第4章 二烯烃和共轭体系

合集下载

第四章 二烯烃和共轭体系共13页文档

第四章 二烯烃和共轭体系共13页文档

第四章二烯烃共轭体系共振论分子中含有两个碳—碳双键的碳氢化合物称为二烯烃。

通式:C n H2n-2可见,二烯烃与炔烃互为官能团异构。

4.1 二烯烃的分类和命名4.1.1 二烯烃的分类根据分子中两个C=C的相对位置,二烯烃可分为三类。

(1) 孤立二烯烃两双键之间相隔两个或两个以上单键的二烯烃。

例:CH2=CH-CH2-CH=CH2CH2=CH-CH2- CH2-CH=CH21,4-戊二烯1,5-己二烯单双键交替的体系,为共轭体系!由于两个双键共轭,相互影响,其性质特殊,是本章的重点之一。

4.1.2 二烯烃的命名与烯烃相似。

用阿拉伯数字标明两个双键的位次,用“Z/E”或“顺/反”表明双键的构型。

例:4.2 二烯烃的结构4.2.1 丙二烯的结构丙二烯是典型的累积二烯。

仪器测得,丙二烯是线型非平面分子:由于中心碳为sp杂化,两个双键相互⊥(动画),所以丙二烯及累积二烯烃不稳定。

4.2.2 1,3-丁二烯的结构仪器测得,1,3-丁二烯分子中的10个原子共平面:1,3-丁二烯分子中存在着明显的键长平均化趋向!⑴价键理论的解释1,3-丁二烯中的碳原子是sp2杂化态(因为只有sp2杂化才能是平面构型,轨道夹角约120°):四个sp2杂化碳搭起平面构型的1,3-丁二烯的σ骨架:四个P轨道肩并肩地重叠形成大π键:(动画,π-π共轭)除了C1-C2和C3-C4间的P轨道可肩并肩地重叠外,C2-C3间也能肩并肩重叠。

但由键长数据表明,C2-C3间的重叠比C1-C2或C3-C4间的重叠要小。

⑵分子轨道理论的解释(主要用来处理p电子或π电子)丁二烯分子中四个碳原子上的未参加sp2杂化的p轨道,通过线性组合形成四个分子轨道:4.3 电子离域与共轭体系电子离域——共轭体系中,成键原子的电子云运动范围扩大的现象。

电子离域亦称为键的离域。

电子离域使共轭体系能量降低。

共轭体系——三个或三个以上互相平行的p轨道形成的大π键。

第四章 二烯烃与共轭体系

第四章 二烯烃与共轭体系
反-5,6-二甲基环己二烯
光照 顺旋
CH3 H CH3 H
(Z,Z,E)-2,4,6-辛三烯
对旋
光照 顺旋
H H CH3 CH3
顺-5,6-二甲基环己二烯
CH3 H H CH3
加热 对旋 (E,Z,E)-2,4,6-辛三烯
4.5.4 双烯合成:Diels-Alder 反应
•含环己烯环的化合物的制备方法
CH2
+
BrCH2CH
CHCH2Br
Br
(37%) (63%)
结论

1,4加成产物更稳定; 1,2加成产物和1,4加成产物是可逆的; 1,2加成产物的活化能低,反应速度快。
练习题: 由丁二烯合成重要的药物前体及 材料合成中间体3-羟甲基戊二酸
HO2C
OH CO2H
HO2C
OH CO2H
第四章 二烯烃与共轭体系
分子中含有两个碳–碳双键的不饱和烃称为二烯 烃, 包括链状二烯烃和环状二烯烃.
链状二烯烃
环状二烯烃
4.1 二烯烃的分类和命名
•隔离二烯烃 •共轭二烯烃
C
•累积二烯烃
4.2 二烯烃的结构
(1) 丙二烯的结构 (2) 1,3–丁二烯的结构
4.2 二烯烃的结构
4.2.1 丙二烯的结构
C +
+
+ C -
C + C +
p *3
C -
C
p2
成 键 轨 道
+ C + C -
+ C + C -
C + + C -
C + + C -
+ C + C C C C C

二烯烃

二烯烃

s-反式 构象 反式
5
1, 3-丁二烯四个 轨道经线性组合成四个π分子轨道 丁二烯四个P轨道经线性组合成四个 丁二烯四个 轨道经线性组合成四个π
π* 4
E
π* 3
LUMO
π2
HOMO
π1
6
π molecular orbitals of 1,3-butadiene
7
π分子轨道 1和ψ2的叠加,不但使 1与C2之间、 分子轨道ψ 的叠加,不但使C 之间、 分子轨道 C3与C4之间的电子云密度增大,而且 2与C3之间 之间的电子云密度增大,而且C 的电子云密度也部分增大,使之与一般的碳碳σ键 的电子云密度也部分增大,使之与一般的碳碳 键 不同,而具有部分双键的性质。 部分双键的性质 不同,而具有部分双键的性质。Leabharlann δ+δ
+
H
+
CH2 CH2
+
CH =CH2
烯丙型碳正离子
。 正 离子 > 1 碳
12
CH2=C CH=CH2 + HBr CH3
CH2=C CH=CH2 + HBr CH3 CH3
+
?
C CH=CH2 CH3 -Br Br CH3 CH3 C CH CH2 CH3 -Br C=CH CH2Br CH3
-1
226 kJ mol
-1
CH3CH2CH2CH2CH3
9
三.共轭双烯的反应 共轭双烯的反应
加成(共轭加成) 1. 1,4—加成(共轭加成) 加成
CH2=CH-CH=CH2 + Br2 CH2 Br CH CH=CH2 + CH2 CH=CH CH2 Br 1,2-加成 加 Br 1,4-加成 , 加 Br

Chapter 04 二烯烃和共轭体系

Chapter 04  二烯烃和共轭体系

1, 3-丁二烯π键的分子轨道理论处理: ( 见下页)
1, 3-丁二烯四个P轨道经线性组合成四个π 分子轨道
节面数 3 2 对称性 C2 m C2 m E
a-1.618β a-0.618β LUMO a+0.618β HOMO a+1.618β
E
1 0
π 电子总能量 E = 2(a + 1.618β )+ 2(a + 0.618β ) = 4a + 4.472β
COOMe
从四个H的相对位置辨别加成取向。
• 次级轨道作用(内向加成的原因):
双烯体的HOMO与亲双烯体的LUMO作用时,形成新键的 原子间有轨道作用,不形成新键的原子间同样有的轨道作用。 内型加成物,因过渡态受次级轨道作用而稳定。
双烯体
HOMO
亲双烯体
O O O
LUMO
• 利用微波进行有机合成

C2- C3之间呈现部分双键性能。(键长平均化)
*超共轭效应:
化合物
H2C CH2
H2C C CH3 H
H3C H3C CH3 CH3
氢化热/kJmol-1
137 126 112 239 226
H2C C C CH2 H H
H3C C C C CH2 H H H
H3C CH3 C C H2C CH2
反应物结构的影响可从产物的稳定性来考虑: C6H5 CH =CH CH =CH2 + X Y σ, p - 超共轭 C6 H5 CH =CH CH CH2 + C6H5 CH CH =CH CH2
p, π - 共轭 Y 1,2 -加成
CH2 =C CH=CH2 CH3 + X Y CH CH2 + X CH2 C =CH CH2 Y CH3 X

第4章--二烯烃 共轭体系

第4章--二烯烃 共轭体系

CH2Cl 高温高压
+
高温
CH2Cl HC Na
HgSO4/H2SO4
O
4.5.4 周环反应理论解释
福井谦一
伍德沃德
Robert Burns Woodward
霍夫曼 Roald Hoffmann
1981年诺贝尔化学奖
4.5.5 聚合反应
丁钠橡胶
Na n CH2 CH CH CH2 60 oC
*
CH2
4.5.2 1,4-加成的理论解释 第一步:亲电试剂H+的进攻
1
2
3
4
CH2 CH CH CH2 + H
空p轨道
H
CH3
CC
HC
H
H
CH2 CH CH CH3
稳定
CH2 CH CH2 CH2
4.5.2 1,4-加成的理论解释 第二步:溴离子( Br- )加成
共轭二烯烃的亲电加成产物1,2-加成和1,4-加成产物之比 与分子结构、所用试剂和反应条件(溶剂、温度、反应时 间)有关。
4.1.2 二烯烃的命名 主链必须包括两个双键在内,同时应标明两个双键的位置
顺反异构现象
H
H
H3C
CC
CC
CH3 S-反-(2Z, 4Z)-2,4-己二烯
H
H
s = single bond
4.2 二烯烃的结构
4.2.1 丙二烯的结构 sp sp2
H C C CH2
H 0.108nm 0.131nm
共振理论--是鲍林在20世纪30年代提出的。应用量子
力学的变分法近似地计算和处理象苯那样难于用价键 结构式代表结构的分子能量,从而认为:苯的真实结 构可以由多种假设的结构,共振(或叠加)而形成的共 振杂化体来代表。

第四章二烯烃和共轭体系

第四章二烯烃和共轭体系

p

1s轨道
R
++
C
R'
H C
H
(动画1,σ-p超共轭)
sp
3
杂化
轨道
H
即:α-C上σ电子云可部分离域到p空轨道上, 结果使正电荷得到分散。
与C+相连的α-H越多,则能起超共轭效应的因素越多, 越有利于C+上正电荷的分散:(动画2, 动画3)
H
CH3
H
CH3-C+ 即 H C C+
3。CC+H3
H
¼° ×
° ×
电环化反应和环化加成反应都是经过环状过渡 态一步完成的协同反应,属于周环反应。
周环反应的特点:
① 一步完成,旧键的断裂和新键的生成同时进 行,途经环状过渡态;
② 反应受光照或加热条件的影响,不受试剂的 极性、酸碱性、催化剂和引发剂的影响;
③ 反应具有高度的立体专一性,一定构型的反 应物在光照或加热条件下只能得到特定构型的 产物。
nCH2=CH-CH=CH 2 丁基锂/醚
CH=CH2 CH2-CH=CH-CH2-CH2-CH-
乙烯基橡胶
乙烯基橡胶是新的橡胶品种,加工性能好。
异戊橡胶
nCH2=C-CH=CH2 CH3
(CH3CH2)3Al-TiCl4
CH2 C¼C CH2
H3C
Hn
¼ ì ¼ ì ¼¼
异戊橡胶是结构和性质最接近天然橡胶的合成橡胶。
1,3-丁二烯中的碳原子是sp2杂化态 (因为只有sp2杂 化才能是平面构型,轨道夹角约120°):
C
四个sp2杂化碳搭起平面构型的1,3-丁二烯的σ骨架:
H1 C
H

第四章 二烯烃和共轭体系

第四章 二烯烃和共轭体系

顺-
4
- 四氢化邻苯二甲酸酐
CHO 82%
丙炔醛
1,4 - 环己二烯甲醛
20
双烯合成一般规律:
1.双烯体连有供电基、亲双烯体连有吸电基时利于反应,反之。 供电基如:-CH3、-C2H5及其它烷基 吸电基如:-CHO、-COOH、-CN、-CH2Cl等 2.双烯体必须以s-顺式参加反应,否则不能反应。
5
(二) 电子离域与共轭效应
共轭效应 共轭体系产生电子离域,使体系能量降低的效应。
共轭效应类型 -共轭:如 CH2=CH-CH=CH2 p- 共轭:如 CH2=CHCH2
+
CH2=CH-CH=O
.
CH2=CHCH2
CH2=CHCl
-共轭:如 CH3-CH=CH2
-p共轭:如(CH3)3C+
一、完成反应式
1,2-加成
1. C 2 H5 2.
(1mol)
1,4-加成
3. CH3CH=CHOCH3 + HBr → ( 4.
)
29
二、写出
可能的极限式及共振杂化体。
三、结构推导
某化合物A(C5H6 )能使Br2/CCl4 溶液褪色,它与1molHCl加成 后的产物经臭氧化和还原水解得到2-氯戊二醛,试写出A可能的构造式 及各反应式。
8
2、p,π-共轭效应
双键与含有p轨道的原子相连时,由p 电子及π电子离域所体现的共轭效应。
烯丙型碳正离子(自由基): CH2=CHCH2+ 其它: CH2=CHCl
例如:
+ CH3 CH2 CH C H
( 1 +) 2 表示为
( 1 +) 2
正电荷、单电子或孤对电子被分散,体系更稳定。

第四章 二烯烃和共轭体系

第四章  二烯烃和共轭体系

(2Z,4E)-2,4-庚二烯 (3E,5E)-1,3,5-庚三烯
顺,反-2,4-庚二烯
反,反-1,3,5-庚三烯
二烯烃的两种不同构象
CH2=CH—CH=CH2
H2C
CH2
C—C
H
H
1,3-丁二烯
s-顺-1,3-丁二烯 或s-(Z)-1,3-丁二烯
H
CH2
C—C
CH2
H
s-反-1,3-丁二烯 或s-(E)-1,3-丁二烯
反应称1,4-加成反应。
同样丁二烯与HBr的加成也有类似的现象。
1,2-加成 Br
HBr
3-溴-1-丁烯
1,4-加成
Br 1-溴-2-丁烯
在1,4-加成反应中,共轭双烯是作为一个整体参 加反应的,与单烯加成有明显不同,因此,
1,4-加成也称共轭加成,共轭加成是共轭双烯 的特征反应。
1,4-加成反应机理
H43H
CC 2 1 H
电子离域(P95)H C C
H
H
丁二烯分子中,1,2,3碳处于同一平面中,而2,3,4碳
也处于同一平面,所以整个分子在同一个平面中,4
个C原子以sp2方式杂化,C2-C3间以sp2-sp2重叠形成 键,C-H间以sp2–s成键。4个C原子均有一个未杂
化的p轨道垂直分子所在平面并互相平行,因此,不
的能量有所降低,使体系稳定。
由于电子离域,使得其中一个键受到其它分子的 影响而发生极化时,也必然影响到另一个键,并
使其发生同样的极化,从而产生了“交替极性”。
丁二烯由于存在“交替极性”,使其性质与单烯的
性质有着明显的不同。
共轭效应
在丁二烯中,单双键差别不如单烯明显,产生了共

第四章 二烯烃和共轭体系

第四章  二烯烃和共轭体系
1133丁二烯中碳碳单键长度为丁二烯中碳碳单键长度为0147nm0147nm碳碳双键长碳碳双键长度为0134nm0134nm乙烷碳碳单键长度为乙烷碳碳单键长度为0154nm0154nm乙烯碳乙烯碳碳双键长度为碳双键长度为0133nm0133nm
有机化学
主讲教师:
佟拉嘎
北京石油化工学院
第四章 二烯烃和共轭体系 (4学时)
Ⅱ Ⅰ为仲碳正离子,Ⅱ为伯碳正离子。 Ⅰ中存在 如下p-π共轭效应, Ⅱ中不存在。故Ⅰ比Ⅱ稳 定。
1,2-加 成 + H 2C C H + C CH3 H Br1,4-加 成 H 2C C H Br H 2C C H
H C
CH3
Br C CH3 H
1,2-加成为动力学控制产物; 1,4-加成为热力学控制产物;
★p,π-共轭
• π轨道与相邻原子的 p轨道组成的共轭体系;
H2C C CH2 H
H2C
C H
CH2
存在p,π-共轭的分子举例:
H2C C CH2 H H2C C CH2+ H H2C C CH2H
H 2C
C Cl H
H 2C
C O R H
★超共轭
• 超共轭效应:涉及到C-Hσ键与相邻π键参 与的电子离域效应。也称σ,π-共轭效应。 存在这种效应的体系称为超共轭体系。 *超共轭效应比π,π-共轭效应和p,π-共轭效 应弱得多。
氯菌酸酐
+ COOCH3
H COOCH3
二环[2,2,1]-5-庚烯-2-羧酸甲酯
+
二环[2,2,1]-2,5-庚二烯
(2)加氢
+ H2
Pd-Ti 50 ℃
(3)α-氢原子反应

有机化学第四章二烯烃共轭体系

有机化学第四章二烯烃共轭体系

➢动力学控制或速度控制—— E1﹤ E2,反应速度快,(或活性中间体更稳定)。
➢热力学控制或平衡控制—— 1,4加成产物的能量低(产物稳定),一但在 所需较高温度生成,不易逆转(E2,﹥E1,),故在高温时以1,4加成为主。
4.5.4 双烯合成
➢Diels-Alder反应: • 反应物:共轭二烯 烃、、烯或炔
CH2=CH-CH=O
CH2=CH-CH2
H CCH
H
CH2=CH-CH2 CH2=CH-CH2
共轭效应强到弱:
π-π p-π σ-π σ-p
1.试比较下列分子或离子的超共轭效应大小。
CH3CH=CH2, CH3CH2CH=CH2, (CH3)2CHCH=CH2
A
B
C
ABC
H3C C CH3
H3C C H
H
C H
H
H
HH
C
C
H
H
+
H
C
H
➢上图中碳的空的P轨道与甲基上C-Hσ键的电子云可
部分重叠,
➢使电子离域并扩展到空p轨道上。使正电荷有所分
散,使孤电子得以稳定,
➢这种作用称为 -p超共轭效应
➢ 参与超共轭的C-Hσ键越多, 自由基越稳定:
稳定性依次减弱
30C·﹥ 20C·﹥ 10C·﹥ H3C·
C H 3 C+ H C H 3
H
4.3 共轭体系与电子效应
➢ 参与超共轭的C-Hσ键越多,超共轭效应越强 :
H
H
H
< < δ
δ
R C CH CH2
δ
δ
H C CH CH2
δ
δ
H C CH CH2

第四章 二烯烃和共轭体系

第四章 二烯烃和共轭体系

1,3-丁二烯两种可能的平面构象:
s-Cis conformation
s-顺式构象
s-Trans conformation
s-反式构象
二、二烯烃的结构
1、丙二烯烃的结构
H
sp2
C CH2
118.4°
C
0.131 nm
H
sp
由于中心碳为sp杂化,两个π键相互垂直,所以 丙二烯及累积二烯烃不稳定。
H H
δ ¨
Cl
-
δ CH
+
π4 CH2 3
δ
-
H H C C
Cl H
(孤对电子;+C,-I, 且+C>-I)
氯乙烯的p-π共轭
π4 3
δ CH
+
2
δ CH
-
CH2+
π
2 3
H2C CH CH2
+
(空的p轨)
CH2 CH CH2 烯丙型碳正离子(很稳定)
烯丙基正离子的p-π共轭
CH2=CH—CH2
-
π
双烯体
CH3 + CH3
O H
30 ° C
H
CH3 CHO H CH3
H
Diels-Alder 反应机理
CH CH
CH2 + CH2
HC HC
O O O
顺丁烯二酸酐
150 C 苯

O C C O
O (白

利用此反应可鉴别共轭二烯。
顺丁烯二酸酐 Ag(NH3)2+
CH3CH2C
CH
灰白 白
CH2=CH-CH=CH2
+

第四章 二烯烃和共轭体系

第四章 二烯烃和共轭体系

>
H
C H
>
H
C H
>
H
C+ H
H C H H
与碳正离子相似,许多自由基中也存在着超共轭。 与碳正离子相似,许多自由基中也存在着超共轭。
H H C H H C H
自由基的稳定顺序同样 是:3。 > 2。> 1。
碳正离子的稳定性 (+I, +C, σ-p超共轭,正电荷轨道 成份): 超共轭, 成份) 超共轭 正电荷轨道p成份 CH3CH=CH-CHCH3>(CH3)3C+> CH2=CH-CH2> = - - (CH3)2CH+> CH3CH2+>CH3+>>CH2=CH+
1,3-丁二烯的分子轨道 丁二烯的分子轨道
Ψ3*是最低未占有轨道 是最低未占有轨道 (LUMO, lowest unoccupied molecular orbital)。 。
4.3 电子离域与共轭体系
4.3.1 π,π-共轭 共轭
CH3CH CHCH CH2 + 2H2 CH3CH2CH2CH2CH3 氢化热 226kJ/mol
1,2-丁二烯 丁二烯
CH 3 CH 2 CH CH CH 2 CH 2 C CH CH 2 1,3-丁二烯 2-甲基 甲基-1,3-丁二烯(异戊二烯) 丁二烯( 丁二烯 甲基 丁二烯 异戊二烯)
4.1.2 二烯烃的命名(标明每个双键位置和顺反关系) 标明每个双键位置和顺反关系)
CH 3 CH CH CH 2 CH CH 2 1,4-己二烯 己二烯
O CH2
δ
δ
δ
CH
C
δ

第四章_二烯烃和共轭体系

第四章_二烯烃和共轭体系

在1,3-丁二烯分子中,两个双键还可以在碳碳(C2和 C3 之 间 ) 单 键 的 同 侧 和 异 侧 存 在 两 种 不 同 的 空 间 排 布 , 但 由 于 C2 和 C3 之 间 的 单 键 在 室 温 仍 可 以 自 由 旋 转 。 因此,这两种不同的空间排布,只是两种不同的构象,而
不 是 构 型 的 不 同 , 分 别 称 为 s- 顺 式 和 s- 反 式 [ s 指 单 键 (singlebond)],或以s-(Z)和s-(E)表示。
极性溶剂有利于1,4-加成
反应温度的影响也是明显的,一般低温有
利于1,2-加成,温度升高有利于1,4-加成。 例如:
4.4.2 共轭二烯烃1,4-加成的理论解释
共轭二烯烃能够进行1,4-加成可利用共轭效应进行 解释。例如,1,3-丁二烯与极性试剂溴化氢的亲电加成 反应,当溴化氢进攻1,3-丁二烯的一端时,1,3-丁二 烯不仅一个双键发生极化,而且整个共轭体系的电子云 发生变形,形成交替偶极。
第四章 二烯烃 共轭体系
主要内容
4.1 二烯烃的分类与命名 4.2 二烯烃的结构 4.3 电子离域与共轭体系 4.4 共轭二烯烃的化学性质
本章重点
共轭二烯烃 共轭体系与共轭效应
电子离域 1,4加成 电环化反应 周环反应 Diels-Alder反应 (双烯加成)
本章难点
1,3丁二烯分子轨道 共轭体系与共轭效应
H2C=CH CH=CH2
在共轭分子中,任何一个原子受到外界的影 响,由于π电子在整个体系中的离域,均会影响 到分子的其余部分,这种电子通过共轭体系传递 的现象,称为共轭效应。 由π电子离域所体现的共轭效应,称为π,π-共轭效应。
4个π电子扩展到四个碳原子之间:电子的离域

4二烯烃和共轭体系

4二烯烃和共轭体系
1,2 H2C CH CH CH2 Pt 1,4 H3C H3C CH2 CH CH HC CH2 CH3 Pt H3C CH2 H2C CH3
2、加氯或加溴: 、加氯或加溴:
1,2
H2C
CH
CH
CH2
+
Cl2
常常
1,4
CH2Cl CH2Cl
CHCl CH (60%) CH HC (40%)
CH2 CH2Cl
H2C CH CH CH2 H2C C CH3
C(CH3)2 CH CH2
CH
CH2
3.隔离二烯烃:两个双键被多个单键隔开。 隔离二烯烃:两个双键被多个单键隔开。 隔离二烯烃
H2C CH CH2 CH CH2 H3C CH CH
第五章 二烯烃
二、命名 1. 选含两个双键的最长碳链为主链; 选含两个双键的最长碳链为主链; 2. 从靠近双键的一端开始编号,双键位置和最小; 从靠近双键的一端开始编号,双键位置和最小; 3. 写出名称,每个双键的位置都需要标明; 写出名称,每个双键的位置都需要标明; 4. 有顺反异构者,需标明。 有顺反异构者,需标明。
.. .
C H Cl
H H
.
C
电子数大于原子数,双键或三键碳原子上连接的原子带有孤对电子。 电子数大于原子数,双键或三键碳原子上连接的原子带有孤对电子。 轨道和π轨道参与的共轭 由p轨道和 轨道参与的共轭,叫p-π共轭 轨道和 轨道参与的共轭, 共轭
4.5.3.缺电子共轭 键(p-π共轭 : 缺电子共轭π键 共轭) 缺电子共轭 共轭 电子数小于原子数,双键或三键碳原子上连接的原子带有空的 轨 电子数小于原子数,双键或三键碳原子上连接的原子带有空的p轨 如烯丙基正离子。 轨道和π轨道参与共轭 共轭。 道,如烯丙基正离子。也由 轨道和 轨道参与共轭,叫p-π共轭。 如烯丙基正离子 也由p轨道和 轨道参与共轭, 共轭

第四章+二烯烃+共轭体系+共振论

第四章+二烯烃+共轭体系+共振论
第四章 二烯烃 共轭体系
二烯烃:分子中含两个碳碳双键的烃。
一、二烯烃的分类及命名 1. 分类 1) 聚(累)积二烯烃(两个双键公用1个 C C C 双键碳原子),即含 体系的 二烯烃。最简单的累积二烯烃是丙二烯。 2)共轭二烯烃 (两个双键被1个单键隔 开),即含 体系的二烯 C C C C 烃。 最简单的共轭二烯烃是1,3-丁二烯。
Y
C C C C
Y
C
C
C
C
3、共轭效应(C) (1) 定义: 因电子云密度的差异而引起的电子云 通过共轭体系向某一方向传递的电子 效应 共轭效应是指电子(或p电子)的位移
共轭体系:单双键交替出现的体系
(2) 分类: A.吸电子共轭效应(-C)
O N O C H

- + - + CH C CH C CH2 H H

C C C C
反键轨道 E
1 2 3 4
原子轨道 成键轨道
CH2 CH CH CH2
0.1337 0.148nm
Bonding Molecular Orbitals of 1,3Butadiene
Y
C C C C
Y
C
C
C
C
Antibonding Molecular Orbitals of 1,3-Butadiene
H2C C H H2C H2C H2C C H C H C H H C CH2 H C CH2 H C C H CH2 CH2 H2C C H H2C H2C C H H C C H CH2 C H C H CH2 CH2
(三)、书写共振式的原则
1. 共振式中只有电子排布不同,原子核位 置不变
O H3C C H H3C O C H H2C OH C

《有机化学》(第四版)第四章-二烯烃和共轭体系(习题答案)

《有机化学》(第四版)第四章-二烯烃和共轭体系(习题答案)

第四章 二烯烃和共轭体系思考题习题4.1 下列化合物有无顺反异构体?若有,写出其构型式并命名。

(P119)(1) 1,3-戊二烯 CH 2=CH CH=CHCH 3解:有2个顺反异构体!C=CCH 3HCH 2=CHHC=CH CH 3CH 2=CHH(Z)- 1,3-戊二烯 (E)- 1,3-戊二烯(2) 2,4,6-辛三烯 CH 3CH=CH CH=CH CH=CHCH 3 解:有6个顺反异构体!C=C C=CHC=C HH CH 3H H CH 3HC=C C=CHC=C HCH 3HH H CH 3HC=CC=C H C=CHCH 3HCH 3H HH(Z,Z,Z)- 2,4,6-辛三烯 (Z,Z,E)- 2,4,6-辛三烯 (E,Z,E)- 2,4,6-辛三烯C=CC=C C=C HHHH CH 3CH 3H HC=CC=CC=C H HCH 3HHH HCH 3C=CC=C C=C HHCH 3H HCH 3H H(E,E,E)- 2,4,6-辛三烯 (E,E,Z)- 2,4,6-辛三烯 (Z,E,Z)- 2,4,6-辛三烯习题4.2 下列各组化合物或碳正离子或自由基哪个较稳定?为什么?(P126)(1) 3-甲基-2,5-庚二烯 和 5-甲基-2,4-庚二烯√CH 3CH=CCH 2CH=CHCH 3CH 3CH 3CH=CHCH=CCH 2CH 3CH 3π-π共轭无π-π共轭有(2)(CH 3)2C=CHCH 2CH 3CH=CHCH 2CH 2=CHCH 2、和(CH 3)2C=CHCH 2CH 3CH=CHCH 2CH 2=CHCH 26个超共轭σ-H 3个超共轭σ-H 0个超共轭σ-H 稳定性:>>(3)(CH 3)2CHCHCH=CH 2(CH 3)2CCH 2CH=CH 2(CH 3)2CCH 2CH 3、和(CH 3)2CHCHCH=CH 2(CH 3)2CCH 2CH=CH 2(CH 3)2CCH 2CH 3稳定性:>>有p -π共轭p -π共轭无p -π共轭无给电子性:CH 3CH=CH 2>(4)、和CH 2CH=CHCH=CH 2CH 2CH=CHCH 2CH 3CH 3CHCH 2CH=CH 2稳定性:>>有π-π共轭CH 2CH=CHCH=CH 2CH 2CH=CHCH 2CH 3CH 3CHCH 2CH=CH 2p -π有共轭π-π无共轭π-π无共轭p -π有共轭p -π共轭无 (5)CH 3 , (CH 3)2CHCH 2 , CH 3CHCH 2CH 3 和 (CH 3)3C甲基自由基 一级自由基 二级自由基 三级自由基(6)(CH 2CH=CH)2CH , CH 2=CHCH 2 和 CH 3CH=CH5个sp 2杂化碳共轭 3个sp 2杂化碳共轭 成单电子不在p 轨道上,不参与共轭共轭程度更大共轭程度相对较小习题4.3 解释下列事实:(P126)(1)CH 3CH 2CH=CHCH 3CH 3CH 2CH 2CHCH 3Cl CH 3CH 2CHCH 2CH 3ClHCl+(主)(次)稳定性:>CH 3CH 2CHCH 2CH 3CH 3CH 2CH 2CHCH 3(2)CH 3CH=CCH 3CH 3CH 3CH 2CCH 3CH 3ClCH 3CHCHCH 3CH 3Cl+HCl(主)(次)稳定性:>CH 3CH 2CCH 3CH 3CH 3CHCHCH 3CH 3(3)+HBr , 过氧化苯甲酰-78 Co(96%)(4%)CH 3CH=CH 2CH 3CH 2CH 2Br CH 3CHCH 3Br>稳定性:CH 3CHCH 2Br CH 3CHCH 2BrCH 3CH=CH 2CH 3CHCH 2Br CH 3CHCH 2BrPhCOOH + BrPhCOOBr+(过氧化苯甲酰)2PhCOOPhCO OCPh O O机理:... ...习题4.4 什么是极限结构?什么是共振杂化体?一个化合物可以写出的极限结构式增多标志着什么?(P130)解:极限结构——对真实结构有贡献,但不能完全代表真实结构的经典结构式;共振杂化体——由若干个极限结构式表示的该化合物的真实结构。

第四章 二烯烃与共轭体系

第四章   二烯烃与共轭体系

CH 2 CH 2
CH CH
CH 2 CH 2
高度立体专一性:一定反应条件下(光、热), 一定构型的反应物只能得到特定构型的产物。
H hv H CH3 CH3 H H CH3 heat
对旋
heat
CH3 CH3 H CH3 H
顺旋
hv
H CH3
H CH3
顺旋
对旋
分子轨道对称守恒原理
1965,Woodward R B and Hoffmann R
CH2= CH 2
CH 2
+
.. CH
_
2
.. CH
_
2
CH 2
+
极限式稳定性:共价键数、电荷分离、键长和 键角的变形。
共振式的书写:L ewis, 价键理论
原子排序不变
5.4 共轭二烯烃的化学性质
除烯烃一般性质外,还有如下性质
1.
1,4- 亲电加成
1,2-加成
Br Br CH 2=CH CH CH 2
(Z,E)-2,4- 己二烯 s-顺-1,3-丁二烯

C C
s-(Z)- 1,3-丁二烯 s-反-1,3-丁二烯
C C
s-(E)- 1,3-丁二烯
5.2 共轭二烯烃的制备

5.3 二烯烃的结构
CH 2=CHCH 2CH=CH 2 CH 2=CHCH=CH 2CH 3 CH 3CH=C=CHCH 3
分子轨道对称守恒原理:反应过程中 分子轨道的对称性是 守恒的。
分子轨道理论对对称守恒原理的描述: 前线轨道理论:
前线分子轨道: HOMO:Highest Occupied Molecular Orbital LUMO:Lowest Unoccupied Molecular Orbital
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的产物(动力学控制)。 1, 4-加成不易进行(活化能较高)。
• 加热时:1, 4-加成为主要产物(达到平衡时比例高),说明较为稳
定。是由稳定性决定的产物(热力学控制)
• 低温产物比例加热后变化: 1, 4-加成产物较稳定,反应可逆。
P 134 习题4.8试判断下列反应的结果,并说明原因.
+
CH3CH=CHCH2CH2
思考题 思考题
上述三种情况,在加成反应的方向 与速率方面与乙烯有何不同?请给 予理论上的解释。
四、共振论
(1)共振论的基本概念
共振论:即离域体系可以用几个经典结构的叠加来描述。
CH2 CH CH CH2
+
CH2 CH CH2 CH2
-
-
CH2 CH CH2 CH2+
1,3-丁二烯的共振杂化体
共振论的基本思想
1,2-加成
ห้องสมุดไป่ตู้
CH2 CH CH CH2 + Br2
1,4-加成
CH2 CH CH CH2 Br Br
CH2 CH CH CH2 Br Br
影响1,2-加成和1,4-加成的的因素主要有反应
物的结构、试剂和溶剂的性质、产物的稳定性及温 度等。
极性溶剂有利于1,4-加成
正己烷 (62%) (38%)
CH2 CH CH CH2 + Br2
实验结果
HBr H2C CH CH CH2
(无过氧化物)
注意:双键位置有变化
H2C CH CH Br CH2 + H2C CH H H CH CH2 Br
1, 2-加成 -80oC 40oC 80% 20%
1, 4-加成 20% 80%
40oC
实验结果提示的信息
• 低温时: 1, 2-加成产物易生成(活化能较低),是由反应速度决定
CH2 CH CH O
CH2 CH CH O
+
-
CH2 CH CH
O+
+
CH2 CH CH O
-
贡献极小,忽略 贡献大 贡献较小 (e)键长、键角变化大的极限结构对杂化体的贡献小。
(二)书写极限结构式的基本原则: (a)极限结构式要符合价键理论和Lewis结构理论。 R N
+
O
O
-
R N O
+
O
O
H H CH3
hv CH3 H CH3 反,反 - 2,4 - 己二烯 H
CH3
H
CH3
顺-3,4-二甲基环丁烯
H hv CH3
CH3
H CH3
H
顺,反 - 2,4 - 己二烯
反-3,4-二甲基环丁烯
4、双烯合成, 亦称 Diels-Alder 反应
CH2 CH CH CH2
CH2
+
高温 高压
CH2 HC CH2 HC CH2 CH2
1. 2.
CH 2
CH 3
O
CH
CH
C
CH
CH
CH 2
CH 2 C
CH 2 CH 2
CH
CH 2
OH CH 3 CH 3 C CH 2
3.
CH 3
+
C
4.
CH 2
CH
CH
CH
CH 2
CH 2
CH
CH
CH
+
CH 2
五、共轭二烯烃的化学性质
1、1,4-加成反应(conjugate addition):
共轭二烯的两种平面构象
共轭二烯主要以平面构象存在
H2C H
C
CH2 C H
例:1, 3-丁二烯的两个平面构象 s-顺-1,3-丁二烯 or s-(Z)-1,3-丁二烯
H
s-trans s-cis
C
H2C
or
CH2 C H
s-single(单键) 由单键产生的顺反异构
s-反-1,3-丁二烯 s-(E)-1,3-丁二烯
R N O
(b) 同一化合物的不同极限结构只是电子排布的变化,原 子核位置不变。 + +
CH3CH CH CH2
CH2 CH O H CH3 CH O
CH3CH CH CH2
(c)同一化合物的不同极限结构的成对电子数目必须相同。
CH2 CH CH2
H2C CH CH2
H2C CH CH2
P 106 习题4.11 指出下列各对化合物或离子是否 互为极限结构.
1,4-戊二烯的氢化热=254KJ/mol
1,3-戊二烯的氢化热=226KJ/mol 电子离域越明显,离域程度越大,则体系的能量越低,化合 物也越稳定。
电子离域的表示方法:
共轭效应产生的条件: (1)构成共轭体系的原子必须在同一平面内。 (2)p轨道的对称轴垂直与该平面。 共轭效应的特点: (1)共轭效应只存在与共轭体系内。
碳正离子(Ⅰ) —— 烯丙型碳正离子
+ CH3 CH2 CH C H
δ CH2
+
CH
δ CH
+
CH3
或表示为
δ CH2
+
CH
δ CH
+
CH3
P,π- 共轭体系
第二步:
1,2-加成
δ CH2
+
CH
δ CH
+
CH3
Br
-
CH2 CH CH CH3
1,4-加成
CH2 Br
Br CH CH2 CH3
1,4 - 加成通常亦称共轭加成
低温有利于 1,2-加成, 高温有利于 1,4-加成,
原因可从下图中得到解释。
能 量
E 1 ,4 _ _ _ _ _ _ _ _ _ _ _ _ E 1, 2 δ + δ + CH2 CH CH CH3 + Br ________ CH3CHCH CH2 ________ CH3CH CHCH2Br Br 0 反应进程
+
CH3CH=CHCH=CH 2 + HCl( 1mol)
CH3CH=CHCHCH 3
+
Cl-
Cl
CH3CH=CHCHCH 3
CH3CHCH2CH=CH2 CH3CH2CHCH=CH2
+
Question
300 C CH3CH CH CH CH2 + Cl2 rt ? ?
? low temperrature
第四章 二烯烃和共轭体系
教学目标和要求:
1、二烯烃的结构和性质
2、电子离域和共轭体系 3、1,4加成理论解释 4、共振论
一、二烯烃的分类和命名 1. 分类:根据二烯烃中两个双键相对位置不同
(甲)隔离双键二烯烃
CH2 CH CH2 CH CH2 CH2 CH CH2 CH2 CH CH2
1,4-戊二烯 1,5-己二烯 (乙)累积双键二烯烃 CH3 CH C CH2 CH2 C CH2 丙二烯 1,2-丁二烯
-15 oC
氯仿
CH2 CH CH CH2+ CH2 CH CH CH2 Br Br Br Br
(37%)
(63%)
一般低温有利于 1,2-加成, 温度升高有利于 1,4-加成
o
-80 C CH2 CH CH CH2 + HBr 40 oC
(80%)
(20%)
CH2 CH CH CH3 + CH2 CH CH CH3 Br Br
3. 电环化反应
在一定条件下,直链共轭多烯烃分子可以发生分子内反应, 键断裂,同时双键两端碳原子以键相连形成一个环状分子,
这类反应及其逆反应称为电环化反应。反应过程不经过任
何中间体,而是经过环状过渡态,一步完成,具有高度的 立体专一性。
光(或热)
S-顺-1,3-丁二烯
环状过渡态
环丁烯
电环化反应的显著特点是具有高度的立体专一性。
极性分子



CH2

极性分子
以 1,3- 丁二烯与极性试剂溴化氢的亲电加成反应为例。
δ CH2
+
δ CH
δ CH
+
+ δ δ CH2 + H
δ Br
第一步:
CH2 CH CH CH2 H
+
CH2
CH2
CH
CH
CH
+
CH3
+
(Ⅰ)
(Ⅱ)
CH2 CH2
仲碳正离子(Ⅰ)比伯碳正离子 (Ⅱ)稳定, 因此 反应通常按生成碳正离子(Ⅰ)的途径进行。
CH3 如:2,3-二叔丁基-1,3-丁二烯 CH3 C CH3 CH2 C C 由于空间位阻,不能形成 s-顺式 CH2 CH3 C CH3 构象, 故不发生双烯合成反应. CH3
象电环化和环加成这样只通过过渡态而不生成活 性中间体的反应称为协同反应。
Diels-Alder反应
G W
G W
其它名称 二烯合成
不对称加成规则解释:
+
-
CH3CHCH2CH2CH3 CH3CH=CHCH2CH3
+
+
X
-
X CH3CHCH2CH2CH3 X CH3CH2CHCH2CH3
HX CH3CH2CHCH2CH3
+
X-
共轭体系:
共轭可以使体系稳定。键长平均化。


π ,π 共轭: 两个π键紧邻, 中间无饱和碳隔开.
如: 1,3-丁二烯,丙烯醛, 丙烯腈 超共轭( , π):甲基被视为部分失去一个质子, 可以和一个相邻的π键共轭 p, π 共轭: 一个π键和一个碳的P轨道紧邻, 中间无
相关文档
最新文档