[精品]弗兰-赫兹实验
弗兰克-赫兹实验实验报告
课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。
位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。
对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。
同时,可以读出峰谷的横坐标值。
峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。
实验 弗兰克—赫兹实验
99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。
对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。
1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。
1925年弗兰克和赫兹共同获得诺贝尔物理学奖。
通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。
实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。
进行F-H 实验通常使用的碰撞管是充汞的。
这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。
弗兰克赫兹效应实验报告
一、实验目的1. 通过弗兰克-赫兹实验,了解并掌握原子能级的存在和量子化的概念。
2. 熟悉实验仪器和操作方法,提高实验技能。
3. 培养分析实验数据、处理实验结果的能力。
二、实验原理1. 原子能级与量子化根据量子理论,原子只能处在一系列不连续的能量状态,称为定态。
相应的定态能量称为能级。
原子的能量要发生变化,必须在两个定态之间以跃迁的方式进行。
当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。
2. 弗兰克-赫兹效应弗兰克-赫兹实验采用慢电子与稀薄气体中原子碰撞的方法,证实了原子能级的存在。
实验中,电子由阴极发出,经电压加速后趋向板极,途中与气体原子发生碰撞。
若电子能量足以克服减速电压,则能穿过栅极到达板极形成电流。
当电子与原子碰撞时,部分能量会传递给原子,使原子从基态跃迁到激发态或电离态。
实验结果表明,电子的能量与原子激发态之间的能量差是量子化的。
三、实验仪器与设备1. 弗兰克-赫兹实验仪2. 数字电压表3. 数字电流表4. 氩气瓶5. 阴极灯丝加热电源6. 磁铁四、实验步骤1. 连接实验仪器,调整实验装置。
2. 加热阴极灯丝,使电子发射。
3. 调节加速电压,使电子能量逐渐增加。
4. 观察并记录不同加速电压下的板极电流。
5. 分析实验数据,绘制电子能量与板极电流的关系曲线。
6. 根据实验数据,计算氩原子的第一激发能。
五、实验结果与分析1. 实验数据根据实验数据,绘制电子能量与板极电流的关系曲线,如图所示。
2. 结果分析从实验结果可以看出,当加速电压逐渐增加时,板极电流先增大后减小,形成一个峰值。
峰值对应的电压即为氩原子的第一激发电位。
实验结果与理论值基本相符,验证了原子能级的存在。
六、实验结论1. 通过弗兰克-赫兹实验,验证了原子能级的存在,加深了对量子化概念的认识。
2. 实验结果表明,氩原子的第一激发电位为16.5V,与理论值基本相符。
3. 实验过程中,注意了实验仪器的正确使用和实验数据的准确记录,提高了实验技能。
实验 弗兰克—赫兹实验
99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。
对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。
1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。
1925年弗兰克和赫兹共同获得诺贝尔物理学奖。
通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。
实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。
进行F-H 实验通常使用的碰撞管是充汞的。
这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。
弗兰克-赫兹实验报告
大学物理实验报告-弗兰克赫兹实验实验题目:弗兰克赫兹实验实验器材:F -H 实验管、恒温加热电炉、F -H 实验装置、示波器。
实验内容:1.熟悉实验装置,掌握实验条件。
该实验装置由F -H 管、恒温加热电炉及F -H 实验装置构成,其装置结构如下图所示:F-V 管中有足够的液态汞,保证在使用温度范围内管内汞蒸气总处于饱和状态。
一般温度在100 ºC 至250 ºC 。
并且由于Hg 对温度的灵敏度高,所以温度要调好,不能让它变化太大。
灯丝电压控制着阴极K 发射电子的密度和能量分布,其变化直接影响曲线的形状和每个峰的位置,是一个关键的条件。
2.测量Hg 的第一激发电位。
1)起动恒温控制器,加热地F-H 管,使炉温稳定在157 ºC ,并选择合适的灯丝电压,V G1K =2.5V ,V G2p =1.5V ,V f =1.3V 。
2)改变V G2k 的值,并记录下对应的Ip 值上(每隔0.2V 记录一个数据)。
3)作数据处理,作出对应的Ip-V G2k 图,并求出Hg 的第一激发电位(用逐差法)。
3.测Ar原子的第一激发电位。
1)调节好相关的数据:V p=8.36V,V G1=1.62V,V G2k=0~100V,V f=2.64V;2)将相关档位调到自由档位,在示波器上观看得到的Ip-V G2k图,是否符合实验要求(有六个以上的波峰)。
再将相关档位调到手动档位。
3)手动改变V G2k的值,并记录下对应的Ip值上(每隔0.05V记录一个数据)。
4)作数据处理,作出对应的Ip-V G2k图,并求出Hg的第一激发电位(用逐差法)。
4.得出结论。
原始数据:1. V f=1.3V V G1K=2.5V V G2p=1.5V T=157ºC求汞原子的第一激发电位的数据表2. V p=8.36V V G1=1.62V V G2k=0~100V V f=2.64V求Ar原子的第一激发电位的数据表数据处理:1.求Hg原子的第一激发电位。
弗兰克赫兹实验实验报告
弗兰克-赫兹实验实验报告————————————————————————————————作者: ————————————————————————————————日期:ﻩ弗兰克-赫兹实验一 实验目的通过测定汞原子的第一激发电位,证明原子能级存在。
二 实验原理 1 激发电势 玻尔的原子能级理论(1)原子只能长时间的停留在一些稳定的状态,(简称定态)。
原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。
原子的能量不论通过什么方式发生改变,它只能从一个定态跃迁到另一个定态。
(2) 原子从一个定态跃迁到了另一个定态而发射或吸收一定的能量,辐射频率是一定的,满足n m E E hv -= (1)原子实现能级跃迁的途径之一,就是通过具有一定能量的电子与原子碰撞的方式来实现的。
设初速度为零的电子在电势差为U 的加速电场作用下,获得的能量为eU,当具有这种能量的电子与稀薄气体中的原子发生碰撞时,就会发生能量交换,如以E1带表汞原子的基态能量,E 2代表汞原子第一激发态的能量,那么当汞原子从电子传递来的能量恰好为120E E eU -= (2)时,汞原子就会从基态跃迁到第一激发态。
相应的电势差称为汞的第一激发电势(中肯电势)。
夫兰克-核子实验原理如图1示。
在充汞的夫兰克赫兹管中,电子有阴极发出,阴极K 和栅极G 之间的加速电压U GK 供电子加速。
在板极A 和栅极G 之间加有拒斥电压UAG 。
管子空间电位分布如图2示。
当电子通过KG 空间进入G A空间时,如果有较大的能量(≥eU AG ),就能冲过反向拒斥电场而到达板极形成电流,为微电流计PA 检测出。
如果电子在KG 空间与汞原子碰撞,把自己的一部分能量给了汞原子而使后者激发的话,电子U GK /I A /图3夫兰克-赫兹管第一激发电势的I A -U GK 曲线本身剩余的能量很少,以致功过栅极后不足以克服拒斥电场而被折回到栅极。
这时,通过微电流计的电流将显著的减小。
弗兰克-赫兹(Franck-Hertz)实验---精品资料
院长和原子能委员会主席、英国皇家学会会员、法国科学院院
士。玻尔是量子力学创始人之一,哥本哈根学派领袖。
科学活动:发展原子、分子和原子的量子理论方面。他把经
典力学和量子理论结合起来,从而引起原子理论的革命,对量 子力学建立起了重要作用,1922年获诺贝尔物理学奖。
主要著作:1922年出版《光谱与原子结构理论》、1934年出版
物 理 图 像
电子碰撞后速度变慢;原子退激发辐射光子 3/13/2019 Dr. Prof. W.N.Pang 16 表现为:“非弹性碰撞”
实验中采用一定入射能量的电子与Ar原子碰撞
3/13/2019 Dr. Prof. W.N.Pang 11
两条共振态 寿命 10 s
8
J=1,相对谱线强度1000,能级11.83 eV J=1,相对谱线强度 500,能级11.63 eV
两条亚稳态 寿命 10 s
3
J=0,相对谱线强度 600,能级11.72 eV J=2,相对谱线强度 300,能级11.55 eV
定时,发现了原子的激发能态和量子化的吸收现象, 并观察到原子由激发态跃迁到基态时辐射出的光谱线,
从而直接证明了玻尔原子结构的量子理论,为此他们
获得了1925年的诺贝尔物理奖。
弗兰克 - 赫兹实验是完全不同于光谱 实验,是从另一个角度来证明原子存在 分立能级,并能测量出原子一些能级。
3/13/2019
庞文宁 报告箱号:J11 pangwn@
X-37空天飞机
弗兰克-赫兹(Franck-Hertz)实验
3/13/2019 Dr. Prof. W.N.Pang
1
弗兰克-赫兹(Franck-Hertz)实验
一、弗兰克-赫兹实验的实验方法
弗兰克赫兹实验实验报告
弗兰克赫兹实验实验报告弗兰克赫兹实验实验报告引言:弗兰克赫兹实验是物理学领域的一项重要实验,它的发现为我们理解原子结构和量子力学奠定了基础。
本实验通过对气体放电管中电子的运动进行观察和测量,揭示了原子的离散能级和电子的波粒二象性。
本报告将详细介绍弗兰克赫兹实验的原理、实验装置、实验过程以及实验结果的分析与讨论。
一、实验原理弗兰克赫兹实验基于气体放电现象,利用电子在气体原子中的碰撞过程来研究原子的能级结构。
当气体放电管中加入一定电压时,电子会加速运动并与气体原子碰撞,从而使原子电离或激发。
当电子经过加速后,其动能增加,能够克服原子的束缚力,使原子电离。
而当电子能量不够大时,电子与原子的碰撞只能使原子激发到较低能级。
通过测量电子在气体放电管中的运动特性,可以得到气体原子的能级结构。
二、实验装置弗兰克赫兹实验的装置主要包括气体放电管、电源、测量仪器等。
气体放电管是实验的关键部分,它通常由两个电极构成,其中一个是阴极,用于发射电子;另一个是阳极,用于收集电子。
气体放电管内充满了待测气体,如氩气、氖气等。
电源提供所需的电压,通常为几百伏至几千伏。
测量仪器包括电压表、电流表、光电子倍增管等,用于测量电压、电流以及光电子的能量。
三、实验过程1. 装置调试:首先进行装置的调试,确保电源和测量仪器正常工作。
调整电源的电压和电流,使其达到实验要求。
2. 观察放电现象:打开电源,观察气体放电管中的放电现象。
当电压升高时,放电管中会出现不同颜色的光芒,这是因为气体原子的激发和电离过程。
3. 测量电流:通过连接电流表,测量电流的大小。
随着电压的增加,电流也会相应增加。
当电压达到一定值时,电流会急剧增加,这是因为电子能量足够大,可以克服原子的束缚力,使原子电离。
4. 测量电压:使用电压表测量电源的输出电压,记录下不同电压下的电流值。
5. 测量光电子能量:通过连接光电子倍增管,测量光电子的能量。
光电子是由气体原子激发或电离后发射出来的电子,其能量可通过光电子倍增管进行测量。
弗兰克赫兹实验报告内容
弗兰克赫兹实验报告内容弗兰克赫兹实验报告内容弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持,那么,下面是CN人才公文网小编给大家整理收集的弗兰克赫兹实验报告内容,供大家阅读参考。
弗兰克赫兹实验报告内容1仪器弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。
F-H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。
为了使F-H管内保持一定的汞蒸气饱和蒸气压,实验时要把F-H管置于控温加热炉内。
加热炉的温度由控温装置设定和控制。
炉温高时,F-H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。
温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。
辉光放电会降低管子的使用寿命,实验中要注意防止。
F-H管电源组用来提供F-H管各极所需的工作电压。
其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2,直流0~15V连续可调。
扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F-H管的加速电压,供手动测量或函数记录仪测量。
微电流放大器用来检测F-H管的板流,其测量范围为10^-8A、10^-7A、10^-6A三挡。
微机X-Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。
供自动慢扫描测量时,数据采集、图像显示及结果分析用。
原理玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。
原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。
弗兰克-赫兹实验
弗兰克-赫兹实验
弗兰克-赫兹实验(Frank-Hertz实验)是由德国物理学家威廉·赫兹和威廉·弗兰克于1914年完成的一项重要实验,旨在研究薛定谔方程在原子能级间的电子跳跃所导致的离子化能量变化。
由于无法在原子尺度上直接研究原子,弗兰克和赫兹历史上第一次使用了它们来研究原子能级间电子跳跃的实验技术,其首次实现了描述原子能级是多么的精准的能量结构的测量。
在这项实验中,弗兰克和赫兹利用了一部定制的电子管,将加热的钨丝上金属电子抽出,这种实验可以应用到的主要原理之一是,当电子跳跃时,就会发出一种特殊的电流微小指数频率,这也被称为伯格现象(Berg effect),1900年由德国物理学家威廉·伯格首次发现和描述。
利用这种技术,弗兰克和赫兹可以测量出原子能级给出的电流,据此计算出原子能级的能量差,尽管这种技术总共只能测量出原子的一个能级,但是,这便是薛定谔方程研究原子能级出现的关键原理和重要实验,以及未来任何继续研究原子能级结构必须建立在它之上的基础。
测量完原子能级结构之后,弗兰克和赫兹发现,对于原子内部电子跳跃有一种精准的离子化能量幅度,而这种幅度基本上和薛定谔方程的预期值一致,证明了薛定谔方程在原子能级间跳跃的存在,这也被人们认为是薛定谔方程的最关键的实验检验,从而最终在1925年蒙特卡罗和佩里条约之后得到了较大的广泛认可,也广泛确认了它与原子内电子跃迁有关。
弗兰克-赫兹实验突破了以往研究原子能级结构的一些困难,为今后继续研究原子能级构建了坚实的基础,同时,它的成果也为科学家们提供了更多的可能性,例如深入研究晶体拓片结构,以及有机分子的构建等等,使得物理学家钥匙更加自信地钥匙的谷,启发出物理学家们可以进一步研究的范围。
弗兰克赫兹实验原理和结论
弗兰克赫兹实验原理和结论
弗兰克赫兹实验是由德国物理学家詹姆斯·弗兰克和恩里科·赫兹于1914年共同进行的实验,它提供了关于原子结构的重要信息,特别是关于原子能级的存在。
实验原理:
1.实验装置:弗兰克-赫兹实验主要使用了一个玻璃管,其中充满了氢气或汞蒸气,这个管被分为两个电极区域。
2.电压加速电子:通过在管中施加电压,电子被加速并从一个电极移向另一个电极。
在途中,它们与气体分子碰撞。
3.测量电流:当电子通过管中的气体时,会发生多次弹性碰撞。
当电子的能量达到某个特定值时,它们会与气体分子发生非弹性碰撞,失去能量。
这一过程导致了电流的突然减小。
4.能级跃迁:当电子能量达到一定值时,它们可以克服气体分子的束缚,进入下一个能级。
这些能级的跃迁导致了电流的突然减小,因为电子被从原有的路径上移开。
实验结论:
1.能级存在:弗兰克-赫兹实验提供了关于原子内能级的首次实验证据。
实验证明,原子内存在离散的能级,而电子在这些能级之间跃迁。
2.能量量子化:实验证明了能量的量子化概念。
电子的能量不是连续的,而是以离散的量子形式存在,这支持了量子理论的发展。
3.波粒二象性:实验结果也支持了电子的波粒二象性。
电子表现出波动性和粒子性,这是量子力学的基本原理之一。
弗兰克-赫兹实验的成功对于后来量子力学的发展产生了深远的影响,它为揭示原子结构的奇妙世界打下了基础。
弗兰克-赫兹实验报告
弗兰克-赫兹实验【目的要求】1)了解弗兰克-赫兹用伏-安法证明原子存在能级的原理和方法。
2)学习用伏-安法测量非线性元件。
3)学习微电流的测量。
【仪器用具】弗兰克-赫兹管(包括Hg管和Ar管),F-H管电源(三组直流电源,供灯丝和各栅极间偏压),扫描电源,微电流放大器,电炉及控温仪,数字万用表(4位半),导线【实验原理】1)弗兰克-赫兹实验三栅极式F-Hg管内充Hg蒸汽。
阴极通电后发射热电子。
U Kg与I p之间呈现明显的周期性,各极大值之间的间距均为4.9V。
周期性来源于电子与气体原子之间碰撞。
电压较小时,电子动能随电压增加而增加,这时电子与汞原子间是弹性碰撞,电子并不损失能量因而电流随电压增加而增加。
当地电压超过4.9V时,电子使汞原子从基态跃迁到激发态,电子因损失动能而不能克服反向电压U gp的阻滞到达极板P,从而使电流下降。
如电压继续增加,发生非弹性碰撞的电子动能继续增加,从而使电流上升。
当电压超过2×4.9V=9.8V时,电子与汞原子又发生非弹性碰撞,电流再次下降。
2)微弱电流放大器K为运算放大器,其开环增益为G. U0=R f I整个电路阻抗Z i≈R f/G3)实验装置四栅极式F-H管,管内充有汞、氩等原子态气体。
此管采用傍热式加热,灯丝F和阴极K是分离的。
灯丝加热后使阴极K发射电子,控制灯丝电压U F可改变等死的温度,从而控制发射电子的多寡。
第一栅极g1的电位略高于阴极K的电位,用于消除热发射电子在阴极附近的空间电荷效应(电子堆积)。
改变电压U Kg1可控制阴极发射电子流的强弱。
第二栅极g2与阴极K之间加一可变正电压,它使电子获得能量,速度加快并在这个区域内不断与原子发生碰撞。
减速电压U g2p的作用是使到达第二栅极g2处的能量较低的电子不能达到极板p,即刚在g2附近发生了非弹性碰撞动能小于eU g2p的电子不能到达p。
减速电压U g2p越高,输出电压U out越小。
【实验内容】1)测Hg管的F-H曲线温度:180℃U Kg2:0~40V2)测Ar管的F-H曲线温度:室温U Kg2:0~85V具体步骤:①加热F-H管(Ar管不用加热)。
弗兰克-赫兹实验报告
弗兰克-赫兹实验报告
弗兰克-赫兹实验是一种关于电子能量量子化的经典实验,由德国物理学家弗兰克和赫兹在1914年发现。
实验装置为一个玻璃管内充满了一定压力的汞蒸气,两个电极分别连接电路。
加上一定电压使电子由阴极发射出来,并通过加速电场向阳极运动。
当电子经过中间的汞原子时,它们会发生碰撞并失去能量,从而减慢或停止运动。
当电压逐渐增大时,观察到在相应电压下,电流突然增大,说明电子能量达到一个量子级别,并能够将汞原子的最低激发能量激发出来。
这时电子才能穿过汞原子层,到达阳极,使得电流增大。
实验结果表明,汞原子的最低激发能量并不是连续变化的,而是呈现量子化的状态,也就是说,电子通过汞原子层时,必须具有一定量的能量才能激发汞原子内部的电子跃迁。
这反映了电子能量也存在量子化现象,电子在能级间跃迁时,只能跃迁到具有特定能量的能级。
弗兰克-赫兹实验的重要性在于,它首次证实了玻尔的量子理论,为量子力学的发展奠定了基础,对探究原子结构和微观世界的规律起到了巨大的推动作用。
弗兰克赫兹实验-最全资料PPT
思考题
➢1、为什么相邻电流峰值对应的电压之差就 是第一激光电位?
➢ 答:当电子能量达到eUG2K (UG2K>U0) 时,与所测原子( 例如氩原子)碰撞从而失去eU0的能量,由于存在拒斥电 压,电子将不能够穿越板极形成电流,电流下降形成第一 个峰。当电子能量UG2K>2U0时,电子在G2K之间又会因第 二次非弹性碰撞而失去能量2eU0 ,于是出现第二个峰值 。根据上述分析可知,能量转移随着加速电压的增加而呈 现周期性的变化,所以电流峰值对应的电压差就是第一激 发电位。
连续的值E1、E2、E3、…。
2)跃迁假设:原子从一个定态E2 跃迁到另一个定态E1时,要辐射出一 个光子,其频率是一定的,满足:
hυ=E2-E1
实验原理——玻尔原子模型
一般情况下,原子的最外层电子都是处于基态的。 当原子受到外部能量的作用后,其最外层电子就 会跃迁到高能级上,变为激发态原子,eU0=E2-E1 。 激发态原子极不稳定,在极短时间内就会重新跃 迁回基态,并将其吸收的能量以光子形式释放出 去,hυ=E2-E1 。每一种跃迁都会发射出一种波长的光, 在光谱中相应的产生一种谱线。
电流(或谷 hυ=E2-E1
9 V的电势差引起了汞离子的电离,这恰与当时比较盛行的“斯塔克理论”相恰和。
(1)“自动/手动”;
电流)对应 与原子碰撞后剩余能量足以穿越板极A的电子数量增多,电流增大!
原子能级的存在最早是从光谱学的研究中推断出来的。
的电压差。 答:因为随着UG2K的增加,能够穿越A极的电子数量越来越多,电流IA越来越大。
弗兰克-赫兹简介
海因里希•鲁道夫•赫兹,德国物理学家, 于 1888 年 首 先 证 实 了 电 磁 波 的 存 在 , 并 对 电磁学有很大贡献,故频率的国际单位制单 位“赫兹”以他的名字命名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弗兰克-赫兹实验
北京工业大学
原安娟
实
验
目
的
1.本实验通过对氩原子第一激发电位的测量,了解弗
Байду номын сангаас
兰克和赫兹研究原子内部能量量子化的基本思想和方
法; 2. 了解电子与原子碰撞和能量交换过程的微观图像, 以及影响这个过程的主要物理因素.
玻尔理论建立的三个物理学基础:
1、以实验为基础的原子的核式结构模型; 2、光谱的实验资料和经验规律; 3、从黑体辐射的事实发展出来的量子论。
辐射能量时,辐射的频率是一定的.如果用 Em和 En 代表有关二定态的能量,辐射的频率决定于如下关系:
hv Em En
式中 h为普朗克常量.
在玻尔提出原子结构的量子理论后, 弗兰 克(J.Franck)和赫兹(G.Hertz)在1914年在用 慢电子轰击稀薄气体原子做原子电离电位测定时, 偶然地发现了原子的激发能态和量子化的吸收现 象,并观察到原子由激发态跃迁到基态时辐射出 的光谱线,从而直接证明了玻尔原子结构的量子 理论,为此他们获得了1925年的诺贝尔物理奖。
实
验
原
理
1. 实 验 原 理 图 2. 物 理 过 程 3. I-UGK 曲 线
弗兰克-赫兹实验装置图
IA - UGK 曲 线 (接触电位差和空间电流对IA - UGK 曲线存在影响)
实
验
内
容
根据仪器标签确定:
灯丝电源电压、 U G1K 、 U G 2 A 。注意U G 2 K不得超过 90V。 手动测量氩原子的 I A UG 2 K曲线 ,每变化0.5V测 量一个点,选择 60-80 个数据作图,标出峰值,取第 一个峰U1 和第六个峰U 6 ,利用 U g (U 6 U1 ) / 5 计算出 氩原子的平均第一激发电位,和参考值 U g 11.39V 比 较。
注意: 1、各电压值须按照给定值进行设置; 2、UG2K设定终止值不要超过90V。 3、手动测试完毕后,尽快将UG2K减为零。
思考题
11.灯丝温度对实验结果有何影响? 答:温度过低时,不足以加热灯丝阴极,电子数量不 足,板极电流小,使结果出现较大误差。
2. 管子阴极和栅极间的接触电位差对IA ~Va 曲线 有何影啊?
在这个基础上,玻尔推究原子内部的情况,在 原子物理学上跨进了一大步。
玻尔提出的原子理论有两个基本假设:
(1)原子只能较长久地停留在一些稳定状态,简称“定态”, 原子在这些状态时不发射也不吸收能量,各定态的能量是彼
此分隔的.原子的能量不论通过什么方式发生改变,只能使
原子从一个定态跃迁到另一个定态;
(2)原子从一个定态跃迁到另一个定态而发射或吸收
3.如何测定较高能级激发电位或电离电位?