材料表面与界面名词解释和简

合集下载

材料表面和界面的性质和控制

材料表面和界面的性质和控制

材料表面和界面的性质和控制材料在工程和科技领域中有广泛的应用,如电子器件、光学材料、纳米材料等。

然而,在这些应用中,材料表面和界面的性质对于材料的性能、稳定性、功能以及影响表面反应、寿命等具有重要作用。

因此,对于材料表面和界面性质的控制和理解是非常必要的。

一、表面与界面的定义与分类表面是材料与环境接触时形成的物质交换和物理结合的平面或曲面,界面则是不同材料或相同材料不同物理状态之间的接触面。

表面和界面可被分为以下几类:1、宏观表面和界面:宏观表面和界面尺寸较大,常见于宏观物体表面和界面中。

2、微观表面和界面:微观表面和界面的尺寸在数微米至数毫米之间,常存在于材料内部或微小结构内部。

3、纳米表面和界面:这是尺寸在1至100纳米之间的表面和界面,它是制备纳米材料和纳米器件的关键组成部分。

二、表面和界面的性质表面和界面的性质是指由于表面和界面的结构差异,表面和界面通常会具有不同的化学、物理、光电和机械性质。

广泛应用这些性质的许多材料都包括涂料、涂层、电解处理、质量控制和表面形态控制等。

1、化学性质:材料表面和界面的化学性质决定了材料与环境和其他材料的相互作用。

在原位调查中,对于惰性材料表面来说,通常会添加吸附剂。

而对于吸附性强的材料,则需要避免被多种气体吸附。

2、物理性质:材料表面的物理性质包括表面能、界面弹性和热力学性质等。

表面能是表面与其他物质接触的热力学能量;而界面弹性和热力学性质是指材料表面和界面仲裁上的压力和热力学性质。

3、光电性质:材料表面的光电性质指的是材料表面的光学性能、光反应反应特性、光电转换能力等,这些性质直接影响到电子器件、光学材料、光电器件等。

4、机械性质:材料表面和界面的机械性质包括硬度、抗磨损性能、摩擦系数、强度等,对使用材料的工程性能以及基于该材料设计的装置的稳定性、寿命等具有重要的影响。

三、材料表面和界面性质的控制方法因为表面和界面的性质对材料的整体性能和应用至关重要,这里介绍几种控制材料表面和界面性质的方法。

材料的表面与界面

材料的表面与界面
区局部融化,然后又迅速冷却而结晶,会造成了表面层约1微米范围内晶粒尺寸不均匀.
(2)贝尔比层:材料经抛光后,表面形成厚度约5-100nm的光亮而致密层,称为· 金属和合金的贝尔比层往往存在非晶、微晶和金属氧化物.贝尔比层坚硬并且具有 良好的耐腐蚀性. 机械加工后金属表面组织:氧化物层(10-100nm)-贝尔比层(5-100nm)-严重 畸变区(1-2μ m)-强烈畸变区-轻微畸变区
通过晶格的收缩或扩张而形成特殊排列的位错作为两相的过渡区.过渡区的位错称为失配位错.
多晶材料中的界面;(1)多晶材料中的相平衡 两个非共格相界的平衡: ①120︒<ψ <180︒时,第二相在母相中呈圆形,对母相不润湿,呈柱状分布; ②60︒<ψ <120︒时,第二相在母相三晶粒交界处沿晶界部分渗入; ③0︒<ψ <60︒时,第二相在母相三晶粒交界处形成三角状,随二面角减小铺展的越开; ④ψ =0︒时,第二相在母相的晶界区铺开;
旋转对称:旋转角θ =2π /n,n为正整数,称为旋转对称的滑移群:对某一直线作镜像反应后,再沿此线平行方向滑移 半个平移基失.镜像滑移群+点群→17种对称群,称为二位空间群. 原子的表面密度:单胞中某一表面上原子的总面积与该表面积之比.ρ =Aa/As (2)清洁表面:在真空中分开晶体,或将已有表面在真空中经过离子轰击、高温 脱附后得到的表面,这种表面没有吸附其它异类原子,只存在表面原子的排列变化 ①表面重构:形成晶体表面的悬空键的存在,使其处于高能不稳定状态,为了降低 表面自由能,表面原子的位置必然发生变化,这种变化的结果,使得表面原子的 平移对称性与理想表面显著不同,这种表面变化称为表面重构. ②表面弛豫:为了降低体系能量,表面上的原子会发生相对正常位置的上或者下 位移,表面原子的这种位移称为表面弛豫.其显著特征是表面第一层原子和第二层 原子之间的距离改变,越深入体相,弛豫效应越弱,并迅速消失. ③表面台阶结构:存在各种各样的缺陷:TLK模型,T指平台,L表示单原子高度的 台阶,K表示单原子尺度的扭折. (3)吸附表面:除了表面原子几何位置发生变化外,还通过吸附外来原子来降低 表面自由能.包括物理吸附(弱、快、无选择性)和化学吸附(强、慢、选择性). 表面热力学:①表面自由能:自由能极图 ②表面自由能的各向异性影响因素:a.键能Eb; b.单位面积键的数量 ③晶体的稳定形状:表面自由能趋向最小,所以对于各向同性的液体来说,形状 总是趋于球形.定义体积恒定情况下表面自由能最小的形状为平衡形状. 对于各向异性的晶体来说,晶体的平衡形状就是自由能极图的最大内接多边形 实际表面:①表面粗糙度(表面不平整程度小于1mm时)R=Ar/Ag Ag为几何表面积;Ar为包括内表面在内的实际表面积 ②表面杂质的偏析(表面杂质浓度比体内大时)与耗尽(表面浓度比体内小时) 如果杂质原子在表面能使表面自由能降低,则形成偏析,反之形成耗尽; 由热力学条件得出、且偏析尺度为原子尺度(纳米级),称为平衡偏析; 实际上表面的偏析主要发生在几十纳米到几个微米的范围,这种偏析为非平衡 偏析,原因:表面区内存在许多空位、晶格畸变等缺陷,它们形成了明显的应力 场,并引起相应的畸变能,与主成分原子半径不同的各种杂质,进入畸变区域后, 将有利于畸变能的减少,使表面自由能降低,故形成各种非平衡偏析. ③金属与合金的表面组织受环境温度、氧气分压、合金组分浓度等的影响; 表面组织: (1)表面层晶粒尺寸变化:在切磨、抛光等机械加工时,产生大量的热,使表面

材料科学基础_第8章_材料的表面与界面

材料科学基础_第8章_材料的表面与界面
13
8.2.1 界面的空间自由度 ● 空间自由度是描述晶界两个相邻晶粒的相对取向。 ● 确定两个晶粒的相对取向最多需要5个自由度: --首先考虑坐标中初始位向一致的两个晶粒,沿坐标的某
一旋转轴u 互相旋转一个角度θ的情况,u 轴取向需要 2个变量(u 的3个方向余弦中的2个)。此时u 和θ三个
自由度决定了两晶粒的相对取向。 --对位向不一致的两个晶粒,晶界相对于其中一个晶体的
17
➢ 晶界特征 (1)晶界处点阵畸变大,存在晶界能。 (2)常温下晶界的存在会对位错的运动起阻碍运动,使塑
型变形抗力提高,使晶体(材料)的硬度和强度提高。 (3)晶界处原子具有较高的动能,且晶界处存在大量缺陷
。原子在晶界处扩散比晶内快得多。 (4)固态相变时易在晶界处形成新核。 (5)晶界上富集杂质原子多,熔点低 (6)晶界腐蚀速度比晶内快。 (7)晶界具有不同与晶内的物理性质。
忽略液体重力和粘度影响,则铺展是由固/气(SG)、固/液 (SL)和液/气(LG)三个界面张力所决定:
F LG cos SG SL SG SL LG cos
式中θ是润湿角;F 称润湿张力。 θ > 90°不润湿; θ < 90°润湿; θ = 0° 完全润湿。
(自由铺展)
润湿的先决条件是 S>G 。SL
4)固体的表面自由能和表面张力的测定非常困难。
9
8.1.4 固液界面与润湿 机械润滑、注水采油、油漆涂布、金属焊接、搪瓷坯釉、陶 瓷/金属的封接等工艺和理论都与润湿过程有关。 润湿的热力学定义:固体与液体接触后能使体系的吉布斯自 由能降低,称为润湿。
润湿形式: 附着润湿 铺展润湿 浸渍润湿
10
铺展润湿 概念:液滴落在清洁平滑固体表面的过程。

材料表面与界面

材料表面与界面

材料表面与界面材料的表面与界面性质对于材料的性能具有重要的影响。

材料的表面和界面性质是指材料的表面和与其它物质接触的界面上的性质,这些性质直接影响材料的力学、热学、光学等性能。

因此,研究材料的表面与界面性质对于材料科学和工程具有重要的意义。

首先,材料的表面性质对于材料的耐磨性和耐腐蚀性具有重要的影响。

材料的表面硬度、粗糙度、化学成分等都会直接影响材料的耐磨性和耐腐蚀性。

例如,通过表面处理可以提高材料的硬度和耐腐蚀性,从而延长材料的使用寿命。

因此,研究材料的表面性质对于提高材料的耐磨性和耐腐蚀性具有重要的意义。

其次,材料的界面性质对于材料的粘接性和界面传输性能具有重要的影响。

材料的界面粘接性和界面传输性能直接影响材料的结构强度和功能性能。

例如,在复合材料中,界面的结合强度和传输性能直接影响复合材料的力学性能和热学性能。

因此,研究材料的界面性质对于提高材料的粘接性和界面传输性能具有重要的意义。

此外,材料的表面与界面性质对于材料的光学性能也具有重要的影响。

材料的表面和界面对于光的反射、透射和散射等过程有重要的影响,这直接影响材料的光学性能。

例如,在光学器件中,材料的表面和界面质量直接影响器件的光学性能。

因此,研究材料的表面与界面性质对于提高材料的光学性能具有重要的意义。

综上所述,材料的表面与界面性质对于材料的性能具有重要的影响,包括耐磨性、耐腐蚀性、粘接性、界面传输性能和光学性能等方面。

因此,研究材料的表面与界面性质对于提高材料的性能具有重要的意义,这也是材料科学和工程领域的重要研究方向之一。

希望通过对材料的表面与界面性质的研究,可以为材料的设计、制备和应用提供重要的理论和实验基础,从而推动材料科学和工程的发展。

材料物理与化学材料表面与界面物理与化学概念梳理

材料物理与化学材料表面与界面物理与化学概念梳理

材料物理与化学材料表面与界面物理与化学概念梳理材料物理与化学—材料表面与界面物理与化学概念梳理在材料科学与工程领域中,表面与界面物理与化学是一个重要的研究方向。

了解材料表面与界面的性质对于改良材料性能、开发新型材料以及提高材料的应用性具有重要意义。

本文将对材料表面与界面物理与化学的相关概念进行梳理。

一、表面与界面的定义与特点1. 表面的定义与特点表面是指材料内部与外部环境之间的界面,是材料与外界相互作用的主要区域。

表面具有以下特点:(1)表面具有较高的表面自由能,导致表面能量较高;(2)表面具有不规则的形貌特征,如微观粗糙度和凹凸不平等;(3)表面具有较低的占有体积,而占据材料总体积很少。

2. 界面的定义与特点界面是指两个不同相的材料之间的边界,不同相可以是不同的材料,或者同一材料的不同相。

界面具有以下特点:(1)界面能量通常高于体相能量;(2)界面存在着各种缺陷,如孪晶、晶粒边界、位错等;(3)界面对材料的力学、电学、光学等性质具有重要影响。

二、表面与界面物理的研究内容1. 表面物理的研究内容表面物理主要研究材料表面的结构、形貌以及物理性质等。

具体研究内容包括:(1)表面结构的分析与表征,如表面晶胞结构、表面晶格畸变等;(2)表面形貌的研究,如表面粗糙度、表面平整度等;(3)表面态的研究,如表面态密度、表面电子结构等。

2. 界面物理的研究内容界面物理主要研究不同相之间的界面结构、界面缺陷以及物理性质等。

具体研究内容包括:(1)界面结构的分析与表征,如界面原子排列、界面层间结合等;(2)界面缺陷的研究,如界面晶格错配、界面位错等;(3)界面电子结构的研究,如界面态密度、界面电子传输等。

三、表面与界面化学的研究内容1. 表面化学的研究内容表面化学主要研究材料表面的化学成分、表面反应以及表面吸附等。

具体研究内容包括:(1)表面成分的分析与表征,如表面含有的原子、分子及其吸附态等;(2)表面反应的研究,如表面催化反应、表面氧化还原反应等;(3)表面吸附的研究,如表面吸附物的类型、吸附等温线等。

材料表面与界面的性质与应用

材料表面与界面的性质与应用

材料表面与界面的性质与应用材料科学是一个与人们生活密切相关的学科,它不仅与工业生产有着千丝万缕的联系,更是对我们现代生活的多种需求提供了原材料和基础支撑。

而材料的物理学和化学特性则是决定着材料能否成为优秀的材料的决定性因素之一。

表面和界面的性质是重要的研究方向之一。

表面和界面的特性对于材料性能的影响非常重要,因此我们需要了解表面与界面的性质,以更好地应用材料。

一、表面与界面的概念材料的表面是指物质与外界接触的界面,可以是物质相互接触的表面,也可以是物质与外界介质接触的表面。

以金属为例,其表面可以指表面结构、表面形貌和表面组成等方面的特征。

而界面则是指不同相之间接触的界面。

材料在自然界和工业生产中都常常存在不同相之间的接触,因此界面特性的研究显得尤为重要。

二、表面与界面的性质表面与界面的性质会受到表面成分、表面结构、表面形貌、浸润性等多种因素的影响。

具体来说,它会影响类似能量、化学反应、电荷效应、力学特性等多种物理、化学和力学等性质。

材料表面是材料与外界相接触的部分,所以表面化学和表面能量是表面特性的核心点。

通常情况下,表面的化学反应比体积更容易发生,因为表面原子没有被周围原子包围,所以在反应物分子到达表面时,其距离更近,进而导致表面原子与反应物相互作用,进行反应。

表面能量是指物质表面的自由能和内部的化学键能之和。

表面能量对于表面化学和物理性质有着决定性影响。

三、表面与界面的应用1. 表面涂层技术表面涂层技术不仅能实现对材料表面化学反应和表面能量的调控,还能使材料具有出色的耐磨性、耐腐蚀性和耐高温特性等。

经常用于工业生产的有自清洁防水表面涂层、生物医用涂层和磁性涂层等。

通过表面涂层技术,我们不仅能够增强材料的本身性能,还能降低材料配件之间的磨损,从而延长其使用寿命。

2. 纳米材料制备表面和界面影响着纳米材料的物理、化学特性以及材料的自组装行为等因素。

因此,纳米材料的制备不仅需要对材料的体内结构进行研究,也需要考虑其表面和界面特性。

材料表面与界面

材料表面与界面

表界面是由一个相过渡到另一个相的过渡区域。

若其中一相为气体,这种界面通常称为表面。

表面:在真空状态下,物体内部和真空之间的过渡区域,是物体最外面的几层原子和覆盖其上的外来原子和分子所形成的表面层。

表面层有其独特的性质,和物体内部的性质完全不同。

几何概念:表面是具有二维因次的一块面积,无厚度、体积。

界面:两个物体的相态相接触时的过渡区域,由于分子间的相互作用,形成在组成、密度、性质上和两相有交错并有梯度变化的过渡区域。

几何概念:它不同于两边相态的实体,有独立的相、占有一定空间,有固定的位置,有相当的厚度和面积。

弛豫;指表面层之间以及表面和体内原子层之间的垂直间距ds和体内原子层间距d0相比有所膨胀和压缩的现象。

可能涉及几个原子层。

重构:指表面原子层在水平方向上的周期性不同于体内,但在垂直方向上的层间间距d0与体内相同。

这种不平衡作用力使表面有自动收缩的趋势,使系统能量降低的倾向,由此产生表面张力以σ表示,称为表面张力,即:6=f/2l,6=dw/da,σ也可以理解为表面自由能,简称表面能。

例题:20℃时汞的表面张力为4.85×10-1 Jm-2,求在此温度及101.325 kPa 的压力下,将半径1mm的汞滴分散成半径10-5 mm的微小汞滴,至少需要消耗多少功?解:已知:σ=4.85×10-1 Jm-2,r1=1mm, r2=10-5 mm,界面张力的热力学定义。

在恒温、恒压下研究表面性能,故常用下式表示。

广义表面自由能的定义:保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。

狭义表面自由能的定义:保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能,用符号σ表示,单位为J·m-2。

表面张力与表面Gibbs自由能的异同:相同点:数值相同,量纲相同。

不同点:物理意义不同,单位不同。

例:试求25℃,质量m=1g的水形成一个球形水滴时的表面自由能E1。

表面与界面知识点总结 -回复

表面与界面知识点总结 -回复

表面与界面知识点总结 -回复
以下是表面与界面的知识点总结:
1. 表面:物质外部与空气、液体、固体等相接触的部分。

通常有分子层之称。

2. 界面:两种不同状态的物质相接触的部分,如气液界面、固液界面等。

3. 表面张力:液体表面对外界的张力。

液体分子内部相互吸引,表面上的液体分子则受到邻居分子的吸引力只能向内收缩,形成一个比内部压力高的膜状物。

例如水滴在菜叶表面停留就是因为水滴表面的张力与菜叶表面的张力相等而凝聚在菜叶上。

4. 比表面积:单位质量内所含有的分子数和面积,即面密度。

比表面积可以反映物质粒子间的作用力。

5. 吸附:物质表面吸附分子或离子的现象。

吸附可分为化学吸附和物理吸附,化学吸附是指吸附过程中发生化学反应,物理吸附是指吸附过程中没有化学反应。

6. 原子层沉积(ALD):是指以原子为单位,将一种气态化合物分子逐层沉积在衬底表面的过程。

这种技术可以制备高质量、均匀、复杂的薄膜,并广泛应用于微电子、光电、生物等领域。

总之,了解表面和界面的知识对于化学、材料学等领域非常重要,能够帮助我们更加深入理解物质的性质、结构和相互作用关系。

材料科学中的表面和界面研究

材料科学中的表面和界面研究

材料科学中的表面和界面研究材料科学的发展水平已经到了让人瞠目的地步,这离不开表面和界面这两个重要的研究方向。

表面和界面科学早已成为材料科学研究的重要部分。

无论是材料的性能还是材料的组织结构,其都与材料表面和界面有着密不可分的联系。

本文将从表面和界面科学的基本概念到理论研究和实践应用等方面给大家进行介绍,并就其在实际应用中进行一些探讨。

一、表面和界面科学的基本概念表面和界面科学主要关注的是物质的表面和界面所具有的性质、结构和功能等。

其研究的主要对象是具有表面和界面的材料,如液体、气体、固体等。

材料的表面是指物质和外界的接触面,它是材料表征和性能调控的重要途径。

而界面则是指两相材料之间的分界面,如液体-气体、液体-固体、固体-气体等。

材料的界面位置不同,其表现出的性质也不同,因此表面和界面科学可以对这一方面进行探讨。

二、表面和界面科学的理论研究表面和界面科学的理论研究探讨的是在材料表面和界面上发生的一系列物理和化学过程,其目的是为了揭示表面和界面上的基本规律和特性。

主要分为表面物理学和表面化学两个方向。

表面物理学研究的是表面的物理性质,如最大吸附量、表面结构、电子结构等,通过研究表面物理性质,可以揭示表面吸附和反应的本质,从而解决许多实际问题。

表面化学则是揭示表面化学反应的机理和动力学规律,以及表面吸附和反应行为的影响因素,如温度、压力和化学势等。

三、表面和界面在实际应用中的作用表面和界面在实际应用中有着广泛的应用,如催化剂、电子器件、涂料等。

在催化剂方面,表面和界面通常可以调节催化剂的活性和选择性,提高催化反应的效率。

在电子器件方面,表面和界面技术目前已经成为了制造先进微电子器件的重要手段。

在涂料领域,表面和界面对于材料抗腐蚀、抗磨损、增强粘附等方面有着显著的影响。

以上便是表面和界面科学的基本概念、理论研究和实际应用方面的简单介绍。

表面和界面科学是材料科学研究的重要组成部分,其在材料性能、结构和功能的探讨和改进方面所发挥的作用不可小觑。

材料表面与界面科学

材料表面与界面科学

材料表面与界面科学是物理学、化学、材料科学等多个学科领域的交叉学科,重点研究材料表面和界面的结构、性质、化学反应等方面的问题,以期得到新材料研发、工程应用、环境保护等领域的一系列创新和解决方案。

I. 材料表面和界面的定义材料表面是指在宏观尺寸下,材料的外表面或裸露的区域。

而材料界面是指在宏观尺寸下两种或两种以上物质相遇的交界面。

材料的性质主要是由其表面和界面的特性所决定的。

II. 材料表面与界面的性质1. 表面能表面能是材料表面性质的一个基本参数。

它与表面张力、接触角等相关。

表面能高低的不同往往决定了材料如何在不同液体之间选择性地相互作用,进而影响材料表面的粘附力、润湿性等一系列特性。

2. 活性位点活性位点是指在材料表面上比其他部分更活跃的原子、分子,它们负责引发化学反应,配合反应剂对物质进行活性加工。

因此,表面上的活性位点特性直接影响材料的化学反应性,进而决定了材料的结构和性质。

3. 晶界材料界面中最特殊的一种是晶界,它是由于同一材料的不同晶粒之间形成的交界处。

晶界充斥着大量的缺陷和杂质,有着比材料内部更为复杂的锻造、热处理过程。

因此,晶界是表征材料的应力、强度、晶粒尺寸等重要参数。

III. 材料界面与纳米材料由于材料的表面和界面所起到的重要作用,使研究和设计纳米材料成为表面和界面科学中的重要组成部分。

纳米材料,因为其大小在10纳米以下而具有异于常规大尺寸材料的特性。

在材料表面科学中,研究纳米尺寸范围内间距、结构、化学反应等方面的问题至关重要,以期为新型纳米材料的设计合成、利用开辟新方向。

IV. 材料界面科学在新材料研发中的应用1. 陶瓷材料材料表面科学的研究对于较为致密的器件材料比如陶瓷材料的研发而言,是尤为重要的。

通过表面材料内部化学成分和结构的调控,在提升硬度、抗磨损、耐氧化和抗侵蚀性能之间取得平衡,将会是材料科技的新发展方向。

2. 超薄膜材料超薄膜材料是一种利用表面材料化学成分和结构调节的方法来制备的材料。

材料表面与界面的特性及其应用

材料表面与界面的特性及其应用

材料表面与界面的特性及其应用材料表面和界面性质是材料科学中的重要研究领域,因为这些性质决定了材料的性能和用途。

在本文中,我们将探讨材料表面和界面的特性及其应用。

一、表面和界面的概念表面是指材料外部与环境接触的部分,分为实际表面和几何表面两种。

实际表面是真实的材料表面,几何表面是理想情况下的平滑表面。

材料的表面特性主要包括表面形貌、表面化学组成、表面结构和表面能等。

界面是指两种不同的材料或相同材料的不同部分之间的分界面,它们之间的接触面积和界面能量影响着材料的特性。

材料的界面性质主要包括晶界、异质界面、相界面等,其中晶界是指晶粒之间的界面,异质界面是指不同材料之间的界面,相界面是指同一材料中不同相之间的界面。

二、表面和界面的特性1. 表面形貌表面形貌是指表面的几何形状和表面纹理。

这些形状和纹理决定了材料的摩擦、磨损、润滑性能等。

表面形貌通常通过光学显微镜、扫描电子显微镜等观察技术获得。

2. 表面化学组成表面化学组成是表面化学反应和表面吸附现象的结果,包括化学基团、氧化物、热处理物种等。

表面化学组成影响材料的电子结构、化学反应和材料与环境之间的相互作用。

3. 表面结构表面结构是指表面的晶体结构和缺陷结构。

它们决定了表面的力学强度、疲劳寿命等。

表面结构通常通过X射线衍射、中子衍射、TEM等实验手段获得。

4.表面能表面能是表面分子间相互作用的能量和表面吸附分子的能量。

表面能决定了表面与其他材料之间的亲疏性和黏附性。

表面能通常通过表面张力、接触角等实验技术测量。

5. 总界面能总界面能是指材料界面的总能量,包括界面张力和界面形变能等。

总界面能主要影响材料的界面稳定性,是材料界面优化的重要指标。

三、表面和界面的应用表面和界面的特性在材料科学中具有重要的应用,主要包括以下方面:1. 表面修饰利用表面化学组成和结构的差异,对材料表面进行化学、物理、生物修饰,以达到特定的表面性质。

例如,通过表面修饰可使金属表面耐蚀、增加光电转换效率等。

材料科学中的表面与界面现象

材料科学中的表面与界面现象

材料科学中的表面与界面现象引言表面与界面现象是材料科学中一个极为重要的研究领域。

无论是在材料的合成、加工、性能研究还是应用开发中,表面和界面都扮演着至关重要的角色。

本文将从表面与界面的定义、表面和界面的性质以及表面与界面的应用等方面进行探讨,希望能够对读者对材料科学中的表面与界面现象有一个全面的了解。

表面与界面的定义在材料科学中,表面是指材料与外界相接触的边界部分,它是材料与外界进行物质和能量交换的重要场所。

表面能够直接反映材料的性质和特征,并且表面的性质往往与材料的体积相差较大。

界面是指两个或多个不同材料之间的接触面,它是不同材料之间相互作用的场所。

界面处的物理和化学变化可以导致材料的性能发生显著的变化,因此对界面的研究在材料科学中具有重要意义。

表面和界面的性质表面的性质材料表面的性质主要包括表面能、表面形貌和表面化学组成等。

表面能是指材料表面上的内能与外界的能量之间的交换能力,它直接反映了材料与外界的相互作用强度。

表面形貌则是指材料表面的形状和结构特征,它影响着材料的摩擦、磨损、光学和电子等性能。

表面化学组成是指材料表面元素的种类和分布情况,它决定着材料的表面反应活性和化学稳定性。

界面的性质界面的性质主要包括界面能、界面形貌和界面化学组成等。

界面能是指两个不同材料的接触面上的内能与外界能量之间的交换能力。

界面形貌则是指不同材料接触面的形状和结构特征,它对表面应力、界面强度和界面位错等起着重要作用。

界面化学组成是指两个不同材料接触面上化学元素的种类和分布情况,它决定了界面反应的速率和界面附着力。

表面与界面的应用表面与界面的性质在材料科学中具有广泛的应用价值。

以下将介绍几个常见的应用领域。

表面涂层技术表面涂层技术是指将附加层覆盖在材料表面上,以提高材料的性能和增加其使用寿命。

表面涂层技术广泛应用于防腐、耐磨、导热、导电等方面。

例如,汽车制造中常用的喷涂技术可以在汽车外部覆盖一层防腐、防划伤的漆膜,提高汽车的耐用性和外观质量。

材料表面与界面考试必备

材料表面与界面考试必备

材料表面与界面考试必备一、名词解释1.表界面:由一个相过渡到另一相的过渡区域。

2.表面:习惯上把固-气、液-气的过渡区域称为表面。

界面:把固-液、液-液、固-固的过渡区域称为界面。

物体与物体之间的接触面。

界面-两种物质(同种或不同种)之间的接触面、连接层和分界层。

3.理想表面:理论上结构完整的二维点阵平面。

4.清洁表面:不存在任何吸附、催化反应、杂质扩散等物理-化学效应的表面。

(表面的化学组成与体内相同,但结构可以不同于体内)5.驰XX表面:指表面层之间以及表面和体内原子层之间的垂直间距d s和体内原子层间距d0相比有所膨胀和压缩的现象。

6.驰XX:表面区原子(或离子)间的距离偏离体内的晶格常数,而晶胞结构基本不变,这种情况称为弛XX。

7.重构表面:指表面原子层在水平方向上的周期性不同于体内,但在垂直方向上的层间间距d0与体内相同。

8.XX阶表面:表面不是平面,由规则或不规则XX阶组成。

9.表面偏析:杂质由体内偏析到表面,使多组分材料体系的表面组成与体内不同。

10.吸附表面:在清洁表面上有来自体内扩散到表面的杂质和来自表面周围空间吸附在表面上的质点所构成的表面。

11.平移界面:在结构相同的晶体中,一部分相对于另一部分平滑移动一个位移矢量。

其间的界面称为平移界面。

12.反演界面:当晶体结构由中心对称向非中心对称转变时,由反演操作联系起来的两个畴之间形成反演界面IB。

13.表面能:可以理解为系统增加单位面积时所需做的可逆功,单位是J/m2。

14.表面张力:是单位长度上的作用力,单位是N/m。

15.晶界:同质材料形成的固体/固体界面为晶界。

16.相界:异质材料形成的固体/固体界面为相界。

二、简答、简述1、表界面通常可以分为哪5类?固-气;液-气;固-液;液-液;固-固。

2、获得理想表面的理论前提?(1)、不考虑晶体内部周期性势场在晶体表面中断的影响;(2)、不考虑表面原子的热运动、热扩散、热缺陷等;(3)、不考虑外界对表面的物理-化学作用等;(4)、认为体内原子的位置与结构是无限周期性的,则表面原子的位置与结构是半无限的,与体内完全一样。

材料表面与界面

材料表面与界面

材料表面与界面
材料的表面和界面性质对其性能具有重要影响,因此对材料表面与界面的研究一直是材料科学领域的热点之一。

材料的表面是指材料与外界相接触的部分,而界面则是指材料内部不同相或不同材料之间的接触面。

材料的表面与界面性质的研究不仅有助于深入理解材料的性能和行为,还对材料的设计、合成和应用具有重要意义。

首先,材料的表面性质对其与外界的相互作用具有重要影响。

例如,材料的表面能影响其与其他材料的粘附性能,直接影响材料的耐磨性、耐腐蚀性等。

此外,材料的表面性质还会影响其光学、电子、热学等性能,因此对材料表面的研究具有重要意义。

其次,材料的界面性质对材料的力学性能和耐久性能具有重要影响。

例如,多相复合材料中不同相之间的界面性质直接影响材料的强度、韧性和断裂行为。

在材料的界面处往往会出现应力集中、裂纹扩展等现象,因此对材料界面的研究对提高材料的力学性能具有重要意义。

此外,材料的表面与界面性质还对材料的加工、成型和应用具有重要影响。

例如,在材料的表面处理过程中,可以通过改变表面的化学成分、形貌和结构来改善材料的表面性能,从而提高材料的耐磨性、耐腐蚀性等。

在材料的界面设计中,可以通过界面改性、界面结构设计等手段来改善材料的力学性能和耐久性能,从而拓展材料的应用领域。

综上所述,材料的表面与界面性质对材料的性能和应用具有重要影响,因此对材料表面与界面的研究具有重要意义。

随着材料科学的不断发展,对材料表面与界面的研究也将不断深入,为材料的设计、合成和应用提供重要支撑。

希望通过对材料表面与界面的研究,能够开发出更加性能优越的新型材料,推动材料科学领域的发展。

第四章 材料的表面与界面

第四章	材料的表面与界面

第四章 材料的表面与界面表面与界面的概念:固体的表面现象与液体相似,通常把一个相和它本身蒸气(或真空)接触的分界面称为表面。

一个相与另一相(结构不同)接触的分界面称为界面。

固体的表面力:晶体中每个质点周围都存在着一个力场,在晶体内部,质点力场是对称的。

但在固体表面,质点排列的周期性重复中断,使处于表面边界上的质点力场对称性被破坏,表现出剩余的键力,这就是固体的表面力。

表面力的存在使固体表面处于较高的能量状态。

表面的结构:晶体由于质点不能自由流动,只能借助离子极化、变形、重排并引起晶格畸变来降低表面能,这样就造成表面层与内部结构的差异。

离子晶体(MX 型)在表面力作用下,处于表面层的负离子(X -)只受到上下和内侧正离子(M +)的作用,而外侧是不饱和的,该负离子通过极化变形来降低表面能,这一过程称为松驰,松驰在瞬间即可完成,其结果改变了表面层的键性。

接着是发生离子重排过程。

从晶格点阵排列的稳定性考虑,作用力较大、极化率小的正离子应处于稳定的晶格位置。

为降低表面能,各离子周围作用能应尽量趋于对称,从而形成表面双电层。

而产生这种变化的程度主要取决于离子极化性能,对于PbI2、PbF2、BaSO4、SrSO4、CaF2,PbI 2表面能最小,CaF 2最大。

这是因为Pb 2+和I -都具有最大的极化性能,双电层厚导致表面能和硬度都降低。

固体的表面能:表面能的含义是每增加单位表面积时,体系自由能的增量。

固体的表面能可以通过实验测定或理论计算法来确定。

1. 共价键晶体表面能共价键晶体不必考虑长程力的作用,表面能(u s )即是破坏单位面积上的全部键所需能量之一半。

b s u u 21= 式中:u b 为破坏化学键所需能量。

2. 离子晶体的表面能每一个晶体的自由能都是由两部分组成:体积自由能和一个附加的过剩界面自由能。

为了计算固体的表面自由能,我们取真空中绝对零度下一个晶体的表面模型,并计算晶体中一个原子(或离子)移到晶体表面时自由能的变化。

材料表面与界面

材料表面与界面

材料表面与界面材料表面与界面是材料科学中的重要概念,它们在材料的性能和性质中起着关键作用。

在材料科学领域中,表面和界面性质研究的是材料表面和界面与外界环境相互作用的过程和性能。

材料的表面是与外界接触的一部分,它是材料的外层结构,具有比内部结构更高的能量。

由于表面原子与内部原子存在不完全配位和束缚松弛等因素,使得表面在化学性质、物理性质和力学性质上与体相有很大的差异。

例如,金属的表面抛光后能够产生镜面光泽,而半导体的表面在光照下会发生光致反应。

此外,表面也是材料与外界相互作用的主要位置,很多材料的性质都受到表面的影响。

例如,涂层材料的附着性和耐腐蚀性都与表面的性质密切相关。

而界面是指两个相邻的材料或材料之间的分界面。

界面是材料的内部结构,它不仅在化学性质上有差异,还在物理性质和力学性质上有很大的差异。

例如,金属与金属结合的界面称为金属间隙,它具有高导电性和高热传导性;而陶瓷与金属结合的界面称为金属陶瓷界面,它具有高耐磨性和高耐腐蚀性。

界面在材料科学中起着至关重要的作用,它决定了不同材料之间的结合强度和相互作用方式,直接影响材料的性能和性质。

材料的表面和界面性质都是通过表面和界面层的建立来研究的。

表面和界面层是表面和界面两侧的极薄层,它们具有与材料体相有明显差异的结构和性质。

例如,金属的表面层一般是氧化层或氧化物层,它们具有与金属内部结构不同的物理性质和化学性质。

界面层一般是由材料之间的相互扩散和反应产生的,它们具有与材料体相不同的结构和性质。

通过对表面和界面层的研究,可以揭示表面和界面在材料性能中的作用机制,进一步发展新材料和新技术。

在材料科学中,研究表面和界面性质的方法包括表面分析技术、界面分析技术和界面反应技术等。

表面分析技术主要包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)和表面等离子共振(SPR)等,它们可以用来观察材料表面的形貌和微观结构。

界面分析技术主要包括X射线光电子能谱(XPS)、扫描透射电镜(SPM)、拉曼光谱和红外光谱等,它们可以用来分析材料界面的元素组成和原子结构。

材料科学中的表面和界面现象

材料科学中的表面和界面现象

材料科学中的表面和界面现象表面和界面现象是材料科学领域中最重要的研究方向之一。

在材料工程、物理、化学等领域中,表面和界面现象的研究是其中的核心内容。

表面和界面现象涉及到材料表面和界面的结构、性质、热力学和动力学等方面的内容。

本文将介绍表面和界面现象的基本概念,探究其在材料科学中的重要性,并从多个角度阐述表面和界面现象在材料科学中的应用。

一、表面和界面现象的基本概念表面是指材料与周围环境相接触的部分,是材料的最外层。

表面现象是指固体表面的物理和化学性质与固体本身不同的性质,包括表面能、表面物理化学反应和表面反应动力学等。

界面是指两个物质相互接触的界面,由于接触必然引起界面区域的变化,所以界面现象与表面现象有许多相似之处。

界面现象包括表面张力、粘附力、润湿性等。

表面张力是指基于表面吸附机理,类似于薄膜的张力作用。

粘附力则是由表面间的物理吸附和化学反应产生的相互吸引力,常常涉及界面界面的剪切方面或接触角等方面。

表面和界面现象是由材料表面或界面上的分子作用产生的,其中动力学因素如扩散和迁移等也是相当重要的。

扩散是物质分子的自发移动,在固体表面和界面处的扩散通常比在体积中会大得多。

在材料科学中,表面和界面现象可以用于改良材料的性质和性能。

二、表面和界面现象在材料科学中的重要性表面和界面现象在许多材料科学领域中都有着广泛的应用。

例如,这些现象可以用来控制材料的力学性能、光学性能、热学性能,以及用作催化剂、杀菌剂等方面。

用于工程材料的粘附剂、涂层技术以及材料加工中的冶金技术通常都涉及到表面和界面现象的应用。

表面状态和化学特性对于颗粒物和纳米结构材料的制备和应用有着重要的影响。

表面和界面现象也成为创新材料设计的基础,包括涂层材料的设计、减小接触角的材料(如超疏水、超疏油材料)的制备、双氧水气泡杀菌、合金制备、新催化剂的研究等。

另外,表面和界面现象在电子器件中也起着重要的作用,像皮肤感应器、高分子材料、太阳能电池、传感器、LED材料等。

材料科学中的表面与界面

材料科学中的表面与界面

材料科学中的表面与界面材料科学是研究材料的性质、结构、制备、应用等方面的一门学科,而表面和界面是材料科学中非常重要的概念。

表面是指材料的表层,而界面则是不同材料或同一材料不同相之间的界面。

在材料制备、材料性能及材料应用等方面表面与界面都起着至关重要的作用。

表面对材料性能的影响材料的大部分性质都与材料的表面直接相关。

在一些材料中,表面的化学和物理性质与体积的性质有很大的不同。

表面可以影响材料的机械性能、光学性能、电学性能和化学反应等方面。

表面是由原子/分子组成的,当材料表面被处理时,会影响原子/分子的结构和间隙,从而产生不同的表面能、表面电位等物理和化学性质,如氧化、硫化、氢氟化等处理方式都会影响材料表面的性质。

表面的改性可以改变材料的结构和性能。

如铝合金表面的氧化处理可以形成氧化层,保护铝合金表面,提高铝合金的耐腐蚀性;金属材料表面经过镀铬、喷涂等处理可以提高银的光学透明度和化学稳定性。

此外,通过表面处理可以增加材料表面的疏水性或亲水性,进一步改变材料与周围环境的相互作用。

表面的改性也可以改善材料的生物学性能和生物适应性。

例如,医用材料如人工骨骼和人工关节一般要表面进行多次处理,以增加其生物相容性和降低其对周围组织的损伤。

界面对材料性能的影响界面是不同材料或同一材料不同相之间的界面。

在这些界面上,会有不同的物理和化学反应,从而产生不同的力、电学和光学性质。

例如,当两个金属接触时,界面处的电子相互作用可以导致金属表面发生化学反应,使得接合界面处形成化合物等化学反应。

界面的存在也会对材料力学性能产生影响。

在金属合金中,不同的晶体方向表现出不同的机械性能,即不同的力学属性。

当这些晶体遇到界面时,界面中的应力会产生影响,导致材料在局部区域的形变和塑性变形。

除此之外,在半导体工艺中,也需要对半导体材料进行热处理、光刻等工艺处理,生成不同的界面,从而制备出不同的器件。

而当这些器件的性质以及器件之间的交互作用都依赖于界面的存在和性质。

材料表面与界面物理学的基础知识

材料表面与界面物理学的基础知识

材料表面与界面物理学的基础知识随着科技的飞速发展,材料科学在现代工业生产中发挥着越来越重要的作用。

其中,材料表面与界面物理学是材料学中具有重要地位的一部分。

在材料科学的研究中,理解和掌握材料表面与界面的特性和行为,对于材料的设计、制备、性能和实际应用都具有重要的意义。

一、材料表面和界面的基本概念材料表面是指材料与周围环境之间的接触面。

在实际应用中,材料表面不仅是材料与外界相互作用的重要通道,而且也是许多材料特性的决定因素。

例如,物质的表面能直接影响材料的吸附、反应、腐蚀、粘附和力学性能等性质。

材料界面则是指两种或两种以上的材料在界面处连接的地方。

材料之间的界面可以分为同种材料的界面和异种材料的界面。

同种材料的界面常见于金属晶界、液体表面和晶体内核心部位等。

而异种材料的界面则广泛存在于金属材料与非金属材料之间、以及不同的物相之间。

二、材料表面和界面性质的影响因素1.几何形状和表面形貌:材料表面的几何形状和表面形貌是表面能和反应等很多特性的重要因素。

如表面能通常与表面的形貌相关,表面形貌也会对分子的吸附和运动产生很大的影响。

2.材料的化学成分:材料表面和界面性质的重要因素之一是材料表面化学成分和组分的分布。

它可以直接影响材料与周围环境的相互作用、反应及界面能量等性能。

3.表面结构与界面结构:材料表面的结构和界面的结构是其性质的重要因素之一,它们直接关系到材料的机械等性能。

三、材料表面和界面物理性质的测量方法1.原子力显微镜(AFM):AFM是一种基于原子力的高分辨率显微镜,可用于观察材料表面的形貌和结构。

2.扫描电镜(SEM):扫描电镜常用于观察材料表面的形貌和微观结构,其中,扫描电子束与样品相互作用,形成电子图像。

3.X射线衍射(XRD):XRD是基于材料中原子排列导致的X 射线的衍射图案,可以用于表征材料的晶体结构和晶格缺陷。

4.表面等离子体共振(SPR):SPR是一种用于测量材料表面物理性质和学习分子吸附和反应过程的实验方法。

材料表面与界面名词解释和简

材料表面与界面名词解释和简

材料表面与界面1、材料表界面对材料整体性能具有决定性影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、化学反应、复合等等,无不与材料的表界面密切有关。

2、应用领域:a. 航空和航天器件; b.民用;c.特种表面与界面功能材料; d.界面是复合材料的重要特征。

3、隐形涂料:这种涂料含有大量的铁氧体粉末材料,依靠其自身自由电子的重排来消耗雷达波的能量。

4、表面与界面概念:常把从凝聚相(固相、液体)过渡到真空的区域称为表面; 从一个相到另一个相之间的区域称为界面.5、表界面尺寸:可以是一个原子层或多个原子层,其厚度随材料的种类不同而不同。

6、在物质的气、液、固三态中,除了两种气体混合能完全分散均匀而不能形成界面外,三种相态的组合可构成五种界面:液-气,液-液,固-气,固-液,固-固。

7、物质的分类。

从形态上:固体,液体,气体,胶体,等离子体。

从结构上:晶体,无定形。

8、固体表面的分类:理想表面;清洁表面(高温热处理,离子轰击加退火,真空解理。

真空沉积。

场致蒸发等)。

吸附表面。

9、清洁表面发生的常见重要物理化学现象:(a)表面弛豫;(b)重构;(c) 偏析又称偏聚或分凝;(d)台阶化;(e) 形成化合物;(f)吸附10、表面处离子排列发生中断,体积大的负离子间的排斥作用,使C1-向外移动,体积小的Na+则被拉向内部,同时负离子易被极化,屏蔽正离子电场外露外移,结果原处于同一层的Na+和C1-分成相距为0.020 nm的两个亚层,但晶胞结构基本没有变化,形成了弛豫。

11、重构:表面原子重新排列,形成不同于体相内部的晶面。

12、偏析又称偏聚或分凝指化学组成在表面区域的变化但结构不变。

13、台阶化表面附近的点阵常数不变,晶体结构也不变,而形成相梯度表面。

14、形成化合物:指表面化学组成和结构都发生改变,在表面有新相生成。

15、吸附指表面存在周围环境中的物种。

分类:物理吸,附和化学吸附。

16、物理吸附:外来原子在固体表面上形成吸附层,由范德华力作用力引起,则此吸附称为物理吸附。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料表面与界面
1、材料表界面对材料整体性能具有决定性影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、化学反应、复合等等,无不与材料的表界面密切有关。

2、应用领域:a. 航空和航天器件; b.民用;c.特种表面与界面功能材料; d.界面是复合材料的重要特征。

3、隐形涂料:这种涂料含有大量的铁氧体粉末材料,依靠其自身自由电子的重
排来消耗雷达波的能量。

4、表面与界面概念:常把从凝聚相(固相、液体)过渡到真空的区域称为表面; 从一个相到另一个相之间的区域称为界面.
5、表界面尺寸:可以是一个原子层或多个原子层,其厚度随材料的种类不同而
不同。

6、在物质的气、液、固三态中,除了两种气体混合能完全分散均匀而不能形成
界面外,三种相态的组合可构成五种界面:液-气,液-液,固-气,固-液,固-固。

7、物质的分类。

从形态上:固体,液体,气体,胶体,等离子体。

从结构上:
晶体,无定形。

8、固体表面的分类:理想表面;清洁表面(高温热处理,离子轰击加退火,真
空解理。

真空沉积。

场致蒸发等)。

吸附表面。

9、清洁表面发生的常见重要物理化学现象:(a)表面弛豫;(b)重构;(c) 偏析又称偏聚或分凝;(d)台阶化;(e) 形成化合物;(f)吸附
10、表面处离子排列发生中断,体积大的负离子间的排斥作用,使C1-向外移动,体积小的Na+则被拉向内部,同时负离子易被极化,屏蔽正离子电场外露外移,
结果原处于同一层的Na+和C1-分成相距为0.020 nm的两个亚层,但晶胞结构基本没有变化,形成了弛豫。

11、重构:表面原子重新排列,形成不同于体相内部的晶面。

12、偏析又称偏聚或分凝指化学组成在表面区域的变化但结构不变。

13、台阶化表面附近的点阵常数不变,晶体结构也不变,而形成相梯度表面。

14、形成化合物:指表面化学组成和结构都发生改变,在表面有新相生成。

15、吸附指表面存在周围环境中的物种。

分类:物理吸,附和化学吸附。

16、物理吸附:外来原子在固体表面上形成吸附层,由范德华力作用力引起,则此吸附称为物理吸附。

特点:物理吸附过程中没有没有电子转移、没有化学键的生成和破坏,没有原子重排等等,产生吸附的只是范德华力。

物理吸附的作用力是范德华力,包括:定向力/偶极力、诱导力、色散力;作用力。

17、化学吸附:外来原子在固体表面上形成吸附层由化学键作用力引起,则此吸附称为化学吸附。

特点:表面形成化学键;有选择性;需要激活能;吸附热高(21- 42 KJ/mol)。

吸附的物种可以是有序=也可以是无序=吸附在表面,也可以是单层=,也可以是多层=吸附。

因表面的性质和被吸附的物种而定。

18、表面产生吸附的根本原因:(1)电荷在凝聚相表面发生迁移,包括负电荷的电子迁移和正电荷的离子迁移。

(2)表面存在可以构成共价键的基团:A、过渡金属原子空的d轨道如Pt(5d96s1);B、化学反应成键。

19、固体的表面特性:①表面粗糙度r : 实际表面积与光滑表面积之比值。

表面粗糙度测定方法:1)干涉法:适合测量精密表面;2)光学轮廓法;3)探针法;4)比较法;5)感触法。

20、干涉法:空间的多束光传播时,在它们的重叠区域会发生干涉,两束光迭加后其光强的分布并非均匀,光强随光程差D 的变化按余弦规律变化,从一个亮条纹到另一个亮条纹, 具有相同光程差的点必然分布在同一条纹上. 因此,只要知道光波的波长就可以测得表面微观不平度。

21、在研究多孔固体物理吸附时,常常出现逐渐增加气体压力时得到的等温线与吸附后逐渐降低压力时得到的脱附等温线不相重合,这就是所谓的滞后现象。

滞后圈存许多不同的形状,分别对应于不同的孔结构。

22、Θ=(bp )/(1+bp)=V/Vm ;此式称为Langmiur 吸附等温式,b 称为吸附系数。

以p/V~p 作图,可得一直线,从直线的斜率和截距可以求出Vm 和b 。

1、扩散是材料中存在有浓度梯度时产生的原子定向运动。

2、扩散机理:在固体中原子扩散, 主要通过原子利用缺陷位置进行运动。

如填隙原子、空位和原子团互换位置。

3、表面扩散分类:(a)原子浓度梯度引起的表面扩散;(b)毛细管作用力引起的表面扩散。

4、表面张力也可以理解为系统增加单位面积时所需做的可逆功,也可以理解为表面能。

5、把两本体相的界面,从其平衡位置可逆地分离到无限远时则需做一份外功,称之为粘附功。

6、拉普拉斯方程:r p /2。

表面弯曲的液体在表面张力作用下受到一定的附加压力,附加压力的大小总是指向曲率中心。

7、液体的表面和界面张力的测定方法,有液滴法、悬滴法、毛细管上升法、气泡最大压力法、滴重法、吊片法和环吊法等等,原则上也适应于测定熔融和液态高聚物的表面张力。

8、影响界面张力的因数:①温度增高,表面张力下降。

②两相极性相同时,表面张力越小;③分子量
9、固体表面张力的测定方法:1)Zisman 法;2)熔体表面张力外推至室温方法。

1、润湿作用是一种流体置换表面上另一种流体的过程。

润湿作用主要是指液体取代固体表面上的空气。

2、固体表面三种润湿过程:(a )粘附润湿(b)铺展润湿(c)浸渍润湿。

3、沾湿过程:失去一个“液-气”界面和一个“固-气”界面,形成一个“固-液”界面。

4、浸湿过程:将固体浸入到液体中谓之浸湿。

“气-固”界面为“液-固”界面所取代。

5、铺展润湿:将一滴液体置于固体表面上,在恒温恒压条件下,液滴在固体表
面上自动展开形成液膜的过程谓之铺张润湿。

固气界面消失而形成了“固-液”界面和“液-气”界面。

6、杨氏方程和接触角:lg /)(cos sl sg 。

粘湿:180°,Wa 0。

浸湿:90°,Wi 0。

铺展:θ=0或不存在,S ≥0 。

θ>90°为不润湿;θ<90°为润湿,且θ愈小润湿就愈好,θ=0时为完全润湿。

7、影响固体表面润湿行为的主要因素:①与构成表面材料本身的物理化学特性
有关;②与构成表面形貌和结构密切相关;③与外部条件有关如温度等。

8、θ<90°时,θ'<θ,即在润湿的前提下,表面粗糙化后θ' 变小,更易为液体所润湿。

θ>90°时,θ'>θ,即在不润湿的前提下,表面粗糙化后θ'变大,更不易为液体所润湿。

9、在固-液界面扩展过程中存在一个前进角,以θa 表示,和收缩后的接触角称为后退角,以θr 表示.一般,前进角往往大于后退角,两者之差值(θa-θr)称为接触角滞后现象。

10、引起接触角滞现象的原因:固体的表面粗糙不平、不均匀、表面受污染等。

11、高能表面材料的表面张力远远大于一般液体的表面张力.因此,一般液体均能在高能表面上自动铺展润湿。

12、低能表面的润湿规律:只有表面张力等于或小于固体的c 值的液体才可能在该固体表面铺展润湿。

13、接触角的测定方法:①躺滴法/投影-切线法;②吊板法;③Bartell 静态法,称:位移压力法;④Washburn 动态法。

1、材料结构和性能的表征:材料的形貌、化学组成、相组成、晶体结构、缺陷等。

2、表征材料形貌的仪器:光学显微镜;扫描电子显微镜;原子力显微镜;扫描隧道显微镜;透射电子显微镜;高分辨率透射电子显微镜。

3、检测化学组成的仪器:X-Ray 光电子能谱, 测组成和价态;红外光谱;核磁共振谱。

4、检测相组成、晶体结构:X-ray 衍射;拉曼光谱;精细X-ray 衍射谱。

5、表面、界面、薄墨中的偏析、吸附扩散、粘附等特性用俄歇电子谱;二次离子质谱;离子散射谱检测。

6、扫描电子显微镜(SEM )主要特点:①电磁物镜的特点;②高真空下观察样品形貌;③样品分辨率高;④样品需要导电,对于不导电的样品需要先溅射上一层金或者铂金;⑤环境扫描电镜。

7、TEM 特点:①电子透过样品有散射和衍射等现象;②电磁物镜的特点;③高真空下观察样品形貌,对于不同材料在同一聚集体中显出不同的衬度,是研究符合材料非常有效的手段;④样品分辨率高;⑤样品不需要导电。

8、扫描隧道显微镜(STM )特点:①只能得到表面的微结构,不能得到成分;②分辨率可达:0.1 ~0.01 nm ;③可以在真空、大气、溶液条件下进行表面分析,图象的质量与针尖非常密切相关;④样品要有一定的导电性。

布拉格方程:n d hkl sin 2。

9、Raman (拉曼)效应产生于入射光的电场与介质表面上振动的感生偶极子的相互作用,导致分子的旋转或振动模式的跃迁变化。

特点:①Raman 光谱研究分子结构时与红外光谱互补;②Raman 光谱研究的结构必需要有结构在转动或者振动过程中的极化率变化(红外光谱研究的结构必需要有有结构在转动或者振动过程中偶极矩差异);③可以测定物质的晶体结构和晶相判断,但只能是研究光能到达的表面区域;④样品可以是固态、液体或者气体。

10、光电发射定律:当能量为hv 的光激发原子或者分子时,光子的能量被吸收,。

相关文档
最新文档