数值分析历年考题
数值分析期末考试题
数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析期末试题及答案
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析期末试题及答案
数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
(完整)数值分析历年考题
数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6。
设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7。
要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9。
用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10。
数值分析整理版试题及答案
例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式. 解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式.解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有()()()()()()()()1120011011201100012101,11,,3123,,,,32269,324dx x dx xdx f x x dx f x x x dx ϕϕϕϕϕϕϕϕϕϕ========++==++=⎰⎰⎰⎰⎰ 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+ 例3、 设()xf x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式. 解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有()()()()()()100012110101100100110,111,31,,2, 1.7183,1x x dx x dx xdx f e dx f xe dx ϕϕϕϕϕϕϕϕϕϕ===========⎰⎰⎰⎰⎰所以,法方程为0111 1.7183211123a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为*1()0.8732 1.6902S x x =+例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。
数值分析期末考试题及答案
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析期末考卷
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
昆明理工大学—数值分析各年考试题及答案
XX 理工大学数值分析考试题〔07〕一.填空〔每空3分,共30分〕1. 设A 0.231x =是真值0.229T x =的近似值,则Ax 有 位有效数字。
2. 若74()631f x x x x =+++,则017[2,2,...2]f =,018[2,2,...2]f =。
3. A=1031⎡⎤⎢⎥-⎣⎦,则1A =;A ∞=;2A =2()cond A =。
4. 求方程()x f x =根的牛顿迭代格式是 。
5.设105%x =±,则求函数()f x =的相对误差限为。
6.A=2101202a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,为使其可分解为TL L 〔L 为下三角阵,主对角线元素>0〕,a 的取值X围应为。
7.用最小二乘法拟合三点A(0,1),B(1,3),C(2,2)的直线是。
〔注意:以上填空题答案标明题号答在答题纸上,答在试卷上的不给予评分。
〕二.推导与计算〔一〕对下表构造f(x)的不超过3次的插值多项式,并建立插值误差公式。
〔12分〕〔二〕已知()x x =Φ和()x 'Φ满足∣()x 'Φ-3∣<1。
请利用()x Φ构造一个收敛的简单迭代函数()x ψ,使1(),0,1,......k k x x k +=ψ=收敛。
〔8分〕〔三〕利用复化梯形公式计算21x I e dx -=⎰,使其误差限为60.510-⨯,应将区间[0,1]等份。
〔8分〕〔四〕设A=1001005a b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,detA ≠0,推导用a ,b 表示解方程组AX=f 的Seidel(G-S) 迭代法收敛的充分必要条件。
〔10分〕〔五〕确定节点与系数,建立如下 GAUSS 型求积公式111220()()A f x A f x ≈+⎰。
〔10分〕〔六〕对微分方程初值问题'00(,)()y f x y y x y ⎧=⎨=⎩(1) 用数值积分法推导如下数值算法:1111(4)3n n n n n hy y f f f +-+-=+++,其中(,)i i i f f x y =,(1,,1)i n n n =-+。
数值分析试题及答案
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
数值分析试卷及答案
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
数值分析考试题
数值分析考试题一、选择题1. 以下哪个方法不是数值分析中常用的数值积分方法?A. 梯形法则B. 辛普森法则C. 牛顿法D. 龙格-库塔法2. 在求解线性方程组的直接方法中,高斯消元法属于以下哪种类型?A. 列主元消去法B. 行主元消去法C. 完全主元消去法D. 选主元消去法3. 非线性方程求根的二分法属于以下哪种类型的数值方法?A. 迭代法B. 直接法C. 优化算法D. 插值法4. 在数值分析中,用于度量舍入误差的常用指标是:A. 截断误差B. 舍入误差C. 估计误差D. 计算误差5. 插值多项式的最高次数与插值节点的数量关系是:A. 次数多于节点数量B. 次数少于节点数量C. 次数等于节点数量D. 与节点数量无关二、填空题1. 在数值分析中,__________是用来描述一个算法在实际运算中所需步数的度量。
2. 线性方程组的雅可比方法是一种__________消去法。
3. 牛顿法在求解非线性方程时,每次迭代都需要计算__________。
4. 龙格现象是指在数值积分中,由于__________而引起的误差。
5. 在多项式插值中,拉格朗日插值法是通过__________来构建插值多项式的。
三、简答题1. 请简述数值分析中的截断误差和舍入误差的区别。
2. 描述高斯-赛德尔迭代法的基本思想,并与雅可比迭代法进行比较。
3. 解释在数值积分中为什么需要使用自适应方法。
4. 讨论在求解非线性方程时,二分法与牛顿法的适用条件和优缺点。
5. 分析多项式插值与样条插值的主要区别及其各自的应用场景。
四、计算题1. 给定函数f(x) = sin(x),在区间[0, π]上使用梯形法则计算积分的近似值,取4个等分点。
2. 设线性方程组如下:\[\begin{cases}2x + y + z = 6 \\x + 2y + 4z = 14 \\3x + y + 2z = 10\end{cases}\]使用高斯消元法求解该方程组的解。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案汇总
数值分析试题一、填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析试题及答案汇总
数值分析试题及答案汇总一、单项选择题(每题5分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 牛顿法B. 插值法C. 迭代法D. 泰勒展开法答案:C2. 以下哪个选项是数值分析中用于求解非线性方程的迭代方法?A. 高斯消元法B. 牛顿法C. 多项式插值D. 辛普森积分法答案:B3. 以下哪个选项是数值分析中用于数值积分的方法?A. 牛顿法B. 辛普森积分法C. 牛顿-拉弗森迭代D. 拉格朗日插值答案:B4. 在数值分析中,下列哪个方法用于求解常微分方程的初值问题?A. 欧拉法B. 牛顿法C. 辛普森积分法D. 高斯消元法答案:A二、填空题(每题5分,共20分)1. 插值法中,拉格朗日插值法的插值多项式的阶数是______。
答案:n2. 泰勒展开法中,如果将函数展开到第三阶,那么得到的多项式是______阶多项式。
答案:三3. 在数值分析中,牛顿法求解非线性方程的迭代公式为______。
答案:x_{n+1} = x_n - f(x_n) / f'(x_n)4. 辛普森积分法是将积分区间分为______等分进行近似计算。
答案:偶数三、简答题(每题10分,共30分)1. 请简述数值分析中插值法的基本原理。
答案:插值法的基本原理是根据一组已知的数据点,构造一个多项式函数,使得该函数在给定的数据点上与数据值相等,以此来估计未知数据点的值。
2. 解释数值分析中误差的概念,并说明它们是如何影响数值计算结果的。
答案:数值分析中的误差是指由于计算方法或计算工具的限制,导致计算结果与真实值之间的差异。
误差可以分为舍入误差和截断误差。
舍入误差是由于计算机表示数值的限制而产生的,而截断误差是由于计算方法的近似性质而产生的。
这些误差会影响数值计算结果的准确性和稳定性。
3. 请说明在数值分析中,为什么需要使用迭代法求解线性方程组。
答案:在数值分析中,迭代法用于求解线性方程组是因为对于大规模的方程组,直接方法(如高斯消元法)的计算成本很高,而迭代法可以在较少的计算步骤内得到近似解,并且对于稀疏矩阵特别有效。
(完整)数值分析题库及答案,推荐文档
模拟试卷(一)一、填空题(每小题3分,共30分)y f (X y)5.解初始值问题的改进的Euler 方法是 ________ 阶方法;y(X o ) y o5x-| 3X 2 0.1x 3 36 .求解线性代数方程组2x , 6X 2 0.7X 3 2的高斯一塞德尔迭代公式为X 1 2X 2 3.5x 3 1若取 X (0) (1. 1.1).则 X ⑴ ______________7.求方程Xf (X)根的牛顿迭代格式是 _______________ .&丨o (x). h(x).L . l n (X)是以整数点X o . X 1.L . X n .为节点的Lagrange 插值基函数,则nxj j (X k )= ----------------- .k 09.解方程组Ax b 的简单迭代格式X (k 1} Bx (k) g 收敛的充要条件是 ___________________ .10 .设f (-1)1. f (0)0. f (1) 1. f (2)5 ,则f (x)的三次牛顿插值多项式为 ___________________ ,其误差估计式为 _________________________ .二、综合题(每题10分,共60分)1. 求一次数不超过 4次的多项式p(x)满足:p(1) 15,p(1) 20 , p (1) 30p(2) 57 , p(2) 72.112.构造代数精度最高的形式为 °xf(x)dx A )f (3)Af(1)的求积公式,并求出1 5 232.设A2 1 0 , x 41422,贝V A =——.,X 广 ----------- 3.已知y=f(x)的均差14flX 0.X 1.X 2]— , flX 1.X 2.X 3]3^5 , flX 2.X 3.X 4]39115,8Hx o .X 2.X 3]- 3,那么均差 f [X 4,X 2, X 3]=4.已知n=4时Newton — Cotes 求积公式的系数分别是:C 04)-,C i (4)9016C (4) .C 2 451有3个不同节点的高斯求积公式的代数精度是次的.(差商)其代数精度.x k x k 13.用Newt on 法求方程x In x 2在区间(2,)内的根,要求 --------------- ----- 10X k25.用矩阵的直接三角分解法解方程组1 02 0X15 0 1 0 1 X 2 3 1 2 4 3 X 317 . 0 1 03 X 476试用数值积分法建立求解初值问题y f (: x ,y)的如下数值求解公式y(0) y o1 32 1 ⑷10. -x x -x, f ()( )(x 1)x(x 1)(x 2)/24( 1,2)6 6二、综合题y n 1y n 1hi (fn1 4fnf n 1),其中f i f (x, %), i n 1, n, n 1.三、证明题(10分) 设对任意的x ,函数f (x)的导数f (x)都存在且0f (x) M ,对于满足0 —的任意,迭代格式X k 1 X k f (xj 均收敛于f (x) 0的根x *.M参考答案一、填空题91, 16 1. 5 ; 2. 8, 9 ; 3.; 4.1545才1)(3 3x 2k) 0.1x 3k))/5 6. x 2k1)(2 2x (k1) 0.7x 3k))/6 , x 3k1)(1 才1) 2x 2k ")*2/75.(0.02 , 0.22, 0.1543)7. x k 1X kX k f(X k ) . 8 1 f (X k )'X j . 9.(B) 1.p(x) 1520( x 1) 15(x 1)2 7(x 1)3 (x 1)3(x 2) 5 4x 3x 2 2x 3 x 4其他方法: 设 p(x) 15 20(x 1) 15(x 1)2 7(x 1)3 (x 1)3(ax b)令 p(2)57 , p (2)72,求出 a 和 b.2•取f(x) 1,x ,令公式准确成立,得:5•解设1 02 0 11 020 1 0 1 l 21 1u22u 23 u 24 1 2 4 3l31 l321u33u340 1 0 3l 41l42 l 43 1u 44由矩阵乘法可求出U jj 和l ij1 1A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析A 试题
2007.1
第一部分:填空题10⨯5
1.设3112A ⎛⎫= ⎪⎝⎭
,则A ∞=___________ 2()cond A =___________ 2.将4111A ⎛⎫= ⎪⎝⎭
分解成T A LL =,则对角元为正的下三角阵L =___________
00n n n ,0,f y μμ=〈其绝对稳定性空间是___________
9.用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________
10.已知[1,1]-上的四次legendre 多项式为4241()(35303)8
L x x x =-+,求积分1
241()()ax bx c L x dx -++=⎰___________其中,,a b c 为常数。
第二部分:解答题(共5题,其中1,2,5题必做,3,4选做一题)
1.(14分)已知方程组,Ax b =其中31,32a A b a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
(1)用迭代收敛的充要条件,分别求出是Jacobi 和Gauss-seidel 迭代法收敛的a 的取值范
2y 3c (1) 取初值(0)(0.5,0.5)T x =,用Newton 迭代(1)x 。
(2) 记12(,)T x x x =,并设122111(cos )4()11()48x x x x x ⎡⎤-+⎢⎥Φ=⎢⎥⎢⎥-⎢⎥⎣⎦。
试证明不动点迭代法(1)()k k x x +=Φ在*x 处具有局部收敛性。
4(14分)试构造Gauss 型求积公式:1
11221()()()(),x f x dx A f x A f x ρ-≈+⎰其中,权函数
2().x x ρ=构造步骤如下:
(1) 构造区间[1,1]-上权函数为2
x 的首项系数为1的二次正交多项式,求出Gauss 点12,x x
(2) 写出求积系数12,A A ,并给出求积公式代数精确度的次数
5
1. 2.3.4. 5.
6. (1)设B 奇异,证明11A B A A A
--=,其中∙为算子范数。
(2)证明最佳n 次平方逼近函数奇偶性与()f x 相同
第三份,韩老师2002.1
1. 单步法122(,)3(,(,))433n n n n n n n n h h h y y f t y f t y f t y +=+
+++ (1)1,n T +收敛阶
(2)绝对稳定区间
(3)对052,1,y y y '=-+=在0.2,0.5,1h =时讨论数值扰动的稳定性
2.
(3)算一步QR 迭代,得到2A
6. 1B <,证明I B -可逆,并证明11I B B
-<
-
第四份,郑老师2006年
填空:
1. 3.1425926是π的几位有效数字
2. 3()1f x x x =+-,求均差[1,1,1],[0,1,2,3],[0,1,2,3,4]f f f
3. simpson 公式得代数精度是几阶
4. cot New es -积分系数k C 的和是多少 ()Af x +
除第一份是完整试卷外,其余皆为回忆版,可能有错误之处,大家凑合看,抓住要点即可。
1、H=[1,0;1,2] 求H 的2范数,1条件数
2、A 为一个三阶矩阵,含参数a,求A 对称正定是a 的范围;
给定一个a ,求LL(T)分解。
3、cos(πX),给X=0;0.25;0.5,利用2阶拉格朗日差值多项式,求X=0.4时的值
4、求一个多步法的误差主项,y(n+2)-1/2y(n+1)-1//2y(n)=h(f(n+2)-1/4f
(n+1)+3/4f(n))
5、x在(0,h)间的定积分,求高斯法代数精度,af(0)+b*f(h/3)+1/4*f(h),并求
a、b
6、拉格朗日差值,x乘以插值基函数的求和
7、A=[2,-1,0;-1,2,a;0,-1,2],b=[1,0,-1],AX=b,求BJ和J法收敛时a的范围
8、f(x)=1/x-a,求牛顿迭代公式的收敛阶
9、求一个以x为权函数的,2次正交多项式
大题
一、A=[10,a,0;c,10,c;0,a,5],b=(10,7,14),
1、求J法收敛的充要条件
2、a=c=1时,sor法收敛的充要条件,并写出w=1时,sor分量形式
3、a=2,c=0时x=x+a(Ax-b),收敛时a的范围,a=?时收敛最快
二、给x0,用牛顿求积公式求x1;证明一个全局收敛
三、单步法展开,求误差主项和收敛阶,绝对稳定性区间(老师上课讲过例题)
四、A和A-B都是非奇异的,证明||inv(A-B)||《1/(1/||inv(A)||-||B||)
5道大题,若干小题,卷面成绩满分70
1.(1)求f(x)=sqrt(1-x^2)在span{1,x,x^2}上,权函数为rou=1/sqrt(1-x^2)的最佳平方逼近多项式
(2)求证高斯型求积公式中的A(k)满足A(k)=∫p(x)l(x)dx=∫p(x)l^2(x)dx,其中l(k)为Lagrange 多项式
2.(1)Ax=b中A非奇异,则用J法、GS法、SOR法、SSOR法求解等价方程A TAx=A Tb,各种方法的收敛性怎样?(其中0<w<2)
(2)A严格对角占优,求证其有唯一的LU分解,对称矩阵[3 1 0;1 3 1;0 1 3]求其cholysky分解
3.(1)写出用Lanczos方法计算某矩阵第一列的α和β
(2)已知矩阵[3 0 0;0 3 2;0 2 3],求其QR分解,计算一步H'=RQ
4(1)f(x)=[x2^2-x1^2-x1 其精确解为x*=[0 0 0],写出牛顿法的计算公式
sin(x1^2)-x2];
(2)已知G(x)=[x2^2-x1^2
sin(x1^2)];
给出区域D使得在此区域内的初始值可以收敛到精确解,并说明原因
5.(1)线性2步法-0.5y(n)-0.5y(n+1)+y(n+2)=h/2*(f(n)+f(n+1)+f(n+2)),计算其局部阶段误差的阶数若h=0.1,判断其稳定性
(2)已知R(z)的稳定函数是exp(z)的pade(1,2)逼近多项式,计算其稳定域,是否是A-稳定?(pade逼近的计算公式卷子上给了)。