工程数学 应用概率统计习题九答案
工程数学 习题七、九、十、十一解答
习题七解答1. 设X 的分布律为,求(1)EX ,(2))1(+-X E ,(3))(X E ,(4)DX 。
解 由随机变量X所以()1111111(1)01236261243E X =-⨯+⨯+⨯+⨯+⨯=()11111121210(1)36261243E X -+=⨯+⨯+⨯+⨯+-⨯=()2111111351014364612424E X =⨯+⨯+⨯+⨯+⨯=22235197()()(())()24372D XE X E X =-=-=另外,也可根据数学期望的性质可得:()()1211133E X E X -+=-+=-+=2.设随机变量X 服从参数为()0>λλ的泊松分布,且已知()()[]232=--X X E ,求λ的值。
解()()[]()()()()()()()()204526526565322222==+-+=+-+=+-=+-=--λλλλX E X E X D X E X E X X E X X E3. 设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,试求2X 的数学期望()2X E 。
解 ()4.0,10~B X所以 ()()4.26.04.010,44.010=⨯⨯==⨯=X D X E故 ()()()()4.1844.2222=+=+=X E X D X E4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量,它在[2000,4000](单位:吨)上服从均匀分布。
若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元。
问应组织多少货源,才能使平均收益最大?解 设随机变量Y 表示平均收益(单位:万元),进货量为a 吨Y=()aX a X 33--ax ax ≥< 则()()()800000014000220001200013200014220004000-+-=+-=⎰⎰a a dxa dx a x Y E aa要使得平均收益()Y E 最大,所以()080000001400022='-+-a a得 3500=a (吨)5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()X E 和方差()X D 。
工程数学(线性代数与概率统计)答案(1章)
工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。
二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。
浙大版概率论与数理统计答案---第九章
第九章 方差分析与回归分析注意: 这是第一稿(存在一些错误)1.解:()()()211,,n niii i i i L f y y f y x αβσεαβ======--∏∏()()()221222211122ni i i i i y x y x nni e eαβαβσσπσπσ=------=∑==∏()()()()22212,,ln ,,ln22ni i i y x l L n αβαβσαβσπσσ=--==--∑()()()()()()212212221242,,0,,0,,1022ni i i n i i i i n i i i y x l y x x l y x l n αβαβσασαβαβσβσαβαβσσσσ===⎧--⎪∂⎪==∂⎪⎪--⎪∂⎪==⎨∂⎪⎪--⎪∂⎪=-=⎪∂⎪⎩∑∑∑ 解得2ˆˆ,ˆ,ˆ.xyxxy x s s SSE n αββσ⎧⎪=-⎪⎪=⎨⎪⎪=⎪⎩则α、β的极大似然估计与最小二乘估计一致。
2σ的极大似然估计为SSE n ,最小二乘估计为2SSE n -,为2σ的无偏估计。
2.解: (1)由题意,知0123:H μμμ==,1123:,,H μμμ不全相等计算有112312.54ni i i x n x n n n ⋅===++∑ 321()0.738i A i i S n x x ⋅==-=∑,321() 5.534in T ij i i jS x x ===-=∑∑4.796E T A S S S =-=,/(31)0.369A A MS S =-=123/(3)0.178E E MS S n n n =++-=,/ 2.077A E F MS MS == 所以单因素方差分析表为: 方差来源 自由度 平方和 均方 F 比 因素A 2 0.738 0.369 2.077 误差 27 4.796 0.178 总和295.534由于 2.077F =<(2,27) 3.3541F α=,接受0H(2)2σ的无偏估计量为:123/(3)0.178E E MS S n n n =++-=3.解:(1)61n =,4r =,(2)0.05(3,57) 2.76 3.564F ≈<,则拒绝原假设,即认为不同年级学生的月生活费水平有显著差异。
应用概率统计课后习题答案详解
习 题 一 解 答1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生;(3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生.解:(1)C B A (2)C AB (3)()C B A ⋃ (4)BC A C AB ABC ⋃⋃(5)ABC (6)C B A C B A C B A ⋃⋃――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41==i i A A , (2) A ,(3) B , (4) 32A A.解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球(4)第2次和第3次至少有一次取得白球――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ⊇ (2)A B ⊆――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A .解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问:(1) ABC表示什么事件?(2) 在什么条件下,有ABC=A成立? (3) C ⊂B表示什么意思?(4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书(4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书――――――――――――――――――――――――――――――――――――――― 6. 互斥事件和对立事件有什么区别?试比较下列事件间的关系.(1) X < 20 和X ≥ 20 ; (2) X > 20和X < 18 ;(3) X > 20和X ≤ 25 ;(4) 5 粒种子都出苗和5粒种子只有一粒不出苗; (5) 5 粒种子都出苗和5粒种子至少有一粒不出苗. 解:(1)对立; (2)互斥;(3)相容;(4)互斥;(5)对立――――――――――――――――――――――――――――――――――――――― (古)7. 抛掷三枚均匀的硬币,求出现“三个正面”的概率.解:125.081213===p ――――――――――――――――――――――――――――――――――――――― (古)8. 在一本英汉词典中,由两个不同的字母组成的单词共有 55 个,现从•26个英文字母中随机抽取两个排在一起,求能排成上述单词的概率.解:252655⨯=p ≈0.0846 ――――――――――――――――――――――――――――――――――――――― (古)9. 把 10 本书任意地放在书架上,求其中指定的三本书放在一起的概率是多少? 解:首先将指定的三本书放在一起,共!3种放法,然后将8)1(7=+进行排列,共有!8种不同排列方法。
(完整版)工程数学概率统计简明教程第二版同济大学数学系编课后习题答案(全)
习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .3. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}4. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。
概率论与数理统计_浙大四版_习题解_第9章_方差分析
概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。
【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。
为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。
三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。
(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。
〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。
样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。
概率论与数理统计及其应用全部课后答案
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
概率统计练习题9答案
《概率论与数理统计》练习题9答案考试时间:120分钟题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)1、一批产品,优质品占20%,进行重复抽样检查,共取5件产品进行检查,则恰有三件是优质品的概率等于( )。
A 、 30.2B 、320.20.8⨯C 、 30.210⨯D 、 32100.20.8⨯⨯答案:D2、设,A B 相互独立,()0.76P AB =, ()0.4P B =,则()P A =( )。
A 、0.16B 、0.36C 、0.4D 、0.6 答案:C3、已知离散型随机变量的分布律为0.250.51 0 p 0.25ξ-1则以下各分布律正确的是( )。
0.5120 p (A)0.52ξ-20.250.253 1 p(B)0.521ξ+-10.50.2510ξ2p(C)0.50.51 0ξ2p(D)答案:D4、设随机变量ξ与η相互独立,且都有相同的分布列则ζξη=+的分布列为( )。
A 、B 、C 、D 、答案:C5、若随机变量ξ与η相互独立,且方差()2,() 1.5D D ξη==,则(321)D ξη--等于( )。
A 、9 B 、24 C 、25 D 、2答案:B6、()0D ξ=是{}1P C ξ==(C 是常数)的( )。
A 、充分条件,但不是必要条件B 、必要条件,但不是充分条件C 、充分条件又是必要条件D 、既非充分条件又非必要条件 答案:C 、7、设随机变量n ξ,服从二项分布(,)B n p ,其中01,1,2,p n <<=,那么,对于任一实数x ,有(({}lim nn Pnp x ξ→+∞-<等于( )。
A22t xe dt --∞B22t edt +∞--∞C 、1222πe dt t x -zD 、0答案:D8、设12(,,)n X X X 是正态总体2~(,)X N μσ的一个样本,样本均值为X ,样本的二阶中心矩为2S .则统计量()/(Q X μ=-服从( )。
工程数学“概率论与数理统计”测试题参考答案
工程数学“概率论与数理统计”测试题参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--“概率论与数理统计”测试题参考答案1.设A , B 是两个随机事件,已知P (A ) = ,P (B ) = ,P (A B )=,求:(1))(B A P ;(2))(B A P .解:(1) )(A P =)(1A P -= )(B A P = )(A P )(A B P = ⨯ =(2) )(B A P =1-)(B A P= 1 - )()(B P B A P =1-8.008.0= 2.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C . (2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C . 3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率.解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有P B P A P B A P A P B A ()()()()()=+1122 显然43)(1=A P ,41)(2=A P ,99.0)(1=A B P ,P B A ().2098=,故 9875.098.04199.043)(=⨯+⨯=B P 4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率.解:设如下事件:i A :“第i 次抽取出的是白球”(2,1=i ) 显然有93)(1=A P ,由全概公式得 )()()()()(1211212A A P A P A A P A P A P +=3183328231=⨯+⨯= 5.设)4,3(~N X ,试求⑴)95(<<X P ;⑵)7(>X P .(已知,8413.0)1(=Φ 9987.0)3(,9772.0)2(=Φ=Φ) 解:⑴)3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=⑵)23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=6.设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它010)(2x Ax x f 求(1)A ;(2))(X E ;(3))(X D .解: (1)由1331d d )(1103102=====⎰⎰∞+∞-A x A x Ax x x f ,得出3=A(2) =)(X E 4343d 3d )(104102==⋅=⎰⎰∞+∞-x x x x x x xf (3)=)(2X E 5353d 31052102==⋅⎰x x x x 80316953))(()()(22=-=-=X E X E X D 7.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = + – 1 =(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 所以 28.123=-a ,a = 3 + 28.12⨯ = 8.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )解:已知3=σ,n = 64,且n x u σμ-=~ )1,0(N 因为 x = 21,96.121=-αu,且 735.064396.121=⨯=-n u σα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---n u x n u x σσαα.9.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为 cm ,标准差为.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm ),,,问:该机工作是否正常(05.0=α, 96.1975.0=u )解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N 经计算得375.10=x ,075.0415.0==n σ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu ,且 2196.167.1αμσμ-=<=-nx 故接受零假设,即该机工作正常.10.某钢厂生产了一批轴承,轴承的标准直径20mm ,今对这批轴承进行检验,随机取出16个测得直径的平均值为,样本标准差3.0=s ,已知管材直径服从正态分布,问这批轴承的质量是否合格(检验显著性水平α=005.,131.2)15(05.0=t )解:零假设20:0=μH .由于未知σ2,故选取样本函数T x s nt n =--μ~()1 已知8.19=x ,经计算得075.043.016==s ,667.2075.0208.19=-=-ns x μ 由已知条件131.2)15(05.0=t ,)15(131.2667.205.0t n s x =>=-μ故拒绝零假设,即不认为这批轴承的质量是合格的.。
《工程数学概率统计简明教程(同济大学应用数学系)》课后答案【khdaw_lxywyl】
1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件A{两次出现的面相同} ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件A(3) 从一批灯泡中随机抽取一只,测试其寿命,事件A { 一分钟内呼叫次数不超过3 次};{ 寿命在2000 到2500 小时之间}。
解(1){( ,), ( ,), ( ,), (, )} ,A{( ,), ( ,)}.(2) 记X 为一分钟内接到的呼叫次数,则{X k | k0,1,2,LL} , A {X k | k0,1,2,3} .(3) 记X 为抽到的灯泡的寿命(单位:小时),则{X (0,)} , A {X(2000,2500)} .2. 袋中有10 个球,分别编有号码1 至10,从中任取1 球,设A {取得球的号码是偶数},B {取得球的号码是奇数},C {取得球的号码小于5},问下列运算表示什么事件:(1) A U B ;(2) AB ;(3) AC ;(4) AC ;(5) A C;(6) B U C ;(7) A C .解(1) A U B是必然事件;(2) AB 是不可能事件;(3) AC {取得球的号码是2,4};(4) AC {取得球的号码是1,3,5,6,7,8,9,10};(5) A C{取得球的号码为奇数,且不小于5} {取得球的号码为5,7,9};(6) B U C B I C{取得球的号码是不小于5 的偶数} {取得球的号码为6,8,10};(7) A C AC {取得球的号码是不小于5 的偶数}={取得球的号码为6,8,10}3. 在区间[0 , 2] 上任取一数,记A (1) A U B ;(2) A ;(3) AB ;(4) A U B .x1x21 ,B x 1 x43,求下列事件的表达式:2解(1) A U B x 1 x 3 ;4 2(2) A x 0 x 1或1 x22 I B x1x41U x1 x3;2 2(3) 因为A B ,所以AB ;(4) A U B A U x 0 x 1或3x 2x 0 x1 1x 1或3x 2 4. 用事件A, B, C 4 2 4 2 2的运算关系式表示下列事件:(1) A 出现,B, C都不出现(记为E1);(2) A, B 都出现,C 不出现(记为E2);(3) 所有三个事件都出现(记为E3);(4) 三个事件中至少有一个出现(记为E4);(5) 三个事件都不出现(记为E5);(6) 不多于一个事件出现(记为E6);(7) 不多于两个事件出现(记为E7);(8) 三个事件中至少有两个出现(记为E8)。
工程数学-概率统计简明教程 同济大学 高等教育出版社 课后答案
习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件:A(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同.A;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{.A一分钟内呼叫次数不超过次};3(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{.A寿命在到小时之间}。
20002500解(1) )},(),,(),,(),,{(..........,)},(),,{(.....A.(2) 记X为一分钟内接到的呼叫次数,则},2,1,0|{......kkX,}3,2,1,0|{...kkXA.(3) 记X为抽到的灯泡的寿命(单位:小时),则)},0({.....X,)}2500,2000({..XA.2. 袋中有10个球,分别编有号码1至10,从中任取1球,设.A{取得球的号码是偶数},.B{取得球的号码是奇数},{取得球的号码小于5},问下列运算表示什么事件:.C(1);(2)BA.AB;(3);(4)ACAC;(5)CA;(6)CB.;(7)CA..解(1) 是必然事件;..BA.(2) ..AB是不可能事件;(3) {取得球的号码是2,4};.AC(4) .AC{取得球的号码是1,3,5,6,7,8,9,10};(5) .CA{取得球的号码为奇数,且不小于5}.{取得球的号码为5,7,9};(6) ..CBCB..{取得球的号码是不小于5的偶数}.{取得球的号码为6,8,10};(7) ...CACA{取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间上任取一数,记]2,0[BA.........121xxA,.........2341xxB,求下列事件的表达式:(1);(2)BA.;(3)BA;(4)BA..解(1).........2341xxBA.;(2) ............BxxxBA.21210或................2312141xxxx.;(3) 因为BA.,所以..BA;(4)............223410xxxABA或..............223121410xxxx或或4. 用事件的运算关系式表示下列事件:CBA,,(1) 出现,都不出现(记为);ACB,1E(2) 都出现,不出现(记为);BA,C2E(3) 所有三个事件都出现(记为);3E(4) 三个事件中至少有一个出现(记为);4E(5) 三个事件都不出现(记为);5E(6) 不多于一个事件出现(记为);6E(7) 不多于两个事件出现(记为);7E(8) 三个事件中至少有两个出现(记为)。
《应用概率统计》课后习题解答
(1)每次取后不放回;(2)每次取后放回。
X
1
2
3
4
P
解:(1)
(2) ( =1,2,…)
6.某射手每发子弹命中目标概率为0.8,现相互独立地射击5发子弹,
求:(1)命中目标弹数地分布律;(2)命中目标的概率。
解:由题意得:(X,Y)的可能取值为:(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)。
则由概率的乘法公式得:P{X=1,Y=2}=(1/4)×(2/3)=1/6
P{X=1,Y=3}=(1/4)×(1/3)=1/12
P{X=2,Y=1}=(2/4)×(1/3)=1/6
解:(1) = + +
= cxdx
=1
所以,解得
C=2
(2) P{0.3<X<0.7}= 2xdx
=
=0.49-0.09
=0.4
(3)由 得:
当a < 0时, ,
当a > 1时,
故,a不可能小于0或大于1;
当0≤a≤1时,
所以, ,即得:a=
(4)由题设可知,b的取值范围为:0≤b≤1
,所以b=0.6
当 时
当 时
于是
(3)
=
5.随机变量(X,Y)的分布密度为
(1)求系数C;(2)求随机变量(X,Y)落在 内的概率。
解:(1)由 (利用极坐标运算)得
于是
(2)利用极坐标运算得:
= (1- )
6.求出在D上服从均匀分布的随机变量(X,Y)的分布密度及分布函数,其中D为x轴,y轴及直线y=2x+1围成的三角形区域.
应用统计学第9章答案精选全文完整版
可编辑修改精选全文完整版应用统计学第9章分类数据分析9.1 欲研究不同收入群体对某种特定上坡是否有相同的购买习惯,市场研究人员调查了四个不同收入组的消费者共527人,购买习惯分为:经常购买,不购买,有时购买。
调查结果如下表所示。
要求:(1)提出假设。
χ值。
(2)计算2(3)以α=0.1的显著水平进行检验。
解:(1):提出假设:oH:不同收入群体对某种特定商品的购买习惯相同H不同收入群体对某种特定商品的购买习惯不全相同1:(2):χ计算结果3⨯4列联表期望值及22()2fo fe feχ=-÷=∑17.63所以2χ的值为17.63.(3):α=0.1 自由度(31)(41)6df=-⨯-=临界值χ0.1²(6)=10.64 2χ=17.63>χ0.1²(6)=10.64∴拒绝原假设,接受备择假设。
结论:不同收入群体对某种特定商品的购买习惯不全相同9.4 教学改革后学生有了更多的选课自由,但学院领导在安排课程上也面临新的问题。
例如MBA研究生班的学生选课学年之间的变化常常很大,去年的学生很多人选会计课,而今年的学生很多人选市场营销课。
由于事先无法确定究竟有多少学生选各门课程,所以无法有效地进行教学资源的准备。
由于有人提出学生所选课程与其本科所学的专业有关。
为此学院(1)以0.05的显著性水平检验学生本科所学专业是否影响其读MBA期间所选的课程。
(2)计算P值。
解:4⨯3列联表期望值及2χ计算结果2()2fo fe feχ=-÷=∑14.93提出假设:oH:本科学生所学专业受其读MBA期间所选的课程影响1:H本科学生所学专业不受其读MBA期间所选的课程影响α=0.05 自由度(41)(31)6df=-⨯-=临界值χ0.05²(6)=12.59 2χ=14.93>χ0.05²(6)=12.59∴拒绝原假设,接受备择假设。
结论:本科学生所学专业不受其读MBA期间所选的课程影响(2):利用Excel计算得出P=0.1856。
工程数学-概率统计简明教程课后习题参考答案
(7) E 7 = ABC = A U B U C ;(8) E8 = AB U AC U BC . 5. 一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设 Ai 表示事件“第 i 次
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
25 5 (ⅰ)有利于 A 的样本点数 k A = 5 ,故 P( A) = = 49 7 5 × 2 10 (ⅱ) 有利于 B 的样本点数 k B = 5 × 2 ,故 P( B) = 2 = 49 7 20 (ⅲ) 有利于 C 的样本点数 k C = 2 × 5 × 2 ,故 P(C ) = 49 7 × 5 35 5 = . (ⅳ) 有利于 D 的样本点数 k D = 7 × 5 ,故 P( D) = 2 = 49 7 7 3.一个口袋中装有 6 只球,分别编上号码 1 至 6,随机地从这个口袋中取 2 只球,试求:(1) 最 小号码是 3 的概率;(2) 最大号码是 3 的概率。 解 本题是无放回模式,样本点总数 n = 6 × 5 . (ⅰ) 最小号码为 3,只能从编号为 3,4,5,6 这四个球中取 2 只,且有一次抽到 3,因而有利 2×3 1 样本点数为 2 × 3 ,所求概率为 = . 6×5 5 (ⅱ) 最大号码为 3,只能从 1,2,3 号球中取,且有一次取到 3,于是有利样本点数为 2 × 2 ,
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
习题一解答
1. 用集合的形式写出下列随机试验的样本空间与随机事件 A : (1) 抛一枚硬币两次,观察出现的面,事件 A = {两次出现的面相同} ; (2) 记录某电话总机一分钟内接到的呼叫次数,事件 A = { 一分钟内呼叫次数不超过 3 次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件 A = { 寿命在 2000 到 2500 小时之间}。 解 (1) Ω = {( +,+), (+,−), (−,+), (−,−)} , A = {(+,+), (−,−)} . (2) 记 X 为一分钟内接到的呼叫次数,则 Ω = { X = k | k = 0,1,2,LL} , A = { X = k | k = 0,1,2,3} . (3) 记 X 为抽到的灯泡的寿命(单位:小时) ,则 Ω = { X ∈ (0, + ∞)} , A = { X ∈ (2000, 2500)} . 2. 袋中有10 个球, 分别编有号码 1 至 10, 从中任取 1 球, 设 A = {取得球的号码是偶数}, B = {取 得球的号码是奇数}, C = {取得球的号码小于 5},问下列运算表示什么事件: (1) A U B ;(2) AB ;(3) AC ;(4) AC ;(5) A C ;(6) B U C ;(7) A − C . 解 (1) A U B = Ω 是必然事件; (2) AB = φ 是不可能事件; (3) AC = {取得球的号码是 2,4}; (4) AC = {取得球的号码是 1,3,5,6,7,8,9,10}; (5) A C = {取得球的号码为奇数,且不小于 5} = {取得球的号码为 5,7,9}; (6) B U C = B I C = {取得球的号码是不小于 5 的偶数} = {取得球的号码为 6,8,10}; (7) A − C = AC = {取得球的号码是不小于 5 的偶数}={取得球的号码为 6,8,10} 1 1 3 3. 在区间 [0 , 2] 上任取一数,记 A = x < x ≤ 1 , B = x ≤ x ≤ ,求下列事件的表达式: 2 2 4 (1) A U B ;(2) A B ;(3) AB ;(4) A U B . 1 3 解 (1) A U B = x ≤ x ≤ ; 2 4 1 (2) A B = x 0 ≤ x ≤ 或 1 < x ≤ 2 I B = 2 (3) 因为 A ⊂ B ,所以 AB = φ ; 1 1 3 x ≤ x ≤ U x1 < x ≤ ; 2 2 4
工程数学“概率论与数理统计”测试题参考答案
工程数学期末复习要点邹斌现在主要讨论工程数学这门课程的考核要求,08秋工程数学考试形式为半开卷,行考比例占30%,我们将分章节复习。
本课程分线性代数和概率统计两部分共7章内容。
分别是行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础。
第一部分线性代数一、行列式复习要求(1)知道n阶行列式的递归定义;(2)掌握利用性质计算行列式的方法;(3)知道克莱姆法则。
考核要求:行列式性质的计算(选择或填空)二、矩阵复习要求(1)理解矩阵的概念,了解零矩阵、单位矩阵、数量矩阵、对角矩阵、上(下)三角矩阵、对称矩阵的定义,了解初等矩阵的定义;(2)熟练掌握矩阵的加法、数乘矩阵、乘法、转置等运算;(3)掌握方阵乘积行列式定理;(4)理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件;(5)熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单的矩阵方程的方法;(6)理解矩阵秩的概念,掌握矩阵秩的求法;(7)会分块矩阵的运算。
考核要求:(1)矩阵乘法(选择或填空)(2)求逆矩阵(3阶)初等行变换法(计算题)(3)求矩阵的秩(等于阶梯形矩阵的非零行数)三、线性方程组复习要求(1)掌握向量的线性组合与线性表出的方法,了解向量组线性相关与线性无关的概念,会判别向量组的线性相关性;(2)会求向量组的极大线性无关组,了解向量组和矩阵的秩的概念,掌握求向量组的秩和矩阵的秩的方法;(3)理解线性方程组的相容性定理,理解齐次线性方程组有非零解的充分必要条件。
熟练掌握用矩阵初等行变换方法判断齐次与非齐次线性方程组解的存在性和惟一性;(4)熟练掌握齐次线性方程组基础解系和通解的求法;(5)了解非齐次线性方程组解的结构,掌握求非齐次线性方程组通解的方法。
考核要求:(1)线性相关性(选择或填空)(2)会求向量组的极大线性无关组(计算题)(3)线性方程组的判定定理(选择或填空)(4)熟练掌握齐次和非齐次方程组的基础解系和通解的求法(计算题)四、矩阵的特征值及二次型复习要求(1)理解矩阵特征值、特征多项式及特征向量的定义,掌握特征值与特征向量的求法;(2)了解矩阵相似的定义,相似矩阵的性质;(3)知道正交矩阵的定义和性质;(4)理解二次型定义、二次型的矩阵表示、二次型的标准形,掌握用配方法化二次型为标准形的方法;(5)了解正定矩阵的概念,会判定矩阵的正定性。
《应用概率统计》复习题及答案
工程硕士《应用概率统计》复习题考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。
1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ⋃。
解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ⊂== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=⋃P B P2.设随机变量)1(,95)1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。
解:.816531-1-10)(Y -11)(Y ),31,4(~,31,94-1-1-10)(X -1)1(,95)1(),,2(~422====≥=====≥=≥)(故从而解得)所以()(而且P P b Y p p p P X P X P p b X3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其4.设随机变量Y 服从参数21=λ的指数分布,求关于x 的方程0322=-++Y Yx x 没有实根的概率。
解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 22<+<=∆,故所求的概率为}6Y P{20}128Y -P{Y 2<<=<+,而Y 的概率密度⎪⎩⎪⎨⎧≤>=0,00,21f(y)21-y y e y ,从而36221-621-1dy 21f(y)dy 6}Y {2e e e P y ===<<⎰⎰5.设离散型随机变量X 的可能取值为 -1,0,1,3,相应的概率依次为,167165163161,,, 求概率)2(≤X P 。
解:由题意可知,1673}P{X ,1651}P{X ,1630}P{X ,161-1}P{X ======== 所以.169167-13}P{X -11}P{X 0}P{X -1}P{X 2)|X P(|=====+=+==≤9. 现有两箱同类产品,第一箱装50件,其中有10件一等品;第二箱装30件,其中有18件一等品。
《概率论与数理统计》第三版课后习题答案第9章
n
xi yi
i 1 n
xi 2
i 1
n
i 1
xi
n
xi 2
i 1
yi
n
ci yi ,
i 1
你仅购买了个人使用权
这里 ci
xi
n
是常数。所以 ˆ 也服从正态分布。
xi2
i 1
注意到,误差服从高斯-马尔科夫假设,即 1, 2 ,, n 不相关(正态分布不相关等价于 独立),从而 y1, y2 ,, yn 也相互独立,所以
你仅购买了个人使用权
《概率论与数理统计》习题解答 王松桂、张忠占、程维虎等,第三版,科学出版社
第九章
9.1 对一元线性回归模型
yi xi i , i 1,2,3,, n
它不包含常数项,假设误差服从高斯-马尔科夫假设。
(1)求斜率 的最小二乘估计 ˆ ;
(2)若进一步假设误差 i ~ N (0, 2 ) ,试求 ˆ 的分布; (3)导出假设 H0 : 0 的检验统计量。 解:(1)本题也采用 9.1.1 小节的方法,求斜率 的最小二乘估计 ˆ 。
0.24 0.24 0.24 0.25 0.26 0.29 0.32
56 53 53 54.5 61.5 59.5 64
(1)求 0 和 1 的最小二乘估计,并写出经验回归方程; (2)作回归方程的显著性检验,并列出方差分析表(取 0.05 ); (3)求 0 和 1 各自的置信系数为 0.95 的置信区间。
假设这些数据服从一元线性回归模型
yi 0 1xi i , i ~ N (0, 2 ) , i 1,2,3,,92
序 X(%) 号
1 0.03 2 0.04 3 0.04 4 0.05 5 0.05 6 0.05 7 0.05 8 0.06 9 0.06 10 0.07 11 0.07 12 0.07 13 0.08 14 0.08 15 0.08 16 0.08 17 0.08 18 0.08 19 0.08 20 0.09 21 0.09 22 0.09 23 0.09 24 0.09 25 0.09
概率与数理统计1-9章 课后习题解答
第 一 章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年,英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题 一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()AB A B AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率.解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为kn C ,而全为白球的取法有k m n C -种,故所求概率为k n k mn C C --1.解法二:令i A —第i 人中奖,,.,2,1k i =B —无一人中奖,则k A A A B 21=,注意到k A ,,A ,A 21不独立也不互斥:由乘法公式)()()()()(11213121-=k k A A A P A A A P A A P A P B P(1)(2)(1)121n m n m n m n m k n n n n k -------+=⋅⋅---+!,1k k n m n m k k n n C C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少?解:122585410()C C C P A C -= 7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率.解:此为几何概率问题:]11[,-=Ω,所求事件占有区间 ]5151[,-,从而所求概率为121525P ⋅==. 8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDE OAB SS =. 9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本空间占有区域Ω,两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P AB . 解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--=.12.假设()0.4P A =,()0.7P AB =,若A 、B 互不相容,求()PB;若A 、B 相互独立,求()P B . 解:若A 、B 互不相容,()()()0.70.40.P B P A B P A =-=-=;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5.13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容)故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率.解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A B P A P AB P 16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P且5()8P BC =,求()P A B . 解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因 25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程 085)(3)]([22=+-C P C P 151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-==17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生).解:设事件i A —第i 次试验中A 出现(1,2,,)i n =,∵(),()1i i P A P A εε==-,(1,2,,)i n =,∴n 次试验中,至少出现A 一次的概率为1212()1()n n P A A A P A A A =-121()n P A A A =- 121()()()n P A P A P A =-⋅⋅⋅(独立性) 1(1)n ε=--∴12lim ()1n n P A A A →∞=,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-1()1()()() P ABC P A P B P C =-=-42331..5345=-=. 19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --; (2)同理得2312[1(1)]p p --. 20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496 P A BC P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A=,求()P A B . 解:由()0.4B P A =得 ()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=, ()()()()0.82P A B P A P B P AB =+-=.22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P AB P B B B P P A A P A P A ===== 23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内 发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为 ()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=. 24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球.1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ==== 25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********⨯+⨯=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=i B {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上} 则%1)(%,4)(%,95)(321===B P B P B P%70)(%,80)(%,90)(321===B A P B A P B A P 所以)()()()()()()(332211B A P B P B A P B P B AP B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i 分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,A P B =32()0.7,()0.85A A P P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()A A A P A P B P P B P P B P B B B =++0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ==== 28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A A P P B B ==()0.0005,P B =所求概率为().B P A()0.10,()0.9995.AP P B B ==由Bayes 公式得 ()()()()()()()AP B P BB P A A A P B P P B P B B=+0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯ 29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率.解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1AA A P P PB B B ===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯=2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯=3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是 (1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i ii P B P A B P B A P B P A B ====∑. 30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率.解:A ——需经调试 A ——不需调试 B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P(1)由全概率公式:)()()()()(ABP A P A B P A P B P ⋅+⋅= %941%70%80%30=⨯+⨯=. (2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P B A P . 31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率.解:所求的概率为234(1)p p -.32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率解:所求的概率为11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅=34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率. 解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =, 则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222n n n n r n r n r n r n r C P n C -----==.第 二 章思 考 题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g 则随机变量)(X g Y =既非离散型又非连续型.事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y ;当10<≤y 时,()2))(()(y y X P y X g P y F Y =≤=≤= 于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==Y Y F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量.4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么?答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<. 解:1221{}{}{}P x X x P X x PX x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形.解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示: 由()k kx xF x P≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩ 0 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}i i A =第次取得废品,{}i A i =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====, 21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(), 3212311123299{2}()0.0409121110220A A P X P A A A P A P P A A A ===⋅⋅=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A ====⋅⋅⋅=≈()()()()所以X8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i 成正比,即 1,2,,10P X i ki i ===(),(),求k . 解:由条件 1,2,,P X i k ii ===(),(),由分布律的性质1011ii p==∑,应有1011i ki ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N .解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率.解:设~()X P λ,由题意:)1(=X P =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为2022!0)0(--===e e X P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下: 99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ⎛⎫⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)XB ,X 的分布律为{})50,,2,1,0(31325050=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kk k14.设随机变量X 的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =.解:(3,)Yp B ,1211{}224p P X xdx =≤==⎰,由二项概率公式 223139{2}()()4464P Y C ===. 15.已知X 的概率密度为2,()0,x ax e x f x x λ-⎧>=⎨≤⎩,试求: (1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率.解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx +∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2x xxe F x ax edx x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩ .(3)511(0)()(0)12P X F F eλλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x Xx ++=有实根的概率.解: “方程210x Xx ++=有实根”即{2}X >,故所求的概率为{2}P X >=45. 17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩解得:1,1a b ==-18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内 的概率达到最大,求λ.解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e ,即021=--λe ,∴.2ln =λ 19.设随机变量(1,4)XN ,求(0 1.6)P X ≤<,(1)P X <. 解:01 1.61(0 1.6)()22P X PX --≤<=≤<1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则 (1)123,,A A A 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭,同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫ ⎪⎝⎭⎛⎫== ⎪⎝⎭0.5760.0010.0090.062⨯==. 21.随机变求2Y X =的分布律解:. 22.变量X 服从参数为0.7的0-1分布,求2X 及22X X -的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22X X -的可能值为1-和0,由于2{}P X u =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P X X P X -=-===,2{20}{0}0.3P X X P X -====,可得22X X -的概率分布为23.X 概率密度函数为21()(1)X f x x π=+,求2Y X =的概率密度函数()Y f y .解:2y x =的反函数为2yx =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4内概率密度()Y f y . 解法一(分布函数法) 当0y <时,()0,4Y F y y =>时()1Y F y =,当04y ≤≤时, ()(Y XF y P X F ==从而 ()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x =在()0,2单增,由于反函数x =在()0,4可导,'y x =,从而由公式得()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余25. ,0)0 ,0x X e x f x x -⎧≥=⎨<⎩(,求X Y e =的密度.解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Y f y ey y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)x y e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1X Y f y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量X Y e =和ln Z X =的概率密度()Y f y 和()Z f z .解:X 的密度为1, 01() x f x ⎧<<⎪=⎨⎪⎩0,若其它,(1)函数x y e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y ey ⎧<<⎪=⎨⎪⎩0,其它. (2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数z x e -=,且0Z >,从而()(), () z z X Z f e e f z -->⎧'⎪=⎨⎪⎩z 00,其它 0, zz e ->⎧⎪=⎨⎪⎩0,其它. 27. 设()X f x 为X 的密度函数,且为偶函数,求证X -与X 有相同的分布. 证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--, ()()()()1Y X X p y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'Y X X X p y p y y p y p y =--=-=.28.设随机变量X 服从正态分布),(2σμN ,0,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y =. 求证Y 服从区间]1,0[上的均匀分布. 证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f x F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F -存在,又因1)(0≤≤x F ,因此Y 的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y F F ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章 思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P 2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P . 由此可看出,即使两个离散随机变量Y X 与相互独立同分布, Y X 与一般情况下也不会以概率1相等. 2解:由∑∑ijijp=1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立. 7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P3解: )()1,1(11AB P Y X P p ====,121)()(==A B P A P )()0,1(12B A P Y X P p ====613241)()(=⋅==A B P A P因为: ,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p 12812161121122=---=p ,结果如表所示. 4 解: X 的边缘分布律为32}2{,31}1{====X P X PY 的边缘分布律为21}2{,21}1{====X P Y P 1=Y 的条件下X 的条件分布为0}1{}1,1{}11{=======Y P Y X P X P1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ====== .1,0;1,0}{}{=====j i j Y P i X P于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故 ,112}01{,119}00{======X Y P X Y P 又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x a x b x a ab x f X ,0,1)(, )(y f Y =⎪⎩⎪⎨⎧><≤≤-d y cy d y c d c ,0,1 随机变量X 及Y 是独立的.7 解 (1)),(y x f =y x y x F ∂∂∂),(2=)9)(4(6222y x ++π (2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg =)22(1xarctg +ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxdx f X X )4(22x +π同理可得随机变量Y 的边分布函数=+∞=),()(y F y F Y )32)(22(12y arctg ++ππππ=)32(1yarctg +ππ Y 的边缘分布密度函数==)()(y F dy dy f y Y )9(32y +π (3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立. 8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x e y f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====120102110222222222,12121}2{y x r r y x e erdred dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x r r y x e ee rdr e d dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x r r y x e erdred dxdye Z P πθππ所以,Z 的分布律为:.1}2{,}1{,}0{212212-----==-====eZ P eeZ P e Z P9解:(1)由⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121Adxdy e A y x ,即 12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x (2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy e y x =x e 33-,当0>y ,)(y f Y =⎰∞),(dx y x f =⎰∞+-0)43(12dx e y x =y e 44-,可知边缘分布密度为:)(x f X =⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12e e dxdy e y x10解 因为⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=101021dy y xdx c , 6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=10226x dy xy,所以)(x f X =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=122,36y dx xy ,所以)(y f Y =⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x f X )(y f Y ,所以X 与Y 相互独立. 11解 由 2ln 12211===⎰e e D x dx xS当21e x ≤≤时,,2121),()(1010xdy dy y x f x f x x X ===⎰⎰其它)(x f X =0. 所以:.41)2(=X f 12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=xx x x dy 10,21)(y f Y =⎰<<--=111,11yy y dx故)(y x f Y X =)(),(y f y x f Y =⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f X Y =)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X )(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx x dy y f dx x f dxdy y f x f Y X P )()()()(}{⎰⎰⎰⎰>∞+∞-∞+==>yx ydx x f dy y f dxdy y f x f Y X P )()()()(}{ 交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dx x f )()(⎰⎰∞+∞+∞-ydx x f dy y f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P . 14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p +()1p --p )1p -=9712=+-p p 解得:,32,3121==p p 因而a 有两个值. 由于2121}{)(1-==≤=⎰a dx a X P A P a ,所以,当311=p 时,由21-a =31得35=a当322=p 时,由21-a =32得37=a . 15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P ,41}2{}2{}4{=====+Y P X P Y X P 故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P(2)由已知易得 ;21}42{,21}22{====X P X P16解 由已知得所以有17证明:对任意的,,,1,021n n k += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n i k i k n i n i i nq p C q p C 0)(2211 =∑=-+-ki k n n k ik n i n q p C C 02121)((利用组合公式 ∑=+-=ki k n m i k n im C C C)=kn n k kn n qp C -++2121即Y X Z +=~),(21p n n b +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z f dx x z f x f z f Y Y X Z -=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。
应用概率统计习题九答案
习题9答案9.1 假定某厂生产一种钢索,其断裂强度5(10)X Pa 服从正态分布2(,40),N μ从中抽取容量为9的样本,测得断裂强度值为793, 782, 795, 802, 797, 775, 768, 798, 809据此样本值能否认为这批钢索的平均断裂强度为580010Pa ⨯?(0.05α=)解:已知791x =,2~(,40),X N μ 9n =, 0.05α=0:800H μ= 1:800H μ≠取统计量~(0,1)Z N =,故7918000.675403z -== 由于0.025 1.96z =,且27918000.675403z z α-==<又因为0H 的拒绝域是2z z α>所以接受0H ,拒绝1H .即可以认为平均断裂强度为580010Pa ⨯.9.3 某地区从1975年新生的女孩中随机抽取20个,测量体重,算得这20个女孩的平均体重为3160g ,样本标准差为300g ,而根据1975年以前的统计资料知,新生女孩的平均体重为3140g ,问1975年的新生女孩与以前的新生女孩比较,平均体重有无显著性的差异?假定新生女孩体重服从正态分布,给出0.05α=. 解:由已知3160,300x s ==,20n =,0.05α=0:3140H μ= 1:3140H μ≠取统计量2~(1)T t n α=-,0.298T ===0.0252(19)(19) 2.0930t t α==所以0.02520.298 2.0930(19)(19)T t t α=<==,不在拒绝域2(19)T t α>中,故接受0H ,拒绝1H .即体重无明显差异.9.5 现要求一种元件的使用寿命不得低于1000h ,今从一批这种元件中随机的抽取25件,测定寿命,算得寿命的平均值为950h ,已知该种元件的寿命2~(,),X N μσ已知100σ=,试在检验水平0.05α=的条件下,确定这批元件是否合格?解:已知 25n =,950x =,100σ=,0.05α=0:1000H μ= 1:1000H μ<取统计量~(0,1)Z N=,故95010002.51005Z -==-由于0.05 1.645z z α==,且95010002.5 1.645100Z z α-==-<-=-又因为0H 的拒绝域是Z z α<-,所以拒绝0H ,接受1H . 即认为这批元件不合格.9.8 某厂生产的铜丝,要求其拉断力的方差不超过216()kg ,今从某日生产的铜丝中随机的抽取9根,测得其拉断力为(单位:kg )289 , 286 , 285 , 284 , 286 , 285 , 286 , 298 , 292设拉断力总体服从正态分布,问该日生产的铜丝的拉断力的方差是否合乎标准?(0.05α=).解:由已知有9n =,287.9x =, 4.51s =,220.36s =,0.05α=有假设 20:16H σ≤ 21:16H σ> 取统计量222(1)820.3610.1816n S χσ-⨯==≈查表得 220.05(8)(8)15.507αχχ==, 由于 22(8)αχχ<又因为 0H 的拒绝域是22(1)n αχχ>- 所以接受0H , 拒绝1H ,即认为是合乎标准的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题9答案
9.1 假定某厂生产一种钢索,其断裂强度5(10)X Pa 服从正态分布2(,40),N μ从中抽取容量为9的样本,测得断裂强度值为
793, 782, 795, 802, 797, 775, 768, 798, 809
据此样本值能否认为这批钢索的平均断裂强度为580010Pa ⨯?(0.05α=) 解:00:800H μμ== 10:H μμ≠ 选取检验统计量~(0,1)Z N
=, 对于0.05α=,得0H 的拒绝域2
1.96W z z α⎧
⎫=>=⎨⎬⎩⎭ 计算得7918000.675 1.96403
z -==< 所以接受0H ,拒绝1H .即可以认为平均断裂强度为580010Pa ⨯.
9.3 某地区从1975年新生的女孩中随机抽取20个,测量体重,算得这20个女孩的平均体重为3160g ,样本标准差为300g ,而根据1975年以前的统计资料知,新生女孩的平均体重为3140g ,问1975年的新生女孩与以前的新生女孩比较,平均体重有无显著性的差异?假定新生女孩体重服从正态分布,给出0.05α=.
解:00:3140H μμ== 10:H μμ≠
选取检验统计量~(1)T t n
=-, 对于0.05α=,得0H 的拒绝域2
(19) 2.0930W T t α⎧
⎫=>=⎨⎬⎩⎭
计算得 0.298 2.0930T ===<
故接受0H ,拒绝1H .即体重无明显差异.
9.5 现要求一种元件的使用寿命不得低于1000h ,今从一批这种元件中随机的抽取25件,测定寿命,算得寿命的平均值为950h ,已知该种元件的寿命2~(,),X N μσ已知100σ=,试在检验水平0.05α=的条件下,确定这批元件是否合格?
解:00:1000H μμ≥= 10:H μμ<
选取检验统计量~(0,1)Z N =, 对于0.05α=,得0H 的拒绝域{}1.645W Z z α=<-=-
计算得 9501000 2.5 1.6451005
Z -==-<- 所以拒绝0H ,接受1H . 即认为这批元件不合格.
9.8 某厂生产的铜丝,要求其拉断力的方差不超过216()kg ,今从某日生产的铜丝中随机的抽取9根,测得其拉断力为(单位:kg )
289 , 286 , 285 , 284 , 286 , 285 , 286 , 298 , 292
设拉断力总体服从正态分布,问该日生产的铜丝的拉断力的方差是否合乎标准?(0.05α=).
解: 2200:16H σσ≤= 2210:H σσ>
选取检验统计量2
2220(1)~(1)n S n χχσ-=-
对于0.05α=,得0H 的拒绝域{}
22(8)15.507W αχχ=>= 计算得 2
220(1)820.3610.1815.50716
n S χσ-⨯==≈< 所以接受0H , 拒绝1H ,即认为是合乎标准的。
9.11 某厂使用两种不同的原料A,B 生产同一类型产品,各在一周内的产品中取样进行分析比较.取使用原料A 生产的产品的样品220件,测得平均重量 2.46A x kg =,样本的标准差0.57A s kg =;取使用原料B 生产的产品的样品205件,测得平均重量2.55B x kg =,样本的标准差0.48B s kg =.设两总体分别服从21(,),N μσ22(,),N μσ两样本独立.问使用原料A 与使用原料B 生产的产品的平均重量有无显著差别?(0.05α=)
解:012:H μμ= 112:H μμ≠
选取检验统计量12t (2)t n n =+- 对于0.05α=,得0H 的拒绝域22
(423) 1.96W t t z αα⎧
⎫=>≈=⎨⎬⎩⎭
计算得0.5285s ω=≈
t 1.7542 1.96=≈<
所以接受0H , 拒绝1H ,即认为平均重量无明显差异。