2013年福州市初三质检数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年福州市初中毕业班质检数学模拟试卷及参考答案
数 学 试 卷
(完卷时间:120分钟 满分:150分)
一.选择题(每小题4分,满分40分;请在答题卡的相应位置填涂) 1.-2的相反数是( )
A .2
B .-2
C .
2
1 D .2
1-
2.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为( )
A .410839.3⨯
B .510839.3⨯
C .610839.3⨯
D .41039.38⨯ 3.如图,下列几何体中主视图、左视图、俯视图都相同的是( )
A .半圆
B .圆柱
C .球
D .六棱柱 4.如图,直线a ∥b ,直线c 与a 、b 均相交,如果︒=∠501,
那么∠2的度数是( )
A .︒50
B .︒100
C .︒130
D .︒150 5.下列计算正确的是( )
A .6
32a a a =⋅ B .b
a b a 2
2)(=
C .623)(ab ab =
D .4
26a a a =÷ 6.“a 是实数,0≥a ”这一事件是( )
A .必然事件
B .不确定事件
C .不可能事件
D .随机事件
7.一条排水管的截面如图所示,已知排水管的截面圆半径10=OB ,
截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A .8 B .10 C .12 D .16 8.下列四边形中,对角线不可能...
相等的是( ) A .直角梯形 B .正方形 C .等腰梯形 D .长方形
1
2
a
b
c
(第4题)
(第7题)
9.如图,直线23
3+-
=x y 与x 轴、y 轴分别交于A 、B 两点,
把△AOB 绕点A 顺时针旋转︒60后得到△B O A ''的坐标是( )
A .(4,32)
B .(32,4)
C .(3,3)
D .(232+,32)
10.方程0132=-+x x 的根可看作是函数3+=x y 的图象与函数x
y 1=
的图象交点的横坐标,那么用此
方法可推断出方程013=--x x 的实数根0x 所在的范围是( )
A .010<<-x
B .100<<x
C .210<<x
D .320<<x 二.填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:=-92x ____________. 12.已知23=a ,则=a ____________.
13.从分别标有1到9序号的9张卡片中任意抽取一张,抽到序号是4的倍数的概率是____________. 14.已知1-=x 是一元二次方程02=++n mx x
的一个根,则222n mn m +-的值为____________. 15.如图,︒=∠30AOB ,n 个半圆依次外切,它们的
圆心都在射线OA 上并与射线OB 相切,设半圆1C 、 半圆2C 、半圆3C ……、半圆n C 的半径分别是1r 、 2r 、3r ……、n r ,则
=2011
2012r r ____________.
三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再
用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:10
)2
1()14.3(8211---++-
(2)先化简,再求值:)2()1(2
-++x x x ,其中2=
x 。
123
(第15题)
17.(每小题7分,共14分)
(1)如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F ,证明:
△ABE ≌△FCE
(2)如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角
α为︒45,看这栋高楼底部的俯角β为︒60,热气球与高楼的水
平距离m AD 80=,这栋高楼有多高(732.13≈,结果保留 小数点后一位)?
18.(满分12分)某市教育局为了了解初一学生第一学期参加社会实践活动的天数,随机抽查本市部分初
一学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)
请你根据图中提供的信息,回答下列问题:
(1)=a __________%,并写出该扇形所对圆心角的度数为___________;补全条形图;
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
19.(满分11分)如图,在△ABC 中,AC AB =,以AC 为直径的半圆O 分别交AB 、BC 于点D 、E (1)求证:点E 是BC 的中点
(2)若︒=∠80COD ,求∠BED 的度数。
B
C
D
F
E 天和7天以上
5
A
O
C
B
D E
(第17(1)题)
(第17(2)题)
(第19题)
20.(满分12分)某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380只。
(1)求A 、B 两种型号的计算器每只进价各是多少元? (2)该经销商计划购进这两种型号的计算器共50只,而可用于购买这两种型号的计算器的资金不超过2520
元,根据市场行情,销售一只A 型计算器可获利10元,销售一只B 型计算器可获利15元,该经销商
希望销售完这两种型号的计算器,所获利润不少于620元,则该经销商有哪几种进货方案?
21.(满分13分)如图,在△ABC 中,10==AC AB cm ,16=BC cm ,4=DE cm ,动线段DE (端点
D 从点B 开始)沿BC 边以1cm /s 的速度向点C 运动,当端点
E 到达C 时运动停止,过点E 作E
F ∥AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(0≥t ) (1)直接写出用含t 的代数式表示线段BE 、EF 的长; (2)在这个动动过程中,△DEF 能否为等腰三角形?
若能,请求出t 的值;若不能,请说明理由; (3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,
MN 所扫过的面积。
22.(满分14分)如图,已知抛物线c bx x y ++=2
3
4经过A (3,0)、B (0,4)
(1)求此抛物线的解析式;
(2)若抛物线与x 轴的另一个交点为C ,求点C 关于直线AB 的对称点C '的坐标;
(3)若点C 是第二象限内一点,以点D 为圆心的圆分别与x 轴、y 轴、直线AB 相切于点E 、F 、H ,问
在抛物线的对称轴上是否存在一点P ,使得PA PH -的值最大?若存在,求出该最大值;若不存在,请说明理由。
C
(第21题)
(第22(2)题) (第22(3)题)
2012年福州市初中毕业班质量检查 数学试卷参考答案及评分标准
一、选择题
1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.A 9.B 10.C 二、填空题:
11.(3)(3)x x +- 12.8 13.29
14.1 15.3
三、解答题:
16.(1)解:1
11( 3.14)2-⎛⎫
-+
-- ⎪⎝⎭
=1112
2
+⨯- ················································································· 4分
······································································································· 7分
(2)解:()()2
12x x x ++-
=22212x x x x +++- ·················································································· 4分
=221x +, ···································································································· 5分
当x =
=2
21⨯+=5. ························································ 7分
17.(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,
∴AB ∥CD , ······················································································· 2分
∴∠F =∠FAB . ···················································································· 4分 ∵E 是BC 的中点, ∴BE=CE ,····························································· 5分 又∵ ∠AEB =∠FEC , ······································································· 6分
∴ △ABE ≌△FCE . ··········································································· 7分
(2)解:如图,a = 45°,β= 60°, AD =80.
在Rt △ADB 中, ∵tan BD AD
α=
,
∴tan 80tan 45=80BD AD α==⨯︒ . ··········· 2分 在Rt △ADC 中, ∵tan C D AD
β=
,
∴tan 80tan 60C D AD β==⨯︒ ······· 5分
∴80218.6BC BD CD =+=+≈.
答:这栋楼高约为218.6m . ·················· 7分 18.(1)a = 25 %, 90º . ·········································································· 2分 补全条形图. ···································································································· 4分
(2)众数是5,中位数是5. ········································································· 8分
(3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是:
20000(30%25%20%)15000
⨯++=(人). ···············································12分
19.(1)证法一:连接AE, ·································· 1分
∵AC 为⊙O 的直径,
∴∠AEC =90º,即AE ⊥BC. ···························· 4分 ∵AB =AC,
∴BE =CE ,即点E 为BC 的中点.················ 6分 证法二:连接OE , ···································· 1分 ∵OE =OC, ∴∠C =∠OEC. ∵AB =AC, ∴∠C =∠B, ∴∠B =∠OEC,
∴OE ∥AB. ················································ 4分 ∴
1EC OC BE
AO
==,
∴EC =BE ,即点E 为BC 的中点. ················· 6分 ⑵∵∠COD =80º, ∴∠DAC =40º . ·········································· 8分 ∵∠DAC +∠DEC =180º,∠BED +∠DEC =180º,
∴∠BED =∠DAC =40º. ··························· 11分
20.解:(1)设A 型计算器进价是x 元,B 型计算器进价是y 元,························· 1分
得 108
880
25380.
x y x y +=⎧⎨
+=⎩ ··············································································· 3分
解得40,60.
x y =⎧⎨
=⎩ ····················································································· 5分
答:每只A 型计算器进价是40元,每只B 型计算器进价是60元. ················ 6分
(2)设购进A 型计算器为z 只,则购进B 型计算器为(50-z )只,得
4060(50)2520,
1015(50)620.z z z z +-≤⎧⎨
+-≥⎩
····································································· 9分 解得24≤z ≤26,
因为z 是正整数,所以z =24,25,26. ···················································· 11分
答:该经销商有3种进货方案:①进24只A 型计算器,26只B 型计算器;②进25只A 型计算器,25只B 型计算器;③进26只A 型计算器,24只B 型计算器. ······························12分 21.解:(1)()4cm BE t =+, ·············································································· 1分
()54cm 8
EF t =
+. ·
············································································· 4分 (2)分三种情况讨论:
①当D F E F =时,
有,
E D F
D E F B ∠=∠=∠
∴点B 与点D 重合,
∴0.t = ····································· 5分 ②当D E EF =时, ∴()5448
t =
+,
解得:12.5t =
···························· 7分
③当DE DF =时,
有,D FE D EF B C ∠=∠=∠=∠ ∴△DEF ∽△ABC.
∴
DE EF AB
BC
=
, 即
()
5
448
10
16
t +=,
解得:15625
t =
. ························ 9分
综上所述,当=0t 、125
或
15625
秒时,△D EF 为等腰三角形.
(3)设P 是AC 的中点,连接BP , ∵EF ∥,A C ∴△FBE ∽△ABC . ∴
,EF BE AC
BC
=
∴
.EN BE C P
BC
=
又,B E N C ∠=∠ ∴△N BE ∽△,P B C
∴.N BE PBC ∠=∠····························································································10分
∴点N 沿直线BP 运动,MN 也随之平移.
如图,设MN 从ST 位置运动到PQ 位置,则四边形PQST 是平行四边形. ········· 11分 ∵M 、N 分别是D F 、EF 的中点,∴M N ∥DE ,且ST =MN =1
2.2DE =
分别过点T 、P 作TK ⊥BC ,垂足为K ,PL ⊥BC ,垂足为L ,延长ST 交PL 于点R ,则四边形TKLR 是矩形,
当t =0时,EF =5
8
(0+4)=5
,2
TK =
12
EF ·1sin 2
DEF ∠=
·52
·33;5
4
=
当t =12时,EF =AC =10,PL =12
AC ·1sin 2
C =·10·3
3.5
=
∴PR=PL-RL=PL-TK=3-39.44=
∴PQ ST S ST = ·PR=2×99.4
2=
∴整个运动过程中,MN 所扫过的面积为
92
cm 2
. ···············································13分
解得:16,34,b c ⎧
=-
⎪⎨
⎪=⎩
22.解:(1)由题意得:
4,
4930,3c b c =⎧⎪⎨⨯++=⎪⎩
………1分 ………2分
∴抛物线解析式为2
4164
33
y x x =
-+. ···························································· 3分
(2)令0y =,得
2
41640.3
3
x x -
+=
解得:
11x =,2x =3.
∴C 点坐标为(1,0). ······································· 4分 作CQ ⊥AB ,垂足为Q ,延长CQ ,使CQ='C Q ,则点'C
就是点C 关于直线AB 的对称点. 由△ABC 的面积得:
112
2
C Q AB C A O B
⋅=
⋅,
∵5,AB ==CA =2, ∴CQ =
85
,'C C =
165
. ··············································································· 6分
作'C T ⊥x 轴,垂足为T ,则△'C TC ∽△BOA. ∴
''C T CC CT OA
AB OB == ∴'C T =
4825
,C T =
6425
∴O T =1+6425=8925
∴'C 点的坐标为(8925
,4825
) ······························· 8分
(3)设⊙D 的半径为r ,∴AE =r +3,BF =4-r ,HB =BF =4-r .
∵AB =5,且AE =AH, ∴r +3=5+4-r , ∴r =3. ·······································10分
HB =4-3=1.
作HN ⊥y 轴,垂足为N , 则
H N H B O A
AB
=,
BN HB OB AB
=
,
∴HN =35
,BN =45
, ∴H 点坐标为(35
-
,
245
).···············12分
根据抛物线的对称性,得PA =PC, ∵PH PA PH PC HC -=-≤,
∴当H 、C 、P 三点共线时,PH PC -最大.
∵HC ,
∴PH PA -.。