平行线的证明

合集下载

七年级10道平行线证明题

七年级10道平行线证明题

七年级10道平行线证明题
平行线是初中数学中的一个重要概念,通过证明题的练习,可以帮助学生加深对平行线性质的理解。

接下来,我将为大家提供七年级10道平行线证明题,希望能够帮助大家更好地掌握平行线的性质。

1. 证明:若两条直线分别与一条直线平行,则这两条直线之间的夹角相等。

2. 证明:若两条直线被一条直线所截,使得同侧的内角之和为180度,则这两条直线平行。

3. 证明:若两条直线被一条直线截成相等的两部分,则这两条直线平行。

4. 证明:若两条平行线被一条直线截,内错角相等,外错角相等。

5. 证明:若平行线被一条直线截,同侧内角相等。

6. 证明:若平行线被一条直线截,同侧外角相等。

7. 证明:若两条直线被平行线截,同位角相等。

8. 证明:若两条直线被平行线截,同位内角相等。

9. 证明:若两条直线被平行线截,同位外角相等。

10. 证明:若两直线被平行线截,交错角相等。

通过以上10道平行线证明题的练习,相信大家对平行线的性质有了更深入的理解。

希望大家能够通过练习和思考,更好地掌握初中数学中的平行线知识,提高数学解题能力。

祝大家学业进步,取得好成绩!。

证明平行的方法

证明平行的方法

证明平行的方法在几何学中,平行线是指在同一平面上永远不会相交的直线。

证明两条直线平行的方法有很多种,下面将介绍几种常见的证明方法。

1. 同位角相等法。

同位角是指两条直线被一条第三条直线所切割时,位于这两条直线同侧的对应角。

如果两条直线被一条第三条直线所切割,而同位角相等,则可以证明这两条直线平行。

这是由于同位角相等是平行线的必要条件。

在实际操作时,可以利用角度的测量工具来测量两组同位角,如果它们相等,则可以得出结论,这两条直线平行。

2. 转角相等法。

转角相等法是指如果两条直线被一条第三条直线所切割,而它们的内部转角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组内部转角,如果它们相等,则可以得出结论,这两条直线平行。

3. 垂直线法。

垂直线法是指如果两条直线被一条第三条直线所切割,而它们的交叉角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量交叉角,如果它们相等,则可以得出结论,这两条直线平行。

4. 对应角相等法。

对应角相等法是指如果两条直线被一条第三条直线所切割,而它们的对应角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组对应角,如果它们相等,则可以得出结论,这两条直线平行。

5. 平行线性质法。

平行线性质法是指如果两条直线被一条第三条直线所切割,而它们的一组内部转角之和为180度,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组内部转角,如果它们之和为180度,则可以得出结论,这两条直线平行。

综上所述,证明两条直线平行的方法有同位角相等法、转角相等法、垂直线法、对应角相等法和平行线性质法等多种。

在实际操作中,可以根据具体情况选择合适的方法进行证明。

希望本文介绍的方法能够对大家理解和掌握平行线的证明提供帮助。

平行线知识点总结

平行线知识点总结

平行线知识点总结一、基本概念:1. 平行线:在同一平面内,且不相交的两条直线称为平行线。

符号表示为“//”。

2. 平行线的性质:平行线的性质主要有以下几点:a. 两条平行线上的任意一对对应角相等。

b. 与两个平行线被截下的同位角相等。

c. 与两个平行线被截下的内错角互为补角。

二、证明平行线的方法:1. 直线与直线的平行关系可以通过以下几种方式进行证明:a. 直线的夹角相等:两条直线的夹角相等时,可以证明这两条直线是平行的。

b. 直线的垂直关系:两条互相垂直的直线是平行的。

c. 三线共点:如果一条直线上的两个点分别与另外两条直线上的两对应点共线,那么这两条直线平行。

2. 线段上的平行关系可以通过以下几种方式进行证明:a. 两个线段相等或成比例:如果两个线段的长度相等或成比例,那么这两个线段平行。

b. 两个线段同时垂直于第三条直线:如果两个线段同时垂直于第三条直线,那么这两个线段是平行的。

c. 逆否命题证法:如果两个线段不平行,那么它们必然相交。

三、平行线的应用:1. 利用平行线证明几何定理:平行线可以用来证明很多几何定理,如等腰三角形的性质、角平分线定理等等。

2. 利用平行线解决实际问题:在实际的生活和工作中,我们常常会遇到利用平行线解决问题的情况,比如在道路建设、房屋建筑等方面的应用。

四、相关定理:1. 逆定理:如果两直线上的对应角相等,则这两直线平行。

2. 线面平行定理:如果两个直线与同一平面的一条直线平行,则这两个直线互相平行。

3. 平行线的性质:例如角的对应性质、同位角性质、内错角性质等。

4. 平行线的补角定理:两条直线被平行直线截下的两对内角互为补角。

上面所提到的知识点是关于平行线基本概念、证明方法、应用及相关定理的简要介绍。

在学习平行线的过程中,我们需要深入理解这些概念和相关定理,并掌握正确的证明方法,这样才能更好地应用平行线知识解决实际问题。

平行线是基础几何中非常重要的内容,因此我们需要认真学习并掌握这些知识点,为以后的学习和工作打下良好的基础。

证明平行线的判定定理

证明平行线的判定定理

证明平行线的判定定理平行线判定定理是几何中非常重要的定理,它告诉我们如何判断两条直线是否平行。

在本文中,我们将介绍平行线的判定定理,并详细讨论如何应用它解决几何问题。

首先,让我们明确一下什么是平行线。

平行线是不会相交的直线,它们的方向始终保持一致。

在欧氏几何中,平行线是从公理定义出来的,它们之间的距离是恒定的。

因此,如果我们能够确定两条直线是平行的,我们就能够利用平行线的性质来解决各种几何问题。

现在让我们来看一下平行线的判定定理,它有三种常用的表述方式:第一种表述方式是交角定理,即如果两条直线被一条第三条直线所截,且内角和为180度,则这两条直线是平行的。

这个定理的原理很简单,因为如果两条直线并非平行,那么截它们的第三条直线和它们的交角之和一定是小于180度的。

第二种表述方式是同位角定理,即如果两条直线被一条横穿它们的直线所截,且同位角相等,则这两条直线是平行的。

这个定理的原理是基于同位角的定义,同位角即以平行线为切线,且交于线的同侧的两个角,它们的大小是相等的。

第三种表述方式是平行线之间距离相等定理,即如果两条直线与一条横穿它们的直线之间的距离相等,则这两条直线是平行的。

这个定理基于平行线的定义,因为两条平行线的距离是恒定的,所以如果两条直线与一条横穿它们的直线的距离相等,那么它们也一定是平行的。

如何正确地应用平行线的判定定理呢?首先,在解决几何问题时,我们需要认真观察图形,找到两条或更多的直线之间的关系。

其次,我们需要考虑使用哪种平行线的判定定理,以及如何利用它来确定直线是否平行。

最后,我们需要检查我们的答案是否符合几何性质和实际情况。

总之,平行线的判定定理是几何学中非常重要的一部分。

只有正确地理解和应用它,我们才能够解决各种几何问题,并掌握更高级的几何知识。

两直线平行的结论

两直线平行的结论

两直线平行的结论两直线平行是几何学中常见的概念,具有重要的理论和实际应用价值。

本文将从几何学的角度,分析两直线平行的性质、证明方法以及与平行线相关的一些应用。

一、两直线平行的定义与性质在平面几何中,两直线平行的定义是:如果两条直线在同一平面内,且不相交,那么它们就是平行的。

根据这个定义,我们可以得出以下性质:1. 平行线之间的距离恒定:对于平行线上的任意一点P,它到另一条平行线的距离是不变的。

2. 平行线的斜率相等:如果两条直线的斜率相等,那么它们是平行的。

反之,如果两条直线平行,则它们的斜率相等。

3. 平行线的夹角:平行线之间的夹角为0度,即平行线之间没有交点。

二、两直线平行的证明方法证明两条直线平行的方法有多种,下面介绍几种常用的方法:1. 使用平行线定理:如果两条直线分别与第三条直线相交,并且这两个交点的对应角相等,那么这两条直线是平行的。

2. 使用同位角定理:如果两条直线被一条横截线所交,并且这两个交点的对应角相等,那么这两条直线是平行的。

3. 使用垂直线性质:如果两条直线分别垂直于同一条直线,那么这两条直线是平行的。

4. 使用斜率判定:如果两条直线的斜率相等,那么它们是平行的。

可以通过计算两条直线的斜率来判断是否平行。

三、平行线的应用平行线在几何学以及实际生活中有广泛的应用,下面介绍几个常见的应用场景:1. 地图制图:在地图上,我们常常会使用平行线来表示纬线和经线,这样可以方便地测量和定位地理位置。

2. 建筑设计:在建筑设计中,平行线常常用来表示建筑物的墙壁、地板等,保证建筑物的各个部分之间的平行和垂直关系。

3. 车道设计:在道路规划和交通设计中,平行线用来划分车道和行车线,确保车辆行驶的安全和顺畅。

4. 电子产品设计:在电子产品的设计中,平行线常常用来布置电路板上的元件,保证元件之间的连接和排列的整齐和紧凑。

两直线平行是几何学中一个重要的概念,具有丰富的性质和应用。

通过研究平行线的定义、性质和证明方法,我们可以更好地理解和应用平行线的相关知识。

平行线原理

平行线原理

平行线原理平行线原理是几何学中的一个重要概念。

根据平行线原理,如果两条直线在平面上不相交,那么它们是平行的。

这意味着无论如何延长这两条直线,它们永远不会相交。

平行线原理可以通过以下方式来证明:假设有两条直线AB和CD,它们在平面上不相交。

我们需要证明这两条直线是平行的。

首先,我们可以选择在这两条直线上选择两点,分别为A和C,并且在这两条直线之外选择两个点,分别为B和D。

接下来,我们可以连接这四个点,形成两个三角形ABC和CDA。

根据几何学中的角度性质,我们可以得知∠ABC和∠CDA是互补角,因为它们是同侧内角。

另外,根据同位角性质,我们还可以得知∠ABC和∠CDA是对应角,因为它们位于直线AB和CD上,并且不相交。

根据角度性质,如果两个角互补且对应,则它们是等角。

所以∠ABC≌∠CDA。

现在我们来观察这两个等角三角形ABC和CDA。

根据三角形的性质,如果两个三角形的对应边相等且对应角相等,则这两个三角形是全等的。

在这种情况下,线段AB≌线段CD,并且线段AC≌线段CA。

现在我们来观察两条平行线AB和CD之间的两个交错的内角∠ACB和∠CDA。

由于∠ABC≌∠CDA,并且∠ACB和∠CDA是同位角,所以∠ACB≌∠CDA。

综上所述,我们可以得出结论,如果两条直线AB和CD在平面上不相交,则它们是平行的。

平行线原理对于解决几何学题目和证明几何定理具有重要意义。

总的来说,平行线原理是指两条直线在平面上不相交,即使延长也不会相交,可以称为平行线。

这个原理可以通过角度性质和线段的性质来证明。

了解和掌握平行线原理可以帮助我们更好地理解和应用几何学知识。

平行线的判定证明题(精选篇)

平行线的判定证明题(精选篇)

平行线的判定证明题平行线的判定证明题平行线的判定证明题1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

按这个判定,绝对没错。

这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。

2平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3光学原理。

延长GE角D于Q因为∠2=∠3,所以AB∥D由AB∥D可得∠1=∠GQD又∠1=∠4所以∠4=∠GQD所以GQ∥FH 即:GE∥FH因为∠2=∠3所以AB∥D所以角FE=角FEB所以大角HFE=大角FEG所以HF∥GE4)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;(2)根据AB∥D,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥B,EF⊥B(已知)∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)(2分)∴∠2=∠BAD(两直线平行,同位角相等)(3分)∵∠1=∠2,(已知)∴∠1=∠BAD(等量代换)∴AB∥DG.(内错角相等,两直线平行)(4分)(2)判断:BA平分∠EBF(1分)证明:∵∠1:∠2:∠3=1:2:3∴可设∠1=k,∠2=2k,∠3=3k(k 0)∵AB∥D∴∠2+∠3=180°(2分)∴2k+3k=180°∴k=36°∴∠1=36°,∠2=72°(4分)∴∠ABE=72°(平角定义)∴∠2=∠ABE∴BA平分∠EBF(角平分线定义).(5分)。

线线平行的证明方法

线线平行的证明方法

线线平行的证明方法线线平行是几何学中的一个重要概念,它在直线和平面几何中有着广泛的应用。

在几何证明中,证明线线平行是一个常见的问题,本文将介绍几种常用的证明方法。

首先,我们来看一种常见的证明方法——使用等角定理。

等角定理指出,如果两条直线被一条直线交叉,而又分别与这条直线所成的相同对顶角相等,则这两条直线是平行的。

这个定理可以被用来证明线线平行的问题。

例如,如果我们需要证明AB线与CD线平行,我们可以找到它们与一条直线EF的交点,然后通过观察它们所成的角是否相等来判断它们是否平行。

其次,还有一种证明方法是使用平行线的性质。

平行线有一个重要的性质,即平行线上的对应角相等。

这个性质可以被用来证明线线平行的问题。

例如,如果我们需要证明AB线与CD线平行,我们可以找到它们之间的一组对应角,然后通过观察这些对应角是否相等来判断它们是否平行。

另外,还有一种证明方法是使用平行线的转角定理。

平行线的转角定理指出,如果两条直线被一条直线交叉,而且它们的转角相等,则这两条直线是平行的。

这个定理同样可以被用来证明线线平行的问题。

例如,如果我们需要证明AB线与CD线平行,我们可以找到它们与一条直线EF的交点,然后通过观察它们的转角是否相等来判断它们是否平行。

除了以上提到的方法,还有许多其他方法可以用来证明线线平行的问题,如使用同位角定理、使用平行线的性质等。

在实际的几何证明中,我们可以根据具体的情况选择合适的方法来进行证明。

总之,线线平行的证明方法有很多种,我们可以根据具体的情况选择合适的方法来进行证明。

通过掌握这些证明方法,我们可以更加灵活地解决几何问题,提高解题的效率和准确性。

希望本文介绍的内容能够对大家有所帮助。

例谈证明两条直线平行的常用方法

例谈证明两条直线平行的常用方法

数学篇学思导引数、负数、非正数、非负数等.在求分式方程中参数的值时,若已知分式方程有解,同学们要注意如下两点:一是认真审读题目,弄清题设中解的情况,即明确该解是正数,还是负数等;二是参数的取值要使分式有意义,即分式方程的分母不能为零.例3若关于x 的分式方程x +a x -5+6a 5-x=4的解为正数,则a 的值满足().A.a <4B.a >-4C.a <4且a ≠1D.a >-4且a ≠-1分析:本题分式方程有根,求解时既要考虑根为正数的情形,又要考虑分式方程的分母不能为零.解:原方程同时乘以(x -5),可得(x +a )-6a =4(x -5),整理可得3x =20-5a ,解得x =20-5a 3.因为分式方程的解为正数,所以20-5a 3>0,即20-5a >0,解得a <4.又因为x -5≠0,所以x ≠5,即20-5a 3≠5,解得a ≠1.所以当a <4,且a ≠1时,原分式方程的解为正数,故正确答案为C 项.评注:求分式方程参数的取值范围,一般先去分母,化分式方程为整式方程;然后用含参数的代数式把分式方程的解表示出来,再由分式方程中解的条件(正数、负数等),将其转化为不等式问题.在这一过程中,同学们特别要注意分式方程有解的隐含条件:分母不能为零.总之,分式方程中参数的值或取值范围与分式方程的增根、无解、有解息息相关.在平时做题时,同学们要仔细审题,把握已知条件,尤其是隐含条件,并注意结合具体情况展开分类讨论,及时检验和修正,从而规避漏解、多解以及错解,提高解题的准确性.我们知道,在同一平面内不相交的两条直线叫做平行线.那么,如何证明两条直线平行呢?有关两条直线平行的证明方法有许多,笔者归纳了如下三种常用的证明方法,以期对同学们证题有所帮助.一、利用“平行线判定定理”平行线的判定定理是指两条直线被第三条直线所截,如果同位角、内错角相等,或同旁内角互补,那么这两条直线平行,简称为“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.”它是判定两直线平行的基本定理,也是证明两条直线平行最为常用的一种方法.例1如图1所示,在△MNP 中,∠MNP =90°,NQ 是MP 边上的中线,将△MNQ 沿MN 边所在的直线折叠,使得点Q恰好落在点R 处,从而得到四边形MPNR .求证:RN ∥MP .分析:要想证明RN ∥MP ,关键是确定第三条直线.观察图形,很容易看出,这两条直线是被MN 所截的,由题意易知NQ =MQ ,∠QMN =∠QNM ,∠RNM =∠QNM ,这样易推出∠QMN =∠RNM ,再由“内错角相等,两直线平行”进而得到RN ∥MP .证明:因为NQ 是MP 边上的中线,且∠MNP =90°,所以NQ =MQ ,∠QMN =∠QNM .例谈证明两条直线平行的常用方法江阴市夏港中学姚菁菁图127数学篇学思导引又因为△MNR由△MNQ沿MN边所在的直线折叠,所以∠RNM=∠QNM,∠QMN=∠RNM.所以RN∥MP.(内错角相等,两直线平行)评注:在证明两条直线平行时,同学们要注意借助平行线的判定定理,证明这两条直线被第三条直线所截成的同位角、内错角相等,或者同旁内角互补.二、利用“三角形或梯形的中位线定理”由三角形或梯形的中位线定理可知,三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半,梯形的中位线平行于两底,并且等于两底和的一半.因此,在证明两条直线平行时,若题目涉及中点,同学们要注意构造中位线,利用三角形或梯形的中位线定理进行求证.例2如图2所示,已知AM平分∠BAC,BM⊥AM,垂足为M,且BN=NC.求证:MN∥AC.分析:由题意可知,点N为边BC的中点,因此要证明MN与AC平行,可以从三角形中位线入手.不妨延长BM交AC于点P,这样只要证明M为边BP的中点,问题自然得证.证明:延长BM交AC于点P.因为AM平分∠BAC,所以∠BAM=∠CAM.因为BM⊥AM,所以∠AMB=∠AMP=90°.又因为AM为公共边,所以△AMB≌△AMP,所以BM=PM.因为BN=NC,所以MN为△BCP的中位线,所以MN∥PC,即MN∥AC.评注:三角形或梯形中位线定理反映了图形间线段的位置关系和数量关系.因此,当问题涉及三角形或梯形的中点时,同学们要注意考虑三角形或梯形的中位线,利用三角形或梯形的中位线定理来破解问题.三、利用“平行四边形对边平行”的性质对边平行且相等,是平行四边形的重要性质之一.因此,在证明两条直线平行时,若问题涉及平行四边形,同学们要注意结合已知条件,先证明这两条直线所在的四边形为平行四边形,再根据“平行四边形对边平行”这一性质判定这两条直线平行.例3如图3所示,已知BD平行四边形ABCD的一条对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AF∥EC.分析:本题涉及平行四边形,仔细观察图形,不难发现,要想证明AF∥EC,实际上只要证明四边形AECF为平行四边形即可.根据已知条件AE⊥BD,CF⊥BD,可以得到AE∥CF.然后由四边形ABCD为平行四边形,易知AB与DC是平行且相等的,进而推出∠ABE=∠ADF.再由∠AEB=∠CFD=90°,易知Rt△ABE与Rt△CDF为全等三角形,由此得到AE=CF,最后根据平行四边形的性质,确定四边形AECF为平行四边形,从而得出AF∥EC.证明:因为AE⊥BD,CF⊥BD,所以AE∥CF,且∠AEB=∠CFD=90°.因为四边形ABCD为平行四边形,所以AB∥DC,且AB=DC,∠ABE=∠CDF.由此可证Rt△ABE≌Rt△CDF.所以AE=CF,所以四边形AECF为平行四边形.所以AF∥EC(平行四边形对边互相平行).评注:平行四边形的两组对边是平行且相等的,利用这一性质既可以证明两直线平行,也可以证明两直线相等.总之,证明两条直线平行的方法多种多样,同学们在平时的学习中,既要注意夯实基础知识,掌握基本定理和推论,又要注意强化训练,结合具体问题,灵活选择恰当的证明方法,从而快速、准确、高效地解题.图2图328。

高一数学平行线的知识点

高一数学平行线的知识点

高一数学平行线的知识点一、平行线的定义和性质平行线是指在同一平面上,永不相交且不在同一直线上的两条直线。

关于平行线的定义和性质有以下几点:1. 定义:如果两条直线在同一平面内永远不相交,那么它们就是平行线。

2. 特征:平行线间的所有角相等;平行线与截面直线构成的对应角相等。

3. 垂直交线定理:如果两条直线同时与一条直线垂直相交,且两条直线分别与第三条直线垂直相交,那么这两条直线互相平行。

4. 平行线的判定定理:如果两条直线与另一条直线分别相交,且交角相等,那么这两条直线是平行的。

二、平行线的证明方法在数学中,常用的平行线证明方法主要有以下几种:1. 直线夹角法:通过证明两条直线夹角的关系可以推断两条直线平行。

2. 三角形内角和法:通过证明两个三角形的内角和相等可以推断两条直线平行。

3. 反证法:通过假设两条直线不平行,然后推导出矛盾的结论,从而证明两条直线平行。

三、平行线的应用平行线的知识在实际生活中有广泛的应用,以下是几个常见的应用场景:1. 建筑工程:在建筑设计和施工中,平行线的概念可以用来判断墙壁、地板等的水平性,确保建筑物的稳定性和美观性。

2. 道路设计:在道路规划和标线划定中,平行线的概念可以用来设计车道、停车位等,并保证交通的顺畅和有序。

3. 图形绘制:在绘制图形和制作模型中,平行线可以用来构建各种几何形状,如矩形、平行四边形等。

4. 制造业:在机械制造和加工过程中,平行线的知识可以用来设计和加工零件,保证产品的质量和精度。

结论平行线是数学中重要的基础概念,它的定义、性质以及应用都与我们日常生活密切相关。

通过学习平行线的知识,我们可以更好地理解和应用数学,在解决实际问题时更加灵活和准确。

因此,对于高一学生来说,掌握平行线的知识点是非常重要的。

通过不断的巩固和练习,我们可以提升自己的数学能力,并在将来的学习和工作中获得更多的机会和成就。

平行线定理

平行线定理

平行线定理
平行线定理是几何学的基础,其结论是:如果两条平行线上有多个端点同时落在其它一条投影线上,那么所有的线段都是平行的。

这个定理被认为是无可置疑的,而且它的应用也广泛,为几何学的推理提供了桥梁和基础。

下面给出了平行线定理的相关内容:
一、定理简述
平行线定理是指:当两条平行线上有多个端点同时落在其它一条投影线上时,它们形成的所有线段都是平行的。

二、平行线定理的证明
平行线定理的证明是通过证明假设条件即两条平行线上有多个端点分别落在其它一条投影线上,进而推出定理所示结论(也就是多条线段都是平行的),间接证明定理的正确性。

三、平行线定理的应用
1、图形几何分析:平行线定理应用于图形几何分析,它可以帮助我们判断和测量几何图形中的线段、角和其它特性的大小。

2、平面立体图:平行线定理在分析平面立体图中也起重要作用,可以帮助我们确定空间中的一组相等的线段之间的角度是多少。

3、重要数学和物理关系:平行线定理也可以用于推导重要的几何学关系和数学关系,它还可以用于帮助研究物理问题的解决。

四、平行线定理的重要性
1、平行线定理是几何学的基础:它是几何学的重要理论,是几何学的基本定理,也是推理的基础。

2、形式化证明:通过平行线定理,我们可以将一些抽象问题形式化,并通过证明得出定理的正确性。

3、数学计算:平行线定理还可以用于数学计算,可以快速计算出交叉点到端点的距离、平行到角度以及其它几何图形的特征。

关于平行线的证明题及答案

关于平行线的证明题及答案

关于平行线的证明题及答案平行线是几何的知识,关于平行线的证明该怎么解决呢?这类的证明蕴含着那些数学原理呢?下面就是给大家的平行线的证明内容,希望大家喜欢。

当∠BPD=∠B+∠D时可以判断AB∥CD过P作PE∥AB则∠BPE=∠B而∠BPD=∠B+∠D∴∠EPD=∠D故PE∥CD∴AB∥CD证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾所以假使不成立所以b‖c 由同位角相等,两直线平行,可推出:内错角相等,两直线平行。

同旁内角互补,两直线平行。

因为 a‖b,a‖c, 所以 b‖c (平行公理的推论) “两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(xx年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(xx年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc(1)根据定义。

证明线线平行的六种方法

证明线线平行的六种方法

证明线线平行的六种方法
线线平行是几何学中的基本概念之一,可以通过多种方法来证明线线平行,本文将介绍六种常用的证明方法。

方法一:同位角定理法
同位角定理指的是:如果两条直线被一条截线分成两对同位角相等的角,那么这两条直线是平行的。

因此,要证明两条直线平行,只需证明它们的同位角相等即可。

方法二:平行线性质法
如果一条直线与两条平行直线相交,那么它所对应的两个内角互为补角。

因此,要证明两条直线平行,只需证明它们的内角互为补角即可。

方法三:转折法
转折法是通过反证法来证明线线平行的方法。

假设两条直线不平行,那么它们一定会相交,那么在相交点处一定存在一对同位角不相等的角,这与同位角定理相矛盾,因此假设不成立,两条直线必须平行。

方法四:等夹角法
如果两条直线被一条截线分成一对相等的内角,则这两条直线是平行的。

因此,要证明两条直线平行,只需证明它们被一条截线分成的内角相等即可。

方法五:延长线法
如果两条直线的一对相邻内角互为补角,那么这两条直线是平行的。

因此,要证明两条直线平行,只需找到这两条直线上的相邻内角,将它们延长成一条直线,然后证明这条直线与另一条直线是垂直的即可。

方法六:反向证明法
反向证明法是证明两条直线不平行的方法,只需证明这两条直线的内角不互为补角即可。

因为如果两条直线不平行,它们在相交处的内角一定不互为补角。

通过同位角定理法、平行线性质法、转折法、等夹角法、延长线法、反向证明法这六种方法,我们可以轻松地证明线线平行的问题。

对于几何学的学习来说,掌握这些方法是非常重要的。

认识平行线课件

认识平行线课件

认识平行线课件汇报人:日期:•平行线的定义与性质•平行线的应用•平行线的作法与技巧目录•平行线的判定方法与证明•平行线的应用题解析•总结与回顾01平行线的定义与性质两条直线在同一平面内不相交。

同一平面内两条直线永远不会相交。

永不相交两条直线相互平行。

相互平行如果两条直线都与第三条直线平行,那么这两条直线也相互平行。

传递性对角线性质相似三角形平行线之间的对角线性质,即两条平行线被一条横截线所截,它们之间的对角线长度相等。

平行线之间的三角形是相似的,即它们的对应角相等,对应边成比例。

030201当两条直线被第三条直线所截,如果它们的同位角相等,则这两条直线平行。

同位角相等当两条直线被第三条直线所截,如果它们的内错角相等,则这两条直线平行。

内错角相等当两条直线被第三条直线所截,如果它们的同旁内角互补,则这两条直线平行。

同旁内角互补平行线的判定方法02平行线的应用平行线的定义和性质在几何图形中,平行线是同一平面内不相交的两条直线。

它们具有一些重要的性质,如传递性、同位角相等、内错角相等等。

平行线的判定方法在几何图形中,可以通过不同的方法来判定两条直线是否平行,如同位角相等、内错角相等、同旁内角互补等。

平行线的应用实例在几何图形中,平行线有着广泛的应用,如平行四边形的性质和判定、梯形的性质和判定、三角形的中位线等。

在城市规划和建设中,为了确保道路和铁路的行车安全,通常会使用平行线来指示车辆和行人的行驶方向。

道路和铁路在家具和建筑设计中,平行线也被广泛使用,如门、窗户、墙壁等的设计,以确保建筑物的稳定性和美观性。

家具和建筑在艺术和设计中,平行线也经常被用来创造对称和平衡的视觉效果,如绘画、摄影、平面设计等。

艺术和设计工程学在工程学中,平行线被用来确定物体的位置和方向,如建筑物的定位、机械零件的安装等。

物理学在物理学中,平行线被用来描述光线的传播路径和方向,如光的反射、折射等现象。

计算机科学在计算机科学中,平行线被用来描述图形的边界和方向,如计算机图形学中的二维图形、三维模型等。

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。

写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。

八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

平行线与垂直线的证明

平行线与垂直线的证明

平行线与垂直线的证明平行线与垂直线是几何学中重要的概念,在许多几何题中都需要进行相关性质的证明。

本文将从平行线和垂直线的定义入手,探讨其相关性质,并具体进行证明。

1. 平行线的定义与性质平行线是指在同一个平面上永不相交的直线。

以下是平行线的一些性质:(1)平行线具有相同的斜率。

设直线l1的斜率为k1,直线l2的斜率为k2,若k1=k2,则l1与l2平行。

(2)平行线的法向量相等。

设直线l1的法向量为n1,直线l2的法向量为n2,若n1=n2,则l1与l2平行。

2. 平行线的证明(1)根据平行线定义,我们可以利用反证法来证明两条直线平行。

假设有两条直线l1和l2,在同一个平面上。

如果我们能够证明这两条直线永不相交,那么它们就是平行线。

设直线l1和l2交于点A,若l1与l2不平行,则必存在直线l3经过A点且与l1和l2相交于B和C点。

以A为原点,构造向量AB和AC。

如果AB与AC共线,则向量AB和AC线性相关,即存在一个实数k,使得AB=kAC。

由于AB=AC,代入上式得到k=1,即AB=AC。

根据向量的性质,我们可以得知直线l3与直线l1和l2重合,与l1和l2不相交,与假设矛盾。

因此,我们可以得出结论,直线l1和l2是平行线。

3. 垂直线的定义与性质垂直线是指在同一个平面上相交成直角的两条直线。

以下是垂直线的一些性质:(1)垂直线的斜率之积为-1。

设直线l1的斜率为k1,直线l2的斜率为k2,若k1·k2=-1,则l1与l2垂直。

(2)垂直线的法向量互为相反数。

设直线l1的法向量为n1,直线l2的法向量为n2,若n1=-n2,则l1与l2垂直。

4. 垂直线的证明(1)同样采用反证法,假设有两条直线l1和l2在同一个平面上相交于点A,且不垂直。

我们可以通过证明其法向量不互为相反数来推出矛盾。

设直线l1的法向量为n1,直线l2的法向量为n2。

如果n1=-n2,则l1与l2垂直。

构造向量n=n1+n2,以此向量作为原点(0,0),构造向量OA和OB。

平行线与三角形的性质与证明

平行线与三角形的性质与证明

平行线与三角形的性质与证明平行线与三角形是几何学中常见的概念,它们之间存在着一些有趣的性质和证明。

本文将介绍这些性质和证明,并探讨它们之间的关系。

一、平行线的定义和性质平行线是指在同一个平面上永远不相交的两条直线。

根据平行线的定义,我们可以得出以下性质:1. 平行线间的距离恒定:若两条直线平行,则它们之间的距离在整个直线上是相等的。

2. 平行线的倾斜角相等:若两条直线平行,则它们的倾斜角相等。

3. 平行线的截线相等:若两条直线平行,则它们与一条横截线的交点关于横截线对称。

二、平行线与三角形的性质1. 三角形内的平行线:若在一个三角形内有一对平行线,则这两条平行线将会分割三角形的三边成为三个平行线段,且这些平行线段之间的比例相等。

2. 三角形内的反平行线:若在一个三角形内有一对反平行线,则这两条反平行线将会交叉分割三角形的三边成为三个平行线段,且这些平行线段之间的比例相等。

3. 平行线切割三角形:若一条直线与两边不相交地切割一个三角形,则这条直线平行于三角形的第三边。

三、平行线与三角形性质的证明1. 三角形内的平行线(证明):设在三角形ABC内,有直线DE和直线FG平行。

根据平行线的性质,我们有以下推导:由DE和FG平行,可得∠DCE和∠FCG是对应角,它们相等(对应角定理)。

同理,可得∠DEF和∠GFE相等。

再由平行线割三角形的性质,AB/BC = AE/EC (相似三角形性质)。

同理可得,AF/FC = AG/GB。

综上所述,根据相似三角形性质,得到了AB/BC = AE/EC = AF/FC = AG/GB,从而证明了三角形内的平行线性质。

2. 三角形内的反平行线(证明):设在三角形ABC内,有直线DE和直线FG反平行。

根据反平行线的性质,我们有以下推导:由DE和FG反平行,可得∠DCE和∠FCG是同位角,它们相等。

同理,可得∠DEF和∠GFE也相等。

再由平行线割三角形的性质,同样可以推导出AB/BC = AE/EC =AF/FC = AG/GB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的证明1、平行线的判断公理:同位角相等,两直线平行.定理:同旁内角互补,两直线平行;内错角相等,两直线平行.推理:平行于同一直线的两直线平行;垂直于同一直线的两直线平行.2、平行线的特征公理:两直线平行,同位角相等.定理:两直线平行,内错角相等;两直线平行,同旁内角互补.典题精炼1、定义与命题【例1】下列语句是命题的是()A.作直线AB的垂线 B.在线段AB上取点CC.同旁内角互补 D.垂线段最短吗?【变式练习1】下列语句不是命题的是()A.相等的角不是对顶角 B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线【变式练习2】下列说法中,错误的是()A.所有的定义都是命题 B.所有的定理都是命题C.所有的公理都是命题D.所有的命题都是定理【例2】下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥cC.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c【变式练习1】“一次函数y=kx-2,当k>0时,y随x的增大而增大”是一个_______命题(填“真”或“假”).【变式练习2】下列命题为假命题的是()A.三角形三个内角的和等于180° B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半【例3】命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线 D.两条直线垂直于同一条直线【变式练习1】把“同旁内角互补,两直线平行”写成“如果,那么”.【变式练习2】在△ABC和△DEF中,∠A=∠D,CM、FN分别是AB、DE边上的中线,再从以下三个条件①AB=DE,②AC=DF,③CM=FN中任取两个条件做为条件,另一个条件做为结论,能构成一个真命题,那么题设可以是,结论是.(只填序号)【例4】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【变式练习1】证明命题“若x(1-x)=0,则x=0”是假命题的反例是.【变式练习2】用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.证明的第一步应是()A.假设CD∥EF B.假设CD不平行于EFC.假设AB∥EF D.假设AB不平行于EF【例5】下列说法正确的是()A.命题一定是正确的 B.不正确的判断就不是命题C.真命题都是公理 D.定理都是真命题【变式练习1】“两点之间线段最短”是_________(填“定义”或“公理”或“定理”).【变式练习2】“两条直线相交成直角,就叫做两条直线相互垂直”这句子是()A.定义 B.命题 C.公理 D.定理2、平行线的判定和性质【例1】(2013年辽宁抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180° D.∠4+∠2=180°【变式练习1】(2013年贵州铜仁)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180° C.∠ABD=∠BDC D.∠BAC=∠ACD【变式练习2】如图,给出了过直线外一点画已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【变式练习3】学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③ C.③④ D.①④【例2】(2013年贵州遵义)如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60° B.65° C.70° D.80°【变式练习1】如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=()A.20° B.40° C.70° D.80°【变式练习2】如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.14° B.15° C.20° D.30°【例3】如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.【变式练习1】如图,若AB∥CD∥EF∥GH,∠OAB=∠AOG=108°,AO⊥OE,CO⊥OG,则∠OCD+∠OEF= (这里∠OCD,∠OEF均小于180°).【变式练习2】已知射线AB∥射线CD,点E、F分别在射线AB、CD上.(1)如图1,点P在线段EF上,若∠A=25°,∠APC=70°时,则∠C= ;(2)如图1,若点P在线段EF上运动(不包括E、F两点),则∠A、∠APC、∠C之间的等量关系是,证明你的结论;(3)①如图2,若点P在射线FE上运动(不包括线段EF),则∠A、∠APC、∠C之间的等量关系是;②如图3,若点P在射线EF上运动(不包括线段EF),则∠A、∠APC、∠C之间的等量关系是.【变式练习3】如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.3、三角形内角和定理【例1】(2013年福建泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形【变式练习1】如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10° B.12° C.15° D.18°【变式练习2】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF ;②BA 平分∠CBG ;③∠ABG=∠ACB ;④∠CFB=135°.其中正确的结论是( )A .①③B .②④C .①③④D .①②③④【变式练习3】如图所示是D ,E ,F ,G 四点在△ABC 边上的位置.根据图中的符号和数据,求x+y 的值( )A .110B .120C .160D .165【例2】一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°【变式练习1】如图所示,l 1∥l 2,则下列式子中值为180°的是( )A .γβα++B .γβα-+C .αγβ-+D .γβα+-【变式练习2】如图,已知△ABC 中,∠B=∠E=40°,∠BAE=60°,且AD 平分∠BAE .(1)求证:BD=DE ;(2)若AB=CD ,求∠ACD 的大小. 【例3】如图:∠ABC 与∠ACG 的平分线交于F 1;∠F 1BC 与∠F 1CG 的平分线交于F 2;∠F 2BC 与∠F 2CG 的平分线交于F 3;如此下去,…探究∠Fn 与∠A 的关系(n 为自然数).【变式练习1】已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.【变式练习2】如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E .(1)若∠B=35°,∠ACB=85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.4、培优训练【例1】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,分析发现∠BOC=90°+21∠A ,理由如下:∵BO 和CO 分别是∠ABC ,∠ACB 的角平分线【例2】如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.【例3】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【例4】如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.。

相关文档
最新文档