齿轮传动的强度设计计算-)
齿轮传动(强度计算,结构设计)
A. 经 济 性:正确选择材料和毛坯状态。 B. 工艺要求:选择合理的热处理方式。 C. 硬度选择:*软齿面硬度350HBS; *软齿面齿轮HBS1-HBS230~50; *选择避免胶合的材料合适配对。
齿轮的热处理方法:
软齿面齿轮 HBS≤350
工艺流程短, 成本低
常化(正火)
调质
毛坯 热处理 切齿 成品
例题
一对标准直齿圆柱齿轮传动,已知Z1=20,Z2=40,小轮材料 为45Cr钢,大轮材料为45# 钢,许用应力是[σH1]=600MPa, [σH2]=500MPa;[σF1]=179MPa,[σF2]=144MPa;齿形系数 YFS1=2.8,YFS2=2.4;试问:(1)哪个齿轮的接触强度弱? (2)哪个齿轮的弯曲强度弱?为什么?
表面淬火 淬火 整体淬火 渗碳淬火 氮化
毛坯 退火 切齿
成品 磨齿
硬齿面齿轮 HBS>350
工艺流程复 杂,成本高
热处理
§06 直齿圆柱齿轮的强度计算 一、轮齿上的作用力
2T1 Ft d1
9.55106 P T1 N mm n1
Fr Ft tg
Ft Fn cos
力的分析:①大小 ②方向 ③关系
F1
YFS1
F2
YFS 2
2、齿轮弯曲强度比较
[ F ] [ F ] 较小者危险! 较大者强度高。 YFS YFS
四、许用应力的确定
[ H ]
H lim
SH
[ F ]
F lim
SF
SH——接触疲劳强度安全系数,一般情况下, SH=1.0 ~ 1.2; SF——弯曲疲劳强度安全系数,一般情况下, SF=1.25~1.5。 σHlim、σFlim——齿轮的疲劳极限。
标准直齿圆柱齿轮传动的强度计算
标准直齿圆柱齿轮传动的强度计算一、轮齿的受力分析图6-6所示为齿轮啮合传动时主动齿轮的受力情况,不考虑摩擦力时,轮齿所受总作用力f n将沿着啮合线方向,f n称为法向力。
f n在分度圆上可分解为切于分度圆的切向力f t和沿半径方向并指向轮心的径向力f r 。
圆周力f t=n径向力 f r= f t tg n (6-1)法向力 f n=n式中:d1为主动轮分度圆直径,mm;为分度圆压力角,标准齿轮=20°。
设计时可根据主动轮传递的功率p1(kw)及转速n1(r/min),由下式求主动轮力矩t1=9.55×106×(n mm)(6-2)根据作用力与反作用力原理,f t1=-f t2,f t1是主动轮上的工作阻力,故其方向与主动轮的转向相反,f t2是从动轮上的驱动力,其方向与从动轮的转向相同。
同理,f r1=-f r2,其方向指向各自的轮心。
二、载荷与载荷系数由上述求得的法向力f n 为理想状况下的名义载荷。
由于各种因素的影响,齿轮工作时实际所承受的载荷通常大于名义载荷,因此,在强度计算中,用载荷系数k 考虑各种影响载荷的因素,以计算载荷f nc 代替名义载荷f n 。
其计算公式为(6-3)式中:k 为载荷系数,见表6-3。
表6-3 载荷系数k二、齿根弯曲疲劳强度计算齿根处的弯曲强度最弱。
计算时设全部载荷由一对齿承担,且载荷作用于齿顶,将轮齿看作悬臂梁,其危险截面可用30o 切线法确定,即作与轮齿对称中心线成30o 夹角并与齿根过渡曲线相切的两条直线,连接两切点的截面即为齿根的危险截面,如图6-7所示。
运用材料力学的方法,可得轮齿弯曲强度校核的公式为= ≤或σf =≤(6-4)或由上式得计算模数m的设计公式m≥ (6-5)式中:=b/d1称齿宽系数(b为大齿轮宽度),由表6-4查取;称为齿形系数,由图6-8查取;[]为弯曲许用应力,由式6-8计算。
表6-4齿宽系数=b/d1三、齿面接触疲劳强度计算齿面接触疲劳强度计算是为了防止齿间发生疲劳点蚀的一种计算方法,它的实质是使齿面节线处所产生的最大接触应力小于齿轮的许用接触应力,齿面接触应力的计算公式是以弹性力学中的赫兹公式为依据的,对于渐开线标准直齿圆柱齿轮传动,其齿面接触疲劳强度的校核公式为≤或≤ (6-6)将上式变换得齿面接触疲劳强度的设计公式d1≥ (6-7)式中:“±”分别用于外啮合、内啮合齿轮;z e为齿轮材料弹性系数,见表6-5;z h为节点区域系数,标准直齿轮正确安装时z h =2.5;[σh]为两齿轮中较小的许用接触应力,由式6-9计算;u为齿数比,即大齿轮齿数与小齿轮齿数之比。
机械设计(6.14.1)--变位齿轮传动的强度计算
变位齿轮传动的受力分析和强度计算原理与标准齿轮的相同,其计算公式也与标准齿轮相同
齿轮啮合节点位置发生变化,Z H 有变化
2/
2cos tan H Z a a =2/2cos tan H t t Z a a =/a a =/t t a a =高高高高高高 高x Σ=x 1+x 2=0:
Z H 高高高高高高高高高高高高高
或/a a >/t t a a >/a a </t t
a a <高x Σ>0高高高高高高高高Z H 高高高εα高高高Z ε高高高
高Z H 高高高εα高高高Z ε高高高或齿面接触强度提高。
当xΣ<0(负传动)时,或齿面接触强度降低。
角变位传动即x Σ=x 1+x 2≠0 :
二、齿根弯曲强度齿根弯曲强度:
变位使齿形变化,齿根厚度和齿根圆角半径变化,引起计算系数Y Fa 和Y sa 的变化,影响齿根弯曲强度。
正变位齿轮的齿厚增大,Y Fa 减小,
齿根圆角半径减小,Y sa 增大。
正变位齿轮的齿根弯曲强度可有提高。
负变位使齿根弯曲强度降低。
变位使端面重合度系数εa 变化,Y ε也发生变化。
齿轮传动的强度设计计算
1. 齿面接触疲劳强度的计算齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。
齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。
用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。
分析计算表明,大、小齿轮的接触应力总是相等的。
齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。
实际使用和实验也证明了这一规律的正确。
因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。
强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即:⑴圆柱齿轮的接触疲劳强度计算1)两圆柱体接触时的接触应力在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。
两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。
两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。
计算公式为:接触面半宽:最大接触应力:•F——接触面所受到的载荷•ρ——综合曲率半径,(正号用于外接触,负号用于内接触)•E1、E2——两接触体材料的弹性模量•μ1、μ2——两接触体材料的泊松比2)齿轮啮合时的接触应力两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。
在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。
节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。
参数直齿圆柱齿轮斜齿圆柱齿轮节点处的载荷为综合曲率半径为接触线的长度为,3)圆柱齿轮的接触疲劳强度将节点处的上述参数带入两圆柱体接触应力公式,并考虑各载荷系数的影响,得到:接触疲劳强度的校核公式为:接触疲劳强度的设计公式为:•KA——使用系数•KV——动载荷系数•KHβ——接触强度计算的齿向载荷分布系数•KHα——接触强度计算的齿间载荷分配系数•Ft——端面内分度圆上的名义切向力,N;•T1——端面内分度圆上的名义转矩,N.mm;•d1——小齿轮分度圆直径,mm;•b ——工作齿宽,mm,指一对齿轮中的较小齿宽;•u ——齿数比;•ψd——齿宽系数,指齿宽b和小齿轮分度圆直径的比值(ψd=b/d1)。
齿轮传动强度计算
(一) 轮齿的受力分析
假设:单齿对啮合,力作用在节点P,不计Ff 轮齿间的法向力Fn, 沿啮合线指向齿面
1. Fn 的分解:
Fn -圆周力Ft :沿节圆切线方向指向齿面 \径向力Fr :沿半径方向指向齿面(轮心)
2. 作用力的大小: Ft=2T1/d1 Fr=Ft·tgα
N=60njLh
n——齿轮的转速(r/min)
j——齿轮转一周时,同一齿面参加啮合的次数
Lh——齿轮的工作寿命 Lh=年数×300×班数×8(h)
㈢ 齿轮精度的选择 (表10—8)
㈣ 齿轮设计基本步骤 选材料、精度、Z、φd
设计计算(d或m) →由接触、弯曲 设计出模数,依
(校核计算) 强度特点取其中 一个套标准。适
H 2.5Z E
KFt bd1
u 1 u
H
d1
2.323
2KT1
d
u
u
1
Z
E H
2
(四)齿轮传动强度计算说明
⒈ 因配对齿轮σH1 =σH2,按接触设计时取 [σH] 1 与[σH] 2的较小者代入设计公式
2. 硬齿面齿轮传动,材料、硬度一样,设计时
㈠齿轮传动的设计参数选择
⒈ 压力角α的选择: 一般齿轮 α=20°; 航空用齿轮α=25°
⒉ 齿数的选择:
d1一定,齿数Z1 ↑→重合度↑平稳性好 →m小→加工量↓,但齿轮弯曲强度差
闭式软齿面 :Z1宜取多→提高平稳性,Z1 =20~40 开式或闭式硬齿面:Z1宜取少→保证轮齿弯曲强度
Z1 ≥17 (ha*=1,C*=0.25)
齿轮设计中的强度计算方法
齿轮设计中的强度计算方法齿轮作为机械传动中常用的元件,其设计中的强度计算是十分重要的。
强度计算是为了保证齿轮在工作过程中能够承受所受力的作用,不会发生破坏或变形。
本文将介绍齿轮设计中的强度计算方法。
我们需要了解齿轮的受力情况。
齿轮主要受到两种力的作用,一种是齿面上的接触力,另一种是轴向力。
接触力是由于齿轮齿面间的相互作用而产生的,其大小与传动比、输入功率、齿轮材料等因素有关。
轴向力则是由于齿轮的传动力矩而产生的,其大小与传动比、输入功率等因素有关。
在进行强度计算时,首先需要确定齿轮的材料强度。
常用的齿轮材料有铸铁、钢和铜合金等。
不同材料的强度不同,需要根据具体情况选择合适的材料。
接下来,我们来分析齿轮的受力情况。
齿轮的接触力会使齿面产生弯曲应力和接触应力。
弯曲应力是由于齿轮齿面弯曲而产生的,其大小与齿轮的模数、齿轮的参数等因素有关。
接触应力则是由于齿轮齿面间的接触而产生的,其大小与接触面积、接触力、齿轮的参数等因素有关。
在进行强度计算时,我们需要计算齿轮的弯曲强度和接触强度。
弯曲强度是指齿轮在受到弯曲应力作用时能够承受的最大应力值,接触强度是指齿轮在受到接触应力作用时能够承受的最大应力值。
弯曲强度的计算可以使用刘易斯公式或双曲线公式。
刘易斯公式适用于模数较大的齿轮,双曲线公式适用于模数较小的齿轮。
这两种公式都是根据齿轮的几何参数和材料强度来计算弯曲强度的。
接触强度的计算可以使用弗·里兰德公式或哈克公式。
弗·里兰德公式适用于传动比较小的齿轮,哈克公式适用于传动比较大的齿轮。
这两种公式都是根据齿轮的几何参数和材料强度来计算接触强度的。
除了弯曲强度和接触强度的计算外,我们还需要考虑齿轮的疲劳寿命。
疲劳寿命是指齿轮在反复受力下能够工作的时间,其大小与齿轮的材料、强度、工作条件等因素有关。
我们需要通过疲劳寿命计算来确定齿轮是否能够满足使用要求。
齿轮设计中的强度计算方法包括确定材料强度、计算弯曲强度和接触强度,以及考虑疲劳寿命等因素。
齿轮传动强度设计计算
直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 1.齿轮箱外形尺寸不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P2=120*4/3KW 接触 体积不变,转速变化3600/3000,P2=120KW;弯曲变化机理:齿形变大 接触变化机理:P=T*n/9550已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 2.齿轮箱齿数不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW2 2 2 2弯曲变化机理:力臂和曲率半径增大 接触变化机理:单位齿宽负载和直径增大已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 3.齿轮箱尺寸放大4/3倍,n2=3600r/min, 求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW2 2 3 3弯曲变化机理:齿宽b,模数m增大 接触变化机理:齿宽b,模数m增大已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 4.齿轮材料选用1.2倍σ,n2=3600r/min, 求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*1.2KW 接触 模数变化4/3,转速变化3600/3000, P =120*(1.2) KW2 2 2弯曲变化机理:材料增强 接触变化机理:材料增强已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm。
圆柱齿轮传动强度的计算
圆柱齿轮传动的强度计算1 直齿圆柱齿轮传动的强度计算1.齿面接触疲劳强度计算为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算。
因此,齿轮接触疲劳强度计算准则为:齿面接触应力σH小于或等于许用接触应力σHP,即σH≤σHP赫兹公式由于直齿轮在节点附近往往是单对齿啮合区,轮齿受力较大,故点蚀首先出现在节点附近。
因此,通常计算节点的接触疲劳强度。
图a表示一对渐开线直齿圆柱齿轮在节点接触的情况。
为了简化计算,用一对轴线平行的圆柱体代替它。
两圆柱的半径ρ1、ρ2分别等于两齿廓在节点处的曲率半径,如图b所示。
由弹性力学可知,当一对轴线平行的圆柱体相接触并受压力作用时,将由线接触变为面接触,其接触面为一狭长矩形,在接触面上产生接触应力,并且最大接触应力位于接触区中线上,其数值为式中σH-接触应力(Mpa)Fn-法向力(N)L-接触线长度(mm)rS-综合曲率半径(mm);±-正号用于外接触,负号用于内接触ZE-材料弹性系数(),,其中E1、E2分别为两圆柱体材料的弹性模量(MPa);m1、m2分别为两圆柱体材料的泊松比。
上式表明接触应力应随齿廓上各接触点的综合曲率半径的变化而不同,且靠近节点的齿根处最大(图c、d)。
但为了简化计算,通常控制节点处的接触应力。
节点处的参数(1)综合曲率半径由图可知,,代入rE公式得式中:,称为齿数比。
对减速传动,u=i;对增速传动,u=1/i。
因,则有(2)计算法向力(3)接触线长度L引入重合度系数Ze,令接触线长度将上述参数代入最大接触应力公式得接触疲劳强度计算公式令,称为节点区域系数。
则得(1) 齿面接触疲劳强度的校核公式齿面接触疲劳强度的校核公式为(2) 齿面接触疲劳强度设计公式设齿宽系数,并将代入上式,则得齿面接触疲劳强度的设计公式式中:d1-小齿轮分度圆直径(mm);ZE-材料弹性系数(),按下表查取;注:泊松比m1=m2=0.3Z H-节点区域系数,考虑节点处轮廓曲率对接触应力的影响,可由下左图查取。
齿轮传动3-斜齿圆柱齿轮
因为a mn (z1 z2 ) 2 cos
所以
arccosmn (z1
z2 ) 2a
可先将中心距直接圆整,再将圆 后的中心距代人反求β角,满足要求 即可。
斜齿圆柱齿轮受力分析(人字齿轮)
斜齿圆柱齿轮传动的受力分析
(螺旋角选择)
n
标准锥齿轮传动的强度计算
3
mn
2KT1Y cos2
d z12 a
• YFaYFs
[ F ]
式中:YSa --斜齿轮的齿形系数,按当量齿数 zv z / cos3 ;
YFa --斜齿轮的应力校正系数,按当量齿数 zv ;
Y --斜齿轮的螺旋角影响系数,查图10-28。
齿根弯曲疲劳强度验算式
F
KFtYFaYFsY
bmn a
表10-2;动载系数 KV 按图10-8中低一级的精度线及 vm 查取;
齿间载荷分配系数 KH 及 KF 可取为1;齿向载荷分布系数可按
下式计算: K F K H 1.5K Hbe
式中 K Hbe 是轴承系数(查表10-9)。YFa ,YSa 分别为齿形系
数及应力校正系数,按当量齿数 z v 查表10-5。
集中直作齿用锥在齿平轮均齿分面度上圆所(受齿的宽法中向点载的荷法F向n通截常面视N-为N
内分力)(。圆将周法力向)载荷Ft及Fn径分向解分为力切F于r和分轴度向圆分锥力面F的x。周即向:
Ft
2T1 d m1
Fr1 Fttg cos1 Fx2
Fx1 Fttg sin 1 Fr2
Fn
Ft
c os
6、齿轮和轴通常用单键联接;当齿轮转速较高时, 为平衡和对中,可采用花键或双导键联接。
齿轮强度设计PPT课件
2 齿根弯曲疲劳强度计算
1. 计算公式
30度切线法确定齿根处的危险截面:如右图所示,作与轮齿对称中线 成30度并与齿根过渡曲线相切的切线,通过两切点 平行于齿轮轴线的截面,即齿根危险截面。
图12.20 齿根危险截面应力
以受拉侧为计算依据,齿根的最大弯曲力矩为
计入K、Ysa、Yε 后,得齿根弯曲强度校核公式
调质钢和铸钢
渗碳淬火及表面淬火钢
附 齿轮弯曲疲劳可靠性试验
对称双向弯曲(如惰轮、行星轮)时,应将查表得到的σFlim 乘以0.7。双向运转时,所乘系数可稍大于0.7。
闭式传动常先按接触疲劳强度求出齿轮直径和齿宽,再校核其弯曲疲劳强度。齿面硬度很高的闭式传动,也可按弯曲疲劳强度确定齿轮模数,再校核其接触疲劳强度。开式传动只需进行弯曲疲劳强度计算求取模数。
试验齿轮的接触疲劳极限sHlim查表
铸铁
正火结构钢和铸钢
调质钢和铸钢
渗碳淬火及表面淬火钢
接触疲劳寿命系数ZN
最小安全系数SN
12.7 直齿圆柱齿轮传动的强度计算
4、分度圆直径的初步计算
式中,Ad 见表12.16,若为其他材料配对时,应将Ad 乘以修正系数 (表12.16)。同时,
3 静强度校核计算----略讲
当齿轮工作可能出现短时间、少次数(小于表12.15中N0值)的超过额定工况的大载荷(异常重载或重复性中等甚至严重冲击)时,则进行静强度校核: 102<NL<N0时,进行少循环次数强度校核; NL<102时,进行瞬时过载强度校核计算。 各计算公式见表12.18。
1 齿面接触疲劳强度计算
二、 直齿圆柱齿轮传动的强度计算
1、原始计算公式
取节点处ρ1、ρ2 ,将式12.7中的变量ρ换为定值,同时计算偏于安全。
(整理)齿轮强度计算公式
F
KFtYFaYsaY bmn
F
设计式:
3. 参数取值说明
mn
3
2KT1Y cos2 d z12
YFaYsa
F
1)YFa、YSa---齿形系数和应力修正系数。Zv=Z/cos3 YFa、YFa
2) Y---螺旋角系数。
3) 初步设计计算
在设计式中,K等与齿轮尺寸参数有关,故需初步估算:
精品文档
第7节 标准斜齿圆柱齿轮的强度计算
一. 齿面接触疲劳强度计算
1. 斜齿轮接触方式 2. 计算公式 校核式: H ZE ZH
KFt bd1
u 1 u
H
设计式:
3. 参数取值说明
d1
3
2KT1 d
u
u
1
ZEZH
H
2
1) ZE---弹性系数 2) ZH---节点区域系数
3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350
5. 6. 齿轮材料的选择及热处理的原则是什么?为什么? 7. 已知直齿圆柱齿轮传动小齿轮分度圆直径、扭矩。Ft1=?、Fr1=?、
Fn1=?、Ft2=?、Fr2=?、Fn2=?。怎样确定方向? 8. 已知斜齿圆柱齿轮传动小齿轮分度圆直径、扭矩。Ft1=?、Fr1=?、
Fa1=?、Fn1=?、Ft2=?、Fr2=?、Fa2=?、Fn2=?。 怎样确定方向? 9. 齿轮传动中载荷系数包含哪几部分?它们的含义是什么? 10. 何谓齿轮修缘?为什么要修缘?
5) 许用应力:[H]=([H1]+[H2])/21.23[H2] 6) 分度圆直径的初步计算
在设计式中,K等与齿轮尺寸参数有关,故需初步估算:
标准锥齿轮传动的强度计算
在综合考虑齿轮几何尺寸,毛坯,材料,加工方法,使用 要求及经济性等各方面因素的基础上,按齿轮的直径大小,选 定合适的结构形式,再根据推荐的经验数据进行结构尺寸计算 。
常见齿轮结构形式
⑴ 齿轮轴 ⑵ 实心式结构 ⑶ 腹板式结构 ⑷ 轮辐式结构
标准锥齿轮传动的强度计算
1 设计参数
直齿锥齿轮传动是以大端参数为标准值,强度计算时,是 以锥齿轮齿宽中点处的当量齿轮作为计算时的依据。
轴交角∑,齿数比u,齿 数z1、z2,锥距R,分 度圆锥角δ1、 δ2,分度 圆直径d1、d2,齿宽中点 处即平均分度圆的直径为
dm1、dm2,当量齿轮 齿数zv1、zv2,当量齿轮 的分度圆直径dv1、dv2,
很显然,当两齿轮平均齿宽处两当量齿轮在节点上的啮 合曲率半径为:
从而可得到 :
若将上式(综合曲率表达式)及uv=u2、 等式代入赫兹公式,并令接触线长度L=b,得到:
若α=20°,则得到: 校核式 设计式
§10-10 齿轮的结构设计
通过强度计算确定出了齿轮的齿数z、模数m、齿宽B、螺
旋角b、分度圆直径d 等主要尺寸。
常见齿轮结构形式
⑴齿轮轴
直径较小的钢质齿轮,当齿根圆直径与轴径 接近时,可以将齿轮与轴做成一体,称为齿轮轴
圆柱齿轮轴
圆锥齿轮轴
圆柱齿轮轴
圆柱齿轮e<2mt
圆锥齿轮轴
< (对锥齿轮指小端)
圆锥齿轮轴பைடு நூலகம்
e
⑵实心式结构
< 160mm
实心式圆柱齿轮
但航空齿轮为减轻重量, 腹板式结构。
实心式圆锥齿轮 < 160mm 时,有时也设计为
四 齿轮传动的设计计算
齿轮传动的设计计算1、选择齿轮材料及精度等级根据课本表12-3可得,大小齿轮都选用45钢,大齿轮正火处理,硬度为162~217HBS ,小齿轮调质处理,硬度为217~255HBS ,因为是普通减速器所设计的齿轮可选用便于制造且价格便宜的材料,齿轮选8级精度,要求齿面粗糙度≤a R 3.2~6.3m μ。
2、按齿面接触疲劳强度设计1) 因两齿轮均为钢质齿轮,可应用课本式12-11求出1d 值。
确定有关参数与系数:d1≥76.432][d )1(13h u U KT σψ+ 2)转矩1T1T =9.55×1061n p N ·mm=9.55×1066505.7=110192 N ·mm 3)载荷系数K :查表取K=1.24)齿数1z 和齿宽系数d ψ试选小齿轮的齿数1z 取为40,则大齿轮齿数2z =uz 1=40x3.7=148。
因单级齿轮传动为对称布置,而齿轮齿面又为软齿面,由课本表10.20选取d ψ=0.4。
有教材表12-3得【σh1】=520mpa,[ σh2]=470mpa 计算小齿轮分度圆直径d 1≥76.43×2][)1(13h du u KT σψ+=76.43×2^5207.34.0)17.3(1101922.13⨯⨯+⨯⨯=88.5mm 计算模数 m=mm mm z d 21.2405.8811== 由课本表10.3取标准模数m=2.5mm3、主要尺寸计算mm mm mz d 100405.211=⨯==mm mm mz d 3701485.222=⨯==齿轮宽度 mm mm d b d 401004.01=⨯==ψ经圆整后取 b=2B =50mm1B =55mm中心距 a=22d 1d += 2370100+ =235mm4、按齿根弯曲疲劳强度校核由课本式(10.24)得出F σ,如[]F F σσ≤则校核合格。
确定有关系数与参数:1)、齿形系数F Y查课本12-5得1F Y =2.35,2F Y =2.182)、应力修正系数S Y 查课本表12-6得==2171.1S S Y Y , 1.80 3)许用弯曲应力[1F σ]根据齿轮材料和齿面硬度由表12-3查得MPa M F F 280 pa 3012lim 1lim ==σσ。
齿轮的强度计算
常化
调质后表 面淬火
250 300 350 500 600
580 650 580
.
170~241
187~255
197~269
147~241
229~302
320
156~217
350
169~229
290
162~217
217~255 40~50HRC
241~286 48~554HRC
3.调质 调质一般用于中碳钢和中碳合金钢,如45、40Cr、
d2 2
Cc ρ1
α
ρ2 N2 αt
d1 T1 2
ω1
齿数比: u= z2 /z1 = d2 /d1 = ρ2 /ρ1 ≥ 1
O(1主动)
11
1 2
(21) 12
2(d2 d1)
d1d2 sin
u1 2 1
u d1sin
.
10
钢制标准齿轮传动的齿面接触疲劳强度校核公式:
H335bKa21T(uu1)3 [H]
齿形系数. –YF
50
100 4002.1 2.0
17
对于闭式传动,当齿面硬度不太高
时,轮齿的弯曲强度通常是足够的,故 齿 数 可 取 多 些 , 例 如 常 取 z1=24~40 。 当 齿面硬度很高时,轮齿的弯曲强度常感 不足,故齿数不宜过多。
许用弯曲应力[F]按下式计算
F
F Lim
弯曲力矩: M=KFnhcosγ
分量F2产生压缩应力可忽略不计,
危险界面的弯曲截面系数:W
bS 2
6
rb
B
A
σF
弯曲应力:
F0
M W
齿轮传动的设计计算
齿轮传动的设计计算
齿轮传动的设计计算通常涉及以下几个方面:
1. 齿轮尺寸计算:首先需要确定主动轮和从动轮的模数(齿轮的模数是齿轮齿数与齿轮直径的比值),根据传动比和齿数关系,计算主动轮和从动轮的齿数。
然后根据齿轮的模数和齿数,计算出齿轮的分度圆直径、齿顶圆直径和齿根圆直径。
2. 传动比计算:根据所需的输入转速和输出转速,计算传动比。
传动比可以通过齿轮齿数之比来确定。
3. 齿轮强度计算:根据传动功率和转速,计算齿轮的弯曲强度和接触强度。
弯曲强度是指齿轮在承受力矩时的抗弯能力,接触强度是指齿轮齿面在传递力矩时的抗磨损能力。
根据齿轮材料的强度参数和几何参数,使用相应的公式计算弯曲强度和接触强度,并与所需的传动功率和转速进行比较,确保齿轮能够满足设计要求。
4. 齿轮齿形计算:根据齿轮的模数、齿数和压力角,计算齿轮的齿形。
齿形计算包括计算齿顶高度、齿根高度、齿根圆曲率半径等参数。
通过合理选择这些参数,可以确保齿轮传动的平稳运行和高效传动。
5. 齿轮轴的计算:根据齿轮的传动功率和转速,计算齿轮轴的强度。
齿轮轴的强度计算涉及到材料的抗弯强度和抗剪强度,并考虑到齿轮轴的几何参数。
以上是齿轮传动设计计算的一般步骤,具体的计算方法和公式可能会根据不同的设计要求和标准有所差异。
在实际的工程设计中,通
常需要参考相关的齿轮设计手册或使用专业的齿轮设计软件来完成计算。
直齿圆柱齿轮传动的齿面接触强度计算
直齿圆柱齿轮传动的齿面接触强度计算直齿圆柱齿轮传动的齿面接触强度计算准则为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算.直齿圆柱齿轮传动的齿面接触强度计算准则是:齿面接触应力小于或等于许用接触应力[],即 ≤[]赫兹公式赫兹公式齿面疲劳点蚀与齿面接触应力的大小有关,而齿面最大接触应力可近似地用赫兹公式:进行计算,式中正号用于外啮合,负号用于内啮合。
实验表明,齿根部分靠近节线处最易发生点蚀,故常取节点处的接触应力为计算依据。
曲率半径对于标准齿轮传动,节点处的齿廓曲率半径,令,H σHσH σH σ222121211111E E b F n H μμρρπσ-+-±•=111sin 2d N C ρα==222sin 2d N C ρα==2121//d d z z u ==则中心距,或表示为 。
式中u 为大轮与小轮的齿数比。
由此可得法向力在节点处一般仅有一对齿啮合,即载荷由一对齿承担,则接触疲劳强度计算公式接触疲劳强度计算公式一对钢制齿轮,==2.06×105MPa ,==0.3,标准压力角=。
引入载荷系数K ,可得一对钢制标准齿轮传动的齿面接触强度验算公式如下:MPa a式中[]为许用接触应力。
1211()(1)22d a d d u =±=±12(1)ad u =±ααρρρρρρsin 21sin )(21112112211221d u u d d d d •±=±=+=±112cos cos t n F T F a d αα==1E 2E 1μ2μα20[]H H σσ=≤H σ如取齿宽系数....,则上式可变换为下列设计公式 mm b式中:T l 的单位为N ·mm ;b 和a 的单位为mm ;和[]的单位为MPa 。
由式(a)或式(b)可见,当一对齿轮的材料、传动比及齿宽系数一定时,由齿面接触强度所决定的承载能力仅与中心距a 或齿轮分度圆直径有关。
标准直齿圆柱齿轮传动的强度计算
§8-5 标准直齿圆柱齿轮传动的强度计算一.齿轮传动承载能力计算依据轮辐、轮缘、轮毂等设计时,由经验公式确定尺寸。
若设计新齿,可参《工程手册》20、22篇,用有限元法进行设计。
轮齿的强度计算:1.齿根弯曲强度计算:应用材料力学弯曲强度公式WMb =σ进行计算。
数学模型:将轮齿看成悬臂梁,对齿根进行计算,针对齿根折断失效。
因为齿轮轮缘刚性较大,所以可将齿看成宽度为的悬臂梁,并以此作为推导齿根弯曲应力计算公式的力学模型。
1)危险剖面及其位置 受载齿的危险剖面是一在轮齿根部的平剖面,位置在与齿廓对称中线各成300的二直线与齿根过渡曲线相切处。
2)载荷及其作用位置1≥ε的齿轮传动,当载荷作用于齿顶时,(力一定)力臂最大,但此时相邻的一对齿仍在啮合,载荷由两对齿分担,齿根弯矩不一定最大。
当轮齿在节线附近啮合时,只有一对齿啮合,但此时力臂不是最大,齿根弯矩不一定最大。
齿根所受最大弯矩发生在轮齿啮合点位于单对齿啮合区最高点。
进行弯曲疲劳强度计算时,对于制造精度较低(7级及以下)的齿轮传动,因为制造误差较大,可认为载荷的大部分甚至全部由在齿顶啮合的轮齿承受,轮齿根部产生最大弯矩。
为简化计算,对于制造精度较低(7级及7级以下)的齿轮传动,常将齿顶作为齿根弯曲强度计算时的载荷作用位置,并按全部载荷作用于一对轮齿进行计算。
对制造精度较高(6级及以上)的齿轮传动,应考虑重合度的影响,其计算方法参GB3480-83或有关资料。
3)齿根弯曲应力计算公式 将ca p 分解成γγsin cos ca ca p p 和,并将其简化到危险截面上,γcos ca p --产生剪应力τ,γsin ca p 产生压应力σc ,γcos .h p M ca =产生弯曲应力σF 。
分析表明,σF 起主要作用,若只用σF 计算齿根弯曲疲劳强度,误差很小(<5%),在工程计算允许范围内,所以危险剖面上只考虑σF 。
单位齿宽(b=1)时齿根危险截面的理论弯曲应力为220cos .66*1cos .S h p S h p W M ca ca F γγσ===令αcos ,,b KF L KF p m K S m K h tn ca S h ====,代入上式,得()αγαγσcos cos 6.cos cos ..6220S h t S h t F K K bm KF m K b m K KF ==令 αγcos cos 62S h Fa K K Y =Fa Y --齿形系数,表示齿轮齿形对σF 的影响。
机械设计:标准圆锥齿轮传动的强度计算
齿面接触疲劳强度计算 ※ 圆锥齿轮的接触强度计算是针对齿宽中点(dm)处的 当量齿轮(圆柱齿轮)进行的。 接触强度计算
校核公式
dm
H ZH ZE
4KT1
R (1 0.5R )2 d13u
H
d
设计公式
d1
3
(
ZH
ZE
H
)2
R
4KT1
(1 0.5R
)2 u
齿根弯曲疲劳强度计算
※ 圆锥齿轮的弯曲强度计算是针对齿宽中点(dm)处的 当量齿轮(圆柱齿轮)进行的。 弯曲强度计算
电动机驱动,载荷平稳
解:取Z1=24,Z2=77 R 0.3 Kt 1.3
按接触强度设计公式
d1t
3
(
ZH
Z
H
E
)2
R
(1
4KT1
0.5
R
)2
u
直接求得: d1t 84.97
dm1 d1t (1 0.5R ) 72.225
R d1t 2
1 u2
R
b R
b Rd1t u2 1 / 2 42.832
d1
R
b R
rv1
rm r
R 0.5b R
1 0.5R
1 2
dm2
rv 2
d2
0.5b
rm r
R 0.5b R
1 0.5R
rv1 rm1 / cos1
rv1 r1(1 0.5R )
1 u2 u
d1
cos1
u 1 u2
1 2
rv1
0.5b
rv 2
d2
u
z2 z1
rm2 rm1
d2 / 2R d1 / 2R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 齿面接触疲劳强度的计算齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。
齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。
用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。
分析计算表明,大、小齿轮的接触应力总是相等的。
齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。
实际使用和实验也证明了这一规律的正确。
因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。
强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即:⑴圆柱齿轮的接触疲劳强度计算1)两圆柱体接触时的接触应力在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。
两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。
两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。
计算公式为:接触面半宽:最大接触应力:•F——接触面所受到的载荷•ρ——综合曲率半径,(正号用于外接触,负号用于内接触)•E1、E2——两接触体材料的弹性模量•μ1、μ2——两接触体材料的泊松比2)齿轮啮合时的接触应力两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。
在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。
节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先参数直齿圆柱齿轮斜齿圆柱齿轮节点处的载荷为综合曲率半径为接触线的长度为,3)圆柱齿轮的接触疲劳强度将节点处的上述参数带入两圆柱体接触应力公式,并考虑各载荷系数的影响,得到:接触疲劳强度的校核公式为:接触疲劳强度的设计公式为:•KA——使用系数•KV——动载荷系数•KHβ——接触强度计算的齿向载荷分布系数•KHα——接触强度计算的齿间载荷分配系数•Ft——端面内分度圆上的名义切向力,N;•T1——端面内分度圆上的名义转矩,N.mm;•d1——小齿轮分度圆直径,mm;•b ——工作齿宽,mm,指一对齿轮中的较小齿宽;•u ——齿数比;•ψd——齿宽系数,指齿宽b和小齿轮分度圆直径的比值(ψd=b/d1)。
在一定载荷作用下,齿宽增加可以减小齿轮传动的结构尺寸,降低圆周速度,但齿宽过大,载荷分布不均匀程度增加,因此必须合理选择齿宽系数。
•ZH——节点区域系数,用于考虑节点处齿廓曲率对接触应力的影响。
•ZE——弹性系数,用于修正材料的弹性模量和泊松比对接触应力的影响。
•Zε——重合度系数,用于考虑重合度对单位齿宽载荷的影响,重合度越大,承载的接触线总长度越大,单位接触载荷越小。
Zε可按下式计算:直齿轮:斜齿轮:当时当时式中:——端面重合度;——纵向重合度•Zβ——螺旋角系数,用于考虑螺旋角造成的接触线倾斜对接触应力的影响,其数值可以由计算。
•σHp——许用接触应力,N/mm2,取相互啮合两齿轮中的较小值。
(2) 直齿锥齿轮的接触疲劳强度计算公式将相互啮合的一对直齿锥齿轮转化为相应的当量圆柱直齿轮,对圆柱齿轮进行设计,再将圆柱齿轮的设计参数转化为锥齿轮的大端参数。
对于轴交角为90°的直齿锥齿轮传动,将齿宽中点处的当量圆柱齿轮的参数带入圆柱齿轮接触强度公式有:•Zk——接触强度计算的锥齿轮系数,一般情况取1,当齿顶和齿根修形适当时可取0.85;•Fmt——齿宽中点分度圆上的名义圆周力,N;•dm1——小轮齿宽中点分度圆直径,mm;•beH——接触强度计算的有效齿宽mm,一般取为0.85b;将当量直齿轮的参数转化为锥齿轮的大端参数,再进行整理直齿锥齿轮接触强度校核公式:Mpa设计公式:mm•d1——小齿轮大端分度圆直径,mm;•KHβ——接触强度计算的齿向载荷分布系数2. 齿根弯曲疲劳强度的计算齿根弯曲疲劳强度的计算中,作为判据的齿根应力,原则上可用任何适宜的方法(如有限元法、积分法等)或实际测量(如光弹测量、应变测量)来确定。
国家标准中以载荷作用侧的齿廓根部的最大拉应力作为名义弯曲应力,经相应的系数修正后作为计算齿根应力,把此应力作为齿根弯曲应力的计算基础,并用来评价接触强度。
齿根弯曲疲劳强度核算时,根据设计要求可以选择不同的计算公式。
用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。
齿根弯曲疲劳强度条件为:大、小齿轮在齿根处的计算弯曲应力均不大于其相应的许用弯曲应力,即:。
(1) 圆柱齿轮的齿根弯曲疲劳强度计算公式采用国标(GB/T3480-1997)中载荷作用于齿顶为基础的计算方法,适用于εa≤2的齿轮传动。
对于斜齿圆柱齿轮,由于轮齿折断时多为局部折断,齿根应力较复杂,通常按斜齿轮的法面当量直齿轮进行计算和分析。
1)名义齿根应力计算载荷作用在齿顶时,轮齿可看作宽度为b的悬臂梁,齿根处的危险截面可由30°截面法确定:作与轮齿对称中线成30°角并与齿根过渡曲线相切的切线,通过两切点且平行于齿轮轴线的截面,即齿根危险截面。
沿啮合线方向作用于齿顶的法向力Fn分解后使齿根危险剖面产生弯曲应力σF、、剪应力τ和压缩应力σb。
剪应力和压缩应力较小,可通过应力修正系数Ysa转换为弯曲应力来考虑。
理论上载荷由同时啮合的多对轮齿分担,为简化计算,通常按全部载荷作用于一对轮齿啮合时的齿顶进行分析,再用重合度系数Yz对齿根弯曲应力进行修正。
受拉侧齿根的最大弯曲应力为:2)圆柱齿轮的弯曲疲劳强度公式考虑应力修正系数、重合度系数、螺旋角系数和各载荷系数的影响,可以得到:弯曲疲劳强度的校核公式为:弯曲疲劳强度的设计公式为:•KFβ——弯曲强度计算的齿向载荷分布系数;•KFα——弯曲强度计算的齿间载荷分配系数;•Z1——小齿轮齿数;•mn——法向模数,mm;•YFa——载荷作用于齿顶时的齿形系数,考虑载荷作用于齿顶时齿形对弯曲应力的影响,它只与齿形有关(随齿数和变位系数而异),与模数无关。
外齿轮齿形系数可按照国标(GB/T3480-1997)计算公式确定。
•Ysa——应力修正系数,用于综合考虑齿根过渡曲线处的应力集中效应和弯曲应力以外的其它应力对齿根应力的影响。
•Yz——重合度系数,可由计算确定:,其中——当量齿轮的端面重合度•Yβ——螺旋角系数,考虑螺旋角造成的接触线倾斜对齿根应力产生的影响。
•σPF——许用齿根应力,N/mm2。
大、小齿轮齿根弯曲应力和许用弯曲应力不同,进行齿轮弯曲强度计算时,应分别对大、小齿轮进行校核。
斜齿圆柱齿轮计算中,凡与齿数有关的参数均按当量齿数来确定。
(2) 直齿锥齿轮的齿根弯曲疲劳强度计算公式直齿锥齿轮的齿根弯曲疲劳强度按其当量圆柱齿轮计算,其弯曲强度公式为:•beF——锥齿轮弯曲强度计算的有效齿宽,一般取0.85b;•mmn——锥齿轮齿宽中点法向模数•YK——弯曲强度计算的锥齿轮系数,正常齿形时取1;将当量齿轮参数转化为大端参数,整理。
锥齿轮弯曲强度校核公式:Mpa弯曲强度设计公式:mm•一般计算时参数的确定参考圆柱齿轮,精确校核时按国标(GB10062-88)确定。
•直齿锥齿轮参数确定中,凡是与齿数有关的参数,均按照当量齿数来查找。
3. 许用应力⑴许用接触应力计算大、小齿轮的许用接触应力分别计算,取其中的小值进行强度计算。
oσHmin——实验齿轮的接触疲劳极限,N/mm2。
指某种材料的齿轮经长期持续的重复载荷作用后齿面不出现扩展性点蚀时的极限应力。
其主要影响因素有:材料成分,力学性能,热处理及硬化层深度,毛坯结构,残余应力,材料纯度和缺陷等。
o SHmin——接触强度的最小安全系数。
o ZNT——接触强度计算的寿命系数。
考虑寿命小于或大于持久寿命条件循环次数NC时,其可承受的接触应力值与其相应的条件循环次数NC时疲劳极限应力的比例的系数。
o ZL、ZV、ZR——润滑油膜影响系数,考虑润滑油膜对齿面承载能力的影响,主要因素有:润滑区的油粘度——用润滑剂系数来考虑;相啮合间齿面的相对速度——用速度系数来考虑;齿面粗糙度——用粗糙度系数来考虑。
o ZW——齿面工作硬化系数,用于考虑经光整加工的硬齿面小齿轮在运转过程中对调质钢大齿轮齿面产生冷作硬化,从而使大齿轮的许用接触应力得以提高的系数。
o大齿轮齿面硬度为130~470HB时,;当HB<130时,取ZW=1.2;当HB>470时,取ZW=1。
o ZX——接触强度尺寸系数,考虑因尺寸增大使材料强度降低的尺寸效应因素的影响。
(2) 许用齿根应力计算大、小齿轮许用齿根应力分别确定,分别进行各自的强度计算。
•σFlim——实验齿轮的齿根弯曲疲劳极限,N/mm2。
指某种材料的齿轮经长期持续的重复载荷作用后齿根保持不破坏时的极限应力。
其主要影响因素同接触疲劳极限应力。
•SFmin——弯曲强度最小安全系数•YNT——弯曲强度计算的寿命系数•YST——实验齿轮的应力修正系数•YVrelT——相对齿根圆角敏感系数,用于考虑所计算齿轮的材料、几何尺寸等对齿根应力的敏感度与实验齿轮不同而引进的系数。
•YRrelT——相对齿根表面状况系数,主要考虑齿根圆角处的粗糙度对齿根弯曲应力的影响。
•YX——弯曲强度尺寸系数,考虑因尺寸增大使材料强度降低的尺寸效应因素的影响。
4. 轮齿静强度核算当齿轮工作可能出现短时间、少次数(应力循环次数小于规定的N0值)的超过额定工况的大负荷,在运行中出现异常的重载荷或有重复性的中等甚至严重冲击时应进行静强度核算。
⑴载荷计算应取载荷谱中或实测的最大载荷来确定名义圆周力。
当无上述数据时,可取预期的最大载荷TMAX(如起动转矩、堵转转矩或其它最大过载转矩)为静强度理论载荷。
名义圆周力和最大转矩关系为:修正载荷为:•KA——使用系数,因已按最大载荷计算,取为1;•KV——动载系数;•Kα——齿间载荷分配系数, 对于接触强度计算和弯曲强度计算分别为KHα和KFα;•Kβ——齿向载荷分布系数,对于接触强度计算和弯曲强度计算分别为KHβ和KFβ。
(2) 齿面静强度核算强度条件:•σHst——最大静齿面应力,N/mm2;•σHPst——许用静齿面应力,N/mm2;(3) 弯曲静强度核算强度条件:•σFst——最大静齿根弯曲应力,N/mm2;•σFPst——许用静齿根弯曲应力,N/mm2。