概率论与数理统计教程(魏宗舒)第七章答案

合集下载

《概率论与数理统计教程》魏宗舒 课后习题解答答案_1-8章

《概率论与数理统计教程》魏宗舒 课后习题解答答案_1-8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

概率论与数理统计(魏宗舒版)答案完整版

概率论与数理统计(魏宗舒版)答案完整版
A = {(正1, 次) , (正 2, 次),, (正 9, 次)}
(2)记 2 个白球分别为 ω1 , ω 2 ,3 个黑球分别为 b1 , b2 , b3 ,4 个红球分别 为 r1 , r2 , r3 , r4 。则 Ω = { ω1 , ω 2 , b1 , b2 , b3 , r1 , r2 , r3 , r4 } (ⅰ) A = { ω1 , ω 2 } (ⅱ) B = { r1 , r2 , r3 , r4 }
1.10 某城市共有 10000 辆自行车, 其牌照编号从 00001 到 10000。 问事件 “偶 然遇到一辆自行车,其牌照号码中有数字 8”的概率为多大? 94 9 解 用 A 表示“牌照号码中有数字 8” ,显然 P ( A) = = ,所以 10000 10 P( A) = 1 - P ( A) = 1 − 94 9 = 1− 10000 10
3 ! 2 ! 2 ! 2 ! 个样本点。所以 P ( A) =
它处于和红“车”同行或同列的 9 + 8 = 17 个位置之一时正好相互“吃掉” 。故所 求概率为 17 P( A) = 89 1.9 一幢 10 层楼的楼房中的一架电梯,在底层登上 7 位乘客。电梯在每一 层都停, 乘客从第二层起离开电梯, 假设每位乘客在哪一层离开电梯是等可能的, 求没有两位及两位以上乘客在同一层离开的概率。 解 每位乘客可在除底层外的 9 层中任意一层离开电梯,现有 7 位乘客,所 以样本点总数为 9 7 。事件 A “没有两位及两位以上乘客在同一层离开”相当于 “从 9 层中任取 7 层,各有一位乘客离开电梯” 。所以包含 A97 个样本点,于是 P( A) = A97 。 97
(正 2, 正 4 ), (正 2, 正 9 ), (正 2, 次), 3, Ω = {(正1, 正 2 ), 3, (正1, 正 3 ), (正1, 正 9 ), (正1, 次),(正 2, 正 3 ), (正 3, 正 4 ), 3, (正 3, 正 9 ), (正 3, 次),, (正 8, 正 9 ), (正 8, 次), (正 9, 次)}

概率论与数理统计课后习题答案(魏宗舒编)(1-4章)

概率论与数理统计课后习题答案(魏宗舒编)(1-4章)

1 1 24 2 23 2 22 2 2 2 0 x y 2,0 y x 1 。因此所求概率为 P ( A) 0.121 24 2
1.17 在线段 AB 上任取三点 x1 , x 2 , x3 ,求: (1) x 2 位于 x1与x3 之间的概率。 (2) Ax1 , Ax 2 , Ax3 能构成一个三角形的概率。
1 1 包含 A32 2 A3 A5 2 3 6 个样本点。于是
2 3 6 9 。 8 7 14 1.6 有五条线段,长度分别为 1、3、5、7、9。从这五条线段中任取三条,求所取三条线段 能构成一个三角形的概率。 P ( A)
5 解 样本点总数为 3 10 。所取三条线段能构成一个三角形,这三条线段必须是 3、5、7 或 3、7、9 或多或 5、7、9。所以事件 A “所取三条线段能构成一个三角形”包含 3 个样本点, 3 于是 P ( A) 。 10 1.7 一个小孩用 13 个字母 A, A, A, C , E , H , I , I , M , M , N , T , T 作组字游戏。如果字母的各种排 列是随机的(等可能的) ,问“恰好组成“MATHEMATICIAN”一词的概率为多大? 解 显然样本点总数为 13 ! ,事件 A “恰好组成“MATHEMATICIAN”包含 3 ! 2 ! 2 ! 2 ! 个样本点。 所以 P ( A)
1 解 (1) P ( A) 3
1 1 1 3 3 2 1 (2) P( B ) 1 2
1.18 在平面上画有间隔为 d 的等距平行线,向平面任意地投掷一个三角形,该三角形的边 长为 a, b, c (均小于 d ) ,求三角形与平行线相交的概率。 解 分别用 A1 , A2 , A3 表示三角形的一个顶点与平行线相合,一条边与平行线相合,两条边与 分别用 Aa , Ab , Ac , Aab , Aac , Abc 表示边 a, b, c , 平行线相交, 显然 P( A1 ) P( A2 ) 0. 所求概率为 P( A3 ) 。 二 边 ab, ac, bc 与 平 行 线 相 交 , 则 P( A3 ) P( Aab Aac Abc ). 显 然 P ( A

魏宗舒版《概率论与数理统计教程》课后习题解答

魏宗舒版《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

魏宗舒版《概率论与数理统计教程》课后习题解答

魏宗舒版《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案  第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。

概率论与数理统计课后习题答案 第七章

概率论与数理统计课后习题答案 第七章

习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)

的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知

概率论与数理统计(魏宗舒版)答案完整版-知识归纳整理

概率论与数理统计(魏宗舒版)答案完整版-知识归纳整理

求知若饥,虚心若愚。 第 98 页/共 103 页
千里之行,始于足下。 第 99 页/共 103 页
求知若饥,虚心若愚。 第 100 页/共 103 页
千里之行,始于足下。 第 101 页/共 103 页
求知若饥,虚心若愚。 第 102 页/共 103 页
千里之行,始于足下。 第 103 页/共 103 页
求知若饥,虚心若愚。 第 86 页/共 103 页
千里之行,始于足下。 第 87 页/共 103 页
求知若饥,虚心若愚。 第 88 页/共 103 页
千里之行,始于足下。 第 89 页/共 103 页
求知若饥,虚心若愚。 第 90 页/共 103 页
千里之行,始于足下。 第 91 页/共 103 页
求知若饥,虚心若愚。 第 38 页/共 103 页
千里之行,始于足下。 第 39 页/共 103 页
求知若饥,虚心若愚。 第 40 页/共 103 页
千里之行,始于足下。 第 41 页/共 103 页
求知若饥,虚心若愚。 第 42 页/共 103 页
千里之行,始于足下。 第 43 页/共 103 页
知识归纳整理 第 1 页/共 103 页
求知若饥,虚心若愚。 第 2 页/共 103 页
千里之行,始于足下。 第 3 页/共 103 页
求知若饥,虚心若愚。 第 4 页/共 103 页
千里之行,始于足下。 第 5 页/共 103 页
求知若饥,虚心若愚。 第 6 页/共 103 页
千里之行,始于足下。 第 7 页/共 103 页
求知若饥,虚心若愚。 第 44 页/共 103 页
千里之行,始于足下。 第 45 页/共 103 页
求知若饥,虚心若愚。 第 46 页/共 103 页

概率论与数理统计教程(魏宗舒等编)课后习题答案精编版

概率论与数理统计教程(魏宗舒等编)课后习题答案精编版
1 1 事件 A “所得分数为既约分数”包含 A32 + 2 A3 × A5 = 2 × 3 × 6 个样本点。于是
2 × 3× 6 9 。 = 8× 7 14 1.6 有五条线段,长度分别为 1、3、5、7、9。从这五条线段中任取三条, 求所取三条线段能构成一个三角形的概率。
P( A) =
⎛ 5⎞ 解 样本点总数为 ⎜ ⎜ 3⎟ ⎟ = 10 。所取三条线段能构成一个三角形,这三条线段必 ⎝ ⎠ 须是 3、5、7 或 3、7、9 或多或 5、7、9。所以事件 A “所取三条线段能构成一 3 个三角形”包含 3 个样本点,于是 P( A) = 。 10 1.7 一个小孩用 13 个字母 A, A, A, C , E , H , I , I , M , M , N , T , T 作组字游戏。如 果字母的各种排列是随机的(等可能的) ,问“恰好组成“MATHEMATICIAN”一词 的概率为多大? 解 显然样本点总数为 13 ! ,事件 A “恰好组成 “MATHEMATICIAN”包含 3!2!2!2! 48 = 13! 13! 1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车” ,求它们 正好可以相互吃掉的概率。 解 任意固定红“车”的位置,黑“车”可处于 9 × 10 − 1 = 89 个不同位置, 当 3 ! 2 ! 2 ! 2 ! 个样本点。所以 P( A) =
1 1 1− 3× × 3 2 =1 (2) P( B) = 1 2
1.18 在平面上画有间隔为 d 的等距平行线,向平面任意地投掷一个三角形, 该三角形的边长为 a, b, c (均小于 d ) ,求三角形与平行线相交的概率。 解 分别用 A1 , A2 , A3 表示三角形的一个顶点与平行线相合,一条边与平行线 相合,两条边与平行线相交,显然 P( A1 ) = P( A2 ) = 0. 所求概率为 P( A3 ) 。分别用

概率论与数理统计第七章课后习题及参考答案

概率论与数理统计第七章课后习题及参考答案

故ˆ 是 的无偏估计.
(3)
E(X 2)
x2 f (x, )dx
0
6x3
( 3
x)
d
x
3 10
2

从而
D( X ) E( X 2 ) [E( X )]2 1 2 . 20
由此得 D(ˆ) D(2 X ) 4D( X ) 4 D( X ) 4 1 2 2 .
n
n 20 5n
(2) ˆ 是 的无偏估计吗? (3) 求 的方差 D(ˆ) .
解: E(X )
xf (x, )d x
0
6x2 ( 3
x)
dx
2

(1) 令 E( X ) X ,即 X ,由此得 的矩估计量为ˆ 2X . 2
(2) E(ˆ) E(2X ) 2E( X ) 2E( X ) 2 , 2
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
d ln L d
5n
0
,所以
ln
L(
)

的单调增函数,
又因为 xi ,i 1,2,, n ,故当 m1iinn{xi} 时 ln L( ) 达到最大值.由此得
的极大似然估计值为
ˆ
m1iinn{xi
}
,则其极大似然估计量为

魏宗舒版《概率论与数理统计教程》课后习题解答

魏宗舒版《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

魏宗舒《概率论与数理统计教程》(第2版)(课后习题 假设检验)【圣才出品】

魏宗舒《概率论与数理统计教程》(第2版)(课后习题 假设检验)【圣才出品】

第7章 假设检验7-1 设总体,其中参数,为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1); (2);(3);(4);(5).答:完全决定总体分布的假设称为简单假设,否则称为复合假设.则这5个假设中,只有(1)是简单假设,其余为复合假设.7-2设取自正态总体,其中参数未知,是子样均值,如对检验问题,取检验的拒绝域:,试决定常数,使检验的显著性水平为0.05.答:因为,故在成立的条件下,,所以=1.176.7-3 设子样取自正态总体,已知,对假设检验,取临界域.(1)求此检验犯第一类错误概率为时,犯第二类错误的概率,并讨论它们之间的关系;(2)设=0.05,=0.004,=0.05,n=9,求=0.65时不犯第二类错误的概率.答:(1)在成立的条件下,,此时,所以,,由此式解出;在成立的条件下,,此时:,由此可知,当增加时,减小,从而减小;反之当减少时,则增加.(2)不犯第二类错误的概率为:7-4 设子样取自均匀分布其中未知参数θ>0,又设最大次序统计量为若对检验问题取拒绝域为(1)求第一类错误的概率的最大值;(2)若要(1)中所得的最大值不超过0.05,n 至少应取多大?答:(1)均匀分布最大次序统计量的密度函数为:因而检验犯第一类错误的概率为是的严格递减函数,故其最大值在处达到,即(2)若要,则要求,由此可得出,即得n 至少应取11.7- 5 设是取自二点分布b (1,p )的子样,对检验问题记,取拒绝域为W={T≥8},求该检验犯两类错误的概率.答:因为是取自二点分布b(1,p )的子样,则是服从的二项分布,于是犯两类错误的概率分别为:7-6 设一个单一观测的子样取自分布密度函数为的母体,对考虑统计假设:试求一个检验函数使犯第一,二类错误的概率满足,并求其最小值.答:设检验函数为(c 为检验的拒绝域),要使,当时,;当时,;所以检验函数应取,此时,.7-7 设某产品指标服从正态分布,它的根方差已知为150小时.今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?答:总体,对假设,采用U 检验法,在为真时,检验统计量:临界值,故接受.7-8 某电器零件的平均电阻一直保持在2.64,根方差保持在0.06,改变加工工艺后,测得100个零件,其平均电阻为 2.62,根方差不变,问新工艺对此零件的电阻有无显著差异?取显著性水平=0.01.答:设改变工艺后电器的电阻为随机变量,则未知,,假设为,统计量由于,故拒绝原假设,即新工艺对电阻有显著差异.7-9 有一种新安眠剂,据说在一定剂量下能比某种旧安眠剂平均增加睡眠时间3h ,根据资料,用某种旧安眠剂时平均睡眠时间为20.8h ,标准差为1.8h ,为了检验新安眠剂的这种说法是否正确,收集到一组使用新安眠剂的睡眠时间(以h 为单位)为:26.7,22.0,24.1,21.0,27.2,25.0,23.4试问:这组数据能否说明新安眠剂已达到新的疗效?答:设新安眠剂疗效为随机变量,则未知,.检验假设从母体中取了容量为7的子样,近似服从正态分布,即:.因而对假设可采用u -检验计算检验统计观察值,所以接受原假设,即新安眠剂未达到新的疗效.7-10 一位校长在报上看到一则报道:“本市初中生平均每周看电视8h”,该校长认为本校学生看电视的时间明显小于该数字,为此随机调查了100名学生,得知每周看电视的平均时间为6.5h,样本标准差为2h ,假定学生每周看电视的时间服从正态分布,根据调查结果,在a=0.05水平下能否支持该校长的看法.答:假设初中生平均每周看电视的时间服从正态分部:未知构造拒绝域,现,故而,由于.所以拒绝即可认为校长的看法是对的.7-11 有甲、乙两个试验员,对同一试验的同一指标进行测定,两人测定的结果如下:表7-1。

概率论与数理统计习题及答案第七章

概率论与数理统计习题及答案第七章

概率论与数理统计习题及答案第七章习题7-1的样本,则0的矩估计量是().(A) X .(B) 2X .解选(B).2.设总体X 的分布律为X -215P301-40e其中0v 0< 0.25为未知参数,X 1, X 2, , , X n 为来自总体X 的样本,试求0的矩估计量.解因为 E(X)=(-2) >3 0+1X(1-4 0+5 X0=1-5 0 令 1_5v-X 得到v 的矩估计量为彳二1.53.设总体X 的概率密度为f A严 1)x ;0 ::: x :::1, f (X ; V)0, 其它.其中0>1是未知参数,X 1,X 2,, ,X n 是来自X 的容量为n 的简单随机样本求:(1) r 的矩估计量;(2) 0的极大似然估计量. 解总体X 的数学期望为址 1阳1 日+1E (X ) = f xf (x)d x =[(日 +1) x dx = ----------------------0+21.选择题(1)设总体X 的均值的样本, 则均值□与方差 (A) 2 X 和 S 2. (C)□和d . 解选(D).与方差都存在但未知 C 2的矩估计量分别是( 而X-X 2,…,X n 为来自X ).1(B) X 和 (X i(D)1X 和 (X i20>0为未知参数,又X i ,X 2,…,X n 为来自总体X(C) max{ X i }. 1 < i < n(D) min { X i }. 1 < i < n⑵设X : U [0, v],其中 -X)令E (X )= X ,即二! =X ,得参数0的矩估计量为彳■■ 2设X 1, X 2,, , X n 是相应于样本X 1, X 2,, , X n 的一组观测值,2X -1 1 -x则似然函数为0,当 0<x< p="">,n)时,L>0 且 nXiIn ,0 ::: x i :::1,L = n ln( v I))、In X i ,i =1Ad In L n 二令Ind v 71 -1 i 1X i =0,得0的极大似然估计值为 4-1nnvIn X ii土而的极大似然估计量为4.设总体X 服从参数为彳=-1.二 In Xii -4即X 的概率密度为■的指数分布, 3 x 0,f (X, ■)二I 0,其中,.0为未知参数,X i , X 2, , , X n 为来自总体的矩估计量与极大似然估计量1 -解因为E(X)= =X ,所以,的矩估计量为x < 0,X 的样本,试求未知参数■—.设 X 1, X 2,, , X n 是相X应于样本X i , X 2,, ,X n 的一组观测值,则似然函数n -n _L 二■■■■ In-'7 X i i 士取对数人 d In L n 二令. X i人 \=±1 然估计量为?==.X=0,得?的极大似然估计值为1 -,■的极大似X1.选择题:设总体X ’,X 2,…,X n 为X 的样本,的无偏估计量?X 的均值则无论总体与方差;「2都存在但未知,而服从什么分布,( 2)是.1和二(A)X i 和 (Xn i ±n i 生(C)—JX i 和1n -1 i ±n -1解选(D).2. 若x 1,X 2 ,X(B)1 nX i 和-1 i —, n —2(X i —X) ?1 12—7 X i 和—v (X i 7 .n i -4、 in i -4)的样本,且X 2 ? kX 3为」的无偏估计量,问k 等于多少?解要求1E(—X ! 31 1 1 ? — X2 ? kX 3)2 74 3 45解之,k=.1 25.设总体X 的概率密度为0 ::: x ::: 1,其它,,X n 为来自总体的简单随机样本,记N求:(1) B 的矩估计量;(2) B 的极大似然33 —解 (1) X =E(X)二 xvdx 亠 |X (1 - v)dx,所以 <1 矩 X .22(2)设样本X 1,X 2,…X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) < X (2) w , wx (N) <1 w X (N+1) W X (N+2)W , W X (n).似然函数为,,■'N(^-r-,X (1) W x (2) W ' "W X (N) <1W X (N 1) W X (N 2) W X n , LQ|0, 其它.考虑似然函数非零部分,得到In L( 0) = N In 0+ (n - N) In(1- 0),令d s o 二‘ 一口 =o ,解得0的极大似然估计值为弓=楚.d B日1 —日n习题7-23.设总体X 的均值为0,方差匚2存在但未知,又X 1, X 2为来自总体X 的1 2 21< x < 2,f (x,=) ?1 七,0,.X 1, X 2,,1的个数? 其中-(0<二<1 )是未知参数为样本值x , ,x 2 , ,x n中小于估计量.nnn2i—'X ).3为来自总体2、(X i 」).(D)i :—样本,试证:一(X ’ 一X 2)为二的无偏估计21 2 1 2 2证因为E[—(X’-X?)] E[( X1^2X 1X2 X2 )]2 21 2 2【E(X’)_2E(X’X2)- E(X2 )]2所以一(X1-X2)2为L的无偏估计.2习题7-31. 选择题(1) 总体未知参数二的置信水平为0.95的置信区间的意义是指().(A) 区间平均含总体95%的值.(B) 区间平均含样本95%的值.(C) 未知参数二有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数n的真值?解选(D).(2) 对于置信水平1- a0< ad),关于置信区间的可靠程度与精确程度,下列说法不正确的是().(A) 若可靠程度越高,则置信区间包含未知参数真值的可能性越大(B) 如果a越小,则可靠程度越高,精确程度越低.(C) 如果1- a越小,则可靠程度越高,精确程度越低?(D) 若精确程度越高,则可靠程度越低,而1- a越小. 解选(C)习题7-41.某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300,1200.设灯泡寿命服从正态分布N(卩902),取置信度为0.95,试求当天生产的全部灯泡的平均寿命的置信区间.解计算得到x -1141.11,3 =902.对于a= 0.05,查表可得Z -/2 = z0.025 二1-96.所求置信区间为22=(1141.11= (1082.31,1199.91).2. 为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为X =105元,样本标准差s =28元.设消费额服从正态分布.取置信水平为0.95,求该地旅游者的平均消费额的置信区间 .2 2解计算可得X =105, f =282.对于a = 0.05,查表可得t ..(n -1) =t °.025 (39) = 2.02272所求□的置信区间为=(96.045, 113.955).3?假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟8支为一组样本,测得其尼古丁平均含量为18.6毫克,样本标准差s=2.4毫克.试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解已知 n =8, S 2=2.42, a = 0.01,查表可得笑厶一 1) = 30.005 ⑺=20.278 ,22..(n -1) =0.995⑺=0.989 ,所以方差/的置信区间为"2本:X 1,X 2,, ,X 12 及丫1,丫2,, ,丫17,算出 x =10.6g ,y = 9.5g , s : =2.4, s ;=4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布,且相互独立,其均值分别为叫,J 2.又设两总体方差打.求4 - J 2置信水平为0.95的置信区间并说明该置信区间的实际意义.解由题设 X =10.6, y =9.5, s : =2.4, s ; =4.7, n 1 =12, n 2 =17,(Xs (X「28\(n -1),x2\(n -1)) =(10522.0227, 28105—2.0227 )2 2(n -1)S(n -1)S 、(, )=( “-1) J -1)2 22(8 .1)2.420.2782(8 -1)2.40.989)=(1.988, 40.768).4.某厂利用两条自动化流水线灌装番茄酱分别从两条流水线上抽取样2s w2 丄 2(① -1) q ? (n ? -1)S 2 n 1 ' n 2「2 (12 —1) 2.4 ? (17 —1) 4.712 17「2= 1.94(J ■ n)90—1.96, 1141.11sQg +n2—2) =t0.°25 (27) = 2.05181,所求置信区间为2 21 11 1—■■_) =((10.6「9.5) _2.05181 1.94,—、一) n 1 n 2 .12 17 =(-0.40,2.60).结论“叫_ J 的置信水平为0.95的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时,第一个正态总体的均值叫比第二个正态总体均值J 大-0.40?2.60,此结论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求,调查了100户,得出每户月平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为0.99.(1) (2) 解 _ s _ s (x ——t (n -1), x ——t (n -1))' 厂g厂?■ f n 2 ■. n 2= (102.575, 102.575) =(9.2275,10.7725).J 100J10010000户居民对此种商品月需求量的置信度为 0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以 99%的概率满足需要?((X7) _t ,(n 1n2—2)S w2取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计问最少要准备多少这种商品才能以(1)每户居民的需求量的置信区间为99%的概率满足需要? _ s _ s:F (X ---- z , x ---------- z )厂a r ot ■- n 7 ?、n 2</x<>。

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
D( X1)
+
æ çè
1 ö2 3 ÷ø
D( X 2 )
=
4 9
Xs
2
=
5s 2 9
,
D(mˆ2
)
=
æ çè
1 4
ö2 ÷ø
D(
X1)
+
æ çè
3 4
ö2 ÷ø
D(
X
2
)
=
5s 8
2
,
D(mˆ3 )
=
æ çè
1 2
ö2 ÷ø
(
D(
X1)
+
D(
X
2
))
=
s2 2
大学数学云课堂
028708.某车间生产的螺钉,其直径X ~ N(m,s 2),由过去的经验知道s 2 = 0.0
3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
ïî 0,
其他.
X1,X 2,L,X n为其样本,试求参数q的矩法估计.

概率论与数理统计(魏宗舒版)答案完整版

概率论与数理统计(魏宗舒版)答案完整版
4 4
1.11 任取一个正数,求下列事件的概率: (1)该数的平方的末位数字是 1; (2)该数的四次方的末位数字是 1; (3)该数的立方的最后两位数字都是 1; 1 解 (1) 答案为 。 5 (2)当该数的末位数是 1、3、7、9 之一时,其四次方的末位数是 1,所以答 4 2 案为 = 10 5 (3)一个正整数的立方的最后两位数字决定于该数的最后两位数字,所以样 本空间包含 10 2 个样本点。用事件 A 表示“该数的立方的最后两位数字都是 1” , 则该数的最后一位数字必须是 1,设最后第二位数字为 a ,则该数的立方的最后 两位数字为 1 和 3 a 的个位数,要使 3 a 的个位数是 1,必须 a = 7 ,因此 A 所包 含的样本点只有 71 这一点,于是 。 1.12 一个人把 6 根草掌握在手中,仅露出它们的头和尾。然后请另一个人 把 6 个头两两相接,6 个尾也两两相接。求放开手以后 6 根草恰好连成一个环的 概率。并把上述结果推广到 2n 根草的情形。 解 (1)6 根草的情形。取定一个头,它可以与其它的 5 个头之一相接,再取 另一头,它又可以与其它未接过的 3 个之一相接,最后将剩下的两个头相接,故
− n ≤ m ≤ N −1
(3) 指 定 的 m 个 盒 中 正 好 有 j 个 球 的 概 率 为
m + j − 1 N − m + n − j − 1 m −1 n− j N + n − 1 n

1 ≤ m ≤ N ,0 ≤ j ≤ N .
对头而言有 5 ⋅ 3 ⋅ 1 种接法,同样对尾也有 5 ⋅ 3 ⋅ 1 种接法,所以样本点总数为 用 A 表示 “6 根草恰好连成一个环” , 这种连接, 对头而言仍有 5 ⋅ 3 ⋅ 1 种 (5 ⋅ 3 ⋅ 1) 2 。 连接法, 而对尾而言, 任取一尾, 它只能和未与它的头连接的另 4 根草的尾连接。 再取另一尾, 它只能和未与它的头连接的另 2 根草的尾连接,最后再将其余的尾 连接成环,故尾的连接法为 4 ⋅ 2 。所以 A 包含的样本点数为 (5 ⋅ 3 ⋅ 1)(4 ⋅ 2) ,于是

概率论与数理统计课后习题答案第7章习题详解

概率论与数理统计课后习题答案第7章习题详解

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 第七章 假设检验设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=.解:(1)是简单假设,其余位复合假设设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9(,)25N ξμ~ 在0H 成立的条件下,00053(||)(||)53521()0.053cP c P c ξμξμ-≥=-≥⎡⎤=-Φ=⎢⎥⎣⎦55()0.975,1.9633c cΦ==,所以c =。

设子样1225,,,ξξξL 取自正态总体2(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。

解:(1)在0H 成立的条件下,200(,)nN σξμ~,此时00000()P c P ξαξ=≥=10αμ-=,由此式解出010c αμμ-=+在1H 成立的条件下,20(,)nN σξμ~,此时101010()(P c P αξβξμ-=<==Φ=Φ=Φ-由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。

(2)不犯第二类错误的概率为100.9511(0.650.51(3)0.21(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ-=-Φ-=Φ=设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。

解 设检验函数为1()0x cx φ∈⎧=⎨⎩其他(c 为检验的拒绝域)0101011112()2()()2[1()]()2[1()]()2(12())2(14)()P x c P x c P x c P x c E x E x x dx x x dx x x dxαβφφφφφ+=∈+∈=∈+-∈=+-=+-=+-⎰⎰⎰要使2min αβ+=,当140x -≥时,()0x φ= 当140x -<时,()1x φ=所以检验函数应取114()104x x x φ⎧≤⎪⎪=⎨⎪>⎪⎩,此时,10722(14)8x dx αβ+=+-=⎰。

设某产品指标服从正态分布,它的根方差σ已知为150小时。

今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显着性水平下,能否认为该批产品指标为1600小时解 总体2(,150)N ξμ~,对假设,0:1600H μ=,采用U 检验法,在0H 为真时,检验统计量1.2578u ==临界值1/20.975 1.96u u α-==1/2||u u α-<,故接受0H 。

某电器零件的平均电阻一直保持在Ω,根方差保持在Ω,改变加工工艺后,测得100个零件,其平均电阻为Ω,根方差不变,问新工艺对此零件的电阻有无显着差异去显着性水平α=。

解 设改变工艺后电器的电阻为随机变量ξ,则E ξμ=未知,2(0.06)D ξ=, 假设为 0: 2.64H μ=,统计量 3.33u ξ==-由于1-/20.995 2.10||u u u α==<,故拒绝原假设。

即新工艺对电阻有显着差异。

(1)假设新旧安眠药的睡眠时间都服从正态分布,旧安眠剂的睡眠时间2(20.81.8)N ξ:,,新安眠剂的睡眠时间2()N ημσ:,,为检验假设01:23.8:23.8H H μμ=<从母体η取得的容量为7的子样观察值计算得%24.2x = *2 5.27ns = 由于η的方差2σ未知,可用t 检验。

t 0.461n x === 0.10a =取 0,10(71) 1.4398t t -=-<所以不能否定新安眠药已达到新的疗效的说法。

(2)可以先检验新的安眠剂睡眠时间η的方差是否与旧的安眠剂睡眠时间ξ的方差一致,即检验假设220:(1.8)H σ=。

用2χ-检验,*2222(1)6 5.279.76(1.8)nn s χσ-⨯===。

取220.060.05=(6)=1.635(6)=12.592αχχ0.10,,2220.060.05(6)(6)χχχ<<所以接受0H ,不能否认ξη和方差相同。

如认为η的方差2σu 0.18==取=α0.10,0.100.101.27,u u u =->,所以接受0H 。

有甲乙两个检验员,对同样的试样进行分析,各人实验分析的结果如下:试问甲乙两人的实验分析之间有无显着差异解 此问题可以归结为判断12x x ξ=-是否服从正态分布2(0,)N σ,其中2σ未知,即要检验假设0:0H μ=。

由t 检验的统计量 0.389nt ξ===-取α=,又由于,0.95(7) 1.8946||t t =>,故接受0H某纺织厂在正常工作条件下,平均每台布机每小时经纱断头率为根,每台布机的平均断头率的根方差为根,该厂作轻浆试验,将轻纱上浆率减低20%,在200台布机上进行实验,结果平均每台每小时轻纱断头次数为根,根方差为,问新的上浆率能否推广取显着性水平。

解 设减低上浆率后的每台布机断头率为随机变量η,有子样试验可得其均值和方差的无偏估计为及()2*2n s 0.16=,问新上浆率能否推广就要分析每台布机的平均断头率是否增大,即要检验01:0.973:0.973H E H E ηη=↔>由于D η未知,且n 较大,用t 检验,统计量为1.856nt η===查表知0.95t (199)1.645=,故拒绝原假设,不能推广。

在十块土地上试种甲乙两种作物,所得产量分别为1210(,,,)x x x L ,1210(,,,)y y y L ,假设作物产量服从正态分布,并计算得30.97x =,21.79y =,*26.7x s =,*12.1y s =取显着性水平,问是否可认为两个品种的产量没有显着性差别解 甲作物产量211(,)N ξμσ~,乙作物产量222(,)N ημσ~,即要检验 012:H μμ≠由于21σ,22σ未知,要用两子样t 检验来检验假设'22012:H σσ=,由F 检验,统计量为2*2*22120.99526.74.869(9,9) 6.5412.1F s s F ===<=(取显着性水平)故接受假设'22012:H σσ=,于是对于要检验的假设012:H μμ≠取统计量0.99t ==又0.01α=时,0.995(18) 2.878||t t =>,所以接受原假设,即两品种的产量没有显着性差别。

有甲、乙两台机床,加工同样产品,从这两台机床加工的产品中随机地抽取若干产品,测得产品直径为(单位:mm ): 甲 , , , , , 。

, 乙 , , , , , , 。

试比较甲乙两台机床加工的精度有无显着差异显着性水平为0.05α=。

解:假定甲产品直径服从211(,)N μσ,由子样观察值计算得20.00x =,1*22(0.3207)0.1029n s ==。

乙产品直径服从222(,)N μσ,由子样观察值计算得20.00y =,2*20.3967n s =。

要比较两台机床加工的精度,既要检验22012:H σσ=由 F-检验12*2*20.10290.25940.3967n F ns s ===0.05α=时查表得:0.975(7.6) 5.70F =,0.0250.97511(7.6)0.1953(6.7) 5.12F F ===由于0.0250.975(7.6)(7.6)F F F <<,所以接受0H ,即不能认为两台机床的加工精度有显着差异。

随机从一批钉子中抽取16枚,测得其长度为(cm )设钉长服从正态分布,分别对下面两个情况求出总体均值μ的90%的置信区间 (1)0.01cm σ=; (2)σ未知解 (1)由子样函数(0,1)U N ξ=:,0.95(||)0.90p U u <=,可求μ的置信区间 置信下限2.121ξ-= 置信上限2.129ξ+= (2)在σ未知时,由子样函数(1)nt t n ξ=-:,0.95(||(1))0.90p t t n <-=可求得μ置信区间为置信下限*2.1175ξ-= 置信上限*2.1325ξ+=包糖机某日开工包糖,抽取12包糖,称得重量为假定重量服从正态分布,试由此数据对该机器所包糖的平均重量 求置信水平为95%的区间估计。

解 由于σ未知,用统计量(1)nt t n ξ=-:,计算各数据值后可以得到均值的置信区间,置信上限为*10.2556ξ+=,下限为*9.9284ξ= 随机取9发炮弹做实验,得炮口速度的方差的无偏估计*211ns =(米/秒)2,设炮口速度服从正态分布,分别求出炮口速度的标准差σ和方差2σ的置信水平为90%的置信区间。

解 选取统计量*222(1)(1)nn s n χσ--:, 可得2σ的置信区间为:*2*2221/2/2(1)(1)(,)(5.6749,32.199)(1)(1)n n n s n s n n ααχχ---=-- 因为*2*22221/2/2(1)(1)()(1)(1)1n n n s n s p p n n αασσχχα---<<=<<--=-故,标准差的置信区间取方差的根方即可。

解:用子样函数t =必须要求2212σσ=,所以先应检验假设22012H σσ=:由样子观察值计算得12=81.625=75.875ξξ 12*2*2=145.696=102.125n n s s 12*2*2==1.4266n n s F s0.950.050.95=0.10(7.7) 3.79,(7.7)(7.7)F F F F α=<<取,由于,所以接受原假设0H ,可以用两子样t 统计量求12-μμ的置信水平为95%的置信区间。

置信下限1212-81.62575.8756.1885μμξξ=--=--=-置信上限12 2.145-81.62575.87517.1885μμ⨯=-+=-解:由于12*22*22/=/n A n Bs F s σσ服从12(1,1)F n n --分布,由12*220.05120.9512*222222220.95120.0512/(1,1)(1,1)/(1,1)(1,1)0.90n A n B A A A B B B s p F n n F n n s s s p S F n n S F n n σσσσ⎛⎫--<<-- ⎪ ⎪⎝⎭⎛⎫=<< ⎪----⎝⎭=所以22A Bσσ的置信区间为置信下限=*2*20.95120.54190.2810(1,1)0.6065 3.18AB s S F n n ==--⨯ 置信上限=*2*20.05120.5419 3.18 2.8413(1,1)0.6065AB s S F n n ⨯==-- 解:由于σ未知,μ的置信区间为**1/21/2*1/2*2221/2*2221/2*2221/22221/2(1),(1)2(1)4(1)()4(1)(1)4(1)(1)4(1)n nns s t n t n L t n sL t n ns E L E t n n n s t n E n n t n nαααααααξξσσσ-------⎛⎫--+- ⎪⎝⎭=-=-⎡⎤=-⎢⎥⎣⎦⎡⎤-=-⎢⎥-⎣⎦-=2222220.9752222220.9752222220.9752222220.975244()()(4)(2.7764) 6.16675544()()(9)(2.2622) 2.0470101044()()(29)(2.0452) 2.5577303044()()(7)(1.8946) 1.794888()(i E L t ii E L t iii E L t iv E L t v E L σσσσσσσσσσσσ============222220.9752222220.97544)(7)(2.3646) 2.79578844()()(7)(3.4995) 6.123388t vi E L t σσσσσσ======假设六个整数1,2,3,4,5,6被随机地选择,重复60次独立实验中出现1,2,3,4,5,6的次数分别为13,19,11,8,5,4。

相关文档
最新文档