分展示了模糊综合评价法在多指标决策中的优势和应用价值。

总之,模糊综合评价法是一种非常有效的多指标决策方法,它可以帮助决策者在不确定的环境下进行综合评价,找到最优的决策方案。

在实际应用中,我们可以根据具体情况,灵活运用模糊综合评价法,为企业的决策提供有力的支持。

模糊综合评价的原理及应用

模糊综合评价的原理及应用

模糊综合评价的原理及应用1. 模糊综合评价的概述模糊综合评价是一种基于模糊逻辑理论的评价方法,适用于处理多因素、多指标、多层次的评价问题。

它能够将模糊信息进行数学化处理,从而得到相对准确的评价结果。

模糊综合评价方法在决策分析、工程评估、经济评价等领域得到广泛的应用。

2. 模糊综合评价的原理模糊综合评价的原理基于模糊集合理论和模糊运算。

其主要的思想是将模糊的评价问题通过模糊集合的描述进行建模,然后利用模糊运算对模糊集合进行处理,最终得到评价结果。

3. 模糊综合评价的步骤模糊综合评价一般包括以下步骤: - Step 1:确定评价指标集合。

根据评价目标确定一组能够全面反映评价对象特征的评价指标。

- Step 2:构建模糊集合。

对每个评价指标进行模糊化处理,将确定的评价指标转化为对应的模糊集合。

- Step 3:设定权重。

根据评价指标的重要性,确定每个评价指标的权重。

- Step 4:进行模糊运算。

对于模糊集合进行模糊运算,将不同指标的模糊集合进行组合。

- Step 5:解模糊化。

将模糊的评价结果通过解模糊化方法转化为具体的评价值。

4. 模糊综合评价的应用模糊综合评价方法广泛应用于各个领域,以下是一些典型的应用场景:4.1 工程评估在工程评估过程中,常常需要对多个因素进行综合评价,以确定最优的方案。

模糊综合评价可以将各个因素的模糊信息进行处理,得出一个相对准确的评估结果。

4.2 经济评价在经济决策中,常常需要对多个经济指标进行综合评估,以确定经济效益最大化的策略。

模糊综合评价可以将不确定的经济指标进行数学化处理,得到相对可靠的评估结果。

4.3 城市规划在城市规划过程中,常常需要考虑多个因素,如交通、环境、人口等。

模糊综合评价可以将这些因素进行综合评估,帮助决策者做出合理的规划决策。

4.4 产品质量评价在产品质量评价中,常常需要考虑多个指标,如外观、性能、可靠性等。

模糊综合评价可以将这些指标进行综合评估,给出一个全面的产品质量评价结果。

模糊综合评估法应用原理与构建步骤

模糊综合评估法应用原理与构建步骤

模糊综合评估法应用原理与构建步骤随着社会的发展和科技的进步,现代化的管理理念和方法愈发重视科学化和系统化,而综合评价作为一种全面评估管理的方法,已经得到了广泛应用。

在众多的综合评价方法中,模糊综合评估法以其简便易行、可行性高、结果准确等特点,成为了广泛使用的评价工具之一。

本文将就模糊综合评估法的应用原理和构建步骤进行详细介绍。

一、模糊综合评估法应用原理1.1 模糊数学模糊数学是指那些对未确定或不明确的“模糊”的事物进行抽象描述、系统分析和研究的一门交叉学科。

它是模糊逻辑、模糊代数等于1980年代初发展起来的一门新学科。

模糊数学的基本思想是引入隶属函数的概念,它可以以一定的方式把模糊的事物进行量化分析,从而进行系统分析和研究。

1.2 模糊综合评价法模糊综合评价法是利用模糊数学的基本原理,将模糊数学的方法应用于综合评价的领域中。

它是一种综合性的评价方法,通过建立模糊数学模型,将多因素的数据进行量化分析,生成评价结果。

它依赖于定量数据和定性经验的,具有很强的适应性和灵活性。

同时,模糊综合评价法还可以通过调整各因素的权重和隶属函数形状,得到不同的评价结果,从而更加客观和科学地进行评价。

1.3 模糊综合评价法的应用领域模糊综合评价法的应用领域非常广泛,可以用于各种综合评估领域,如环境评价、经济评价、教育评价等等。

同时,模糊综合评价法还可以帮助决策者在多个因素之间进行权衡,提高决策的合理性和准确性。

二、模糊综合评估法的构建步骤2.1 确定评价指标和隶属函数在使用模糊综合评价法之前,必须先明确评价指标和其对应的隶属函数。

评价指标可以分为数量指标和质量指标两类,其中数量指标需要进行量化处理,而质量指标则需要进行定性描述。

隶属函数是描述评价指标中某一特定数值的模糊程度的数学函数,可以是三角形函数、梯形函数、高斯函数等,需要根据实际情况进行灵活选择。

2.2 确定评价因素权重不同的评价指标或因素在评价中所起的作用不同,需要进行权重分配。

模糊综合评价法在教师教学质量评价中的应用

模糊综合评价法在教师教学质量评价中的应用

模糊综合评价法在教师教学质量评价中的应用近年来,模糊综合评价法(Fuzzy Comprehensive Evaluation,FCE)在科学研究、企业管理及教育等不同领域中得到了越来越多的应用,其中教育领域中模糊综合评价法的运用尤为广泛,特别是在教师教学质量评价中的应用更是受到了广泛关注。

本文旨在通过探讨模糊综合评价法在教师教学质量评价中的应用效果,发掘出其有效性和优越性,以指导教师教学质量评价实践。

一、模糊综合评价法简介模糊综合评价法,也叫做模糊评判技术,是一种用于综合评价多个事件或多个属性的技术。

它根据专家对每一项指标的评价结果,计算出一个综合的最终评价结果,使得模糊综合评价方法能够结合专家的经验和直觉,充分发挥评价专家的能力,从而获得准确的评价结果。

模糊综合评价法主要由评价指标体系、评判准则体系、评价参数模型和综合模型四部分组成。

其中,评价指标体系是专家对评价对象所关注的内容,评判准则体系是评价专家根据其所具有的专业知识进行评价和判断的依据,评价参数模型是根据评价指标体系和评判准则体系所构建的多个参数系统,而综合模型是将所有参数系统综合考虑,从而得出最终的综合评价结果的模型。

二、模糊综合评价法在教师教学质量评价中的应用教师的教学质量是教育工作的基础,教师的水平和能力直接影响着教育质量的高低。

教师教学质量评价是评价学校教育教学及教师工作水平,衡量学校教学管理水平和教师教学能力、水平的重要工具。

模糊综合评价法在教师教学质量评价中已被越来越多的应用。

首先,它可以准确的衡量教师的教学质量,无论是综合技能、教学能力或教学质量,都可以用模糊综合评价法进行衡量,从而获得准确的数据。

其次,它能够有效的利用被评价者提供的信息,专家可以根据教师的能力、技能、教学成果等多方面的信息,对其进行综合评价,从而更准确地反映教师教学质量的真实情况。

此外,模糊综合评价法可以减少个人主观评价带来的偏差,它可以更充分的考虑和衡量一个教师的教学质量,从而更好的反映教师的真实情况。

模糊综合评价法案例

模糊综合评价法案例

模糊综合评价法案例模糊综合评价法是一种利用模糊数学理论对多指标进行综合评价的方法。

它能够充分考虑各指标之间的相互影响和重要性,避免了传统评价方法的主观性和简单性。

下面通过一个案例来解释模糊综合评价法的具体应用。

假设某汽车公司需要对不同汽车品牌进行综合评价,共有以下五个指标:品牌知名度、市场占有率、客户满意度、技术创新能力和产品质量。

每个指标的评价等级分为优秀、良好和一般。

首先,我们需要将每个指标的评价等级转化为模糊数。

例如,品牌知名度的优秀、良好和一般分别转化为0.8、0.5和0.2。

同样,其他指标也进行相应转化。

接着,我们需要确定各指标的权重。

权重可以通过专家调查、层次分析法等方法获取。

假设我们已经得到了各指标的权重,品牌知名度权重为0.3,市场占有率权重为0.2,客户满意度权重为0.15,技术创新能力权重为0.25,产品质量权重为0.1。

然后,根据模糊综合评价法的计算公式,我们可以计算出每个品牌的评价值。

评价值可以表示为以下形式:品牌A:0.8 * 0.3 + 0.7 * 0.2 + 0.6 * 0.15 + 0.5 * 0.25 + 0.9 * 0.1 = 0.71品牌B:0.9 * 0.3 + 0.6 * 0.2 + 0.7 * 0.15 + 0.8 * 0.25 + 0.8 * 0.1 = 0.76品牌C:0.7 * 0.3 + 0.8 * 0.2 + 0.9 * 0.15 + 0.6 * 0.25 + 0.7 * 0.1= 0.74根据评价值的大小,我们可以得出品牌B最好,品牌A其次,品牌C最差的综合评价结果。

通过上述案例,我们可以看出模糊综合评价法能够在多指标综合评价中充分考虑各指标之间的权重和相互关系,避免了传统评价方法的主观性和简单性。

同时,该方法还可以提供具体的评价结果,便于决策者进行决策和比较。

总之,模糊综合评价法是一种有效的多指标综合评价方法,可广泛应用于各个领域的评价和决策过程中。

模糊综合评价法在中职数学实验教学质量评价中的应用

模糊综合评价法在中职数学实验教学质量评价中的应用

模糊综合评价法在中职数学实验教学质量评价中的应用模糊综合评价法(Fuzzy Comprehensive Evaluation)是一种综合评价方法,它将模糊数学理论引入到评价中,能够更全面地考虑评价对象的各种特征和因素,对于中职数学实验教学质量的评价具有重要的意义。

本文将以中职数学实验教学质量评价为背景,探讨模糊综合评价法在其中的应用。

一、中职数学实验教学的特点和挑战中职数学实验教学是中等职业学校数学教学中的重要组成部分,与传统的理论教学相比,实验教学更加贴近学生的生活和实际应用,能够培养学生的动手能力、实验能力和创新能力。

中职数学实验教学也面临着一些挑战:实验设备条件不足、学生动手能力弱、实验教学资源缺乏等,这些问题对于提高实验教学的质量提出了新的要求。

1. 考虑多个因素模糊综合评价法能够考虑多个因素对于实验教学质量的影响,比如实验内容的设计、实验设备的完好程度、学生的动手能力和实验报告的撰写质量等。

这些因素都对实验教学的质量产生影响,而且这些因素之间往往存在相互关联和影响,模糊综合评价法能够很好地处理这种关联。

2. 获取模糊评价值模糊综合评价法不仅仅能够考虑到多个因素,还能够将这些因素的影响程度通过模糊数学的方式转化为模糊评价值,将评价问题的模糊性和不确定性纳入到了评价中。

这样一来,评价结果更加客观和真实。

3. 构建模糊综合评价模型通过构建合理的模糊综合评价模型,采用合适的评价指标和评价方法,可以实现对实验教学质量的全面评价。

模糊综合评价模型能够将各个方面的评价信息进行整合,给出一个综合的评价结果。

1. 设计合理的评价指标在进行中职数学实验教学质量评价时,需要首先确定评价的指标体系。

评价指标需要区分主客观指标,如实验设计的科学性和学生的实验报告撰写规范性属于客观指标,而学生动手能力和实验设备的完好程度属于主观指标。

2. 收集评价数据收集中职数学实验教学质量评价数据是评价的基础,包括学生的实验报告、教师的实验设计方案、实验设备的完好程度等。

模糊综合评价法在教学评估中的应用

模糊综合评价法在教学评估中的应用

模糊综合评价法在教学评估中的应用模糊综合评价法是一种新型的评价理论,它可以很好地处理复杂的评价问题,如教学评估。

本文旨在论述模糊综合评价法在教学评估中的应用,包括模糊综合评价法的基本原理、发展历程、应用步骤以及它在教学评估中的优势。

一、模糊综合评价法的基本原理模糊综合评价法是一种基于模糊数学的多属性多源评价方法,它由中国数学家李芳林于1982年发明,是有效的解决多属性模糊评价问题的现代工具之一。

模糊综合评价法借助模糊数学的理论,以决策者的观点和态度来权衡评价项的各种因素,其基本要素是一组相对概念。

它还将模糊概念应用于评价和决策中,并通过模糊综合评价法得出一个综合准确的结论,以解决多属性多目标模糊决策问题。

二、模糊综合评价法的发展历程模糊综合评价法在国内外都有广泛的应用,其中不仅发展了一系列应用研究,还改进了原先的模糊综合评价法。

李芳林发明的模糊方法被称为“模糊综合评价法”,它主要分为基本模糊综合评价法和改进的模糊综合评价法。

此外,自1990年以来,人们通过引入新的概念和新的方法,为模糊综合评价法的发展注入了新的活力,使其能够更好地满足复杂现实需求。

三、模糊综合评价法的应用步骤1.定评价内容:确定要评估的对象,以及每个对象的属性空间,同时要确定每个属性的指标体系;2. 专家定义:根据每个属性的指标体系,确定各属性的模糊评价模型,并由专家确定其参数;3.价对象综合评定:根据评价对象不同属性的模糊评价模型,进行各属性的综合评价,并利用模糊综合评价法求出评价结果;4.理性分析:对评价结果进行理性分析,根据评价结果给出合理性建议,以指导决策。

四、模糊综合评价法在教学评估中的优势模糊综合评价法在教学评估中的优势是显而易见的。

首先,它可以有效地处理复杂的评估问题,并允许众多的专家为不同的属性和指标体系提出评价意见,而不是限于一个指定的评价者来完成评估任务;其次,它可以较好地处理模糊问题,从而使模糊评估更准确;再次,它可以更精确地反映评价对象的真实评价结果;最后,它可以有效地统计多个专家的意见及投票结果,提高了评估的准确性和可信度。

模糊综合评价法原理及案例分析

模糊综合评价法原理及案例分析

案例二:城市环境质量的模糊综合评价
总结词
客观性、科学性
详细描述
城市环境质量涉及多个方面,如空气质量、水质、噪音等,每个方面又有多个指标。通 过模糊综合评价法,可以将这些指标综合考虑,对城市环境质量进行客观、科学的评价。
案例三:旅游景区的模糊综合评价
总结词
实用性、可操作性
VS
详细描述
旅游景区评价涉及多个方面,如资源价值 、环境质量、服务质量等,每个方面又有 多个指标。通过模糊综合评价法,可以将 这些指标综合考虑,对旅游景区进行实用 、可操作的评价。
80%
风险评估
模糊综合评价法可以用于风险评 估,对风险因素进行权重分析和 排序,为风险管理提供支持。
模糊综合评价法的历史与发展
历史
模糊综合评价法起源于20世纪60年代 的模糊数学和模糊逻辑,经过多年的 研究和发展,逐渐形成了较为完善的 理论和方法体系。
发展
随着模糊数学和模糊逻辑的不断发展, 模糊综合评价法也在不断完善和改进, 应用范围越来越广泛,成为多因素、 多指标评价的重要工具之一。
结合人工智能和大数据 技术,开发更加高效、 智能的模糊综合评价模 型和方法,提高决策支 持的效率和准确性。
THANK YOU
感谢聆听
模糊关系与模糊矩阵
模糊关系
模糊关系是指事物之间的不确定关系。在模糊集合中,两个元素之间的关联程 度可以用模糊关系来表示,它是一个从模糊集合到模糊集合的映射。
模糊矩阵
模糊矩阵是用来表示模糊关系的矩阵形式。它由隶属度值组成,能够反映多个 因素之间的关联程度。
模糊运算与模糊推理
模糊运算
模糊运算是对模糊集合进行各种数学运算的方法,包括并集、交集、补集等。通过这些运算,可以对模糊集合进 行各种处理和变换。

模糊综合评价法案例

模糊综合评价法案例

模糊综合评价法案例模糊综合评价法是一种通过模糊数学理论来进行决策和评价的方法。

它能够有效地处理那些难以用精确数值来描述的问题,如主观评价、不确定性问题等。

下面我们通过一个案例来介绍模糊综合评价法的具体应用。

假设某公司需要对几位员工的绩效进行评价,而这些员工的工作表现很难用具体的指标来衡量。

在这种情况下,可以使用模糊综合评价法来进行评价。

首先,我们需要确定评价的几个方面,比如工作态度、工作成绩、团队合作能力等。

然后,针对每个方面,我们可以设定几个评价等级,如优秀、良好、一般、较差等。

接下来,我们需要确定每个评价等级对应的隶属函数。

隶属函数可以用来描述一个事物对某个概念的归属程度,比如对于“工作态度优秀”这个概念,可以用一个隶属函数来描述员工工作态度优秀的程度。

通过专家评价或者历史数据分析,我们可以确定每个评价等级对应的隶属函数。

然后,我们需要对每个员工的工作表现进行模糊化处理,将具体的表现转化为模糊的概念。

比如,对于员工A的工作态度,我们可以用“工作态度优秀的程度为0.7”来描述。

同样地,对于工作成绩、团队合作能力等方面也进行模糊化处理。

接着,我们可以利用模糊综合评价法来对员工的绩效进行综合评价。

通过隶属函数和模糊化的数据,我们可以计算出每个员工在各个方面的绩效得分,然后进行综合得分的计算,最终得出员工的绩效排名。

通过以上案例,我们可以看到模糊综合评价法在处理主观评价和不确定性问题时具有很大的优势。

它能够充分利用专家经验和历史数据,将模糊的概念转化为具体的数值,为决策和评价提供了一种有效的方法。

总之,模糊综合评价法在实际应用中具有很大的潜力,可以应用于各种领域,如人才评价、项目评估、风险分析等。

希望通过本文的介绍,读者能够对模糊综合评价法有一个更深入的了解,并在实际应用中发挥其作用。

模糊综合评判法在企业绩效评估中的应用

模糊综合评判法在企业绩效评估中的应用

模糊综合评判法在企业绩效评估中的应用企业绩效评估是企业管理中的一个重要环节,它旨在通过对企业的各项关键绩效指标的测量和分析来揭示企业的优劣势,并为企业的管理决策提供科学依据。

在企业绩效评估中,使用模糊综合评判法是一种可行的方法。

模糊综合评判法是指,将各个指标的评价结果用模糊数表示,然后通过运算方法将各个指标的模糊数综合起来,以得到最终的评价结果。

这种方法能够较好地应对指标间的相互制约和信息的不确定性,同时又避免了传统的评估方法中对指标结果的简单加权处理。

在企业绩效评估中,使用模糊综合评判法的过程主要包括以下几个步骤:第一步,确定评估指标。

评估指标是评估的基础,需要根据企业的特点和目的,选择合适的指标。

例如,可以选择财务指标、市场指标、生产指标等。

第二步,对评估指标进行量化。

在进行模糊综合评判时,需要对指标进行量化处理,以便使用模糊数进行表达。

量化处理的方法有很多种,可以采用基于统计学的方法,也可以采用专家评分的方法。

第三步,建立评价矩阵。

评价矩阵是将各个评估指标和其对应的模糊数进行表达的矩阵。

在建立评价矩阵时,需要对各个指标之间的关系进行明确,以便能够进行综合评价。

第四步,确定指标权重。

在综合评价中,必须对各个指标的重要程度进行权重分配,以便进行最终的评估。

权重的分配可以采用层次分析法、模糊层次分析法等方法。

第五步,进行模糊综合评判。

在进行模糊综合评判时,需要使用模糊运算方法,将各个指标的模糊数综合起来,以得到最终的评价结果。

常用的运算方法有加权平均法、熵权法等。

通过上述步骤,可以基于模糊综合评判法,进行企业的绩效评估。

这种方法具有如下的优点:第一,能够应对信息不确定性。

在企业绩效评估中,各项指标之间的相互作用和信息不确定性都会对评估结果产生影响。

使用模糊综合评判法能够充分考虑这种不确定性,从而减少评估结果的偏差。

第二,能够较好地处理指标间的制约关系。

在企业管理中,各项指标之间的相互制约关系非常复杂。

模糊综合评价法的应用

模糊综合评价法的应用

模糊层次分析法和综合评价法在专业竞争力评价中的应用0引言乂一年的高考己经结束了,考生们面临着报志愿这一改变人生命运的大事,那么选择什么学校,什么专业才是最好的抉择呢?当我们还懵懂的时候, 当我们还没有步入社会的时候,当我们没有人指导的时候,我们拿着报志愿的书,选择一个排需靠前的学校,或者一个排名靠前的专业,这样就是正确的选择吗?有的学生想要当老师,有的学生希望以后搞科研,有的学生想找个好就业的工作,那么,怎样找到适合自己的专业呢?而当我们毕业的时候, 我们经过多年的学习,我们的专业乂具有怎样的竞争力呢?本文结合运用模糊层次分析法和模糊综合评价法进行分析,评价对于每个学子來说,专业的竞争力水平。

专业竞争力水平的评价是一个复杂的多目标决策问题,目前,常用的方法主要有文献[13]中的层次分析法(AHP)、文献[9-10]中的模糊层次分析法(FAHP)、文献[14]中的模糊数学中的综合评判方法、文献[15]中的多元统计分析法等.模糊综合评价法是一种基于模糊数学的综合评标方法。

该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。

它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

模糊层次分析法由层次分析法和模糊综合评判发结合而成。

2 0世纪70 年代,美国运筹学家,匹兹堡大学的A. L. Saaty教授提出层次分析法,一种定性分析和定量分析相结合的系统分析方法。

层次分析法通过明确问题,建立层次分析结构模型,构造判断矩阵,层次单排序和层次总排序五个步骤计算各层次构成要素对于总目标的组合权重,从而得出不同可行方案的综合评价值,为选择最优方案提供依据。

其关键环节是建立判断矩阵,判断矩阵是否合理、科学直接影响到它的应用效果,层次分析法在应用中有儿点不足,一是判断矩阵的一致性与人类思维的一致性有差异,二是检验判断矩阵的一致性比较困难,三是当判断矩阵不具有一致性时,调整成一致性比较麻烦,四是检验判断矩阵.而模糊层次分析法可以克服以上不足,是一种比传统层次的AHP更科学、更简便的方法.层次分析法在进行判断目标的总体评价时,缺乏一个统一的、具体的指标量化方法,因而在实际使用中,应该只釆用它进行指标权重的分析, 然后用其他方法进行指标值的量化和评价.因此,这就需要将模糊层次分析法与模糊综合评判方法相结合,对专业竞争力水平进行评价,即首先用模糊层次分析法计算各指标权重,然后是用模糊数学中的综合评价方法进行综合评价.1方法介绍1.1模糊层次分析法定义1.1:设矩阵R二(“)nxn,若满足:0 W(“)W 1, (i二1,2,…… n , j = 1 ,2 ,……n),则称R为模糊矩阵定义1.2:设矩阵R二(5)两,若满足:q +7 = 1 ( i = 1 ,2 ,……n,j = 1 ,2 ,……n),则称R为模糊互补矩阵定义1. 3:模糊互补矩阵R =(Hj)nxn,若满足:任意i , j , k有乌二r ik -r jk + 0. 5,则称模糊矩阵R为模糊一致矩阵。

模糊综合评价方法及其应用研究

模糊综合评价方法及其应用研究

模糊综合评价方法及其应用研究模糊综合评价方法是一种基于模糊数学和模糊逻辑理论的评价方法,它在多个领域都有广泛的应用。

特别是在需要综合考虑多个因素和条件的复杂系统中,模糊综合评价方法能够有效地处理不确定性、不完全性和主观性,为决策提供科学依据。

本文将介绍模糊综合评价方法的基本原理、应用范围和优点,并通过具体应用实例探讨其在不同领域的效果和优势。

模糊综合评价方法的基本原理是利用模糊数学和模糊逻辑理论,将不确定的、复杂的评价对象转化为可量化的数学模型。

该方法通过引入模糊矩阵、模糊运算等概念,将多个因素和条件的评价结果进行集成,得到一个综合的评价结果。

模糊综合评价方法具有处理不确定性、不完全性和主观性的能力,同时能够考虑多种因素和条件,为决策提供更为全面的支持。

在进行模糊综合评价之前,首先需要对评价对象进行关键词识别。

关键词识别是指从输入的文本中提取出与评价对象相关的关键词,并根据这些关键词确定文章的主题和类型。

关键词识别的方法包括基于规则的方法和基于机器学习的方法。

基于规则的方法是根据预先定义的规则和算法,从输入文本中提取出相关关键词;基于机器学习的方法则是利用机器学习算法,对输入文本进行训练和学习,自动识别出相关关键词。

在完成关键词识别后,接下来进行模糊综合评价。

模糊综合评价以识别出的关键词为基础,结合相关规则和算法,对文章进行综合评价。

具体步骤如下:建立评价指标体系:根据评价对象的特点和评价目标,建立相应的评价指标体系。

评价指标体系应包括多个层次和多个指标,用以全面反映评价对象的各个方面。

确定评价因素权重:针对每个评价指标,确定其对应的权重。

权重的确定可以采用层次分析法、熵值法等权重确定方法,也可以根据实际经验和专家意见进行赋值。

建立模糊关系矩阵:根据评价指标体系和权重,建立相应的模糊关系矩阵。

模糊关系矩阵中的元素表示不同指标之间的模糊关系,通常采用三角函数或其他函数进行计算。

进行模糊运算:将模糊关系矩阵与权重向量进行模糊运算,得到综合评价结果。

模糊综合评价法案例

模糊综合评价法案例

模糊综合评价法案例模糊综合评价法是一种综合评价方法,它能够有效地处理评价指标之间的模糊性和不确定性,广泛应用于各种决策和评价场景中。

下面我们通过一个案例来具体了解模糊综合评价法的应用。

某公司需要对几位员工进行绩效评价,评价指标包括工作态度、工作成绩、团队合作能力和创新能力。

每个指标的评价等级分为优秀、良好、一般和差,我们将采用模糊综合评价法来进行绩效评价。

首先,我们需要建立模糊评价矩阵。

对于每个员工的每个评价指标,我们需要确定其隶属度函数,即确定其在各个评价等级下的隶属度值。

例如,对于工作态度这一指标,我们可以设定“优秀”评价等级的隶属度为0.8,良好为0.6,一般为0.4,差为0.2。

通过这样的方式,我们可以建立出完整的模糊评价矩阵。

接下来,我们需要确定各个评价指标的权重。

在这个案例中,我们可以采用层次分析法或者专家打分法来确定各个指标的权重。

假设我们确定工作态度的权重为0.3,工作成绩的权重为0.2,团队合作能力的权重为0.25,创新能力的权重为0.25。

然后,我们可以计算出每个员工在每个评价指标下的模糊评价值。

以员工A为例,我们可以通过模糊综合评价法计算出其工作态度、工作成绩、团队合作能力和创新能力的模糊评价值。

最后,我们可以利用模糊综合评价法计算出每位员工的综合评价值。

通过综合评价值的比较,我们可以得出每位员工的绩效排名,从而为公司的绩效奖金分配、晋升评定等决策提供参考依据。

通过以上案例,我们可以看到模糊综合评价法在实际应用中的优势和效果。

它能够有效地处理评价指标之间的模糊性和不确定性,为决策提供科学、客观的依据。

在实际工作中,我们可以根据具体情况对模糊综合评价法进行适当的调整和改进,以更好地满足实际需求。

总的来说,模糊综合评价法在绩效评价、风险评估、项目选择等领域具有广泛的应用前景,它为我们提供了一种全新的综合评价方法,帮助我们更好地应对复杂多变的决策和评价问题。

希望通过本案例的介绍,能够增进大家对模糊综合评价法的理解,为其在实际工作中的应用提供一些借鉴和启发。

模糊综合评价法在教师教学质量评价中的应用

模糊综合评价法在教师教学质量评价中的应用

模糊综合评价法在教师教学质量评价中的应用随着教育科技的发展,教师教学质量的评价也发生了很大的变化,以模糊综合评价法为代表的综合性评价方法正在被越来越多的学校采用。

本文将针对教师的教学质量,从理论和实践的角度介绍模糊综合评价法在教师教学质量评价中的应用。

首先,让我们来看一下模糊综合评价法在教师教学质量评价方面的理论依据。

模糊综合评价法是一种综合性评价方法,可用于确定一个指标及其状态,从而把握其质量状况。

模糊综合评价法通过把指标与状态之间的关系确定为一个模糊集,并使用模糊数学理论进行判断,从而将评价对象的复杂性定量转化并通过模糊推理进行定量分析。

其次,让我们来了解一下模糊综合评价法在教师教学质量评价中的实践应用。

首先,根据学校教学性质及相关教学管理要求,制定评价指标,这些指标包括教学计划、师资条件、教学环境、教师教学技能等,这些指标的划分及其权重确定(权重的比重依据学校背景确定)。

其次,根据模糊综合评价法的理论,将当前指标的状态确定为一个模糊集,其中有几个模糊子集,每个模糊子集代表了不同的评价状态,如低、中、高以及超高。

最后,使用模糊数学理论进行推理,进而对教师教学质量进行模糊评价。

综上所述,模糊综合评价法可以用于教师教学质量的综合评价,其理论基础及实践应用都可以得到满意的认可。

因此,如果想要准确、有效地评价教师教学质量,可以考虑采用模糊综合评价
法,从而更好地促进学校教学质量的提高。

以上是有关模糊综合评价法在教师教学质量评价中的应用的文章介绍,从理论和实践的角度深入剖析了模糊综合评价法在教师教学质量评价中的应用,指出了模糊综合评价法的理论依据及实践应用,从而为学校教学管理提供参考。

模糊综合评价法的实际应用

模糊综合评价法的实际应用

模糊综合评价法1 模糊综合评价的方法、步骤1模糊综合评价模糊综合评价法是一种基于模糊数学的综合评标方法;该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价;它具有结果清晰,系统性强的特点,能较好地解决模糊的难以、;当,或综si =5初级评价;由i U 的单因素评价矩阵i R ,及i U 上的权重集i A ,得第一级综合决策向量:[]im i i i i i b b b R A B 21=︒= (1)其中,“°”为模糊关系合成算子; (6)二级评价;将每一个iU 作为一个元素,把i B 作为它的单因素评价,又可构成评价矩⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=sm s m s b b b b B B R 11111阵 (2)再根据U 的权重集A,得出第二级综合决策向量[]m b b b B A B 21,==;由B 作出风险判断,根据最大隶属度原则,当{}m i b b b b ,,,max 21 =时,堰塞湖风险等级G=i;根据以上指标体系,将因素集分为两个层次:第一级因素集:}{6,5,4,3,2,1U U U U U U U =,其中1U :爆破参数;2U :爆破切口;3U :预处理;4U :爆破公害;5U :爆破事故;6U :爆破导向失控;第二级因素集:}{6,5,4,3,2,11u u u u u u U =,其中1u :最小抵抗线;2u :炮孔深度;3u :炮眼间距;4u :炮眼排距;5u :单孔装药量;6u :爆破网络设计;}{5,4,3,2,12u u u u u U =,其中1u :爆破切口长度;2u :爆破切口宽度;3u :爆破切口形,2安全得分 > 90 80 ~90 60 ~79 40 ~59 < 40 安全级别好较好中较差差3权重分配1各因素的权重分配A对U 集合中各因素确定其重要度A;根据爆破事故与爆破导向失控在烟囱爆破中的重要性作出以下权重分配:)(6,5,4,3,2,1a a a a a a A ==0.15,0.15,0.1,0.2,0.25,0.25表1 烟囱爆破安全指标结构体系因素权重分子因素权重目标一级评价因素二级评价因素好较好中较差差爆破粉尘0.6 0.3 0.1 0.0 0.0 0.25噪声0.6 0.2 0.2 0.0 0.0 0.2续表毒气0.4 0.3 0.3 0.0 0.0 0.12评价因素的子因素的权重分配i A==)(16,15,14,13,12,111a a a a a a A 0.3,0.2,0.1,0.1,0.1,0.2==)(25,24,23,22,212a a a a a A 0.25,0.25,0.1,0.2,0.2 ==)(34,33,32,313a a a a A 0.2,0.3,0.2,0.3==)(46,45,44,43,42,414a a a a a a A 0.25,0.1,0.1,0.25,0.2,0.1 ==)(52,515a a A 0.6,0.4==)(64,63,62,616a a a a A ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤0.00.00.00.00.00.02求各因素评价矩阵 由公式i i A B =iR o ,得出各因素评价矩阵如:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0.00.05.03.02.01.02.04.02.01.00.01.05.02.02.01.01.04.03.01.03R ⎥⎥⎥⎥⎦⎢⎢⎢⎢⎣=0.00.01.02.07.00.00.01.03.06.00.00.01.03.06.06R()1.0,1.0,3.0,3.0,3.00.00.05.01.04.00.01.05.01.03.01.01.02.05.01.01.01.02.05.01.00.01.01.06.02.00.00.03.03.04.02.01.01.01.02.03.0111=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡== R A B)0.0,1.0,2.0,2.0,25.0(0.00.01.04.05.00.00.01.04.05.00.00.01.05.04.00.01.02.01.06.00.01.02.01.06.02.02.01.025.025.0222=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡== R A B)1.0,2.0,3.0,2.0,2.0(0.00.05.03.02.01.02.04.02.01.00.01.05.02.02.01.01.04.03.01.03.02.03.02.0333=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== R A B)0.0,0.0,2.0,25.0,25.0(0.00.03.03.04.00.00.02.02.06.00.00.01.03.06.00.00.03.02.05.00.00.03.02.05.00.00.02.01.07.01.02.025.01.01.025.0444=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡== R A B)0.0,0.0,1.0,3.0,6.0(0.00.01.03.06.00.00.01.02.07.04.06.0555=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡== R A B)0.0,0.0,2.0,3.0,3.0(0.00.01.02.07.00.00.01.03.06.00.00.01.03.06.00.00.02.03.05.03.03.02.02.0666=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== R A B5归一化处理根据公式对评价矩阵进行归一化处理,得出结果如下:)091.0,091.0,272.0,272.0,272.0(51111==∑=i ww B)1.0,2.0,3.0,2.0,2.0(51222==∑=i ww B)000.0,133.0,267.0,267.0,333.0(533==ww B R 1由公式R A B =有:)1.0,133.0,25.0,25.0,25.0(0.00.025.0375.0375.00.00.01.03.06.00.00.0428.0357.0357.00.0133.0267.0267.0333.01.02.03.02.02.0091.0091.0272.0272.0272.025.025.02.01.015.015.0=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡2归一化处理有:B= 0.25/0983,0.25/0.983,0.25/0.983 ,0.133/0.983, 0.1/0.983 = 0.254,0.254,0.254,0.135,0.1027等级评定:f1=950.272+800.272+650.272+450.091+300.091=72.105f2=9502+800.2+650.3+450.2+300.1=76.333f3=950.333+800.267+650.267+450.1333+300.000=66.5f4=950.357+800.357+650.428+450.000+300.000=90.295f5=950.6+800.3+650.1+450.000+300.000=87.5f6=950.375+800.375+650.25+450.000+300.000=81.875由上述计算可知,对照等级关系表烟囱爆破的“爆破参数”、“爆破切口”、“预处理”评价指,“爆破公害”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊层次分析法和综合评价法在专业竞争力评价中的应用_0 引言又一年的高考已经结束了,考生们面临着报志愿这一改变人生命运的大事,那么选择什么学校,什么专业才是最好的抉择呢?当我们还懵懂的时候,当我们还没有步入社会的时候,当我们没有人指导的时候,我们拿着报志愿的书,选择一个排名靠前的学校,或者一个排名靠前的专业,这样就是正确的选择吗?有的学生想要当老师,有的学生希望以后搞科研,有的学生想找个好就业的工作,那么,怎样找到适合自己的专业呢?而当我们毕业的时候,我们经过多年的学习,我们的专业又具有怎样的竞争力呢?本文结合运用模糊层次分析法和模糊综合评价法进行分析,评价对于每个学子来说,专业的竞争力水平。

_ 专业竞争力水平的评价是一个复杂的多目标决策问题,目前,常用的方法主要有文献[13]中的层次分析法(AHP)、文献[9-10]中的模糊层次分析法(FAHP)、文献[14]中的模糊数学中的综合评判方法、文献[15]中的多元统计分析法等.模糊综合评价法是一种基于模糊数学的综合评标方法。

该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。

它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

模糊层次分析法由层次分析法和模糊综合评判发结合而成。

2 0世纪70年代,美国运筹学家,匹兹堡大学的A.L.Saaty教授提出层次分析法,一种定性分析和定量分析相结合的系统分析方法。

层次分析法通过明确问题,建立层次分析结构模型,构造判断矩阵,层次单排序和层次总排序五个步骤计算各层次构成要素对于总目标的组合权重,从而得出不同可行方案的综合评价值,为选择最优方案提供依据。

其关键环节是建立判断矩阵,判断矩阵是否合理、科学直接影响到它的应用效果,层次分析法在应用中有几点不足,一是判断矩阵的一致性与人类思维的一致性有差异,二是检验判断矩阵的一致性比较困难,三是当判断矩阵不具有一致性时,调整成一致性比较麻烦,四是检验判断矩阵.而模糊层次分析法可以克服以上不足,是一种比传统层次的AHP更科学、更简便的方法.层次分析法在进行判断目标的总体评价时,缺乏一个统一的、具体的指标量化方法,因而在实际使用中,应该只采用它进行指标权重的分析,然后用其他方法进行指标值的量化和评价.因此,这就需要将模糊层次分析法与模糊综合评判方法相结合,对专业竞争力水平进行评价,即首先用模糊层次分析法计算各指标权重,然后是用模糊数学中的综合评价方法进行综合评价._1方法介绍1.1模糊层次分析法定义1. 1:设矩阵R = (r ij)n×n,若满足: 0 ≤(r ij) ≤1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵定义1. 2:设矩阵R = (r ij)n×n,若满足: r ij+r ji=1( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊互补矩阵定义1. 3:模糊互补矩阵R = (r ij)n×n,若满足: 任意i , j , k 有r ij= r ik-r jk_ + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。

定理1. 1:设模糊矩阵R = (r ij)n×n是模糊一致矩阵,则有(1) )任意i ( i = 1 ,2 , …n) ,则r ii= 0. 5 ;(2) 任意i ,j( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有 r ij+r ji=1;(3) R 的第i 行和第i 列元素之和为n ;(4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵;(5) R 满足中分传递性,即当λ≥0. 5 时,若r ij≥λ, r jk≥λ,则r ik≥λ;当λ≤0. 5 时,若r ij≤λ, r jk≤λ,则r ik≤λ。

Remark:用模糊一致矩阵表示因素问两两重要性比较的合理性解释在模糊数学中,模糊矩阵是模糊关系的矩阵表示,若论域U={a1,⋯a n}上的模糊关系“……比……重要得多”的矩阵表示为模糊矩阵R = (r ij)n×n,则R的元素具有如下实际意义。

(1) r ij的太小是a i比a j重要的重要程度的度量,且r ij越太,a i比a j就越重要,r ij> 0.5表示a i比a j重要f反之,若r ij< 0.5,则表示a j比a i重要。

(2)由余的定义知,1一r ij,表示a i不比a j重要的隶属度,而a i不比a j重要,则a j比a i重要,又因a j比a i重要的隶属度为r ji,故r ji=1一r ij,即R是模糊互补矩阵。

特别地,当i=j时,有r ii= 0. 5,也即元素同自身进行重要性比较时,重要性隶属度为0.5。

(3)若人们在确定一元素比另一个元素重要的隶属度的过程中具有思维_ 的一致性,则应有:若r ij> 0.5,即,a i比a j重要,则任意k( k=1,2,⋯,n)有r ik>r jk.。

另一方面,r ik−r jk是a i比a j相对重要的一个度量,再加上a j自身比较重要性的度量为,则可得a i比a j绝对重要的度量r ij,即r ij=r ik−r jk+ 0.5,也即R = (r ij)n×n应是模糊一致矩阵。

综上所述,以及模糊一致矩阵的性质知,用模糊一致矩阵R = (r ij)n×n 表示论域U={a1,⋯a n}上的模糊关系“……比……重要得多”是合理的。

1.2模糊综合评价法模糊综合评价法中的有关定义如下:1.评价因素(F):系指对招标项目评议的具体内容。

2.评价因素值(Fv):系指评价因素的具体值。

3.评价值(E):系指评价因素的优劣程度。

评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。

4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。

平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):系指评价因素的地位和重要程度。

第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。

6.加权平均评价值(Epw):系指加权后的平均评价值。

加权平均评价值(Epw)=平均评价值(Ep)×权重(W)。

_ 7.综合评价值(Ez):系指同一级评价因素的加权平均评价值(Epw)之和。

综合评价值也是对应的上一级评价。

2模糊层次分析法的应用2.1专业竞争力水平评价体系的设置专业竞争力水平涉及多方面的因素,第一,学生本科或研究生阶段的学校排名,专业排名,及个人成绩排名;第二,学生在校期间的科研,项目经历,因此,个人的科研能力,导师的科研能力,及导师对学生的负责程度都对专业竞争力有影响;第三,就业水平,有的专业就业范围大,区域广,需求高,而有的专业就业范围小,区域窄,需求少;第四,专业性质,专业可以分为两类,基础学科,以学科知识本身为研究对象的,偏学术性的属于基础学科。

例如数学、物理、化学、哲学、历史等专业。

基础学科,特别是其中的人文学科,很难具备直接创造经济效益的条件。

应用学科,是以解决工程实际问题、社会实际问题为研究对象的,实践岗位性的属于应用学科,例如:工程类,管理类,设计类,技术方面的;第五,个人与专业契合度,个人对专业的兴趣,个人对专业的合适程度,都决定了专业对个人的竞争力。

图1:专业竞争力水平评价体系A_2.2 选用模糊层次分析法这一方法运用步骤如下第一,构建层次结构模型;第二,得出两两因素比较的隶属度,构造模糊一致矩阵,第三,层次单排序——根据模糊一致矩阵的性质,可求得各层元素的权重值W.i2.3标度划分_矩阵一致性的判断标准()0.1CR <缺乏科学的依据,根据Satty 的9标度法可以将复杂的定性问题量化处理,对各指标的重要程度进行标度划分,含义如下表所示表1.12.4 模糊一致矩阵首先,根据图1的指标体系,制定附录1,发放调查问卷(1)200份,选取有效数据150份,被调查的同学,按照表1的标度的制定的选项进行打分,分别为各级指标进行打分,分别对调查数据进行整理得出求取平均值后的结果.根据所得出的结果构造模糊一致矩阵.然后,可以依据模糊一致矩阵自身的性质,求出相应的各个指标层的权重i W .依据张吉君在文献[7]中对3种求权值方法的比较,本文取第三种方法求取权重,根据文献[16]中证明的模糊判断一致矩阵()n n ij a A ⨯=的元素ij a 和i W 关系式,()5.0+-=j i ij W W a α中对3种求权值方法的比较,本文选取文献[14]中的方法(3)求取所对应指标的权重,公式如下_n i rn n W nk iki ,...,2,1,12111=+-=∑=αα,(2.1) 其中α满足α≥(n −1)/2的参数,n 为模糊矩阵的阶数.因此,对于图1问题构造各级模糊一致矩阵,依据式(2.1)可以求出各层次的权值.依据图1的大学生整体评价体系,根据各个因素所占的比重,将各个指标进行对比,根据表1得出相应的数据,构造一级指标之间的模糊一致矩阵,按照公式(2.1),求出各级指标相对于目标层的权重,其中α=(n −1)/2,结果如下表:表1.2层次A 1A 2A 3A 4A 5Aw i1A 0.500 0.400 0.600 0.400 0.750 0.215 2A 0.600 0.500 0.400 0.600 0.700 0.2303A 0.400 0.600 0.500 0.600 0.800 0.2404A 0.600 0.400 0.400 0.500 0.650 0.2055A 0.250 0.300 0.200 0.350 0.500 0.110 类似于以上表2中所求权重的方法和构造模糊一直矩阵的方法,同样可分别构造指标54321,,,,A A A A A 各指标之间的模糊一致矩阵.表1.3_层次1A 11A 12A 13A 1W11A 0.500 0.700 0.750 0.48312A 0.300 0.500 0.650 0.31713A 0.250 0.350 0.500 0.200层次2A 21A 22A 23A 2W21A 0.500 0.550 0.450 0.33422A 0.450 0.500 0.400 0.28323A 0.550 0.600 0.500 0.383层次3A 31A 32A A 33 3W31A 0.500 0.400 0.300 0.23332A 0.600 0.500 0.400 0.333A 33 0.700 0.600 0.500 0.434层次4A 41A 42A 4W41A 0.500 0.460 0.46042A 0.540 0.500 0.540层次5A 51A 52A 5W51A 0.500 0.490 0.49052A 0.510 0.500 0.510并分别求出相应的权值结果为 W 0=[0.215,0.230,0.240,0.205,0.110]W 1=[0.483,0.317,0.200]W 2=[0.334,0.283,0.383]W 3=[0.233,0.333,0.434]_W4=[0.460,0.540]W5=[0.490,0.510]文献[1]中,利用公式a ij=α(w i−w j)+0.5对得出的数值进行一致性检验,如果上述矩阵中均严格满足这个公式,则上面的就是模糊一致性矩阵.经过一致性检验,上述矩阵均满足文献[1]中的公式所以上述构造的矩阵均是一致性的,满足一致性的检验.3模糊综合评判的应用3.1评价矩阵的构造模糊层次分析算法可以将专业竞争力水平的各个指标量化,并且通过数据可以看出各个指标所占的比重,但是不能将专业竞争力的整体水平给估算出来,不能定量地计算专业竞争力的整体水平.因此,就需采用模糊综合评价方法计算专业竞争力的整体水平.这两种方法相结合不仅可以知道专业竞争力的中哪个指标更重要,而且还可以知道专业竞争力的整体水平。

相关文档
最新文档