自控原理习题参考答案(7)
自动控制原理胡寿松主编课后习题答案详解-胡寿松第六版自控答案
20 db(t) + 5b(t) = 10c(t) dt
且初始条件均为零,试求传递函数 C(s) / R(s) 及 E(s) / R(s)
解:系统结构图及微分方程得:
G(s) = 20
H (s) = 10
6s + 10
20s + 5
20
C(s) = 10G(s) =
方程。 解:
设正常工作点为 A,这时 Q0 = K P0
在该点附近用泰勒级数展开近似为:
y
=
f
(
x0
)
+
df (x) dx
x0
(
x
−
x0
)
即 Q − Q0 = K1 (P − P0 )
其中 K1
= dQ dP P=P0
=
1K 2
1 P0
2-7 设弹簧特性由下式描述:
F = 12.65 y1.1
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
//
1 C1s
=
R1 C1s
R1
+
1 C1s
=
R1 = R1 R1C1s + 1 T1s + 1
Z2=Βιβλιοθήκη R2+1 C2s
运动模态 e −0.5t
−1t
所以: x(t) = t − 2(1 − e 2 )
(2) &x&(t) + x&(t) + x(t) = δ (t)。
自动控制原理课后习题与答案
目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。
本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。
1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。
图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。
(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。
(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。
给定环节:电压源0U 。
用来设定直流发电机电压的给定值。
比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。
它的作用是将偏差信号放大,使其足以带动 执行机构工作。
该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。
该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。
(完整版)自动控制原理课后习题答案
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
自动控制原理+第五版课后习题答案 胡寿松 免费在线阅读
2-20 与 2-18 同
C(S)二 G4 N(S)~1 + G2G4+G3G4
■ 2Ua) C⑻- GjG^+G^d + G,!!, ) 丄R(s) - 1 + G1H1+ G3H2 +G1G2G3H1H2 +G1HiG3H2 E(s)__(1 + G3H2)_G4G3H2H!_
R(s) ~ /+GZH; +G3H2
l)
s
3-11劳斯表变号两次, 有两个特征根在s右半平面, 系统不稳定。
3-12(1) 有一对纯虚根: s1>2 = ±j2 系统不稳定。 (2) s12=±jVI s34=±l s5 =1 s6 =-5 系统小稳定。 (3) 有一对纯虚根:sh2 =±j75系统不稳定。
3-13 0 < k < 1.7
s
6-3 取 k = 20 < = 8 gJ«)= 1^0 045 验算得: <=: 7.93,/ = 62.1°
36
(36-co2) + jl3
5-3 ess (t) = 0.632sm(t + 48.4°)- 0.79cos(2t 一 26.57°)
或: css(t) = 0.447sin(t + 3.4°)-0.707cos(2t一
90°) 5-4
0.653 wn =1.848
ess(t) = r(t) — css(t)
ch - ehgf+afch
C(s) _ bcde + ade + (a + bc)(l + eg) Rj (s) 1 + cf + eg + bcdeh + cefg + adeh
(仅供参考)自动控制原理第七章习题答案
第七章 线性离散系统的分析与校正7-1 试根据定义∑∞=-*=0)()(n nTs e nT e s E确定下列函数的)(s E *和闭合形式的)(z E :⑴ t t e ωsin )(=;⑵ ))()((1)(c s b s a s s E +++=,b a ≠,c a ≠,c b ≠。
解:Ts e z =;⑴ )()sin()(0z E enT s E n nTs==∑∞=-*ω;1)cos(2)sin(21}{21)(20+-=⎥⎦⎤⎢⎣⎡---=-=-∞=--∑z T z z T e z z e z z j e e e j z E T j T j n nTsjwnT jwnT ωωωω。
⑵ ))()((1))()((1))()((1)(c s c b c a b s b c b a a s a c a b s E +--++--++--=; ∑∑∑∞=--∞=--∞=--*--+--+--=000))((1))((1))((1)(n nTs cnT n nTsbnT n nTs anT e e c b c a e e b c b a e e a c a b s E ; ))()(())()(())()(()(cTbT aT e z c b c a ze z b c b a z e z a c a b z z E ------+---+---=; 记))()((c b c a b a ---=∆,∆-=b a k 1,∆-=ca k 2,∆-=cb k 3;))()(()()()()(3)(2)(12321cTbT aT T c b T c a T b a aT bT cT e z e z e z ze k e k e k z e k e k e k z E ---+-+-+-------+-++-=。
7-2 采样周期为T ,试求下列函数的Z 变换:⑴ n a nT e =)(; ⑵ t e t t e 32)(-=;⑶ 3!31)(t t e =; ⑷ 21)(ss s E +=;⑸ )1(1)(2+-=-s s e s E sT 。
自动控制原理典型习题(含答案)
自动控制原理习题一、(20分)试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,四.(121m -=222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω五.(20分)某最小相角系统的开环对数幅频特性如下图所示。
要求(1) 写出系统开环传递函数; (2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。
(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率10101==c c ωω而相角裕度︒=+︒=85.2)(18011c ωϕγγ= 故系统稳定性不变。
由时域指标估算公式可得)11(4.016.0-+=σoo=o o 1σ(1(2(2)121)(=s G 2函数。
1、的输出量不会对系统的控制量产生影响。
开环控制结构简单、成本较低、系统控制精度取决于系统元部件、抗干扰能力较差。
(2分)2、根轨迹简称为根迹,它是开环系统某一参数从零变到无穷时,闭环特征方程式的根在s 平面上变化的轨迹。
(3分)系统根轨迹起始于开环极点,终至于开环零点。
(2分)二、看图回答问题(每小题10分,共20分)1、解:结论:稳定(2分)理由:由题意知系统位于s 右半平面的开环极点数0=P ,且系统有一个积分环节,故补画半径为无穷大,圆心角为2122πππ-=⨯-=-v 的圆弧,则奈奎斯特曲线如图1示,(3分)由图可知系统奈奎斯特曲线包围(-1,j0)点的圈数为000=-=-=-+N N N ,(3分)由奈奎斯特稳定判据,则系统位于s 右半平面的闭环极点数02=-=N P Z ,(2分)故闭环系统稳定。
自控原理课后习题答案(张爱民 清华大学出版社)
1.1解:(1)机器人踢足球:开环系统输入量:足球位置输出量:机器人的动作(2)人的体温控制系统:闭环系统输入量:正常的体温输出量:经调节后的体温(3)微波炉做饭:开环系统:输入量:设定的加热时间输出量:实际加热的时间(4)空调制冷:闭环系统输入量:设定的温度输出量:实际的温度1.2解:开环系统:优点:结构简单,成本低廉;增益较大;对输入信号的变化响应灵敏;只要被控对象稳定,系统就能稳定工作。
缺点:控制精度低,抗扰动能力弱闭环控制优点:控制精度高,有效抑制了被反馈包围的前向通道的扰动对系统输出量的影响;利用负反馈减小系统误差,减小被控对象参数对输出量的影响。
缺点:结构复杂,降低了开环系统的增益,且需考虑稳定性问题。
1.3解:自动控制系统分两种类型:开环控制系统和闭环控制系统。
开环控制系统的特点是:控制器与被控对象之间只有顺向作用而无反向联系,系统的被控变量对控制作用没有任何影响。
系统的控制精度完全取决于所用元器件的精度和特性调整的准确度。
只要被控对象稳定,系统就能稳定地工作。
闭环控制系统的特点:(1)闭环控制系统是利用负反馈的作用来减小系统误差的(2)闭环控制系统能够有效地抑制被反馈通道保卫的前向通道中各种扰动对系统输出量的影响。
(3)闭环控制系统可以减小被控对象的参数变化对输出量的影响。
1.4解输入量:给定毫伏信号被控量:炉温被控对象:加热器(电炉)控制器:电压放大器和功率放大器系统原理方块图如下所示:工作原理:在正常情况下,炉温等于期望值时,热电偶的输出电压等于给定电压,此时偏差信号为零,电动机不动,调压器的滑动触点停留在某个合适的位置上。
此时,炉子散失的热量正好等于从加热器获取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉温由于某种原因突然下降时,热电偶的输出电压下降,与给定电压比较后形成正偏差信号,该偏差信号经过电压放大器、功率放大器放大后,作为电动机的控制电压加到电动机上,电动机带动滑线变阻器的触头使输出电压升高,则炉温回升,直至达到期望值。
自动控制原理作业第七章参考答案
7.1 求下列矩阵的若尔当型及其变换矩阵(1)010001341⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦解:矩阵的特征值为:1230.78,0.11 1.95,0.11 1.95i i λλλ=-=-+=--,因此可化为对角线规范型:0.780.11 1.950.11 1.95ii -⎡⎤⎢⎥-+⎢⎥⎢⎥--⎣⎦变换矩阵为:1232221231111110.780.11 1.950.11 1.950.61-3.8 - 0.42i -3.8 + 0.42i P i i λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==--+--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2)540430461⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦解:矩阵的特征值为:1231λλλ===,()2rank I A -=,表明1λ=的几何重数为3-()rank I A -=1,即该特征值对应一个若尔当块。
所以该矩阵的若尔当型为:11111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,变换矩阵0410404040P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦(3)421043521⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦解:矩阵的特征值为:1232, 2.21, 6.79λλλ=-==,因此可化为对角线规范型:2 2.21 6.79-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,变换矩阵为00.40.610.410.370.780.810.350.46P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦(4)010001340⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦解:矩阵的特征值为:1232.3,1, 1.3λλλ==-=-,因此可化为对角线规范型:2.31 1.3⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,变换矩阵为30.1 2.130.25 2.7530.583.58P -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦7.2已知系统状态方程,求状态变换阵P ,使系统变为对角线型(假设系统的特征值为123,,λλλ)(1)012010001x x a a a ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦解:123222123111P λλλλλλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2)123100100a x a x a -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦解:系统的特征方程为:32123det()00I A a a a λλλλ-=⇒+++= 设变换矩阵123[,,],i i i i P v v v v Av v λ==满足 设123[,,]Ti i i i v v v v =,则有:11212132313(1)(2)(3)i i i i i i i i i i i a v v v a v v v a v v λλλ-+=⎧⎪-+=⎨⎪-=⎩ 由(1)得211()(4)i i i v a v λ=+由(2)(4)得23121()(5)i i i i v a a v λλ=++ 代入(3)得321123()0i v a a a λλλ+++=所以1i v 是任意常数,取为1,则21i i v a λ=+,2312i i i v a a λλ=++所以112131222111221223132111P a a a a a a a a a λλλλλλλλλ⎡⎤⎢⎥=+++⎢⎥⎢⎥++++++⎣⎦7.3证明:对于具有互相不同特征值12,,,n λλλ 的矩阵1211000010000010000n n a a A a a --⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥-⎣⎦能将其变换为对角矩阵形式的变换矩阵为:11122111212121211111111n n n n n n n n n n n a a P a a a a a a a a λλλλλλλλλλ------⎡⎤⎢⎥++⎢⎥⎢⎥=++++⎢⎥⎢⎥⎢⎥++++++⎣⎦证明:系统的特征方程为:111det()00nn n n I A a a a λλλλ---=⇒++++=设变换矩阵12[,,,],n i i i i P v v v v Av v λ== 满足 设12[,,,]Ti i i in v v v v = ,则有:21111212213231211211111111()()()(1)0(2)i i i i i i i i i i i i i i i n n n i in i in in i i n i n i i in i in n i v a v a v v v a v v v v a a v a v v v v a a v a v v v a v λλλλλλλλλλ-----=+⎧-+=⎧⎪⎪-+==++⎪⎪⎪⎪⇒⎨⎨⎪⎪-+==+++⎪⎪-=⎪⎪+=⎩⎩将(1)代入(2)得11110n n i i n i n i a a a v λλλ--++++= 对比系统特征方程可知11i v =满足。
(完整版)自动控制原理课后习题及答案
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
(完整版)自动控制原理课后习题答案
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
自动控制原理题目含答案
自动控制原理题目含答案---------------------------------------《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G (s)/(1- G(s)H(s))。
9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。
10、典型二阶系统中,ξ=时,称该系统处于二阶工程最佳状态,此时超调量为%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17、对于典型二阶系统,惯性时间常数T愈大则系统的快速性愈差。
越小,即快速性18、应用频域分析法,穿越频率越大,则对应时域指标ts越好19最小相位系统是指S右半平面不存在系统的开环极点及开环零点。
自控原理复习题答案
自控原理复习题答案
1. 什么是系统的开环传递函数?
答:系统的开环传递函数是指在没有反馈作用的情况下,系统的输入
与输出之间的传递函数。
2. 闭环传递函数与开环传递函数有何不同?
答:闭环传递函数考虑了反馈作用,是系统输入与输出之间的传递函数,而开环传递函数不考虑反馈作用。
3. 系统稳定性的判断方法有哪些?
答:系统稳定性的判断方法包括劳斯-赫尔维茨判据、奈奎斯特判据和
伯德图法等。
4. 什么是系统的超调量?
答:系统的超调量是指系统响应超过稳态值的最大幅度。
5. 如何计算系统的稳态误差?
答:系统的稳态误差可以通过最终值定理计算,或者根据系统类型和
输入信号类型,使用相应的误差系数进行计算。
6. 什么是系统的相位裕度和增益裕度?
答:系统的相位裕度是指系统增益为1时,系统相位与-180度之间的
差值;增益裕度是指系统相位为-180度时,系统增益与1之间的比值。
7. 什么是PID控制器?
答:PID控制器是一种比例-积分-微分控制器,它根据系统的偏差、偏差的积分和偏差的变化率来调整控制器输出。
8. 如何设计一个PID控制器?
答:设计PID控制器通常需要确定比例、积分和微分三个参数的值,这可以通过试凑法、根轨迹法或频率响应法等方法实现。
9. 什么是系统的频率响应?
答:系统的频率响应是指系统对不同频率的正弦波输入信号的稳态响应。
10. 系统的时间响应和频率响应有何关系?
答:系统的时间响应可以通过拉普拉斯变换转换为频率响应,反之亦然。
两者提供了系统动态特性的不同视角。
自动控制原理练习题附部分答案(孙炳达主编)机械工业出版社
第一章1.开环控制和闭环控制的主要区别是什么?是否利用系统的输出信息对系统进行控制 2. 电加热炉炉温控制中,热电阻丝端电压U 及炉内物体质量M 的变化,哪个是控制量?哪个是扰动?为什么?3. 简述自动控制所起的作用是什么?在没有人直接参与的情况下,利用控制装置,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。
4. 简述自动控制电加热炉炉温控制的原理。
解答:一、工作原理:系统分析:受控对象——炉子;被控量——炉温;给定装置——电位器干扰——电源U ,外界环境 ,加热物件 ; 测量元件——热电偶; 执行机构——可逆电动机 工作过程:静态 ∆U=0动态 ∆U ≠0工件增多(负载增大)↑↑→↑→↑→∆↓→↓→↑→T U U U U T c a f (负载减小)↓↓→↓→↓→∆↑→↑→↓→T U U U U T c a f二、 温控制系统框图5.比较被控量输出和给定值的大小,根据其偏差实现对被控量的控制,这种控制方式称为 。
6.简述控制系统主要由哪三大部分组成?7.反馈控制系统是指:a.负反馈 b.正反馈 答案a.负反馈8.反馈控制系统的特点是:答案 控制精度高、结构复杂 9.开环控制的特点是:答案 控制精度低、结构简单10.闭环控制系统的基本环节有:给定、比较、控制、对象、反馈11.自控系统各环节的输出量分别为: 给定量、反馈量、偏差、控制量输出量。
第二章1. 自控系统的数学模型主要有以下三种:微分方程、传递函数、频率特性 2. 实际的物理系统都是:a.非线性的 b.线性的 a.非线性的 3. 传递函数等于输出像函数比输入像函数。
4. 传递函数只与系统结构参数有关,与输出量、输入量无关。
5. 惯性环节的惯性时间常数越大,系统快速性越差。
6.由laplace 变换的微分定理,(())L x t ''= 。
7.如图质量、弹簧、摩擦系统,k 和r 分别为弹簧系数和摩擦系数,u(t)为外力,试写出系统的传递函数表示()()/()G s y s u s =。
(完整版)自动控制原理习题及答案.doc
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自控原理习题答案(第2版)
自控原理习题答案(第2版)第1章习题答案1-1 解:自动控制系统:被控对象和控制装置的总体;被控对象:要求实现自动控制的机器、设备和生产过程;扰动:除给定值之外,引起被控制量变化的各种外界因素;给定值:作用于控制系统输入端,并作为控制依据的物理量;反馈:将输出量直接或间接的送到输入端,并与之相比较,使系统按其差值进行调节,使偏差减小或消除。
1-2 解:开环控制有洗衣机的洗衣过程,闭环控制有抽水马桶的蓄水控制、电冰箱制冷系统等。
1-3 解:1-4 解:a与d相连,b与c相连即可;系统原理框图如下所示:1-5 解:系统原理框图如下所示:1-6 解:对控制系统的基本要求是稳定性、准确性和快速性:稳定性是系统正常工作的前提条件;准确性反映控制系统的控制精度,要求过渡过程结束后,系统的稳态误差越小越好;快速性是要求系统的响应速度快,过渡过程时间短,超调量小。
1-7 解:该系统的任务是使工作机械(被控对象)的转角θc(被控量)自动跟踪手柄给定角度θr(给定量)的变化。
该系统的工作原理是:检测电位计与给定电位计的电气特性相同,工作机械的转角θc经检测电位计转换成电压uc,手柄给定角度θr经给定电位计转换成给定电压ur,uc与ur接入放大器前端的电桥。
当工作机械转角θc没有跟踪手柄给定角度θr时,uc与ur两者不相等而产生偏差Δu=ur-uc,Δu经过放大器放大,使电动机转动,通过减速器使得负载产生减小偏差的转动。
当检测电位计检测并转换的uc 与ur相等,此时Δu=ur-uc=0,电动机不转,工作机械停在当前位置。
其原理框图如下图所示。
11-8 解:谷物湿度控制系统原理框图如下。
该系统的被控量是谷物湿度,给定量是希望的谷物湿度。
谷物加湿后的实时湿度经湿度检测后送到调节器,若与希望的湿度产生偏差,则通过调节器控制给水阀门的开大或关小,以减小两者的偏差。
谷物在入口端的湿度由前馈通道输入到调节器。
这样若入口处谷物湿度较大,则会使得偏差减小,从而减小阀门的开度;若谷物干燥,会增大偏差,从而加大阀门的开度。
自动控制原理完整版课后习题答案
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
自控控制原理习题王建辉第7章答案
第七章7-1 什么是非线性系统?它是什么特点?7-2 常见的非线性特征有哪些?7-3 非线性系统的分析设计方法有哪些?7-4 描述函数分析法的实质是什么?试描述函数的概念及其求取方法。
7-5 试述相平面分析法的实质。
为什么它是分析二阶系统的有效方法?7-6 试确定3xy表示的非线性元件的描述函数。
7-7 一放大装置的非线性特性示于图p7-1,求其描述函数。
7-8 图p7-2为变放大系数非线性特征,求其描述函数。
7-9 求图p7-3所示非线性环节的买书函数。
7-10 某死区非线性特性如图p7-4所示,试画出该环节在正弦输入下的输出波形,并求出其描述函数N{A}。
7-11 图p7-5给出几个非线性特性。
试分别写出其基准描述函数公式,并正在复平面上大致画出其基准描述函数的负倒数特性》7-12 判断图p7-6所示各系统是否稳定?-1/N。
与K。
W(jw)的交点是稳定工作点还是不稳定工作点?解:(a)是稳定工作点(b)是稳定工作点(c)a点不是稳定工作点b点是稳定工作点(d)不是稳定工作点(e)是稳定工作点7-13 图p7-7所示为继电器控制系统的结构图,其线性部分的传递函数为 )11.0)(15.0)(1(10)(+++=s s s s W 试确定自持振荡的角频率和振幅。
解:该系统非线性部分为具有滞环的两位置继电器,其描述函数为(见教材P343 公式(7-25)):)(414)(22h A A Mh jA h A M A N ≥-⎪⎭⎫⎝⎛-=ππ则)(414141*********)(1222222222h A M h j A h M A A h j A h M A A h A h A h jA h M A A h j A h A h j A h A h jA h M AA h jA h MAA N ≥-⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛--=-⎪⎭⎫⎝⎛-=-ππππππ由图可得:2=M ,1=h 代入到)(1A N -中,)(8118)(12h A j A A A N ≥-⎪⎭⎫ ⎝⎛--=-ππ线性部分相频为:)1.01)(5.01)(1()05.06.165.01(10)1.01)(5.01)(1()1.01)(5.01)(1(10)1.01)(5.01)(1)(11.0)(15.0)(1()1.01)(5.01)(1(10)11.0)(15.0)(1(10)(222223222222ωωωωωωωωωωωωωωωωωωωωωωωωω+++---=+++---=---+++---=+++=j j j j j j j j j j j j j j j j j j W因为)(ωj W 曲线与)(1A N -曲线相交,则虚部8)1.01)(5.01)(1(5.016222223πωωωωωj j j -=+++--即8)1.01)(5.01)(1(5.016222223πωωωωω=++++ ωωωωω2832.6194.0126.12625.00025.03246+=+++即012832.626.1194.02625.00025.02346=+-+-+ωωωωω 解上述方程得到:1645.01=ω,4256.22=ω00198.1494.07.434.91645.01.0arctan 1645.05.0arctan 1645.0arctan )(-=---=⨯-⨯--=ωϕ显然不符合题义。
自控原理习题答案(全)
第一章 习题答案1-11-21-3 闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。
被控对象:指要进行控制的设备和过程。
给定装置:设定与被控量相对应给定量的装置。
比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。
执行装置:直接作用于控制对象的传动装置和调节机构。
测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。
校正装置:用以改善原系统控制性能的装置。
题1-4 答:(图略)题1-5 答:该系统是随动系统。
(图略) 题1-6 答:(图略)第二章习题答案题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ (4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint(2) f(t)=e -4t(cost-4sint) (3) f(t)=t t t te e e 101091811811----- (4) f(t)= -t t tte e e ----+-3118195214 (5) f(t)= -t te e t 4181312123--+++ 题2-3 解:a)dtduu C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 ) 题2-5 解:(图略) 题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C +=题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+=(2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。
自控原理试题及参考答案
200 /200 学年第 学期考试试卷课程名称: 课程代码: 专业班级: 教学班号: 本卷为 卷,共 页,考试方式: ,考试时间:分钟一.填空题(40分)(1) 控制系统的基本要求是_____________、_____________、_____________。
(2) 脉冲传递函数是___________________________________________________________________________________________________________________。
(3) 幅频特性是指_____________________________________________________________________________________________________________________。
(4) 系统校正是指_____________________________________________________________________________________________________________________。
(5) 幅值裕量是指_____________________________________________________________________________________________________________________。
(6) 香农定理是指_____________________________________________________________________________________________________________________。
(7) 图a 的传递函数为G(s)=________________ 。
(8) 图b 的闭环传递函数为G(s)=________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章习题参考答案
7-1 试求下列函数的初值和终值。
(2)2
11
)1(10=)(---z z z X
解:0=)1(10=)(=)0(2
11
∞→∞→---z z lim z X lim x z z
∞=)1(10)1(=)()1(=)∞(211
1→1→-----z z z lim z X z lim x z z
7-2
试求下列函数的Z 反变换。
(2))
2()1(=)(2--z z z z X (4)))((=)(3T T e z e z z
z X ----
解 (2)1
)1(2=)2()1(=
)(22-------z z
z z z z z z z z X
1
2=]1)1(2[
=)(2--------1n z z
z z z z Z nT x n
)()1(2=)(∑∞
=nT t δn t x n n *
---
(4))
)((=)(3T T e z e z z
z X ----
])
)(([=])([=)(31∑∑T T n n e z e z z
s Re z z X s Re nT x -----
T T nT z=e T
T T n e
e e e z e z e z z R T331=)]())(([=-----------
T T nT
z=e T
T T n e
e e e z e z e z z R T-----------33332=)]())(([=3
T T nT
nT T T nT T T nT e
e e e e e e e e e nT x --------------33333=+=)(
)(=)(∑∞
0=33nT t δe
e e e t x n T T nT
nT *
-------
7-4 试判断图7-24所示系统的稳定性。
解 开环脉冲传递函数为
))()(190()
()1()()1100(+))()(1(99))((900=
]
901910+11011)1(10)[(1=]
100+1
90110+1910+1101110[)(1=]
1)
+.0101)(+.10(10
[)(1=]1)+.0101)(+.10(101[=)(100101021002100101001010010212121T T T T T T T T T
T Ts e z e z z e z z e z z e z e z z e z e z T e z z
e z z z z z Tz z s s s s Z z s s s Z z s s s s e Z z G ----------------------------------------闭环系统的特征方程为:0=)(+1z G
0=)()1()()1100(+))()(1(9))((90010210021001010010T
T T T T T e z z e z z e z e z z e z e z T -----------------
将1=T 代入上式得:
0=)()1()()1100(+))()(1(9))((90010
210021*********-----------------e z z e z z e z e z z e z e z
整理后,近似得:
0=11+79+1023z z z
将1
1
+=
-w w z 代入上述特征方程,得 0=293049+5023--w w w
w 域的劳斯表为:
图7-24 采样系统
29
492029
4930500
1
23
----w /w
w w
可见,系统不稳定。
7-5 设离散系统如图7-25所示,要求:
(1) 当K=5时,分别在z 域和w 域中分析系统的稳定性;
(2) 确定使系统稳定的K 值范围。
解:(1)当K =5时,开环脉冲传递函数为
))(1()1(+))(1()(5=
]
+1)1(5)[(1=]
5
+1
+15[)(1=]
1)
+.20(5[)(1=]1)+.20(1[=)(52
555212121T T T T
Ts e z z z e z z e z T e z z
z z z Tz z s s s Z z s s Z z s s K s e Z z G ------------------------
闭环系统的特征方程为:0=)(+1z G
0=)1(+)(525---z e z T T 将T =1代入上式,并整理得
0=9660+3+2.z z
上述方程的根为:z 1=-0.367,z 2=-2.633 。
可见,一个极点在单位圆内,另一个极点在单位圆外,故系统不稳定。
将11
+=-w w z 代入上述特征方程,得
0=9660+1
1+3+11+2.w w w w -)-( 整理得:
图7-25 离散系统
0=0340680+66.942.w .w -1
可见,上述特征方程存在着负系数,故系统在w 域内也是不稳定。
(2)开环脉冲传递函数为
)
)(1()1(+))(1()(55=]51+151)1()[(1=]
5+1
51+1511[)(1=]
5)
+(5
[)(1=]
1)
+.20(1[=)(52555212121T T T T Ts e z z z e z z e z T K e
z z
z z z Tz z K s s s Z z K s s Z z K s s K s e Z z G ------------------------
特征方程为0=)(+1z G ,即0=)1(+))(1)(5()(5255--------z K e z z K e z KT T T
将T =1代入上式,并整理得
0=336.00+404.01+)336.05(4.0067+52K z K z - 将11
+=
-w w z 代入上述特征方程,得 0=03360+404.01+1
1+)336.05067.04(+11+52.K w w K w w --)-( 整理得:
0=96632672.010+)808.02328.99(+471.052K .w K Kw -- 因此,系统稳定的K 值范围为:393<<0.K 。
7-6 设离散系统如图7-26所示,其中()r t t =,试求稳态误差系数K p 、K v 、K a ,并求系统的稳态误差()e ∞。
解:开环脉冲传递函数为
图7-26 离散系统
))(1()1(+))(1()(=
]
+1)1()[(1=]
+1
+11[)(1=]
1)
+(1
[)(1=]1)+(11[=)(2
212121T T T T
Ts e z z z e z z e z T e z z
z z z Tz z s s s Z z s s Z z s s s e Z z G --------------------1
----
将10=.T 代入上式得:
)
)(1()1(+))(1()0.1(=)
)(1()1(+))(1()(=
)(102
101
02
...T T T e z z z e z z e
z e z z z e z z e z T z G --------------------
特征方程为:0=)(+1z G
0=)1(+)0.1(210---z e z .
整理得:0=0959+19102
.z z - 解得方程的解为:0840±950=21.j .z ,,可见两个根均在单位圆内,故系统稳定。
∞=)](+[1=1
→z G lim K z p
10=)
)(1()1(+))(1()0.1(1)(=)(1)(=102
10101→1→.e z z z e z z e z z lim z G z lim K ...z z v ------------
0=)(1)(=21
→z G z lim K z a -
当()r t t 时,稳态误差为:1=.1
0.1
0==
)(v K T ∞e。