数学物理方法(10)--期末考试试卷(4)答案
数学物理方法习题解答(完整版)
![数学物理方法习题解答(完整版)](https://img.taocdn.com/s3/m/5879ed1af46527d3250ce000.png)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法期末考试答案
![数学物理方法期末考试答案](https://img.taocdn.com/s3/m/9b259d6ee87101f69e3195cc.png)
天津工业大学(2009—2010学年第一学期)《数学物理方法》(A)试卷解答理学院)特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。
本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。
一填空题(每题3分,共10小题)1. 复数 i e +1 的指数式为:i ee ;三角形式为:)1sin 1(cos i e + .2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 .3. 函数在一点可导与解析是 不等价的 (什么关系?).4. 给出矢量场旋度的散度值,即=⨯∇⋅∇f0 .-------------------------------密封线----------------------------------------密封线----------------------------------------密封线---------------------------------------学院专业班学号姓名装订线装订线装订线5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属于该区域的点,这样的区域称为 复通区域 .6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 .7. δ函数的挑选性为 ⎰∞∞-=-)()()(00t f d t f ττδτ.8. 在数学上,定解条件是指 边界条件 和初始条件 .9. 常见的三种类型的数学物理方程分别为 波动方程 、输运方程 和 稳定场方程 .10. 写出l 阶勒让德方程: 0)1(2)1(222=Θ++Θ-Θ-l l dx d x dxd x .二计算题(每小题7分,共6小题)1. 已知解析函数)(z f 的实部xy y x y x u +-=22),(,求该解析函数(0)0(=f ).解: y x u x +=2,x y u y +-=2,2=xx u ,2-=yy u . 0xx yy u u +=, (,)u x y 是调和函数. 2分 利用柯西-黎曼条件x y u v =,x y v u =-, 即,x y v x -=2,y x v y +=2, 2分 于是,⎰+++-=),()2()2(y x Cdy y x dx x y v⎰⎰+++-+++-=)0,()0,0(),()0,()2()2()2()2(x y x x C dy y x dx x y dy y x dx x yC x y xy +-+=22222. 2分所以,)21()(2iz z f -=. 1分2. 给出如图所示弦振动问题在0x 点处的衔接条件. 解:),0(),0(00t x u t x u +=-, 2分0sin sin )(21=--ααT T t F , 2分又因为),0(sin 011t x u tg x -=≈αα, ),0(sin 022t x u tg x +-=≈αα, 2分 所以,)(),0(),0(00t F t x Tu t x Tu x x -=--+. 1分3. 由三维输运方程推导出亥姆霍兹方程.解:三维输运方程为02=∆-u a u t (1分)分离时间变数t 和空间变数r,以)()(),(r v t T t r u= (2分) 上式代入方程,得v vTa T ∆='2 (1分)令上式等于同一常数2k -, 22k v v Ta T -=∆=' (2分) 则得骇姆霍兹方程为02=+∆v k v (1分)4. 在00=z 邻域把m z z f )1()(+=展开(m 不是整数).解:先计算展开系数:m z z f )1()(+=, m f 1)0(=;)(1)1()(1z f zmz m z f m +=+='-; m m f 1)0(='; 2)1)(1()(-+-=''m z m m z f m m m f 1)1()0(-=''; 5分)()1()1(2z f z m m +-=,所以,m z )1(+在00=z 邻域上的泰勒级数为+-++=+21!2)1(1!11)1(z m m z m z m m m m ⎭⎬⎫⎩⎨⎧+-++= 2!2)1(!111z m m z m m . 2分5. 计算⎰=-22sin 21z zzdz.解: 因为4ππ±→n z (n 为整数,包括零),有0)si n 21(2→-z ,因此,40ππ±=n z 是极点.但是,在2=z 圆内的极点只有4π±.又由于1分4]sin 21)4[(lim 24πππ-=--→z z z z , 2分4]sin 21)4[(lim 2πππ-=-+-→z z z z , 2分所以, i sf sf i z zdz z 222)]4(Re )4([Re 2sin 21ππππ-=-+=-⎰=. 2分6. 求拉氏变换][cos t L ω,ω为常数. 解: )(21cos t i ti e e t ωωω-+=, s p e L st -=1][ 2分 ∴ ⎥⎦⎤⎢⎣⎡+=-)(21][cos t i t i e e L t L ωωω][21][21t i t i e L e L ωω-+= 2分 ⎥⎦⎤⎢⎣⎡++-=ωωi p i p 1121 2分 22ω+=p p0Re >p 1分求解两端固定均匀弦的定解问题 02=-xx tt u a u 00==x u,0==lx u,)(0x u t ϕ==,)(0x u t t ψ==.解: 设此问题的解为)()(),(t T x X t x u = 代入方程和初始条件,得 02=''-''T X a T X ,0)()0(=t T X ,0)()(=t T l X , 可得,X X Ta T ''=''2, 0)0(=X ,0)(=l X , 令,λ-=''=''X X Ta T 2 所以,⎩⎨⎧===+''0)(,0)0(0l X X X X λ ,(本征值问题)02=+''T a T λ 下面先求解本征值问题:当0<λ时, xxe c e c x X λλ---+=21)(,由初始条件,得 021==c c , 因此,0),(≡t x u ,解无意义.当0=λ时, 21)(c x c x X +=, 同样由初始条件,得 021==c c , 因此,0),(≡t x u ,解无意义.当0>λ时, x c x c x X λλsin cos )(21+=, 由初始条件,得 01=c ,0sin 2=l c λ, 所以,0sin =l λ,即,πλn l = (n 为正整数),因此本征值为:222ln πλ= ,3,2,1=n本征函数为:lxn c x X πsin )(2=, 2c 为任意常数. 10分方程02=+''T a T λ的解为:latn B l at n A t T ππsincos )(+=, 因此,l x n l at n B l at n A t x u n n n πππsin sin cos ),(⎪⎭⎫ ⎝⎛+=, 此问题的通解为:l x n l at n B l at n A t x u t x u n n n n n πππsin sin cos ),(),(11⎪⎭⎫ ⎝⎛+==∑∑∞=∞=, 代入初始条件得∑∞==1)(sinn n x l x n A ϕπ, ∑∞==1)(sin n n x l xn l a n B ψππ, 所以, ⎰=l n d l n l A 0sin )(2ξπξξϕ, ⎰=l n d ln a n B 0sin )(2ξπξξψπ. 10四简答题给出泊松方程,并说明求解此方程的方法、步骤.解: 泊松方程为:),,(z y x f u =∆ 3分 令 w v u +=,取v 唯一特解, 2分 则 0=-=∆-∆=∆f u v u w 2分 然后求解拉氏方程 0=∆w 得w 。
高中物理数学物理法题20套(带答案)及解析
![高中物理数学物理法题20套(带答案)及解析](https://img.taocdn.com/s3/m/53d8c4bbccbff121dc368318.png)
高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
数学物理方法习题解答(完整版)
![数学物理方法习题解答(完整版)](https://img.taocdn.com/s3/m/92944c0543323968011c9292.png)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法第三版答案
![数学物理方法第三版答案](https://img.taocdn.com/s3/m/1b9b452c79563c1ec5da7142.png)
数学物理方法第三版答案【篇一:数学物理方法试卷答案】xt>一、选择题(每题4分,共20分) 1.柯西问题指的是( b ) a.微分方程和边界条件. b. 微分方程和初始条件. c.微分方程和初始边界条件. d. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( d)a.存在性和唯一性. b. 唯一性和稳定性. c. 存在性和稳定性. d. 存在性、唯一性和稳定性.??2u?0,?3.牛曼内问题 ??u 有解的必要条件是( c)??n?f??a.f?0.b.u??0.c.?fds?0. d.?uds?0.???x(x)??x(x)?0,0?x?l4.用分离变量法求解偏微分方程中,特征值问题??x(0)?x(l)?0的解是( b )n?n??n???n??x ).b.( ?x ). a.( ??,cos?,sinllll????(2n?1)?(2n?1)??(2n?1)???(2n?1)??x ).d.( ?x ). c.( ??,cos?,sin2l2l2l2l????22225.指出下列微分方程哪个是双曲型的( d )a.uxx?4uxy?5uyy?ux?2uy?0. b.uxx?4uxy?4uyy?0.c.x2uxx?2xyuxy?y2uyy?xyux?y2uy?0. d.uxx?3uxy?2uyy?0.二、填空题(每题4分,共20分)??2u?2u?2?2?0, 0?x??, t?0?t?x??1.求定解问题?ux?0?2sint, ux????2sint, t?0的解是(2sintcosx).??ut?0?0, utt?0?2cosx, 0?x????2.对于如下的二阶线性偏微分方程a(x,y)uxx?2b(x,y)uxy?c(x,y)uyy?dux?euy?fu?0其特征方程为( a(x,y)(dy)2?2b(x,y)dxdy?c(x,y)(dx)2?0). 3.二阶常微分方程y(x)?或0).4.二维拉普拉斯方程的基本解为( ln1().r1 ),三维拉普拉斯方程的基本解为r113y(x)?(?2)y(x)?0的任一特解y?( jx44x1(x) 3225.已知j1(x)?222sinx, j1(x)?cosx,利用bessel函数递推公式求??x?x23j3(x)?(221221dsinx(sinx?cosx)??x()()). ?xx?xdxx三、(15分)用分离变量法求解如下定解问题2??2u2?u??t2?a?x2?0, 0?x?l, t?0??u??u?0, ?0, t?0 ??xx?l??xx?0?u?x, utt?0?0, 0?x?l.?t?0?解:第一步:分离变量(4分) 设u(x,t)?x(x)t(t),代入方程可得x(x)t(x)x(x)t(t)?ax(x)t(t)??2x(x)at(x)2此式中,左端是关于x的函数,右端是关于t的函数。
数学物理方法期末试题(5年试题含答案)
![数学物理方法期末试题(5年试题含答案)](https://img.taocdn.com/s3/m/886f6199680203d8ce2f249c.png)
………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。
2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。
3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。
4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。
5、 将泛定方程和 结合在一起,就构成了一个定解问题。
只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。
………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。
7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。
(2)()n H x = 。
8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。
数学物理方法参考答案
![数学物理方法参考答案](https://img.taocdn.com/s3/m/b241ee62492fb4daa58da0116c175f0e7cd1190d.png)
数学物理方法参考答案数学物理方法参考答案数学物理方法是一门综合性的学科,它将数学和物理相结合,通过数学方法来解决物理问题。
在物理学的研究中,数学方法起到了至关重要的作用。
本文将为读者提供一些数学物理方法的参考答案,帮助读者更好地理解和应用这些方法。
一、微积分微积分是数学物理方法中最基础也是最重要的一部分。
它包括了导数、积分和微分方程等内容。
在物理学中,微积分可以用于描述物体的运动、求解力学问题、计算电磁场等等。
下面是一些常见的微积分问题的参考答案:1. 求解函数的导数:对于一个函数f(x),求它的导数f'(x)。
可以使用导数的定义,即f'(x) =lim(h→0)[f(x+h)-f(x)]/h。
也可以使用求导法则,如常数法则、幂法则、指数函数法则、对数函数法则等。
2. 求解定积分:对于一个函数f(x),求它在区间[a, b]上的定积分∫[a, b]f(x)dx。
可以使用定积分的定义,即将区间[a, b]划分为若干小区间,然后对每个小区间求和,再取极限。
也可以使用定积分的性质,如线性性、区间可加性、换元积分法等。
3. 求解微分方程:对于一个微分方程,求它的通解或特解。
可以使用常微分方程的解法,如变量分离法、齐次方程法、一阶线性微分方程法等。
也可以使用偏微分方程的解法,如分离变量法、特征线法、变换法等。
二、线性代数线性代数在数学物理方法中也扮演着重要的角色。
它包括了矩阵、向量、线性方程组等内容。
在物理学中,线性代数可以用于描述物体的旋转、变换、矢量运算等。
下面是一些常见的线性代数问题的参考答案:1. 求解线性方程组:对于一个线性方程组Ax=b,求它的解x。
可以使用高斯消元法,将线性方程组转化为阶梯形或行最简形,然后逐步求解。
也可以使用矩阵的逆,即x=A^(-1)b。
2. 求解特征值和特征向量:对于一个矩阵A,求它的特征值和特征向量。
可以使用特征方程,即det(A-λI)=0,其中λ为特征值,I为单位矩阵。
【物理】物理数学物理法题20套(带答案)含解析
![【物理】物理数学物理法题20套(带答案)含解析](https://img.taocdn.com/s3/m/4d14076db80d6c85ec3a87c24028915f804d8433.png)
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
数学物理方法试4答案
![数学物理方法试4答案](https://img.taocdn.com/s3/m/63e01ec29ec3d5bbfd0a74ef.png)
∑ [Tn ''(t ,τ ) +
n =1
n 2π 2 a 2 nπ x =0 Tn (t ,τ )]sin 2 l l
⇒ Tn (t ,τ ) = An cos
nπ a(t − τ ) nπ a (t − τ ) + Bn sin l l nπ a(t − τ ) nπ a (t − τ ) nπ x , (2) + Bn sin ]sin l l l
用冲量定理法,先求解
vtt − a 2 vxx = 0 v x =0 = 0, v x =l = 0 v t =τ + 0 = 0, vt t =τ + 0 = A sin ωt
参照边界条件,设 v( x, t ,τ ) =
∞
(1)
∞
∑ T (t ,τ ) sin
n =1 n
nπ x ,并代入泛定方程得: l
u ( x, t ,τ ) = ∫ v( x, t ,τ )dτ
0
=∫
t ∞
0
∑− n π
n =1
l2
2
2
a
A sin(ωτ )[(−1) n − 1]sin
nπ a(t − τ ) nπ x sin dτ l l
Al [(−1) n − 1] nπ x t nπ a(t − τ ) = ∑− sin sin(ωτ ) sin dτ 2 2 ∫ 0 nπ a l l n =1
则 f ( z ) = ln z + 1 (2) 由 C − R 条件可得:
∂u ∂v ∂u ∂v = = 3x 2 − 3 y 2 + 1 = − = −6 xy ∂x ∂y ∂y ∂x ∂u ∂u du = dx + dy = (3 x 2 − 3 y 2 + 1)dx + (−6 xy )dy ∂x ∂y u = x3 − 3 xy 2 + x + C f ( z ) = u + iv = x3 − 3 xy 2 + x + C + i3 x 2 y − iy 3 + iy = z3 + z + C f (0) = C = 2
数学物理方法试卷
![数学物理方法试卷](https://img.taocdn.com/s3/m/9950d408effdc8d376eeaeaad1f34693daef10e3.png)
数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。
本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。
一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。
2. 请用微分方程求解y'' + 4y = 0,并给出其特解。
3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。
本试卷针对数学物理方法的知识进行了全面的考察。
选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。
数学物理方法期末考试卷与解答
![数学物理方法期末考试卷与解答](https://img.taocdn.com/s3/m/bd08f82ca45177232f60a26c.png)
华南师范大学信息光电子科技学院2008-2009年(一)学期末考试试卷光电工程系《数学物理方法》试卷(A 卷)参考答案注:本试卷共一页,共八大题。
答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废! 可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f e F xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。
(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。
解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。
二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件xy x v y y x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)du (x,y ) =u x (x,y )d x + u y (x,y )dy = cos x ch y dx + sin x sh y dy=d (sin x ch y ) f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。
山东大学物理学院 数学物理方法 2022-2023期末试题及解析
![山东大学物理学院 数学物理方法 2022-2023期末试题及解析](https://img.taocdn.com/s3/m/287c9530773231126edb6f1aff00bed5b9f373bb.png)
《数学物理方法》课程考试大纲2022-2023山东大学物理学院 数学物理方法期末试题一、 填空题(每题3分,共27分)1. 已知zz =cos (aa +iibb ),z 的代数表达式为________________2. 指出多值函数�(zz −aa )(zz −bb )的支点和阶数___________3. 已知级数∑aa nn xx nn ∞nn=0的收敛半径为A ,试问级数∑aa nn √1+bb nn nnxx nn ∞nn=0(|bb |<1)的收敛半径为_____________4.ssss nn 2zz zz 3的极点为_____,且为______ 阶极点5. 利用柯西公式计算∮zz 2−zz+1zz 2(zz−1)ddzz |zz |=2_______________6. 连带勒让德多项式的正交代数表达式为_______________7. 计算留数1(zz 2+1)2_________________________8. 从t=a 持续作用到t=b 的作用力ff (tt ),可以看作许多前后相继的瞬时力的总和,其数学表达形式为__________9. ∫3δδ(xx −ππ)[ee 2xx +cccccc xx ]ddxx 10−10=_________________ 二、 简算题(每题5分,共15分)1. 将函数ff (zz )=1zz 2−3zz+2,在区域0<|zz −1|<1上展开为洛朗级数 2. �cos mmxx(xx 2+aa 2)2d xx ∞−∞,m>03. 已知解析函数ff =uu +iiνν,而uu =xx 3−3xxyy 2,试求ff三、 (8分)用级数法解微分方程yy ′′+xxyy ′+yy =0四、 (10分)在圆域ρρ<ρρ0上求解泊松方程的边值问题�ΔΔuu =aa +bb (xx 2−yy 2)uu ρρ=pp 0=cc五、 (15分)设有一均匀球体,在球面上的温度为cos 2θθ,试在稳定状态下求球内的温度分布(已知,PP 0(xx )=1,PP 1(xx )=xx , PP 2(xx )=12(3xx 2−1))六、 (10分)利用拉普拉斯变换解RC 电路方程:�RRRR +1CC �RR dd tt tt=EE 0sin ωωttRR (0)=0七、 (15分)计算:⎩⎨⎧ðð2uu ððtt 2−aa 2ðð2uuððxx2=AA cos ππxx ll sin ωωttuu |xx=0=0, uu |xx=ll =0uu |tt=0=φφ(xx ), uu tt |tt=0=ψψ(xx )2022-2023 数学物理方法期末试题 参考答案一、 填空题(每题3分,共27分)1.【正解】 12(ee bb +ee −bb )cos aa +i2(ee −bb −ee bb )sin aa 【解析】cos (aa +i bb )=ee ss (aa+ss bb )+ee −ss (aa+ss bb )2=12(ee −bb ee ss aa+ee bb ee −ss aa )=12[e −bb(cos aa +isin aa )+e bb (cos aa −isin aa )]=12[(e bb+e −bb )cos aa +i(e −bb −e bb )sin aa ]=12(ee bb +ee −bb)cos aa +i 2(ee −bb−ee bb )sin aa 2.【正解】支点:z=a 、b 、∞;皆为一阶支点【解析】注意到函数为12次,且当z=a 、b 时函数置零,z=∞为熟知的支点,阶数皆为2−1=1 3.【正解】A【解析】由根值判别法,幂级数的收敛区间为ll ii ll nn→∞�aa nn ⋅(1+bb nn )nn⋅xxxx (−1,1)而|bb |<1⇒ll ii ll nn→∞√1+bb nn nn=1故收敛半径保持不变,仍为A 4.【正解】zz =0;一阶 【解析】ll ii llzz→0ssss nn 2zz zz 3→∞,且ll ii ll zz→0zz ⋅ssss nn 2zz zz 3=1故zz =0为一阶极点5.【正解】2πi注意到原函数的极点为zz =0和zz =1,且分别为2阶与一阶极点,故上述积分即为II =2ππii �Re cc�ff (zz ),0]+Re cc [ff (zz ),1]��而Re cc [ff (zz ),0]=ll ii ll zz→0dd �zz 2−zz +1zz −1�ddzz=0Re cc [ff (zz ),1]=ll ii ll zz→1zz 2−zz +1zz 2=1因此II =2ππii6.【正解】�PP ll mm (xx )⋅PP kk mm (xx )ddxx =01−1(ll ≠kk ) 7. 【正解】Re cc [ff (zz ),ii ]=ll ii ll zz→ss dd �1(zz +ii )2�ddzz=−2[2ii ]−3Re cc [ff (zz ),−ii ]=ll ii ll zz→−ss dd �1(zz −ii )2�ddzz=−2[−2ii ]−38.【正解】∫ff (ττ)1−1δδ(tt −ττ)ddττ 9.【正解】ee 2ππ−1【解析】由δδ函数的挑选性,上述积分即为 (ee 2xx +cccccc xx )|xx=ππ=ee 2ππ−1 二、 简算题(每题5分,共15分)1.【解析】在区域0<|zz −1|<1内ff (zz )=1zz 2−3zz +2=−12⋅11−zz 2−1zz −1=−12⋅11−zz 2−1zz ⋅11−1zzff (zz )=−�12kk+1zz kk ∞kk=0−�zz −(kk+1)∞kk=0 =−�zz kk−1kk=−∞−�12kk+1zz kk∞kk=02.【解析】由约旦引理,从上半平面的半圆弧补全围道,上半平面有一个二阶极点zz 0=iiaa ,该点的留数为RReeccff (zz 0) =limzz→zz 0d d zz e immzz(zz +aa i)2=lim zz→zz 0[i ll e immzz (zz +aa i)2−2e ss nn zz (zz +aa i)3] =−llaa +14aa 3ie −mmaaII =ππi ⋅(−llaa +14aa 3ie −mmaa )=llaa +14aa3ππe −mmaa 3.【解析】根据C-R 条件,有∂uu ∂xx =3xx 2−3yy 2=∂νν∂yy−∂uu ∂yy =6xxyy =∂νν∂xxddνν=−(−6xxyy )d xx +3(xx 2−yy 2)d yy =d(3xx 2yy −yy 3) 有νν=3xx 2yy −yy 3+CC ,代入得ff (zz )=xx 3−3xxyy 2+i(3xx 2yy −yy 3+CC ) =(xx +i yy )3+i CC =zz 3+i CC 0三、(8分)【解析】设 yy =�aa nn xx nn ∞nn=0 是方程的解,其中 aa 0,aa 1 是任意常数,则yy ′=�nnaa nn xx nn−1∞nn=1yy ′′=�nn (nn −1)aa nn xx nn−2∞nn=2=�(nn +2)(nn +1)aa nn+2xx nn ∞nn=0方程 yy ′′+xxyy ′+yy =0,得�[(nn +2)(nn +1)aa nn+2+nnaa nn +aa nn ]xx nn ∞nn=0=0故必有(nn +2)(nn +1)aa nn+2+(nn +1)aa nn =0即aa nn+2=−aa nnnn +2(nn =0,1,2,⋯ ) 可见,当 nn =2(kk −1) 时aa 2kk=(−12kk )aa 2kk−2=(−12kk )(−12kk −2)⋯(−12)aa 0=aa 0(−1)kkkk !2kk当nn =2kk −1时aa 2kk+1=(−12kk +1)aa 2kk−1=(−12kk +1)(−12kk −1)⋯(−13)aa 1=aa 1(−1)kk (2kk +1)!�aa 2nn xx 2nn ∞nn=0与�aa 2nn+1xx 2nn+1∞nn=0的收敛域均为(−∞,+∞) 故yy =�aa κκxx κκ∞κκ=0=�aa 2κκxx 2κκ∞κκ=0+�aa 2κκ+1xx 2κκ+1∞κκ=0=�aa 0(−1)nn nn !2nn xx 2nn∞nn=0+�aa 1(−1)nn (2nn +1)!xx 2nn+1∞ss=0即yy =aa 0e −xx 22+aa 1�(−1)nn (2nn +1)!xx 2nn+1∞nn=0,xx ∈(−∞,+∞)四、 (10分)【解析】 首先找到满足方程的特解vv =aa 4(xx 2+yy 2)+bb 12(xx 4−yy 4)=aa 4ρρ2+bb 12(xx 2+yy 2)(xx 2−yy 2) =aa 4ρρ2+bb 12ρρ4cos 2φφ 令uu =vv +ww =aa 4ρρ2+bb 12ρρ4cos 2φφ+ww对于齐次方程,且满足球心为有限值的泊松方程通解为ww (ρρ,φφ)=�ρρnn (AA mm cos ll φφ+BB nn sin llφφ)∞mm=0代入边界条件,有 �ρρ0nn (AA mmcos ll φφ+BB nn sin llφφ)∞mm=0=cc −aa 4ρρ02−bb 12ρρ04cos 2φφ比较系数解得uu =vv +ww =cc +aa 4(ρρ2−ρρ02)+bb 12ρρ2(ρρ2−ρρ02)cos 2φφ 五、(15分)【解析】对于满足球心处为有限值的拉普拉斯方程通解为uu (rr ,θθ)=�AA ll rr l P ll (cos θθ)∞ll=0代入边界条件有�AA ll rr 0l P ll (cos θθ)∞ll=0=cos 2θθ=xx 2由于P 2(xx ) =12(3xx 2−1) ,有xx 2=13[1+2P 2(xx )]=13P 0(xx )+23P 2(xx )即�AA ll rr 0lP ll (cos θθ)∞ll=0=cos 2θθ=xx 2=13P 0(xx )+23P 2(xx )对比系数可得uu (rr ,θθ)=13+23⋅1rr 02⋅rr 2P 2(cos θθ)六、(10分)【解析】对方程进行拉普拉斯变换,有jj ‾RR +jj ‾ppCC =EE 0ωωpp 2+ωω2 解得jj ‾=ωωEE 0(RR +1ppCC )(pp 2+ωω2)再进行反演RR (tt )=EE 0ωωRR (−RRCC e llRRRRωω2RR 2CC 2+1+RRCC cos ωωtt +ωωRR 2CC 2sin ωωtt ωω2RR 2CC 2+1) =EE 0RR 2+1/CC 2ωω2(RR sin ωωtt +1CCωωcos ωωtt )−EE 0/CCωωRR 2+1/CC 2ωω2e −tt /RRRR七、(15分)【解析】应用冲量定理法,先求解vv uu −aa 2vv xxxx =0ννxx ∣x=0=0,vv x ∣x=l =0vv ∣tt=ττ+0=0,vv t ∣t=ττ+0=AA cos ππxxllsin ωωττ根据通解的一般形式并代入边界条件,可得vv (xx ,tt ;ττ)=AAllππaasin ωωττsin ππaa (tt −ττ)ll cos ππxx ll uu (xx ,tt )=�vv (xx ,tt ;ττ)tt=AAll ππaa cos ππxx ll �sin ωωττsin ππaa (tt −ττ)ll d ττtt 0=AAll ππaa 1ωω2−ππ2aa 2/ll 2(ωωsin ππaa ll tt −ππaa ll sin ωωtt )cos ππxx ll。
【物理】物理数学物理法题20套(带答案)及解析
![【物理】物理数学物理法题20套(带答案)及解析](https://img.taocdn.com/s3/m/65a8c76f87c24028915fc387.png)
代入数据得
T≈382.8K
7.半径为R的球形透明均匀介质,一束激光在过圆心O的平面内与一条直径成为60°角射向球表面,先经第一次折射,再经一次反射,最后经第二次折射射出,射出方向与最初入射方向平行。真空中光速为c。求:
(1)球形透明介质的折射率;
(2)激光在球内传播的时间。
【答案】(1) ;(2)
对 光,根据折射定律
解得
(2) 、 在玻璃砖中传播的速度分别为
、 在玻璃砖中传播的路程
则 、 在玻璃砖中传播的时间分别为
13.如图所示,在xOy坐标系平面内x轴上、下方分布有磁感应强度不同的匀强磁场,磁场方向均垂直纸面向里。一质量为m、电荷量为q的带正电粒子从y轴上的P点以一定的初速度沿y轴正方向射出,粒子经过时间t第一次从x轴上的Q点进入下方磁场,速度方向与x轴正方向成45°角,当粒子再次回到x轴时恰好经过坐标原点O。已知OP=L,不计粒子重力。求:
【解析】
【分析】
【详解】
(1)激光在球形透明介质里传播的光路如图所示:
其中A、C为折射点,B为反射点,连接A与C,作OD平行于入射光线,则
解得
设球形透明介质的折射率为n,根据折射定律
解得
(2)由于 ,所以AC垂直于入射光线,即
பைடு நூலகம்又由于
所以 为等边三角形,即激光在球内运动路程为
设激光在介质中传播速度为t,则
【物理】物理数学物理法题20套(带答案)及解析
一、数学物理法
1.如图所示,圆心为O1、半径 的圆形边界内有垂直纸面方向的匀强磁场B1,边界上的P点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷 、速率 的带负电的粒子,忽略粒子间的相互作用及重力。其中沿竖直方向PO1的粒子恰能从圆周上的C点沿水平方向进入板间的匀强电场(忽略边缘效应)。两平行板长 (厚度不计),位于圆形边界最高和最低两点的切线方向上,C点位于过两板左侧边缘的竖线上,上板接电源正极。距极板右侧 处有磁感应强度为 、垂直纸面向里的匀强磁场,EF、MN是其左右的竖直边界(上下无边界),两边界间距 ,O1C的延长线与两边界的交点分别为A和O2,下板板的延长线与边界交于D,在AD之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。求:
高中物理物理解题方法:数学物理法习题试卷及答案
![高中物理物理解题方法:数学物理法习题试卷及答案](https://img.taocdn.com/s3/m/132fbc232cc58bd63086bd28.png)
高中物理物理解题方法:数学物理法习题试卷及答案一、高中物理解题方法:数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v mθ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端拴着质量分别为m 、2m 的小球A 和小物块B ,开始时B 先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B 对地面的压力恰好为零,A 在水平面内做匀速圆周运动.已知重力加速度为g ,不计一切阻力.(1)求A 做匀速圆周运动时绳与竖直方向夹角θ; (2)求摇动细管过程中手所做的功;(3)轻摇细管可使B 在管口下的任意位置处于平衡,当B 在某一位置平衡时,管内一触发装置使绳断开,求A 做平抛运动的最大水平距离.【答案】(1)θ=45° ;(2)2(1)mgl -;(3) 2l 。
数学物理方法试卷与答案
![数学物理方法试卷与答案](https://img.taocdn.com/s3/m/3f7ca712a9114431b90d6c85ec3a87c240288a29.png)
数学物理方法试卷与答案《数学物理方法》试卷一、选择题(每题4分,共20分)1.柯西问题指的是()A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有()A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是()nfA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是()nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的()A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是_______________ut00,utt02co某,0某______________________.2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为________________________________________________________.3.二阶常微分方程y''(某)1'13y(某)(2)y(某)0的任一特解y__________某44某_______________________________________________.4.二维拉普拉斯方程的基本解为________________________________________,三维拉普拉斯方程的基本解为__________________________________________.5.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某2J3(某)_______________________________________.2三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某l某某0u某,utt00,0某l.t02四、(10分)用行波法求解下列问题2u2u2u320,y0,某,22某yy某u2u3某,0,某.y0yy0五、(10分)用Laplace变换法求解定解问题:u2u2,0某2,t0,t某u某0u某20,t0,ut0in某,0某2.3六、(15分)用格林函数法求解下定解问题2u2u某2y20,y0,uf(某),某.y0七、(10分)将函数f某某在区间[0,1]上展成Beel函数系{J1(m(1)某)}m1的级数,其中m(1)为Beel函数J1(某)的正零点,m1,2,.42022—2022学年第二学期《数学物理方法》试卷B答案一、选择题(每题4分,共20分)1.柯西问题指的是(B)A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有(D)A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是(C)fnA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是(B)nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的(D)A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.5D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是(2intco某).ut00,utt02co某,0某2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为(a(某,y)(dy)22b(某,y)d某dyc(某,y)(d某)20).3.二阶常微分方程y''(某)或0).4.二维拉普拉斯方程的基本解为(ln1().r1),三维拉普拉斯方程的基本解为r1'13y(某)(2)y(某)0的任一特解y(J某44某1(某)3225.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某23J3(某)(221221din某(in某co某)某()()).某某某d某某三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某某l某0u某,utt00,0某l.t06解:第一步:分离变量(4分)设u(某,t)某(某)T(t),代入方程可得某''(某)T''(某)某(某)T(t)a某(某)T(t)某(某)a2T(某)''2''此式中,左端是关于某的函数,右端是关于t的函数。
数学物理方程期末考试题及答案
![数学物理方程期末考试题及答案](https://img.taocdn.com/s3/m/6ccbbc5702d8ce2f0066f5335a8102d276a261c9.png)
数学物理方程期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪一项不是数学物理方程的特点?A. 连续性B. 离散性C. 线性D. 非线性答案:B2. 波方程是描述什么的方程?A. 热传导B. 电磁波C. 机械波D. 流体动力学答案:C3. 拉普拉斯方程通常出现在哪种物理现象中?A. 热传导B. 流体流动C. 电磁场D. 弹性力学答案:C4. 以下哪个不是偏微分方程的解的性质?A. 唯一性B. 线性C. 稳定性D. 离散性答案:D5. 波动方程的解通常表示什么?A. 温度分布B. 电荷分布C. 压力分布D. 位移分布答案:D二、填空题(每空2分,共20分)6. 波动方程的基本形式是 _______。
答案:\( \frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \)7. 热传导方程,也称为________方程。
答案:傅里叶8. 拉普拉斯方程 \( \nabla^2 \phi = 0 \) 在静电学中描述的是________。
答案:电势9. 边界条件通常分为________和________。
答案:狄利克雷边界条件;诺伊曼边界条件10. 波动方程的一般解可以表示为________和________的叠加。
答案:基频解;高阶谐波三、简答题(每题10分,共30分)11. 解释什么是边界层的概念,并给出一个实际应用的例子。
答案:边界层是流体力学中的一个概念,指的是流体靠近物体表面处的一层非常薄的流体,其中速度梯度很大。
在边界层内,流体的速度从物体表面的零速度逐渐增加到与外部流体速度相匹配。
一个实际应用的例子是飞机的机翼,边界层的厚度和特性对飞机的升力和阻力有重要影响。
12. 描述什么是格林函数,并解释它在解决偏微分方程中的作用。
答案:格林函数是一种数学工具,用于解决线性偏微分方程。
它是一个特定的函数,当它与方程的算子相乘时,结果是一个狄利克雷问题,其解是原始方程的一个解。
《数学物理方法》答案
![《数学物理方法》答案](https://img.taocdn.com/s3/m/6d2dfbe8856a561252d36f0e.png)
z 4 + a4 = 0 ( a > 0) 。
4
⎛z⎞ ⎜ ⎟ = −1 ( a > 0 ) 4 4 ; 解:由题意 z = − a ,所以有 ⎝ a ⎠
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
k = 0, ±1, ±2, ⋅⋅⋅
π
+ i 2kπ = ln 2 + i ( + 2kπ ) 4 4
π
3i = eiLn 3 = ei (ln 3+ 2 kπ ) = cos ln 3 + i sin ln 3 e 2+i = e 2 ei = e 2 (cos1 + i sin1) sin z lim =1 z →0 z 22,求证 sin z sin( x + iy ) lim = lim z →∞ x , y →∞ z x + iy 证: z = x + iy (x,y,均为实数),所以
z = z2 = z3 = 1; 试证明 z1 , z2 , z3 是一 11.设 z1 , z2 , z3 三点适合条件 z1 + z2 + z3 = 0 及 1
个内接于单位圆
z =1 的正三角形的顶点。
∴ z1 = − z2 − z3 ; z2 = − z3 − z1; z3 = − z1 − z2 ; 证明: z1 + z2 + z3 = 0;
∂v ∂u = e x cos y − y sin ye x + x cos ye x = e x ( x cos y − y sin y ) + e x cos y ∂ y ∂x ; ∂u ∂v = −e x ( x sin y + sin y + y cos y ) = e x ( y cos y + x sin y + sin y ) ∂y ; ∂x ∂u ∂v ∂u ∂v = ; =− ∂x 。 满足 ∂x ∂y ∂y x, y ) 可微且满足 C − R 条件,故函数在 z 平面上解析。 即函数在 z 平面上 (
数学物理方法习题解答(完整版)
![数学物理方法习题解答(完整版)](https://img.taocdn.com/s3/m/aa1d449e64ce0508763231126edb6f1aff0071dc.png)
数学物理方法习题解答(完整版)数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux=?,0v y ?=?,u v x y ??≠??。
于是u 与v 在z 平面上处处不满足C -R 条件,所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ??= =??。
v vx y==0 ??。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y, 在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ===='=+=-= ? ?????????。
或:()()()2*000lim lim lim 0z z x y z f z x i y z→?→?=?=?'==?=?-?=?。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=?→?→?→+?+?+??==+??→。
【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z zz z==??】3、设333322()z 0()z=00x y i x y f z x y ?+++≠?=+,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ?-+≠?=+?+??, 33222222(,)=00x y x y v x y x y x y ?++≠?=+?+??。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 2
k 0
� w( z )
2c2 +
ᆬ
[(k + 2)(k +1)ck+2 - ck-1]zk
0
k 1
将代入方程
c2 0c,3ckkk+23kk((ck33kkk--+-33-12c)1)k-()1k + 1)
即亦即
c3k
c3k -3 3k(3k -1)
1 3k (3k
-1)
代换,有
f1
t -
e- pt dt
0
f1
e- p + d
0
f1 e-p d
0
f2
第e- p d1
页F(1共p F23 p页 )
f (x) lim
n e -nx2
n
3. 试证明:是函数的一种表达式。
答: 函数的傅里叶变换:,又称为的像函数;
F -1 G
f
xGfx21
G eixd
-
函数的傅里叶逆变换:,又称为的像原函数。
专业:
院(系):
得分 评阅人 二、证明题:(共 3 题,每题 9 分,共 27 分)
1. 已知,试证明: ()
证明:将对 r 求导
ᆬ 1
1+ r2 - 2rx< 1)
(l +1)Pl+1(x) - (2l +l 1ᆬ)1xPl (x) + lPl-1(x) 0
ᆬ 1
1+ r2 - 2rx
ᆬ l0
Pl (x)rl
( x < 1)
ᆬ -
1 2
(1 +
r2
-
2rx)-
3 2
(2r
-
2x)
华中师范大学期末考试参考答案
课程名称 数学物理方法 课程编号 83810012 任课教师 李高翔
题型 问答题 证明题 计算题 计算题
总分
分值 12 27 25 36
100
得分
得分 评阅人 一、问答题:(共 2 题,每题 6 分,共 12 分)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线
整理递推公式得 ()
(l +1)Pl+1(x) - (2l +l 1ᆬ)1xPl (x) + lPl-1(x) 0
2. 对于拉普拉斯变换,试证明两函数的卷积的像函数等于它们各自的像函数的乘积。
f1t * f2 t F1 p F2 p
①
f1t * f2 t
(2)基本步骤:定解问题中,偏微分方程和边界条件都是其次的,先找出满足方程 和边界条件的特解,再利用叠加原理求这些特解的线性组合,得到满足方程和边界条 件的一般解,最后使其满足初始条件。
学生姓名:
年级:
2. 写出傅里叶变换的定义式。
F
f
x
G
Gf
x -
f
x e-ixdx
因,故
c5 c82 L0 0
� ᆬ � w(z)
c0
+
ᆬ k 1
3wk1((3zk)
-1cz)0L+z 3ᆬᆬᆬkk160ᆬ1�5(3ww�k3ᆬ((+00�2))1)+3zckzc031L+k +1k7ᆬ1�6(3�k4 +�31)3c1kzL3k +71
�6 �4 �3
2.试将函数 解:
f
(t)
ᆬe-at ᆬᆬ0,
sin(2n
t
),
t > 0, t < 0.
用傅里叶积分展开。
ᆬ f
(t)
1 2
+ᆬ c( )eitd
-ᆬ
ᆬ c() +ᆬ f (t)e-itdt -ᆬ
ᆬ +T e-at sin 2n te-it dt -T
ᆬ
1 2
� (3k
c3k -6 - 3)(3k
- 4)
3k (3k
-1)(3k
1 - 3)(3k
- 4)L6 �5 �3 �2 c0
c3k +1
c3k -2 3k(3k +1)
1 3k (3k
+ 1)
�(3k
c3k -5 - 2)(3k
- 3)
(3k
+ 1)3k (3k
-
1 2)(3k
- 3)L7
�6 �4 �3 c1
nᆬ( x)ᆬ
证明:根据函数的定义和性质可知,当时,中央峰额高度趋于无穷大,而宽度趋于零,
满足这一性质的式子就可以作为的一种表达式。
e-a2x2
根据高斯误差函数的性质
得到
ᆬᆬ e-a2x2 dx -ᆬ
a
(x) lim n e-nx2 nᆬ ᆬ
得分 评阅人 三、计算题:(共 2 题,每 1 题 15 分,第 2 题 10 分,共 25 分)
ᆬ l0
Pl (x)lrl-1
ᆬ x - r
1+ r2 - 2rx
(1+ r2
ᆬ
- 2rx)
l0
Pl (x)lrl-1
改写为
xP0 (x)r0 p1(x)
比较两边项的系数得
rl (l ᆬ1)
比较等式两边项的系数,有
xpl (x) - Pl-1(x) (l +1)Pl+1(x) - 2xlPl (x) + (l -1)Pl-1(x)
w(0w) ''z-00z,ww0'(00) 1
1.试用级数解法求解在邻域内 的解,其初始条件为 。
ᆬ p(wz )( z)z00,zq0ᆬ(0zc)kz k- z k 0
解:系数在解析,是方程的常点,解的形式为:
� � ᆬ
ᆬ
k (k -1)ck zk-2 - ck zk+1 0
---------------------------------------------------------
学号:
1. 用分离变量法求解定解问题的基本思想和基本步骤是什么?
答:(1)基本思想:把偏微分方程中未知的多元函数分解成一元函数的乘积,从而把 求解偏微分方程的问题转化为解常微分方程的问题。
{e - e }dt +ᆬ [i(2n -)-a ]t
[i (2n + )+a ]t
0
1 2
{ e[i(2n - )-a ]t i(2n - ) -a
e- pt
0
0
f1 t
-
f2
d
d
证
0
f2 d
0
f1t - e-ptd
在上式右边交换积分次序,得到
t t<<f1t,0-tt,f,ft-tf2 t00
由于都是拉普拉斯变换的原函数,满足条件,所以上式第二个几分从开始【】。在这一积分中作变量