水力学第三章(1)

合集下载

水力学课件 第三章_水动力学基础

水力学课件 第三章_水动力学基础
(1) 渐变流过水断面近似为平面;
(2) 恒定渐变流 过水断面上,动水压强近似 地按静水压强分布。
z p C
取过水断面上任意两相邻流线 间的微小液柱。轴向受力分析:
1) 表面力
液柱上、下底面 的动水压力 pdω与(p+dp)dω
液柱侧面
的动水压力及摩擦力趋于零;
液柱底面的 摩擦力,与液柱垂直。
2) 质量力 自重分力:γdωdn cosα 惯性力:恒定渐变流条件下略去不计。
用欧拉法描述液体运动时,液体运动质点的加速度是当地加速 度与迁移加速度之和。
当地加速度: 固定点速度随时间的变化,
第一项:
ux
/ t,u y
/ t,uz
/ t
迁移加速度:等号右边括号内项反映了在同一时刻因地 点变更而形成的加速度。
§3—2 欧拉法的若干基本概念
1. 迹线和流线 迹线则是同一质点在一个时段内运动的轨迹线。
活学活用
பைடு நூலகம்
恒定渐变流中,同一过水断面上的动水压强近似按地静水压强分布 恒定均匀流中,同一过水断面上的动水压强精确地按静水压强分布
对恒定均匀流, z p C
同一过水断面上:
对于断面AB
pA
zA
pB
zB
C1
pA ? pB ?
对于断面CD
pC
zC
pD
zD
C2
pC ? pD ?
pA
zA
pB
zB
pC
zC
C
pA ? pB ? pC ?
§3—3 恒定总流的连续性方程
考虑到: (1)在恒定流条件下,元流的形状与位置不随时间改变; (2)不可能有液体经元流侧面流进或流出; (3)液流为连续介质,元流内部不存在空隙。

《水力学》第三章 液流型态及水头损失.

《水力学》第三章  液流型态及水头损失.
形式的液流:均匀流与非均匀流。
均 匀 流
均匀流时,无局部水头损失 8
非均匀 流
非均匀渐变流时,局部水头损失可忽略不计; 非均匀急变流时,两种水头损失都有。
9
3-3 均匀流沿程水头损失与切应力的关系
在管道或明渠均匀流中,任意取出一段总流来分析
,作用在该总流段上有下列各力。
一、压力
1-1断面 FP1 Ap1
2
局部水头损失(hj) :发生在流动状态 急剧变化的急变流中的水头损失。是主要由 流体微团的碰撞、流体中的涡流等造成的损 失。
3
液流产生水头损失的两个条件
(1) 液体具有粘滞性。 (2) 由于固体边界的影响,液流内部质点之间
产生相对运动。 液体具有粘滞性是主要的,起决定性作用。
4
液流的总水头损失hw
hw hf hj
式中:hf 代表该流段中各分段的沿程水头损
失的总和;
hj 代表该流段中各种局部水头损失的
总和。
5
3-2 液流边界几何条件对水头损失的影响
一、液流边界横向轮廓的形状和大小对水头损失 的影响
可用过水断面的水力要素来表征,如过水断面的面积 A、湿周及力半径R等。
湿周: 液流过水断面与固体边界接触的周界线。
对浅宽明渠:
R h y
0 R
h
在宽浅的明渠均匀流中,过水
断面上的切应力也是按直线分
布的。水面上的切应力为零,离
渠底为y处的切应力为
13
hf

l
A
0 g

l R
0 g
由实验研究或量纲分析知: 0


8

2
由此得
hf

第3章-给水排水管网水力学基础

第3章-给水排水管网水力学基础
当并联管道直径相同时,等效直径:
n
d (N)m di
kqNn l
d
m N
干管配水情况
3.4.2 沿线均匀出流的简化
给水管网中的配水管沿线向用户供水,如图3.6所示。假设沿线出流是 均匀的,则管道内任意断面x上的流量可以表示为:
qx
qt
l
l
x
ql
沿程水头损失:
h f
l
k (qt
l
l
x
2y) D

y / D (1 cos ) / 2
2
式中,θ的单位为弧度。
过水断面面积、湿周 和水力半径依次为,
A D2 ( sin ) ,
8
D 和
2
R A D ( sin ) 4
设该管道的坡度为I,满管流时的过水断面面积、水力半径、流量和流速分别 为A0、R0、q0和v0,可得
A0 D2 / 4 , R0 D / 4 ,
3.1.2 恒定流与非恒定流 由于用水量和排水量的经常性变化,给水排水管道中的流量和流速随时间变化,
水流经常处于非恒定流(又称非稳定流)状态。但是,非恒定流的水力计算 比较复杂,在管网工程设计和水力计算时,一般按恒定流(又称稳定流)计 算。 随着计算机技术快速发展与普及,国内外已经开始研究和采用非恒定流计算给水 排水管网,而且得到了更接近实际的结果。
hf
l v2
D 2g
式中 D──管段直径(m);g──重力加速度(m/s2); λ──沿程阻力系数, 8g。 C2
常用管材内壁当量粗糙度e(mm)
表3.1
3.2.3 局部水头损失计算
计算公式 :
局部阻力系数ζ
式中,hm ──局部水头损失,m; ζ──局部阻力系数,见表3.5。

水力学第三章水动力学基础PPT课件

水力学第三章水动力学基础PPT课件

斯托克斯定理
总结词
描述流体在重力场中运动时,流速与密 度的关系。
VS
详细描述
斯托克斯定理指出,在不可压缩、理想流 体中,流体的流速与密度之间存在一定的 关系。具体来说,流速大的地方密度小, 流速小的地方密度大。这个定理对于理解 流体运动的基本规律和解决实际问题具有 重要的意义。
06 水动力学中的流动现象与 模拟
设计、预测和控制等领域。
THANKS FOR WATCHING
感谢您的观看
静水压强
静止液体内部压强的分布规律。
液柱压力计
利用静止液体的压强测量压力的方法。
帕斯卡原理
静止液体中任意封闭曲面所受外力之和为零。
浮力原理
浸没在液体中的物体受到一个向上的浮力, 其大小等于物体所排液体的重量。
03 水流运动的基本方程
连续性方程
总结词
描述水流在流场中连续分布的特性
详细描述
连续性方程是水力学中的基本方程之一,它表达了单位时间内流场中某一流体 的质量守恒原理。对于不可压缩流体,连续性方程可以简化为:单位时间内流 出的流量等于该时间内流体的减少量。
湍流
水流呈现不规则状态,流线曲折、交 叉甚至断裂,流速沿程变化大,有强 烈的脉动现象。
均匀流与非均匀流
均匀流
水流在同一条流线上,速度和方向保持一致,过水断面形状和尺寸沿程保持不变 。
非均匀流
水流在同一条流线上,速度和方向发生变化,过水断面形状和尺寸沿程也发生变 化。
一维、二维和三维流动
一维流动
水流只具有一个方向的流动,如 管道中的水流。一维流动的研究 可以通过建立一维数学模型进行。
水力学第三章水动力学基础ppt课 件
目 录

13高职高专水力学第三章液体运动的基本原理

13高职高专水力学第三章液体运动的基本原理

学院
教师授课教案
课程名称:水力学20年至20年第二学期第七次课
授课教师:授课日期:20年3 月17日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第八次课
授课教师:授课日期:20年3 月18日
,m =ρV Q =t V
1111V Q t ρ=,122222m V Q t ρρ==
2、动能、压强势能、位置势能及转化
二、微小流束的能量方程
学院
教师授课教案
课程名称:水力学20年至20年第二学期第九次课
授课教师:授课日期:20年3 月24日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第十次课
授课教师:授课日期:20年3 月25日
学院
教师授课教案
课程名称:水力学20年至20年第二学期第十一次课
授课教师:授课日期:20年3 月31日。

《水力学》课件——第三章 流体运动学

《水力学》课件——第三章 流体运动学

是否是接
均匀流 否

渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。

水力学 (张耀先 著) 黄河水利出版 第3章 课后答案

水力学 (张耀先 著) 黄河水利出版 第3章 课后答案

2 2 得p 3 0k N/ m , p 4 0k N/ m , B点处断面平均流速 A= B=
v 1 . 5m/ s , 求A 、 B两断面的总水头差及管中水流流动 B= 方向。 解: 由连续方程 v A v A A A= B B 从而得出 v 6m/ s A= A 、 B两断面总水头差为( 以 A点所在水平面为基准面) :
2 2 d d π 1 2 Q K槡 1 2 . 6 × h= 2 g槡 1 2 . 6 × h Δ Δ 理论值 = 槡 4 4 4 d d 1- 2 槡
图3 5 2
= 0 . 0 6 15 9 ( m/ s ) 0 . 0 6 = 0 . 9 7 4 μ= 0 6 15 9 0 . 3 2 3 一引水管的渐缩弯段( 见图 3 5 3 ) , 已知入口直径 d 2 5 0m m , 出口直径 d 1= 2=
3 2 2 有 一 文 德 里 管 路 ( 见图 3 5 2 ) , 已知管径 d 1 5c m , 文德里管喉部直径 d 1 0c m , 水银压差计 1= 2= 高差 Δ h = 2 0c m , 实测管中流量 Q= 6 0L / s , 试求文德 里流量计的流量系数 μ 。 Q 实测 解: 流量系数 μ= Q 理论值
3 Q= A v 0 . 0 1 57 ( m / s ) 3 3=
图3 4 5
3 1 6 如图 3 4 6所示, 某主河道的总流量
3 Q 18 9 0m / s , 上游两个支流的断面平均流 1=
速为 v 1 . 3 0m/ s , v 0 . 9 5m/ s 。若两个支 3= 2= 流过水断面面积之比为 A A 4 , 求两个支流 2/ 3= 的断面面积 A 。 2及 A 3 解: 根据连续性方程: Q Q Q 图3 4 6 2+ 3= 1 Q = A v 2 22 2 2 14 8 2 . 3 5 ( m ) A 3 7 0 . 5 9 ( m ) Q A v 2= 3= 联立解得 A 3= 3 3 A 2 = 4 A 3 0 . 2m , d 0 . 4m , 高差 Δ z = 1 . 5m , 今测 3 1 7 一变直径的管段 A B ( 见图 3 4 7 ) , d A= B= ·7 ·

水力学第3章

水力学第3章
Z1 p1

2 2 u1 p2 u2 Z2 hw 2g 2g
z为单位重量液体的势能(位能)。 u2/2g为单位重量液体的动能。 p/为单位重量液体的压能(压强势能)。
• z+p/=该质点所具有的势能。 • z+p/+ u2/2g=总机械能 • hw'为单位重量的流体从断面1-1流到2-2 过程中由于克服流动的阻力作功而消耗 的机械能。这部分机械能转化为热能而 损失,因此称为水头损失。
0
Δh
h1
h2
动 压 管
A-A
静 压 管
A
1
2
例3 试证明图中所示的具有底坎的矩形断面 渠道中的水流是否有可能发生.
(a) 假设这种水流可以发生 证:
以0-0为基准面,列1-1, 2-2断面能量方程:
p1 1V12 p2 2V22 Z1 Z2 hw12 2g 2g
Q3 Q1 Q2
Q3 Q1 Q2 Q1
Q1 Q2 Q3
Q3 Q2
对于有分叉的恒定总流,连续性方程可以表示为: ∑Q流入=∑Q流出 连续性方程是一个运动学方程,它没有涉及作用 力的关系,通常应用连续方程来计算某一已知过水断 面的面积求断面平均流速或者已知流速求流量,它是 水力学中三个最基本的方程之一。
二、迹线和流线 迹线是液体质点运动的轨迹,它是某一个质 点不同时刻在空间位置的连线。 流线是某一瞬间在流场中画 出的一条曲线,这个时刻位于 曲线上各点的质点的流速方向 与该曲线相切。 对于恒定流,流线的形状不随时间而变化, 这时流线与迹线互相重合;对于非恒定流,流 线形状随时间而改变,这时流线与迹线一般不 重合。
Q dQ udA

水力学 第3章 流体力学基本方程

水力学 第3章 流体力学基本方程

V V V V a u v w t x y z
V V V V dV a u v w t x y z dt
加速度的投影值:
u u u u du ax u v w t x y z dt
v v v v dv ay u v w t x y z dt
速度:
x y z u ,v ,w t t t
加速度:
u 2 x ax 2, t t v 2 y ay 2, t t w 2 z az 2 t t
这里:
V ui v j wk
a ax i a y j az k
此方程称为积分形式的连续性方程。

d dM d dt t d vn dA (1) dt A
方程(1)对于任一物理量φ(比如:动量等)亦成立。
d d t d vn dA dt A
式中:φ——流体单位体积的某物理量。
2.渐变流与急变流:
在非均匀流中,各流线是接近于平行直线的流动称为渐 变流(或称缓变流);否之,则为急变流。
七.一元流动、二元流动、三元流动:
若流体的流动参数是空间三个坐标和时间的函数,这种 流动称为三元流动;若流动参数是两个坐标和时间的函数, 这种流动称为二元流动;若流动参数是一个坐标和时间的 函数,这种流动称为一元流动。
若用粗体字母表示矢量,则:
加速度:
v1 v 0 a lim ( t o ) t
V V V V V1 V0 t x y z t x y z
而:
注意到: 因此:
x lim u, t 0 t
y lim v, t 0 t
z lim w t 0 t

水力学系统讲义课件第三章水动力学基础

水力学系统讲义课件第三章水动力学基础


ux t
ux
ux x
uy
ux y
uz
ux z




ay

uy t
ux
uy x
uy
uy y
uz
uy z




az

uz t
ux
uz x
uy
uz y
uz
uz z
4
a du du(x, y, z,t) u u dx u dy u dz
z p C
g
中,各项都为长度量纲。
位置势能(位能): Z 位置水头(水头) : Z
pA /
pB /
压强势能(压能): p
测压管高度(压强水头) : g
zA
O
zB
O
单测位压势管能水:头:z
p
g
35
恒定总流的能量方程
理想液体恒定微小流束能量方程推导
动能定理:某物体在运动过程中动能的改变等于其在同 一时间内所有外力所做的功。
解:ax

ux t
ux
ux x
uy
ux y
4y 6x 4y 6xt 6t 6y 9xt 4t
4y 6x 1 6t2 6t2
将t 2, x 2, y 4代入得,ax 4m / s2 同理可得, ay (6 y 9x) (4 y 6x)9t 2 (6 y 9t)6t 2

Q A

49 60
umax
24
(2)过流断面上,速度等于平均流速的点距管壁的距离。
1/ 7

《水力学》课件——第三章 流体力学基本方程

《水力学》课件——第三章  流体力学基本方程

解 由式
dx dy ux uy

dx dy xt yt
积分后得到:
ln x t ln y t ln c
y x
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
三.流管, 流束与总流
流管 --- 由流线组成的管状曲面。 流束 --- 流管内的流体。 总流 ------多个流束的集合。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
t --- 时间变量。
质点位置是 t 的函数,对 t 求导可得速度和加速度:
u
x t
速度:
v y t

x
u u(x,t)
二元流动- 流动参数与两个坐标变量有关。
z B
M
M
s
B
y
u u(s, z,t)
三元流动(空间流动) -- 流动参数与三个坐标变量有关。
3-3 连续性方程
一 微分形式的连续方程 流入的流体-流出的流体 =微元体内流体的增加
z
uy
u y y
dy 2
z
uy
y
x
uy
u y y
dy 2
1
不可压
u1dA1 u2dA2 dQ u1dA1 u2dA2 const.
对于总流
dQ A
A u1dA1
A u2dA2
Q A1v1 A2v2.
2
u2
dA2
2

水力学课件 第3章液体一元恒定总流基本原理

水力学课件  第3章液体一元恒定总流基本原理

其中dx , dy , dz 是液体质点位置坐标对时间的变化率,应等于质点速度。 dt dt dt
ux
dx dt
,uy
dy dt
,uz
dz dt
故液体质点的加速度为
ax
u x t
ux
u x x
uy
u x y
uz
u x z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
21
3.3.5 流量与断面平均流速
1.流量 单位时间内通过某一过水断面的液体量称为流量,用Q表示。而液
体量可用体积或质量来度量,就有体积流量QV,和质量流量Qm。 水力学中采用体积流量,用Q来表示。 流量是衡量过水断面过水能力大小的物理量,单位m3/s,l/s
22
dt时刻通过过水断面dA的液体体积
z p c
g
z: 单位位能、位置水头 p/ρg: 单位压能、压强水头 z+p/ρg:单位总势能、测压管水头
伯努利方程
z1
p1
g
u12 2g
z2
p2
g
u22 2g
u2
2g :
单位动能、流速水头
z p u2 g 2g
:单位机械能、总水头
43
44
3.5.3实际流体恒定元流的能量方程
由于实际流体具有粘性,在流动过程中其内部会产 生摩擦阻力,液体运动时为克服阻力要消耗一定的能量。 液体的机械能将转换为热能而散失,因此总机械能将沿称 减少。对实际液体,根据能量守恒,实际液体恒定元流 的能量方程为:
24
3.3.6 均匀流和非均匀流,均匀流的特性
流速的大小和方向沿流线不变的流动称为均匀流; 否则称为非均匀流。

第三章-给水排水管网水力学基础(1)

第三章-给水排水管网水力学基础(1)

均匀流与非均匀流
均匀流:液体质点流速的大小和方向沿流程不变。 非均匀流:液体质点流速的大小和方向沿流程变
化,水流参数随时间和空间变化。
满管流动 1)如管道截面在一段距离内不变且不发生转弯,为均匀流, 管道对水流阻力沿程不变,采用沿程水头损失公式计算; 2)当管道在局部分叉、转弯与变截面时,流动为非均匀流, 采用局部水头损失公式计算。
管径D 水力坡度I
充满度h/D 流速v
1)先由下式计算q/q0,反查表3.7的充满度h/D;
q q0
1 nM
q 2 1 A0 A0 R 0 3 I 2
D 2
4
R0
D 4
5
q q0
43
nM q
81
D3I 2
3.208nM q D I 2.667 0.5
2)根据充满度h/D,查表3.7得A/A0,然后用下式计算流速v。
N
m m din
i1
3、沿线均匀出流简化
任一管段的流量:沿线流量,转输流量。
ql qt
qt
ql qs l
L
dx
ql qt
x
qt
假设沿线出流均匀,则管道内任意断面x上的流量
可以表示为:
qx qt
l
l
x
ql
沿程水头损失计算如下:
hf
l 0
k (qt
l l
dm
x
ql
)n
dx
k
(qt
圆管满流,沿程水头损失也可用达西公式:
D——管段直径,m; g ——重力加速度,m/s2; λ——沿程阻力系数, λ=8g/C2
C、λ与水流流态有关,一般采用经验公式 或半经验公式计算。常用公式如下 :

水力学:第三章 流体动力学理论基础

水力学:第三章 流体动力学理论基础

若过水断面为渐变流,则在断面上 得
g
积分可
p

(z
p
Q
g
) gdQ ( z
p
g
) g dQ ( z
u x t p t 0 u y t 0 t u z
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。
6
二、 迹线与流线
拉格朗日法研究个别流体质点在不同时刻的运动情况 ,引出了迹线的概念。 欧拉法考察同一时刻流体质点在不同空间位置的运动 情况引出了流线的概念。
u x x
t
0

0

u y y
常数
u z z 0
22

二、 恒定不可压缩总流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。 取恒定流中微小流束如图所示: 因液体为不可压缩的连续介质,有

1 2
根据质量守恒定律在dt时段内
流入的质量应与流出的质量
)于1738年首先推导出来的。
28
二、实际流体恒定元流的能量方程
理想流体没有粘滞性无须克服内摩擦力而消耗能量,
其机械能保持不变。
对实际流体,令单位重量流体从断面1-1流至断面2-2
所失的能量为
hw
'
。则1-1断面和2-2断面能量方程为:
p1
z1
g

u1
2
2g
z2
p2
g

u2
2
2g
hw
相等。
u 1 dA 1 dt u 2 dA 2 dt u 1 dA 1 u 2 dA 2

水力学讲义第三章液流形态及水头损失

水力学讲义第三章液流形态及水头损失
=0.02。t=10 ℃时, =1.3×10-6m2/s,由Re计算公式 得V=1.04m/s,水头损失:
(2)光滑黄铜管的沿程水头损失
在Re<105时可用布拉修斯公式:
由图4-11和莫迪图可得出一致的结果.
(3)K=0.15mm工业管道的水头损失 根据Re=80000,K/d=0.15mm/100mm=0.0015,由莫迪图得
断面平均流速:V
udA
A
gJ
d
2
A 32
沿程水头损失:hf
32VL gd 2
64 L V 2 64 L V 2 Vd d 2g Re d 2g
沿程阻力系数: 64
Re
沿程阻力系数的变化规律
hf
LV2
d 2g

hf
L V2
4R 2g
尼古拉兹实验
过渡粗糙壁面,
f (Re, r0 )
的计算
或写成
粗糙区
或写成
式(4-30) 和式(4-32)都是半经验公式,还有两 个应用广泛的经验公式,光滑区的布拉休斯公式:
上式适用于Re<105的情况。还有粗糙区的希弗林松公式:
紊流过渡区和柯列勃洛克公式 柯列勃洛克根据大量的工业管道试验资料,整理出工业 管道过渡区曲线,并提出该曲线的方程:
K为工业管道的当量粗糙粒高度,可查4-1。该式为尼古 拉兹光滑区公式和粗糙区公式的机械组合。为简化计算, 莫迪以柯氏公式为基础绘制出反映Re、K/d和 对应关系 的莫迪图,在该图上可根据Re和K/d直接查出 。 此外,还有一些人为简化计算,在柯氏公式的基础上提 出了一些简化公式。如
0
gR
hf L
沿程阻力系数 f (VR , )
hf

水力学第三章 液体运动学

水力学第三章 液体运动学

ux 、u y 、uz 是速度在 x、y、z 轴的分量
x(a,b,c,t )
ux ux (a,b,c,t )
t
uy
uy (a,b,c,t )

y(a,b,c,t ) t
z(a,b,c,t )
uz uz (a,b,c,t )
t
同理,该液体质点在x、y、z方向的加速度分量
若t为常数, x,y,z为变数.
得到在同一时刻,位于不同空间点 上的液体质点的流速分布,也就是 得到了t时刻的一个流速场
若针对一个具体的质点,x,y ,z ,t均为变数, 且有 x(t),y (t) ,z (t)
在欧拉法中液体质点的加速度就是流速对时间的 全导数。
即 a du dt
u u dx u dy u dz t x dt y dt z dt
u
时变加速度(或者当地加速度),在 同一空间点
t
上液体质点运动速度随时间的变化。
ux
u x

uy
u y

uz
u z
位变加速度(或者迁移加速度),在同一时刻位 于不同空间点上液体质点的速度变化 。
当水箱水位H 一定 ,末端阀门K 开度保持不变时,即,
管中各点的流速不随时间变化,不存在时变加速度。
拉格朗日法着眼于液体质点。 z
欧拉法则着眼于液体运动 时所占据的空间点。
在实际工程中,只需要弄清楚 在某一些空间位置上水流的运 动情况 ,而并不去研究液体质 y 点的运动轨迹,所以在水力学 中常采用欧拉法。
t时刻
M (x,y,z) O
x
可将流场中的运动要素视作空间点坐标 (x,y,z) 和时间 t的函数关系式。
)

环境水力学 第三章液体一元恒定总流基本原理

环境水力学 第三章液体一元恒定总流基本原理

由于管段收缩使得同一时刻 收缩管内各点流速沿程增加而产 生的加速度即为迁移加速度(此 值为正)
12
图2-2
第三章 液体一元恒定总流基本原理
3.2 描述液体运动的两种方法
Lagrange法优缺点
√ 直观性强、物理概念明确、可以描述各质点的时变过程 × 数学求解较为困难,一般问题研究中很少采用
Euler法的优越性:
3.3 液体运动的几个基本概念

一维流动、二维流动、三维流动
1.三维流动:若流动要素是三个空间坐标的函数,则这种流动 称为三维流动。例如,空气绕地面建筑物的流动、水在自然 河道中的流动等。 2.二维流动:若流动要素只是两个空间坐标的函数而与第三坐 标无关,这种流动称为二维流动。例如,水在矩形渠道中的 流动 。 3.一维流动:流动要素只是一个空间坐标的函数的流动称之为 一维流动。通常河道、渠道、管道中,流动要素是三个坐 标的函数,如果流速用平均流速来代替,它们的流动也看 成一维流动来处理。
(a, b, c)
区分不同流体质点
任意时刻的运动坐标
( x, y , z )
流体质点的位移
第三章 液体一元恒定总流基本原理
3.2 描述液体运动的两种方法

拉格朗日法( Lagrange法)
运动描述
速度表达式
x(a, b, c, t ) u x u x (a, b, c, t ) t y(a, b, c, t ) u y u y (a, b, c, t ) t z (a, b, c, t ) u z u z (a, b, c, t ) t
3.2 描述液体运动的两种方法

欧拉法( Euler法)
y ux 加速度: a y t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h3 pc pD B s3 zc + − z D + D γ2 γ3 1 1 = (hD + h2 − hc ) + (γ 1h1 + γ 2 hc ) − (γ 1h1 + γ 2 h2 + γ 3hD )
γ2
γ3
γ1 γ1 γ2 = hD + h2 − hc + h1 + hc − h1 − h2 − hD γ2 γ3 γ3
习题2 2-2 习题 2-2 图所示容器内盛有三种不相混合的液 各液体的比重分别为s 体,各液体的比重分别为s1、s2、s3(s1<s2<s3), 深度各为h 深度各为h1、h2、h3。(1)画铅直面上的压强分布 图 。 ( 2) 定性划出A、 B、 C 、 D各测压管中液面的 定性划出A 位置。 位置。
= h2 +
γ1 γ γ h1 − 1 h1 − 2 h2 = 1 − γ 2 h2 + γ 1 − γ 1 h1 > 0 γ γ γ2 γ3 γ3 γ3 3 2
第三章 液体一元运动基本理论
§3-1 液体运动的若干基本概念 §3-2 描述液体运动的两种方法
n dA dn
z
p+dp α dz
0
P G z+dz d n
0
∑F
n
= pdA − ( p + dp)dA − dG cosα = 0
− dpdA − γdAdn cos α = 0
dn cosα = dz p z+ =C
γ
• 非均匀流:流线不是相互平行直线的流动称为 非均匀流: 非均匀流。 非均匀流。 根据流线弯曲的程度和彼此间的夹角大小又将非 均匀流分为渐变流和急变流。 均匀流分为渐变流和急变流。 • 渐变流:如流线几乎是平行的直线(如果有弯 渐变流:如流线几乎是平行的直线( 曲其曲率半径很大,如果有夹角其夹角很小), 曲其曲率半径很大,如果有夹角其夹角很小), 这样的流动称为渐变流。 这样的流动称为渐变流。 • 急变流:流线弯曲的曲率半径很小,或者流线 急变流:流线弯曲的曲率半径很小, 间的夹角很大的流动均称为急变流。 间的夹角很大的流动均称为急变流。
3.1 液体运动的若干基本概念
恒定流与非恒定流 恒定流 如果在流场中任何空间点上所有的运动 要素都不随时间而改变,这种水流称为恒定流。 要素都不随时间而改变,这种水流称为恒定流。
u = u ( x, y, z ), ∂u ∂u =0 ∂t p = p ( x, y , z ), ∂p ∂p =0 ∂t
流场中任意一点处的任何运动要素 的大小及方向随时间变化的流动称为非恒定流。 的大小及方向随时间变化的流动称为非恒定流。
∂u u = u ( x, y , z, t ), ≠0 ∂t
∂p p = p( x, y , z, t ), ≠0 ∂t
非恒定流
迹线和流线
迹线 某液体质点在不同时刻所占据的空间点 连线,也即某液体质点运动的轨迹线称为迹线。 连线,也即某液体质点运动的轨迹线称为迹线。 流线 在指定时刻,通过某一固定空间点在流 在指定时刻, 场中画出一条瞬时曲线, 场中画出一条瞬时曲线,在此曲线上各流体 质点的流速向量都在该点与曲线相切, 质点的流速向量都在该点与曲线相切,此曲 线定义为流线。 线定义为流线。
平面 曲面 平面


过水断面、流管、元流、 过水断面、流管、元流、总流
• 过水断面:与流线正交的液流横断面称为过水断面,过 过水断面:与流线正交的液流横断面称为过水断面, 水断面的面积大小称为过水断面面积。 水断面的面积大小称为过水断面面积。 • 流管:在流场中取一非流线的任 流管: 意闭曲线L, 意闭曲线 ,然后通过此封闭曲线 上的每一点作流线, 上的每一点作流线,由这些流线所 构成的管状曲面称为流管。 构成的管状曲面称为流管。 • 流管的特点:流管是由一族流线 流管的特点: 所围成的,流管内外的液体不能穿 所围成的, 越它流出或流入, 越它流出或流入,只能由流管的一 端流入而从另外一端流出, 端流入而从另外一端流出,流管就 可以看作为管壁。 可以看作为管壁。
令a、b、c为常数,t为变数,则可以得到某个指 为常数, 为变数, 定的液体质点在不同时刻的位置,即质点的迹线; 定的液体质点在不同时刻的位置,即质点的迹线; 为常数, 为变数, 令t为常数,a、b、c为变数,就可以得到某一固 定时刻不同质点的空间分布情况。 定时刻不同质点的空间分布情况。
α dz
0
P G z+dz d n
0
均匀流中,垂直于流线方向取断面面积为dA dA、 均匀流中,垂直于流线方向取断面面积为dA、 高为dn的小柱体研究其平衡。 高为dn的小柱体研究其平衡。 dn的小柱体研究其平衡
n dA +dp p dn α dz
z
0
P G z+dz d n
0
在与流线垂直的n 在与流线垂直的n-n方向上只有上下两个表面上 的动水压力(p+dp)dA pdA,以及重力的分量 (p+dp)dA、 的动水压力(p+dp)dA、pdA,以及重力的分量 dGcosα。 dGcosα。柱体侧表面上的动水压力及摩擦力在 方向上没有分量。 n-n方向上没有分量。
各处压强均为 大气压强
c c
有固体边界约束的流动 (b)无固体边界约束的流动
z+p/γ≠c
急变流特点 • 急变流多发生在流动的边界急剧变化的地点。 急变流多发生在流动的边界急剧变化的地点。 • 急变流中过水断面上的动水压强不按静水压强 规律分布。 规律分布。
除了动水压力和重力之外,还需要考虑离心惯性力。 除了动水压力和重力之外,还需要考虑离心惯性力。当 离心力的方向与重力的方向相反时, 离心力的方向与重力的方向相反时,断面上任意一点的 动水压强小于静水压强。 动水压强小于静水压强。当离心力的方向与重力的方向 相同时,断面上任意一点的动水压强将大于静水压强。 相同时,断面上任意一点的动水压强将大于静水压强。
流量和断面平均流速
• 流量:单位时间内通过某一过水断面的液体体积为 流量: 流量,记为Q,单位为m 或 。 流量,记为 ,单位为 3/s或L/s。 元流的流量为 总流的流量为
dQ = udA
Q = ∫ dQ = ∫ A udA
• 断面平均流速:保证过水断面流量不变的前提下, 断面平均流速:保证过水断面流量不变的前提下, 流速均匀分布时断面流速的大小,为假想的流速。 流速均匀分布时断面流速的大小,为假想的流速。
• 过水断面上的动水压强分布规律与静水压强分 布规律相同, 布规律相同,即在同一过水断面上z + p / γ = 常 但是,不同过水断面上这个常数不相同, 数,但是,不同过水断面上这个常数不相同,它 与流动的边界形状变化和水头损失等有关。 与流动的边界形状变化和水头损失等有关。
n dA dn
z
p+dp
渐变流特点 由于流线近乎是平行直线,则流动近似于均匀流, 由于流线近乎是平行直线,则流动近似于均匀流, 可以近似地认为: 可以近似地认为:渐变流过水断面上的动水压强 z + p /γ =。 也近似按静水压强规律分布, 常数。 也近似按静水压强规律分布, 常数 注意:此结论只适合于有固体边界约束的水流。 注意:此结论只适合于有固体边界约束的水流。 管路出口断面上的动水压强就不符合静水压强分 布规律, 布规律,即,这时断面上各点处的动水压强均等 于大气压强。 于大气压强。
流线的绘制
流线的特点
• 恒定流流线的形状及位置不随时间而变化。 恒定流流线的形状及位置不随时间而变化。 • 恒定流流线与迹线重合。 恒定流流线与迹线重合。
• 一般情况下流线本身不能折曲,流线彼此不 一般情况下流线本身不能折曲, 能相交。 能相交。
由流线的形状和分布可以得出如下结论
• 由流线上各点处切线的方向可以确定流速的 方向; 方向; • 由流线的疏密可以了解流速的相对大小,密 由流线的疏密可以了解流速的相对大小, 处流速大,疏处流速小; 处流速大,疏处流速小; • 由流线弯曲的程度可以反映出边界对流动影 响的大小,以及能量损失的类型和相对大小。 响的大小,以及能量损失的类型和相对大小。
• 元流:当封闭曲线 所包围的面积无限小时, 元流:当封闭曲线L所包围的面积无限小时 所包围的面积无限小时,
充满微小流管内的液流称为元流, 充满微小流管内的液流称为元流,元流的过水 面面积记为dA。 面面积记为 。 • 元流的特点:元流的过水断面面积很小,过 元流的特点:元流的过水断面面积很小, 水断面上的流速、 水断面上的流速、动水压强等运动要素是均匀 分布的。 分布的。 • 总流:当封闭曲线 所包围的面积具有一定尺 总流:当封闭曲线L所包围的面积具有一定尺 度时,充满流管内的液流称为总流。 度时,充满流管内的液流称为总流。 • 总流的特点:总流可以看作为无数元流的总 总流的特点: 其过水断面面积记为A。 和,其过水断面面积记为 。
A s1 s2 B s3 h1 h2 C h3 D
题2-2图
A s1 s2 s3 B
h1 h2 C h3 D
P1 P2 P3
zc +
zD +
γ2
pc
= zc +
1
1
γ2
(γ 1h1 + γ 2 hc )
γ3
pD
A s1 s2
h1 h2 C
= zD +
γ3
(γ 1h1 + γ 2 h2 + γ 3hD )
x = x(a, b, c; t ) y = y (a, b, c; t ) z = z (a, b, c; t )
ቤተ መጻሕፍቲ ባይዱ
任意时刻,任意质点的空间位置坐标x 任意时刻,任意质点的空间位置坐标x、y、z可 由拉格朗日参数a 和时间t给定: 由拉格朗日参数a、b、c和时间t给定:
相关文档
最新文档