动点问题-圆(含答案)初三数学

合集下载

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)1.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.(1)证明:∵AD=BD,∠DAE=∠DBC,AE=BC,∴△ADE≌△BDC(SAS),∴∠ADE=∠BDC,∴=.∴AB=BC.(2)解:S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.2.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.解:(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.3.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC==2,由①得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴=,∴=,∴FG=.4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为28 cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:(舍去)∴当<t<时,⊙Q与矩形ABCD的边共有四个交点.5.如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是;(直接填空)(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.解:(1)∵直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB===5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO==,∴=,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图2所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN===;故答案为:;(3)连接PB、PF,作PC⊥OB于C,如图3所示:则四边形OCPF是矩形,∴OC=PF=BP=2,BC=OB﹣OC=3﹣2=1,∴PC===,∴圆心P的坐标为:(,2).6.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD∥AC,CD=,求AD的值.解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC===4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4﹣x,在Rt△ABP中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴PA=4﹣=;②当PA=PC时,PA=AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=CD=,DF=AF=AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD∥AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,,∴△BDF≌△CBE(ASA),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+()2=(4x)2,解得:x=,∴AD=2x=.7.如图,在平面直角坐标系中,AB=AC=10,线段BC在x轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.(1)当△BP E是等腰三角形时,求t的值;(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位.△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD 所在直线相切时,求t的值和此时点C的坐标.解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=6,∴AD===8,∵点B的坐标为(﹣3,0),∴OB=3,∴OD=BD﹣OB=6﹣3=3,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴OE=4,BE===5,当△BPE是等腰三角形有三种情况:①当BE=BP时,则3+3t=5,解得:t=;②当BE=EP时,则3t=3,解得:t=1;③当BP=PE时,∵BP=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴=,即=,解得:t=;综上所述,当△BPE是等腰三角形时,t的值为或1或;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD于H,FG⊥OP于G,如图所示:则四边形FGDH是矩形,FG∥EO,∴FG是△POE的中位线,∴PG=OG=OP=t,FG=OE=2,∴F(t,2),∵四边形FGDH是矩形,∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,∵以EP为直径的圆与动线段AD所在直线相切,∴FH=EP=3﹣t,在Rt△POE中,EP2=OP2+OE2,即:4(3﹣t)2=(3t)2+42,解得:t=1或t=﹣(不合题意舍去),∴C(11,0),∴以EP为直径的圆与动线段AD所在直线相切时,t的值为1,此时点C的坐标为(11,0).8.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE 的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.9.【操作体验】如图①,已知线段AB和直线1,用直尺和圆规在1上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点(1)在图②中,连接P1A,P1B,说明∠AP1B=30°【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹);【深入探究】(3)已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,求m的取值范围;(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=120°,若点P绕点A逆时针旋转60°到点Q,求PQ的最小值.解:(1)如图②,连接AP1,BP1,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=4,∴⊙O的半径为2,即OE=OG=2,∵OG⊥EF,∴EH=,∴OH=,∴GH=2﹣,∴BE≤AB<MB,∴3≤m<2+,故答案为:3≤m<2+;(4)如图⑤,构建⊙O,使∠COB=120°,在优弧上取一点H,则∠CHB=60°∴∠CPB=120°,由旋转得:△APQ是等边三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=,OF=3+1=4,∴AO==,∴AE=﹣2=AP,∴PQ=AP=﹣2.10.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.(1)证明:连接OC,∵C、D是半圆的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AE,∴∠OCF=∠AEC=90°,∴OC⊥EF,∴FC是⊙O的切线;(2)解:四边形ADCO是菱形,理由如下:连接DC、DO,由(1)知==,∴∠AOD=∠DOC=COB=×180°=60°,又∵OA=OD=OC,∴△OAD与△OCD是等边三角形,∴OA=OD=AD,OD=OC=DC,∴OA=AD=DC=OC,∴四边形ADCO是菱形;(3)解:由(1)知,OC∥AE,∴△OCG∽△EAG,△FCO∽△FEA,∠COF=∠EAF=60°,∴=,=,∴=,在Rt△OCF中,∠F=30°,设OC=r,则OF=2r,∴==,∴=,∴OG与GE的比值为.11.已知:CD为△ABC的外角平分线,交△ABC的外接圆O于D.(1)如图1,连接0A,OD,求证:∠AOD=2∠BCD;(2)如图2.连接BC,若CB平分∠ACD,求证:AB=BD;(3)如图3,在(2)的条件下,在AB上取一点E,BD上取一点F.连接DE、AF交于点M,连接EF,若∠DMF=60°,AC=EF=7,CD=8(DF>BF),求AE的长.解:(1)如图1,连接BD,∵CD为△ABC的外角平分线,∴∠HCD=∠BCD,∵∠HCD=∠ABD,∴∠ABD=∠BCD,∵∠AOD=2∠ABD,∴∠AOD=2∠BCD;(2)∵CB平分∠ACD,∴∠ACB=∠DCB,∴=,∴AB=BD;(3)如图3,作FG⊥AB于G,EP⊥AF于P,CN⊥AC交AC的延长线于N.在Rt△CDN中,∵∠DCN=60°,CD=8,∴∠CDN=30°,∴CN=CD=4,DN=4,∴AD===13,∵AB=BD,∠B=60°,∴∠ABC是等边三角形,∴AD=DB=BD=13,∠DAB=60°,∵∠DMF=∠ADM+∠MAD=60°,∠MAE+∠MAD=60°,∴∠ADE=∠BAF,∵∠DAE=∠B,∴△ADE≌△BAF(ASA),∴AE=BF,设AE=BF=x,则BE=13﹣x,BG=x,EG=13﹣x,FG=x,在Rt△EFG中,72=(13﹣x)2+(x)2,解得x=5或8(舍弃),∴AE=BF=5.12.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A0与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)证明:OA2=OD•OP;(3)若BC=6,tan∠F=,求cos∠ACB的值.(1)证明:连接OB,如图1所示:∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∵BA⊥PF,∴AD=BD,即OP垂直平分AB,∴PA=PB,∴∠PAB=∠PBA,∵OA=OB,∴∠OAB=∠OBA,∴∠PAB+∠OAB=∠PBA+∠OBA=90°,即∠OAP=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)∵∠ADO=∠OAP=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,∴OA2=OD•OP;(3)解:连接AE,如图2所示:∵AC为直径,∴∠ABC=90°,∵OD垂直平分AB,∴OD∥BC,∴OD是△ABC的中位线,∴OD=BC=3,设DE=x,则OE=OA=OF=3+x,∵OD垂直平分AB,∴=,∴∠F=∠DAE,∴tan∠DAE=tan∠F=,∴AD=2DE=2x,在Rt△ADF中,tan∠F==,∴=,解得:x=2,∴AD=4,BC=6,OA=OE=5,在Rt△ABC中,AC=2OA=10,∴cos∠ACB===.13.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C 时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN= 5 cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.14.如图1,已知AB是⊙O的直径,AM和BN是⊙O的两条切线,∠是⊙O的半圆弧上一动点(不与A,B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.(1)求证:CD为⊙O的切线;(2)求证:AB2=4AD•BC;(3)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.(1)证明:如图1,连接OE,OC,在△BCO与△ECO中,,∴△BCO≌△ECO(SSS),∴∠OEC=∠OBC,∵BN是⊙O的切线,∴AB是⊙O的直径,∴AB⊥BN,∴∠ABC=90°,∴∠OEC=90°,∴CD为⊙O的切线;(2)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.15.如图,A(﹣5,0),B(﹣3,0)点C在y的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°,点P从点A出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.(1)当时t=1,求PC的长;(2)当∠BCP=15°时,求t的值;(3)以线段PC为直径的⊙Q随点P的运动而变化,当⊙Q与四边形ABCD的边(或边所在的直线)相切时,求t的值.解:(1)A(﹣5,0),B(﹣3,0),∴OA=5,OB=3,当t=1时,AP=1,∴OP=OA﹣AP=4,∵∠CBO=45°,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,OC=OB=3,∴PC===5;(2)分两种情况:如图1所示:①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∴∠OPC=30°,∴OP=OC=3,∴AP=OA﹣OP=5﹣3,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣3,②当P在点B的右侧时,∵∠OCB=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∴OP=OC=,∴AP=OA﹣OP=5﹣,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣;综上所述,当∠BCP=15°时,t的值为(5﹣3)秒或(5﹣)秒;(3)如图2中,由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:①当该圆与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP1=OC=3,此时AP1Q=5+3=8,∴t=8;②当该圆与CD相切于点C时,有P2C⊥CD,即点P2与点O重合,此时AP2=5,∴t=5;③当该圆与AD相切时,设P3(5﹣t,0),则Q(,),半径r2=()2+()2,作QH⊥AD于点H,则QH=,∵QH2=r2,∴()2=()2+()2,解得t=,综上所述,t的值为8秒或5秒或秒.。

动点问题--圆(含答案)初三数学

动点问题--圆(含答案)初三数学

2.如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(全等)(2)试用表示,并写出的取值范围;(相似)(3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.(讨论对称轴+全等+相似)【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE[来源:学,科,网]∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.3.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;(圆心距+勾股)方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(相似+设半径)方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.(分类讨论)①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.4.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(相似)(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).(相似+切线)(数形结合+分类讨论)【考点】:圆的综合题.【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,[来源:学科网ZXXK]∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.5.如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y 轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(垂径定理+直线方程)(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.(相切+圆周角)【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,[来源:学科网]∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.6.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G 矩形ABCD的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,[来源:学。

初中数学数轴动点问题含答案

初中数学数轴动点问题含答案

初中数学数轴动点问题含答案一.选择题(共10小题)1.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数﹣3,点B表示数3.若动点P从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动.当BP =3AQ时,点P在数轴上表示的数是()A.2.4B.﹣1.8C.0.6D.﹣0.62.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB3.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对4.如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒5.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒6.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种7.分别表示数a和数b的点在数轴上的位置如图所示,下面4个结论中正确的个数为()①|a﹣b|=|a|+|b|②a向右运动时,|a﹣b|的值增大③当a向右运动时,|a﹣b|的值减小.④当a向右运动时,|a﹣b|的值先减小后增大.A.1个B.2个C.3个D.4个8.如图,数轴上点A,B表示的数分别为﹣40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为()A.15秒B.20秒C.15秒或25秒D.15秒或20秒9.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.现有一只机器狗从数轴的原点出发,沿数轴正方向运动,这只机器狗每前进6步后,将倒退2步,设该机器狗每秒前进或后退2步,并且每步的距离是1个单位长度,x n表示第n秒时机器狗在数轴上的位置所对应的数,下列结论:①x4=4;②x7=10;③x108<x107;④x2014<x2013,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知,如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,点B表示的数为7,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为4秒时,点M和点P之间的距离是6个单位长度,则当点P运动到点A时,动点Q所表示的数为______.12.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过______秒,点M、点N分别到原点O的距离相等.13.动点A,B分别从数轴上表示10和﹣2的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,______秒后,点A,B间的距离为3个单位长度.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过______秒后,M、N两点间的距离为12个单位长度.15.数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0.点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON 的中点.思考,在运动过程中,的值______.16.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为______.17.已知M,N为数轴上从原点O出发的两个动点,点M每秒1个单位,点N的速度为点M的2倍,则当运动时间为4秒时,OM和ON两条线段的中点相距______个单位.18.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为______秒.19.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是______.20.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为______单位长度.三.解答题(共10小题)21.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离______.数轴上表示﹣12和﹣6的两点之间的距离是______.(2)数轴上表示x和﹣4的两点之间的距离表示为______.(3)|x﹣2|+|x+4|的最小值为______时,能使|x﹣2|+|x+4|取最小值的所有整数x的和是______.(4)若数轴上两点A、B对应的数分别是﹣1、3,现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?22.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数.23.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动______秒时,点P到点E,点F的距离相等.24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.25.一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.26.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停下的点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时.求|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|的值.27.已知数轴有A、B两点,分别表示的数为a、b,且|a+12|+|b﹣18|=0.(1)a=______,b=______,点A和点B之间的距离为______;(2)如图1,动点P沿线段AB自点A向点B以2个单位长度/秒的速度运动,同时动点Q沿线段BA自点B向点A以4个单位/秒的速度运动,经过______秒,动点P,Q两点能相遇;(3)如图1,点P沿线段AB自点A向点B以2个单位/秒的速度运动,点P出发3秒后,点Q沿线段BA自点B向A以4个单位/秒的速度运动,问再经过几秒P,Q两点相距6个单位长度;(4)如图2,AO=4厘米,PO=2厘米,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B向点A运动,假若点P,Q两点能相遇,直接写出点Q运动的速度.28.“阳光向上,跑动青春”,为营造阳光运动的校园氛围,培养学生热爱体育、崇尚运动的健康观念和良好习惯,学校利用课间进行趣味跑操活动,其中有两名学生课间在操场上沿着直线进行折返跑,往返一次;将这条直线看成数轴,起点记为M,折返点记为N,主席台记为点O,两位同学分别记为点P,Q;若动点P、Q从M点同时出发向N点运动,到达N点后折返到M点;已知:数轴上点M、N对应的数分别为m、n,且满足|m+20|+(n﹣40)2=0,点O对应的数为k,k的相反数等于本身.(1)直接写出m、n、k的值;(2)设点P在数轴上对应的数为x,那么当x为多少时能使得PO+PN=50?(3)已知点P的速度为3个单位长度/秒,点Q的速度为2个单位长度/秒,当动点P到达点N后,点Q开始改变速度,以a个单位长度/秒继续折返跑,4秒后,P、Q两点相距2个单位长度,求a的值.29.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q 到点C的距离相等.30.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?初中数学数轴动点问题含答案参考答案与试题解析一.选择题(共10小题)1.解:设运动的时间为t秒,则点Q所表示的数为3﹣2t,点P所表示的数为﹣3+t,∴BP=3﹣(﹣3+t)=6﹣t,AQ=3﹣2t﹣(﹣3)=6﹣2t,∵BP=3AQ,∴6﹣t=3(6﹣2t),解得,t=2.4,∴点P所表示的数为﹣3+2.4=﹣0.6,故选:D.2.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.3.解:∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选:C.4.解:设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.5.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.6.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选:D.7.解:由数a和数b在数轴上的位置可知:a<0,b>0,且|a|>|b|,|a﹣b|表示a与b两点之间的距离,由于a<0,b>0,因此|a﹣b|=|a|+|b|,故①正确,根据①的结论,当a在b的左侧向右运动时,|a﹣b|的值逐渐减小,当a在b的右侧向右运动时,|a﹣b|逐渐增大,因此②③均不正确,而④则正确,故选:B.8.解:设运动的时间为t秒,P、Q相遇前,依题意有50﹣(﹣40)﹣3t=3[50﹣(﹣40)﹣2t﹣3t],解得t=15;P、Q相遇后,依题意有50﹣(﹣40)﹣3t=3[2t+3t﹣50+(﹣40)],解得t=20.故运动的时间为15秒或20秒.故选:D.9.解:∵数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),∴质点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.10.解:根据题意得:x1=2,x2=4,x3=6,x4=4,x5=6,x6=8,x7=10,x8=8,根据此规律可推导出,x108=7×15+3=108,x107=7×15+5=110,2014=7×287+5,故x2014=287×4+6=1154.x2013=287×4+4=1152故①x4=4,②x7=10;③正确,④错误.故选:C.二.填空题(共10小题)11.解:由题意得,点M的速度是点Q速度的,设点Q的速度为x,则点M的速度为,∵运动时间为4秒时,点M和点P之间的距离是6个单位长度,∴,解得,x=2,即Q点的速度是每秒2个单位长度,又A、B两点间的距离为:7﹣(﹣5)=12,12÷4=3(秒),故点P从点B到点A需要3秒,点Q运动的距离为:2×3=6,∴点Q表示的数为:7﹣6=1,故答案为:1.12.解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.13.解:设运动的时间为t秒,则运动后A所表示的数为(10﹣7t),B所表示的数为(﹣2﹣4t),由题意得,|10﹣7t﹣(﹣2﹣4t)|=3,解得,t=3或t=5.故答案为:3或5.14.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.15.解:∵|a+2|+(b﹣8)2020=0∴a=﹣2,b=8,∴A表示﹣2,B表示8;设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣7t,点N对应的数是8+10t.∵P是ME的中点,∴P点对应的数是=﹣1﹣3t,又∵Q是ON的中点,∴Q点对应的数是=4+5t,∴MN=(8+10t)﹣(﹣2﹣7t)=10+17t,OE=t,PQ=(4+5t)﹣(﹣1﹣3t)=5+8t,∴==2(定值).故答案为:2.16.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.17.解:设线段OM的中点为G,线段ON的中点为H,分两种情况:①M,N同向时,如图1,H与M重合,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH﹣OG=4﹣2=2;②M,N反向时,如图2,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH+OG=4+2=6;综上,当运动时间为4秒时,OM和ON两条线段的中点相距2或6个单位.故答案为:2或6.18.解:当点O在PQ之间,则3(15﹣3t)=9+t﹣(﹣15+3t)解得:t=3当P在OB之间,则3(3t﹣15)=9+t解得:t=或3t﹣15=(9+t)解得:t=9当Q在OP之间,则(3t﹣15)=9+t,方程无解或(3t﹣15)=9+t解得:t=19故答案为:3或9或或19秒19.解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.20.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共10小题)21.解:(1)1和3两点之间的距离3﹣1=2,数轴上表示﹣12和﹣6的两点之间的距离是﹣6﹣(﹣12)=6;故答案为:2,6;(2)x与﹣4之间的距离表示为|x﹣(﹣4)|=|x+4|;故答案为:|x+4|;(3)当x≥2,原式=x﹣2+x+4=2x+2;最小值为2×2+2=6;当﹣4<x<2,原式=2﹣x+x+4=6;当x≤﹣4,原式=2﹣x﹣x﹣4=﹣2x﹣2,最小值为﹣2×(﹣4)﹣2=6;∴|x﹣2|+|x+4|最小值为6;∵要使代数式|x﹣2|+|x+4|取最小值时,相应的x的取值范围是﹣4≤x≤2,∴能使|x﹣2|+|x+4|取最小值的所有整数x的值为:﹣4,﹣3,﹣2,﹣1,0,1,2,它们的和为:﹣4﹣3﹣2﹣1+0+1+2=﹣7;故答案为:6,﹣7;(4)点A在点B的左边,(4﹣3)÷(2﹣0.5)×2+(﹣1)=.点A所对应的数是点A在点B的右边,(4+3)÷(2﹣0.5)×2+(﹣1)=8.点A所对应的数是8.故点A所对应的数是或8.22.解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.23.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.24.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.25.解:①点M距原点4个单位长度,且位于原点的右侧,∴M=4,∴B=4+2.5×2﹣2.5×7=﹣8.5,∴此时点B在数轴上所表示的数的相反数是8.5,②点M距原点4个单位长度,且位于原点的左侧,∴M=﹣4,∴B=﹣4+2.5×2﹣2.5×7=﹣16.5,∴此时点B在数轴上所表示的数的相反数是16.5.26.解:(1)设C点表示的数为x,根据题意得x﹣1+x+1=4×4,解得x=8,所以C点表示的数为8;(2)﹣1+2﹣4+6﹣8+10﹣12+14﹣16+18﹣20=﹣11,所以它第10次爬行所停下的点所对应的数为﹣9;(3)因为t<1,所以点E在A点左侧,F点在A、B之间,所以|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|=x A﹣x E﹣x E﹣x F+x F﹣x B=x A﹣x B=﹣1﹣1=﹣2.27.解:(1)∵|a+12|+|b﹣18|=0,∴a+12=0,b﹣18=0,解得,a=﹣12,b=18,∴AB=|﹣12﹣18|=30,故答案为:﹣12,18,30;(2)30÷(2+4)=5(秒),故答案为:5;(3)设再经过x秒后点P、点Q相距6个单位长度,当P点在Q点左边时,2(x+3)+4x+6=30,解得,x=3;当点P在点Q右边时,2(x+3)+4x﹣6=30,解得,x=5;所以,再经过3或5秒后,点P、Q两点相距6个单位长度;(4)设点Q的运动速度为xcm,当P、Q两点在点O左边相遇时,120÷60x=30﹣6,解得,x=14;当P、Q两点在点O右边相遇时,240÷60x=30﹣2,解得,x=6;所以,点P,Q两点能相遇,则点Q的运动速度为每秒14cm或6cm.28.解:(1)∵|m+20|+(n﹣40)2=0,且|m+20|≥0,(n﹣40)2≥0,∴|m+20|=0,(n﹣40)2=0,∴m=﹣20,n=40.∵k的相反数等于本身,∴k=0.∴m=﹣20,n=40,k=0;(2)∵点P在数轴上对应的数为x,点N对应的数为40,∴PO=|x|,PN=40﹣x,∴PO+PN=|x|+40﹣x=50,解得:x=﹣5;(3)设动点P到达点N所用的时间为t1,∵点P的起始点位于数轴上的﹣20处,点N位于数轴上的40处,∴PN=60,∴t1===20(秒),∵动点P、Q从M点同时出发向N点运动,∴在t1=20(秒)时,Q运动的距离为20×2=40个单位长度,4秒后,点P运动的距离为3×4=12个单位长度,点Q运动的距离为4a个单位长度,∴点P共运动了60+12=72个单位长度,点Q共运动了(40+4a)个单位长度,∵P、Q两点相距2个单位长度,∴PQ=|72﹣(40+4a)|=2,解得:a=或a=.29.解:(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=,答:经过或10秒,点P、点Q到点C的距离相等.30.解:(1)AB的中点M所对应的数为=30(2)①如图1,设点C所表示的数为x,则AC=x+20,BC=80﹣x,由题意得,=,解得,x=40,答:点C在数轴上所表示的数为40;②分两种情况进行解答,设运动的时间为t秒Ⅰ)如图2,相遇前相距15个单位长度,则3t+2t=80﹣(﹣20)﹣15,解得,t=17(秒),Ⅱ)如图3,相遇后相距15个单位长度则3t+2t=80﹣(﹣20)+15,解得,t=23(秒)答:当两只蚂蚁运动17秒或23秒时,两只电子蚂蚁在数轴上相距15个单位长度.。

与圆有关的动点问题[下学期]--浙教版

与圆有关的动点问题[下学期]--浙教版

2
2
(0≤x≤1).
F
若⊙O与CD相切必有OF OE AE
2
AE2=BE2+AB2 (2FO)2=BE2+AB2
F
(2-x)2=x2+12
4-4x+x2=x2+1
x 3 4
(3)从(2)可得F是CD的中点
2
1H
(4)作FH⊥AE于H
(1)t为何值时,四边形APQD为矩形/
(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么 t为何值时, ⊙P和⊙Q外切?
;图文快印 图文快印

别来无恙乎,挑帘入座,可对弈纵横、把盏擎歌,可青梅煮酒、红袖添香 国学大师陈寅恪,托十载光阴,毕暮年全部心血,著皇皇80万言《柳如是别传》。我想,灵魂上形影相吊,慰先生枯寂者,唯有这位300年前的秦淮女子了。其神交之深、之彻,自不待言。 6 古人尚神交古人,今 人当如何? 附庸风雅的虚交、名利市场的攀交、蜂拥而上的公交、为稻粱谋的业交,甚嚣尘上,尤其炒栗子般绽爆的“讲坛热”“国学热”“私塾热”“收藏热”“鉴宝热”“拍卖热”。但人生意味的深交、挚交,纯粹的君子之交、私人的精神之恋,愈发稀罕。 读闲书者少了,读古人 者少了,读古心者更少。 星转斗移,今心性已大变。 有朋友曾说过一句:为什么我们活得如此相似? 问得太好了。人的个体性、差异性越来越小。恰如生物多样性之锐减,人生多样性也急剧流失,精彩的生活个案、诗意的栖息标本,皆难搜觅。 某日,我半玩笑地对一同事说:“给我 介绍一两位闲人吧,有趣的人,和我们不一样的人,比我们有意思有意义 ”他长期做一档“讲述老百姓自己的故事”的节目,猎奇于民间旮旯,又兼话剧导演,脑筋活泛,当有这方面资源。他嘿嘿几声,皱眉半晌,摇头:“明白你的意思,但不骗你,这物种,还真绝迹了,恐怕得往古 时候找了。” 陋闻了

数学动点问题及练习题附答案

数学动点问题及练习题附答案

初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。

〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

〔一〕点动问题。

〔二〕线动问题。

〔三〕面动问题。

二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态几何问题的常见方法有:2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1以双动点为载体,探求函数图象问题。

2以双动点为载体,探求结论开放性问题。

3以双动点为载体,探求存在性问题。

4以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

与圆有关的动点问题.doc题

与圆有关的动点问题.doc题

动点问题(4)------与圆有关的动点直线与圆相切1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC 边相切时,OA 的长是 .2.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s .(1)求PQ 的长; (2)当t 为何值时,直线AB 与⊙O 相切?3如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ). (1)当t 为何值时,⊙P 与AB 相切;(2)作PD AC ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s=时,四边形PDBE 为平行四边形.4.(2012河北中考25)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO∠=45,CD AB ∥,90CDA = ∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.5.如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC= 30°,BC=12cm。

半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC 上。

设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。

(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC 三边围成的区域有重叠部分,求重叠部分的面积。

2023年中考九年级数学高频考点拔高训练--圆的动点问题

2023年中考九年级数学高频考点拔高训练--圆的动点问题

2023年中考九年级数学高频考点拔高训练--圆的动点问题1.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊙AB于点E,⊙OCE的角平分线交⊙O 于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.2.如图.在Rt△ABC中,BC=4,∠BAC=30°,点E,F为边AB上的动点,点D是EF的中点,以点D为圆心,DE长为半径在△ABC内作半圆D.(1)若EF=2,P为半圆D的中点,在半圆D移动的过程中,求CP的最小值.(2)当半圆D同时与Rt△ABC的两直角边相切时,请求出EF的长.3.如图,在每个小正方形的边长为1的网格中,△ABO的顶点A,B,O均落在格点上,OB为⊙O的半径.(1)∠AOB的大小等于(度);(2)将△ABO绕点O顺时针旋转,得△A′B′O,点A,B旋转后的对应点为A′,B′.连接AB′,设线段AB′的中点为M,连接A′M.当A′M取得最大值时,请在如图所示的网格中,用无刻度的直尺画出点B′,并简要说明点B′的位置是如何找到的(不要求证明).4.一块含有30°角的三角板ABC如图所示,其中∠C=90°,∠A=30°,BC=3cm.将此三角板在平面内绕顶点A旋转一周.(1)画出边BC旋转一周所形成的图形;(2)求出该图形的面积.5.如图,已知AB是⊙O中一条固定的弦,点C是优弧AB上一个动点(点C不与A,B重合).(1)设⊙ACB的角平分线与劣弧AB交于点P,试猜想点P在AB⊙上的位置是否会随点C的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O的半径为5,在(1)的条件下,四边形ACBP的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.6.如图,在ΔABC中,∠ACB=90°,∠ABC=45°,BC=12cm,半圆O的直径DE=12cm.点E 与点C重合,半圆O以2cm/s的速度从左向右移动,在运动过程中,点D、E始终在BC所在的直线上.设运动时间为x(s),半圆O与ΔABC的重叠部分的面积为S(cm2).(1)当x=0时,设点M是半圆O上一点,点N是线段AB上一点,则MN的最大值为;MN的最小值为.(2)在平移过程中,当点O与BC的中点重合时,求半圆O与ΔABC重叠部分的面积S;(3)当x为何值时,半圆O与ΔABC的边所在的直线相切?7.如图,在△ABE中,BE>AE,延长BE到点D,使DE=BE,延长AE到点C,使CE=AE.以点E为圆心,分别以BE、AE为半径作大小两个半圆,连结CD.(1)求证:AB=CD;(2)设小半圆与BD相交于点M,BE=2AE=4.①当S△ABE取得最大值时,求其最大值以及CD的长;②当AB恰好与小半圆相切时,求弧AM的长.8.如图,在半径为5的扇形AOB中,⊙AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊙BC,OE⊙AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在⊙DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.9.如图,四边形ABCD中,AD∥BC,⊙ABC=90°,⊙C=30°,AD=3,AB=2√3,DH⊙BC 于点H.将⊙PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中⊙Q=90°,⊙QPM=30°,PM=4√3.(1)求证:⊙PQM⊙⊙CHD;(2)⊙PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且BK=9−4√3.若⊙PQM右移的速度为每秒1个单位长,绕点D 旋转的速度为每秒5°,求点K在⊙PQM区域(含边界)内的时长;③如图3.在⊙PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).10.对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(−2,√2)的垂点距离分别为,,;(2)点P在以Q(√3,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.11.如图,在⊙O中,OA=2,AB=2√3,将弦AB与AB⌢所围成的弓形(包括边界的阴影部分)绕点B顺时针旋转α(0°≤α≤360°),点A的对应点为A′.(1)点O到线段AB的距离是;∠AOB=°;当点O落在阴影部分(包括边界)时,α的取值范围是;(2)若线段A′B与优弧ACB的交点为D,当∠A′BA=90°时,点D AO的延长线上(填“在”或“不在”);(3)当直线..A′B与⊙O相切时,求α的值并求此时点A′运动路径的长度.12.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C、D分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.13.如图,已知▱ABCD,AB=4√3,BC=8√3,∠B=60°,其内有一个圆心角为240°扇形EOF,半径OE=r.(1)发现:如图1,当E、F在BC边上,扇形EOF与AD相切时,①优弧EF上的点与BC的最大距离为,r=,S扇形EOF=;②当BE=CF时,优弧EF⌢上的点与点D的最小距离为;(2)思考:如图2,当r=2时,扇形EOF在▱ABCD内自由运动①当扇形EOF与▱ABCD的两条边同时相切时,求此时两切点之间的距离是多少?②OE与AD垂直时,扇形EOF▲ (填“有可能”或“不可能”)与▱ABCD的边切于点F;(3)拓展:如图3,将扇形的圆心O放在BC的中点处,点E在线段OB上运动,点F在▱ABCD外,当优弧EF⌢与▱ABCD的边有六个交点时,直接写出r的取值范围:.14.小航在学习中遇到这样一个问题:⌢于C,如图,点F是线段AB上一动点,线段AB=8cm,AB的垂直平分线交AB⌢于E,连接AE.若△AEF是等腰三角取线段CD的中点O,连接FO并延长交AB形,求线段AF的长度.小航结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1)根据点F在线段AB上的不同位置,画出相应的图形,测量线段AF,EF,AE的长度,得到下表的几组对应值.填空:m的值为,n的值为;(2)将线段AF的长度作为自变量x,EF和AE的长度都是x的函数,分别记为y W和y,并在平面直角坐标系xOy中画出了函数y kx的图象,如图所示.请在同一坐标系中画出函数kxy的图象;w(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△AEF为等腰三角形时,线段AF长度的近似值(结果保留一位小数).15.如图1,扇形AOB的半径为4,圆心角为90°,点C为AB⌢上任意一点(不与点A,B 重合),且CD⊥BO于点D,点P为△COD的内心,连接OP,BP,CP.(1)求∠OPB的度数;⌢上运动.(2)如图2,⊙ M为△BOP的外接圆,点C在AB①当CD=OD时,判断OC与⊙ M的位置关系,并加以证明;②设⊙ M的半径为r,若r的值不随点C的运动而改变,请直接写出r的值;若随着点C 的运动而在一个范围内变化,请直接写出这个变化范围.16.如图,在⊙O中,AB为弦,CD为直径,且AB⊙CD,垂足为E,P为AC⌢上的动点(不与端点重合),连接PD.(1)求证:⊙APD=⊙BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:⊙AIP+⊙DAI=180°;(3)在(2)的条件下,连接IC、IE,若⊙APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.答案解析部分1.【答案】(1)解:当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分⊙OCE,∴⊙1=⊙3,而OC=OD,∴⊙1=⊙2,∴⊙2=⊙3,∴CE⊙OD,∵CE⊙AB,∴OD⊙AB,∴AD̂= BD̂,即点D为半圆AB的中点.(2)解:∵在直角⊙AOD中,OA=OD=5,∴AD=5√2.过点A作CD的垂线,垂足为G,∵∠ACD=12∠AOD=45°,∴⊙AGC是等腰直角三角形,∵AC=6,∴AG=CG=3√2.在直角⊙AGD中,DG=√(5√2)2−(3√2)2=4√2,∴CD=CG+DG=3√2+4√2=7√2,∴线段AD的长度为5√2,线段CD的长度为7√2.2.【答案】(1)解:在Rt⊙ABC中,BC=4,⊙BAC=30°∴AC=4√3,AB=8∵EF=2∴半圆半径为1∴DP=1如图,当D、C、P三点共线时,CP最小∵P为半圆D的中点,⊙CBA=60°∴CD⊙AB,CD=2√3∴CP的最小值是2√3−1(2)解:∵半圆D同时与两直角边相切,如图∴DM⊙AC,DN⊙BC,设半圆的半径为r,则CN=DM=DN=r∴BN=4-r,∵⊙CAB=⊙NDB=30°∴tan30°=4−rr=√3 3∴r=123+√3∴EF=2r=3+√3=12−4√33.【答案】(1)45(2)解:取OB′的中点N,连接MN,A′N,构成△A′MN,延长AO交⊙O于点H,如图,根据三角形三边关系,A′M≤A′N+MN,当点A′,N,M三点共线时,A′M取最大值,在Rt△A′B′N中,tan∠A′NB′=A ′B′B′N=2,∵点M,N分别是AB′,OB′的中点,∴A′M∥AH,作∠A′NB′=∠HOB′,由网格图的特点可得,在OH上取格点G,取格点C,连接OC与⊙O交于B′,如图所示,OG=√2,CG=2√2,此时tan∠HOB′=2,∠A′NB′=∠HOB′,故连接OC与⊙O交于B′,点B′即为所求.4.【答案】(1)解:∵三角板ABC,∠C=90°,∠A=30°,BC=3cm,∴AB=2BC=6cm,∴由勾股定理:AC= √AB2−BC2=√36−9=3√3,边BC在平面内绕顶点A旋转一周.图形是以AB为半径的圆去掉以AC为半径的圆,所形成的圆环,如图所示:(2)解:BC扫过的面积S圆环= πAB2−πAC2=36π−27π=9π5.【答案】(1)解:如图,结论:点P在弧AB上的位置不会随点C的运动而发生变化∵CP平分⊙ACB∴ACP=⊙BCP (角平分线将这个角分为两个相等的角)∴AP⌢= BP⌢(在同圆或等圆中,相等的圆周角所对的弧相等)即点P为劣弧AB的中点(2)解:四边形A′C′B′P′的面积不是定值.当C′P′经过圆心时,点C′到A′B′的距离最大,故四边形A′C′B′P′的面积最大,此时C′P′垂直平分A′B′:设C′P′交A′B′于M∵A′M=4,A′O′=5 O′M⊙ A′B′∴O′M=3 (直角三角形勾股定理求值)∴M P′=2 C′=8∵C′M=8 M P′=2 C′P′⊙ A′B′A′B′=8 ;∴△A′B′C′的最大面积= 12×A′B′×C′M=32,△A′B′P′的面积= 12×A′B′×MP′=8∵点C在优弧上运动,且不与A、B重合∴8 <四边形ACBP的面积≤406.【答案】(1)24cm;(9√2−6)cm(2)解:当点O与BC的中点重合时,如图②,点O移动了12cm,设半圆与AB交于点H,连接OH、CH.∵BC为直径,∴∠CHB=90°,∵∠ABC=45°∴∠HCB=45°,∴HC=HB,∴OH⊥BC,OH=OC=OB=6,S阴影=S扇形HOC+SΔBOH=90360π⋅62+12×6×6=9π+18;(3)解:当半圆O与直线AC相切时,运动的距离为0或12,∴x=0(秒)或6(秒);当半圆O与直线AB相切时,如图③,连接OH,则OH⊥AB,OH=6∵∠B=45°,∠OHB=90°,∴OB=√2OH=6√2,OC=BC−OB=12−6√2,移动的距离为6+12−6√2=18−6√2(cm),运动时间为x=18−6√22=9−3√2(秒),综上所述,当x为0或6或9−3√2时,半圆O与ΔABC的边所在的直线相切.7.【答案】(1)证明:在△ABE和△CDE中,{BE=DE∠AEB=∠CEDAE=CE,∴△ABE≌△CDE;∴AB=CD(2)解:①当AE⊥BE时,S△ABE取得最大值,S△ABE最大值=12×BE×AE=12×4×2=4,在Rt△ABE中,AB=√BE2+CE2=√42+22=2√5,∴CD=AB=2√5;②当AB恰好与小半圆相切时,AB⊥AE,∵在Rt△ABE中,BE=2AE=4,∴AE=2,∴∠ABE=30°,∴∠BEA=60°,∴∠AEM=120°,∴弧AM的长=120π×2180=4π38.【答案】(1)解:如图(1),∵OD⊙BC,∴BD= 12BC=12×6=3,∵⊙BDO=90°,OB=5,BD=3,∴OD= √OB2−BD2=4,即线段OD的长为4.(2)解:存在,DE保持不变.理由:连接AB,如图(2),∵⊙AOB=90°,OA=OB=5,∴AB= √OB2+OA2=5 √2,∵OD⊙BC,OE⊙AC,∴D和E分别是线段BC和AC的中点,∴DE= 12AB=5√22,∴DE保持不变.9.【答案】(1)证明:∵AD∥BC,DH⊥BC∴DH⊥AD则在四边形ABHD中∠ABH=∠BHD=∠HDA=90°故四边形ABHD为矩形DH=AB=2√3,BH=AD=3在Rt△DHC中,∠C=30°∴CD=2DH=4√3,CH=√3DH=6∵{∠DHC=∠Q=90°∠C=∠QPM=30°CD=PM=4√3∴△CHD≌△PQM(AAS);(2)解:①过点Q作QS⊥AM于S由(1)得: AQ =CH =6 在 Rt △AQS 中, ∠QAS =30°∴AS =√32AQ =3√3平移扫过面积: S 1=AD ⋅AS =3×3√3=9√3 旋转扫过面积: S 2=50°360°⋅π⋅PQ 2=50°360°⋅π⋅62=5π故边PQ 扫过的面积: S =S 1+S 2=9√3+5π ②运动分两个阶段:平移和旋转 平移阶段:KH =BH −BK =3−(9−4√3)=4√3−6t 1=KH v =(4√3−6)s旋转阶段:由线段长度得: PM =2DM取刚开始旋转状态,以PM 为直径作圆,则H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作 GT ⊥DM 于T设 ∠KDH =θ ,则 ∠GHM =2θ 在 Rt △DKH 中:KH =BH −BK =3−(9−4√3)=4√3−6=2√3×(2−√3)DK=√DH2+KH2=√(2√3)2+(4√3−6)2=4√3×√2−√3设t=√2−√3,则KH=2√3t2,DK=4√3t,DH=2√3tanθ=KHDH=t 2,sinθ=KHDK=t2,cosθ=DHDK=12t∵DM为直径∴∠DGM=90°在Rt△DGM中:DG=DM⋅cosθ=4√3×12t=2√3 t在Rt△DGT中:GT=DG⋅sinθ=2√3t×t2=√3在Rt△HGT中:sin2θ=GTGH=√32√3=12∴2θ=30°,θ=15°PQ转过的角度:30°−15°=15°t2=15°5°=3s总时间:t=t1+t2=4√3−6+3=(4√3−3)s③CF=60−12d9−d10.【答案】(1)ℎA=2;ℎB=4√2;ℎC=√6(2)解:如图,过点P作PM⊥x轴于点M,PN⊥y轴于点N.∵∠PMO=∠PNO=∠MON=90°,∴四边形PMON是矩形.∴OP=MN.∵Q点坐标为(√3,1),∴OQ=2.∵PQ−OQ⩽OP⩽PQ+OQ,∴3−2≤OP⩽3+2.∴1⩽ℎ⩽5(3)解:如图,设直线l与x轴,y轴的交点分别为A,B,过点O作OM⊥直线l于点M,以OA为半径作⊙O,交直线l于点N.∵∠BAO=60°,AO=2√3,∴AM=√3.过点M,N分别作x轴的垂线,垂足分别为C,D,则AC=√32,即OC=3√32.∵△AON是等边三角形,∴OD=12AO=√3.∴t=−3√32或−√3⩽t<0.11.【答案】(1)1;120;30°≤α≤60°(2)在(3)解:①当A′B与⊙O相切,∴⊙OBA′=90°,此时α=⊙ABA′=90°+30°=120°,或α=120°+180°=300°;②当α=120°时,A′运动路径的长度= 120π⋅2√3180=4√33π.当α=300°时,A′运动路径的长度= 300π⋅2√3180=10√33π.综上可知,α=120°或α=300°;A′运动路径的长度为4√33π或10√33π.12.【答案】(1)解:如图1中,∵AB是直径,∴⊙ACB=90°,∵AC=4,BC=4 √3,∴AB =√AC2+BC2=√42+(4√3)2=8,∴⊙O的半径为4.(2)如图1中,连接OC,OD.∵CD=4 √2,OC=OD=4,∴CD2=OC2+OD2,∴⊙COD=90°,∴⊙OCD=45°,∵AC=OC=OA,∴⊙AOC是等边三角形,∴⊙ACO=60°,∴⊙ACD=⊙ACO﹣⊙DCO=60°﹣45°=15°.(3)如图2中,连接OM,OC.∵AM=MD,∴OM⊙AD,∴点M的运动轨迹以AO为直径的⊙J,连接CJ,JM.∵⊙AOC是等边三角形,AJ=OJ,∴CJ⊙OA,∴CJ =√AC2−AJ2=2 √3,∵CM≤CJ+JM=2 √3+2,∴CM的最大值为2 √3+2.13.【答案】(1)6;4;32π3;2√31−4(2)解:①2或者2√3理由:(i)如图当扇形与AB、AD边相切时(当扇形与CB、CD边相切时),过点O做OM⊥AD,ON⊥AB,连接AO,易证Rt△AMO≌Rt△ANO,∠ONA=∠OMA=60°,∠NOM=60°,∴ΔOMN为等边三角形,∴MN=2(ii)当扇形与DC、AD边相切时(当扇形与AB、BC边相切时),同理可求得∠NOM= 120°,MN=2√3②有可能(3)6<r<4√314.【答案】(1)3.0;5.6(2)解:如图,描点连线:(3)解:如图,作直线y=x,△AEF为等腰三角形有三种情况:①AE=EF时,即AF=x为y kx与y w的交点横坐标,如图,AF=5.4cm,②当AF=EF时,即求y=x与y w的交点横坐标,如图,AF=3.3cm,③当AE=AF时,即求y kx与y=x的交点横坐标,如图,AF=4.6cm,综上所述,当⊙AEF为等腰三角形时,AF的长为3.3cm,4.6cm,或5.4cm. 15.【答案】(1)解:∵点P为△COD的内心,∴∠COP=∠BOP.又∵PO=PO,CO=BO,∴△COP≌△BOP.∵CD⊥BO于点D,∴∠OCD+∠COD=90°.∴12∠OCD+12∠COD=45°.∴∠OPC=135°.∴∠OPB=∠OPC=135°.(2)解:①当CD=OD时,OC与⊙M相切.证明如下:如图,在优弧OB上取一点Q,连接OQ,BQ.∵点P在劣弧OB上,且∠OPB=135°,∴∠OQB=45°.∴∠OMB=90°.连接MO,MB.∴OM=BM.∴∠BOM=∠OBM=45°.而当CD=OD时,∠COD=∠OCD=45°,∴∠COD+∠BOM=90°.∴当CD=OD时,OC与⊙M相切.②r的值是定值;r=2√2.理由如下:⌢上运动时,由(2)证得∠OMB=90°,OM=MB=r,⊙OBM为等腰直角三角形,而当点C在ABOB=4,故OM=MB= r=2√2.16.【答案】(1)证明:∵直径CD⊙弦AB,⌢=BD⌢,∴AD∴⊙APD=⊙BPD;(2)解:如图,作⊙BAP的平分线,交PD于I,证:∵AI平分⊙BAP,∴⊙PAI=⊙BAI,∴⊙AID=⊙APD+⊙PAI=⊙APD+BAI,⌢=BD⌢,∵AD∴⊙DAB=⊙APD,∴⊙DAI=⊙DAB+⊙BAI=⊙APD+⊙BAI,∴⊙AID=⊙DAI,∵⊙AIP+⊙DAI=180°,∴⊙AIP+⊙DAI=180°;(3)解:如图2,连接BI,AC,OA,OB,∵AI平分⊙BAP,PD平分⊙APB,∴BI平分⊙ABP,⊙BAI=12⊙BAP,∴⊙ABI=12⊙ABP,∵⊙APB=60°,∴⊙PAB+⊙PBA=120°,∴⊙BAI+⊙ABI=12(⊙BAP+⊙ABP)=60°,∴⊙AIB=120°,∴点I的运动轨迹是AB⌢,∴DI=DA,∵⊙AOB=2⊙APB=120°,∵AD⊙AB,∴AD⌢=BD⌢,∴⊙AOB=⊙BOD=60°,∵OA=OD,∴⊙AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴⊙DAC=90°,∵CD⊙AB,∴⊙AED=90°,∴⊙AED=⊙CAD,∵⊙ADC=⊙ADE,∴⊙ADE⊙⊙CDA,∴ADCD=DEAD,∴AD2=DE•CD,∵DI′=DI=AD,∴DI2=DE•CD,∵⊙I′DE是公共角,∴⊙DIE⊙⊙DCI,∴ICIE=CDDI=2.。

人教版九年级数学中考动点问题专项练习及参考答案

人教版九年级数学中考动点问题专项练习及参考答案

人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。

初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

人教版九年级数学上册期末圆动点最值问题压轴题

人教版九年级数学上册期末圆动点最值问题压轴题

人教版九年级数学上册期末圆动点最值问题压轴题一、单选题1.如图,O的直径12AB=,弦CD垂直平分半径OA,动点M从点C出发在优弧CBD 上运动到点D停止,在点M整个运动过程中,线段AM的中点P的运动路径长为()A.3πB.4πC.5πD.6π2.如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最大值与最小值之差是()A.5 B.6 C.7 D.83.如图,线段AB=6,点C为线段AB外一动点,45∠=︒,连接BC,M,N分别ACB为AB,BC的中点,则线段MN的最大值为()A.3 B.4 C.2D.24.如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB上的一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A .60°B .90°C .120°D .135°5.如图,O 的半径为13,弦AB 的长为24,M 是弦AB 上的动点,则线段OM 长的最小值为( )A .8B .7C .6D .56.如图,在Rt AOB 中,OA =OB =42,⊙O 的半径为2, 点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为( )A .23B .3C .1D .27.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A 3B 33C .3D .3328.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为( ).A .3B .23C .43D .4二、填空题 9.如图所示,AB 是O 的直径,20AB =,30CAB ∠=︒,点D 为弧BC 的中点,点P 是直径AB 上的一个动点,PC PD +的最小值为__________.10.如图,⊙O 的半径是2,AB 是⊙O 的弦,P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆心角的度数是__________.11.如图,AB 是O 的弦,5AB =,点C 是O 上的一个动点,且45ACB ∠=︒,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是______.12.如图,在扇形ABD 中,60BAD ∠=︒,AC 平分BAD ∠交弧BD 于点C ,点P 为半径AB 上一动点,若4AB =,则阴影部分周长的最小值为___________.13.在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.14.如图,在扇形AOB 中,45AOB ∠=︒,点C 是AB 的中点,点D ,E 分别为半径OA ,OB 上的动点.若2OB =,则CDE △周长的最小值为______.15.如图,矩形ABCD 中,AB =6,BC =9,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与矩形ABCD 的边CD 相切时,则BP 的长为________.三、解答题16.如图,在正方形ABCD 中,动点E ,F 分别在边DC ,CB 上移动(不与顶点重合),且满足DE CF =.连接AE 和DF ,交于点P .(1)请你写出AE 与DF 的数量关系和位置关系,并说明理由;(2)由于点E ,F 的移动,使得点P 也随之运动.①请用文字描述并且在图中画出点P 的运动路径;②若10AD =,请求出线段CP 的最小值.17.如图,O为Rt ABC的外接圆,90,43,4∠=︒==,点D是O上的ACB BC AC、分别位于AB的两侧.动点,且点C D(1)求O的半径;∠的度数;(2)当42CD=时,求ACD(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE的长为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,求出BP的长.19.如图,在平行四边行ABCD 中,AB =5,BC =8,BC 边上的高AH =3,点P 是边BC 上的动点,以CP 为半径的⊙C 与边AD 交于点E ,F (点E 在点F 的左侧). (1)当⊙C 经过点A 时,求CP 的长;(2)连接AP ,当AP ∥CE 时,求⊙C 的半径及弦EF 的长.20.如图,在Rt ABC 中,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的一个动点,以CD 为直径的O 交AD 于点E ,过点C 作//CF AB ,交O 于点F ,连接CE 、EF .(1)当45CFE ∠=︒时,求CD 的长;(2)求证:BAC CEF ∠=∠;(3)是否存在点D ,使得CFE 是以CF 为底的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.参考答案1.B解:如图,连接OC,设CD交AB于点E.∵CD垂直平分线段OA,∴CA=CO,∵OC=OA,∴AC=OC=OA,∴△AOC是等边三角形,∴∠CAE=60°,当点M与C重合时,连接PE,OP,∵P A=PM,∴OP⊥AM,∴∠APO=90°,∵AE=EO,OA=3,∴EP=12∵PE=AE=3,∠P AE=60°,∴△P AE是等边三角形,∴∠AEP=60°;在点M整个运动过程中,如下图,∵点P 是AM 的中点,点E 是AO 的中点, ∴1122PE OM OA AE EO ====, ∴线段AM 的中点P 的运动轨迹是图中IOJ ,∵260120IEJ ∠=⨯︒=︒,∴IOJ 的圆心角360120240=︒-︒=︒,∴运动路径的长=24034180ππ•=. 故选:B .2.D解:如图,设⊙O 与AC 相切于点D ,连接OD ,过点O 作OP ⊥BC 垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP ﹣OF ,∵AC =12,BC =9,∴AB 22AC BC +22129+15,∵∠OPB =90°,∴OP ∥AC ,,OPB ACB ∴∽2,3OP OB AC AB ∴== ∵点O 是AB 的三等分点,∴21510,3OB =⨯=, ∴OP =8,∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴OD ∥BC ,,AOD ABC ∴∽ ∴13OD OA BC AB ==, ∴OD =3,∴MN 最小值为OP ﹣OF =8﹣3=5,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值=OB +OE =10+3=13,∴MN 长的最大值与最小值的差是13﹣5=8.故选:D .3.C解:由题知A 、B 、C 三点共圆,M ,N 分别为AB ,BC 的中点,12MN AC ∴=, ∴当AC 过圆心即AC 是直径时(如图所示),AC 取得最大值,此时MN 取的最大值, 45ACB =︒∠,90ABC ∠=︒∴此时ABC 是等腰直角三角形,BMN △是等腰直角三角形,132BM BN AB ∴===,MN ∴=故选C .4.B解:如图,延长CD交⊙O于P,延长CE交⊙O于T,连接PT.∵OA⊥PC,OB⊥CT,∴CD=DP,CE=TE,∴DE=12 PT,∴当PT是直径时,DE的长最大,连接OC,∵OP=OC=OT,OD⊥PC,OE⊥CT,∴∠COA=∠POA,∠COB=∠BOT,∴∠AOB=∠COA+∠COB=12∠POT=90°,故选:B.5.D解:过O作OM AB'⊥于M',此时线段OM'的长最短,连接OA,OM '过点O ,OM AB '⊥, 11241222AM AB '∴==⨯=, 在Rt AMO △中,由勾股定理得:221691445OM OA AM ''=-=-=. 故选:D .6.A解:连接OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2,∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,2∴2OA=8,∴OP=4OA OB AB•=, ∴2223OP OQ =-故选:A .7.B解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB=FB′,∴FB+FE=FB′+FE=B′E,此时FB+FE的值最小,∵∠BAC=30°,∴∠B′AC=30°,∴∠BAB′=60°,∵AB=AB′,∴△ABB′为等边三角形,∵B′E⊥AB,∴AE=BE=32,∴B′E333即BF+EF33故选:B.8.D∵过点O作OC⊥AP于点C,OD⊥PB于点D,∴AC=PC,BD=PD,∴CD∥AB,且CD=12AB,∵AB=8,∴CD=12AB=4.故选择:D.9.102解:作出D 关于AB 的对称点D ′,连接OC ,OD ′,CD ′.又∵点C 在⊙O 上,∠CAB =30°,D 为弧BC 的中点,即BD BD '=,∴∠BAD ′=12∠CAB =15°.∴∠CAD ′=45°.∴∠COD ′=90°.则△COD ′是等腰直角三角形.∵OC =OD ′=12AB =10,∴CD ′=2故答案为:10210.120︒解:作OD ⊥AB ,∵P 是弦AB 上的动点,且1≤OP ≤2,∴OD=1,∵⊙O 的半径是2,∴12OD OA , ∵OA=OB ,∴30OAB OBA ==︒∠∠,∴弦AB 所对的圆心角120AOB ∠=︒,故答案为:120︒ .11.522 解:∵点M ,N 分别是AB ,AC 的中点,∴MN =12BC , ∵当BC 最大时,线段MN 长的最大,当BC 为⊙O 的直径时,BC 的长度最大,此时,∠A =90°,∠ACB =45°,∴直径BC =2AB =52,则线段MN 长的最大值为522, 故答案为:522. 12.2423π+ 解:如图,作点C 关于AB 的对称点C ',连接C D '交OB 于点P ',连接P C '、OC ',此时P C P D ''+最小,即=P C P D C D '''+,由题意得,30DAC CAB BAC '∠=∠=∠=︒,∴90DAC '∠=︒, ∴22224442C D OC OD ''=+=+=,CD 的长3042==1803l ππ⨯, ∴阴影部分周长的最小值为242+3π, 故答案为:242+3π. 13.52-如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==22112AO ∴=+=112ON OM AB ===,3BC = 221(31)5OC ∴=+-=52CO OD ∴-=线段CD 长度的最小值为52-. 52-14.2解:如图,作点C 关于,OA OB 的对称点,M N ,连接,,,,DM EN OM OC ON ,则,,,,,DM CD OM OC AOM AOC EN CE ON OC BON BOC ==∠=∠==∠=∠, CDE ∴的周长为CD DE CE DM DE EN ++=++,由两点之间线段最短得:当点,,,M D E N 共线时,CDE △周长最小,最小值为MN , ,AOM AOC BON BOC ∠=∠∠=∠,45AOC BOC AOB ∠+∠=∠=︒,2()90MON AOM AOC BON BOC AOC BOC ∴∠=∠+∠+∠+∠=∠+∠=︒,由同圆半径相等得:2OC OB ==,2OM ON ∴==,在Rt MON 中,2222MN OM ON +=即CDE △周长的最小值为22 故答案为:2215.4当⊙P 与直线CD 相切时,设PC =PM =x .则PB =9-x ,132BM AB == 在Rt △PBM 中,∵222PM BM PB =+,∴2223(9)x x =+-,∴x =5,∴PC =5,∴BP =BC ﹣PC =9﹣5=4.故答案为:4.16.解:(1)AE DF =,AE DF ⊥,理由是:∵四边形ABCD 是正方形,∴AD DC =,90ADE DCF ∠=∠=︒,∵DE CF =,在ADE 和DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ≅△△,∴AE DF =,DAE FDC ∠=∠∵90ADE ∠=︒,∴90ADP FDC ∠+∠=︒,∴90ADP DAE ∠+∠=︒,∴1809090APD ∠=︒-︒=︒,∴AE DF ⊥;(2)如图,①∵点P 在运动中保持90APD ∠=︒,设正方形ABCD 的中心为O , ∴得出点P 的运动路径是以AD 为直径的圆的圆弧DPO (去除端点D ,O ),②设AD 的中点(圆心)为G ,连接CG 交圆弧于点P ,此时线段CP 的长度最小. 在Rt CDG 中,222210555CG CD DG ++∴555=-=-CP CG GP即线段CP的最小值是555-.17.(1)4;(2)15°;(3)存在,232+解:(1)如图1中,∵AB是直径,∴∠ACB=90°,∵AC=4,BC=3∴AB2222++=8,4(43)AC BC∴⊙O的半径为4.(2)如图1中,连接OC,OD.∵CD=2,OC=OD=4,∴CD2=OC2+OD2,∴∠COD=90°,∴∠OCD=45°,∵AC=OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,∴∠ACD=∠ACO﹣∠DCO=60°﹣45°=15°.(3)如图2中,连接OM,OC.∵AM=MD,∴OM⊥AD,∴点M的运动轨迹以AO为直径的⊙J,连接CJ,JM.∵△AOC是等边三角形,AJ=OJ,∴CJ⊥OA,∴CJ22=-=23,AC AJ∵CM≤CJ+JM=23+2,∴CM的最大值为23+2.18.【详解】(1)证明:如图,过O作AC的垂线OM,垂足为M.∵AB=AC,AO⊥BC,∴AO平分∠BAC,∵OE⊥AB,OM⊥AC,∴ OE =OM ,∵ OE 为⊙O 的半径,∴ OM 为⊙O 的半径,∴ AC 是⊙O 的切线.(2)解:∵OM =OE =OF =3.且F 是OA 的中点,∴ AO =6,在Rt ΔAEO 中,AE =33, ∴ AEO S =12OE AE =932. ∵ OE ⊥AB ,在Rt ΔAEO 中,∠OEA =90°,AO =6,AE =33,OE =3,∴ ∠EOF =60°,∴ OEF S 扇形=260333602ππ⋅=, ∴ S 阴影AEO OEF S S =-扇形△93322π=-. (3)解:如图,作点F 关于BC 的对称点G ,连接EG 交BC 于P ,∵ =PF PG ,∴ PE PF PE PG EG +=+=,此时EP +FP 最小,∵ OG =OF =OE ,∴ =G OEG ∠∠,而 =+=60AOE G OEG ︒∠∠∠,∴=30G︒∠,∴=G EAG∠∠,∴33EG EA==,即PE PF+最小值为33,在Rt OPG中,333OP OG==,在Rt ABO中,3362333OB OA==⨯=,∴=23-3=3BP,即当PE+PF取最小值时,BP的长为3.19.(1)CP=5;(2)⊙C的半径为258,EF=74.解:(1)连接AC,如图1所示:∵AH⊥BC,∴∠AHB=∠AHC=90°,∴BH=2222534AB AH-=-=,∴CH=BC﹣BH=4,∴CA=225AH CH+=,当⊙C经过点A时,CP=CA=5;(2)∵四边形ABCD是平行四边形,∴AD∥BC,当AP∥CE时,四边形APCE是平行四边形,∵CP=CE,∴四边形APCE是菱形,∴P A=CP,设P A=CP=x,则PH=4﹣x,在Rt△APH中,由勾股定理得:AH2+PH2=P A2,即32+(4﹣x )2=x 2,解得:x =258, 即⊙C 的半径为258, 作CM ⊥EF 于M ,如图2所示:则CM =AH =3,ME =MF =12EF ,在Rt △CEM 中,由勾股定理得:ME =2222257()388CE CM -=-=, ∴EF =2ME =74.20.解:(1)∵45CDE CFE ∠=∠=︒,90ACB ∠=︒∴45DAC CDA ∠=∠=︒∴6CD AC ==(2)∵//CF AB ,∴B FCB ∠=∠,∵FCB DEF ∠=∠,∴B DEF ∠=∠,①又90BAC B ∠+∠=︒②∵CD 是圆O 的直径,90CED ∠=︒,∴90DEF CEF ∠+∠=︒③由①②③可得BAC CEF ∠=∠(3)CFE 是CF 为底的等腰三角形,则EF CE =,则∠EFC =∠ECF . 连接FD ,并延长和AB 相交于G ,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,BG2+DG2=BD2,∴42+x2=(8-x)2,解得x=3,即CD=3。

2023年九年级中考数学高频考点突破-圆的动点问题

2023年九年级中考数学高频考点突破-圆的动点问题

2023年中考数学高频考点突破--圆的动点问题一、单选题1.如图,在ΔABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.2√13+1C.323D.92.如图,直角△ABC中,∠ACB=90°,BC=2√3,点P是△ABC内部一动点,总满足∠APC=150°,连接BP,则BP的最小值为()A.2√7−4B.2√31−8C.4−√3D.23√183−83√3 3.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.2 √2+1B.2 √2+2C.4 √2+1D.4 √2-24.如图,点A的坐标是(−2,0),点C是以OA为直径的∠B上的一动点,点A关于点C的对称点为点P. 当点C在∠ B上运动时,所有这样的点P组成的图形与直线y=kx-3(k>0)有且只有一个公共点,则k的值是()A.23B.√53C.6√55D.√525.如图,A是∠B上任意一点,点C在∠B外,已知AB=2,BC=4,∠ACD是等边三角形,则△BCD的面积的最大值为()A.4 √3+4B.4C.4 √3+8D.66.如图,A(12,0),B(0,9)分别是平面直解坐标系xOy坐标轴上的点,经过点O且与AB相切的动圆与x轴、y轴分别相交于点P、Q,则线段PQ长度的最小值是()A.6√2B.10C.7.2D.6√37.设O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A、B,过O 作OC⊥AB于点C,则点C到y轴距离的最大值()A.12B.√22C.√32D.18.已知∠O的半径为3,A为圆内一定点,AO=1,P为圆上一动点,以AP为边作等腰∠APQ,AP =PQ,∠APQ=120°,则OQ的最大值为()A.1+3√3B.1+2√3C.3+√3D.3√3−19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,且CF= 2,点E为射线CB上一动点,连接EF.将△CEF沿直线EF折叠,使点C落在点P处,连接AP,BP,则△APB的面积最小值为()A.3B.6C.245D.1210.如图,在ΔABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心作半圆,使BC与半圆相切,点P,Q分别是边AC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.8B.9C.10D.1211.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.4√3+4B.4√3C.4√3+8D.6√312.如图,在等边∠ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE 交于点F,连接CF,则CF的最小值是()A.3B.2 √3C.4D.3 √3二、填空题13.在平面直角坐标系中,已知点A (2√3,0),点B (−6√3,0),点C是y轴上的一个动点,当∠BCA=30°时,点C的坐标为.14.如图,在平面直角坐标系xOy中,半径为4的∠O与x轴的正半轴交于点A,点B是∠O上一动点,点C为弦AB的中点,直线y=34x−6与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.15.如图,AB为半圆的直径,AB=10,点O到弦AC的距离为4,点P从B出发沿BA 方向向点A以每秒1个单位长度的速度运动,连接CP,经过秒后,ΔAPC为等腰三角形.16.如图,AB是⊙O的直径,M、N是AB̂异于A,B的两点,C是MN̂一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则E,C两点的运动路径长的比是.三、综合题17.如图,在平面直角坐标系中,边长为6的正方形ABCD的四条边与坐标轴平行,顶点A、B 分别在第一象限、第二象限,对角线AC、BD的交点与坐标原点O重合,当正方形ABCD的边上存在点Q,满足PQ≤2时,称点P为正方形ABCD的伴随点.(1)点A的坐标为点,B的坐标为,点C的坐标为,点D的坐标为.(2)当正方形ABCD的伴随点P的坐标为(3,0)时,点Q的坐标可以为(写出一个即可).(3)在点P1(0,0)、P2(5.5,5.5)、P3(−4,2)、P4(1,−2)中,正方形ABCD的伴随点是.(4)点P在直线y=x上.若点P为正方形ABCD的伴随点,直接写出点P横坐标m的取值范围.18.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=12cm.动点P从点A出发,以1cm/s的速度沿AO水平向左做匀速运动,与此同时,动点Q从点O出发,也以1cm/s 的速度沿ON竖直向上做匀速运动.连接PQ,交OT于点B.经过O,P,Q三点作圆,交OT于点C,连接PC,QC.设运动时间为t(s),其中0<t<12.(1)若tan∠OCQ =13,求t 的值;(2)当△PBC 为等腰三角形时,求t 的值;(3)若△OPQ 的内心为点I ,求线段IC 长度的最小值.19.在平面直角坐标系xOy 中,已知点M(a ,b),N.对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a|个单位长度,再向上(b ≥0)或向下(b <0)平移|b|个单位长度,得到点P′,点P′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M(1,1),点N 在线段OM 的延长线上,若点P(−2,0),点Q 为点P 的“对应点”.①在图中画出点Q ;②连接PQ ,交线段ON 于点T.求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t(12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ.当点M 在⊙O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)20.如图①,在矩形ABCD 中,BC =60cm.动点P 以6cm/s 的速度在矩形ABCD 的边上沿A→D 的方向匀速运动,动点Q 在矩形ABCD 的边上沿A→B→C 的方向匀速运动.P 、Q 两点同时出发,当点P 到达终点D 时,点Q 立即停止运动.设运动的时间为t (s ),∠PDQ 的面积为S (cm 2),S 与t 的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的∠O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与∠O有公共点时,求t的取值范围.答案解析部分1.【答案】D 2.【答案】B 3.【答案】A 4.【答案】D 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】B 10.【答案】C 11.【答案】A 12.【答案】B13.【答案】(0,12+6√5) 或 (0,−12−6√5) 14.【答案】815.【答案】145 或4或516.【答案】√217.【答案】(1)(3,3);(−3,3);(−3,−3);(3,−3)(2)(3,1) 答案不唯一 (3)P 3 、 P 4(4)解:如图符合条件的临界点P 有4个,如图,过点 P 5 作 P 5E ⊥x 轴于E ,过点 P 6 作 P 6F ⊥x 轴于F ,∵点P5,点P6在y=x上,∴∠P5OE=45°,∵正方形ABCD边长为6,∴OG=AG=3,∴OA=3√2,P6F=OF=1,∴OP5=3√2+2,∴OE=P5E=√2+2√2=3+√2,∴P5(3+√2,3+√2),P6(1,1),∴1≤m≤3+√2,同理可得P7(−1,−1),P8(−3−√2,−3−√2),∴−3−√2≤m≤−1,综上,−3−√2≤m≤−1或1≤m≤3+√2.18.【答案】(1)解:由题意得:OQ=t,OP=12−t,∠MON=90°,∵OQ⌢=OQ⌢,∴∠OPQ=∠OCQ,∴tan∠OPQ=tan∠OCQ=1 3,在Rt△OPQ,tan∠OPQ=OQ OP,∴t12−t=13,解得:t=3;(2)解:∵∠BPC=∠QOC,∠PBC=∠POC+∠OPQ,∵∠MON=90°,OT是∠MON的平分线,∴∠QOC=∠POC=12∠MON=45°,∴∠BPC=45°,∠PBC>45°,∴当△PBC为等腰三角形时,则PB=PC或BC=BP,当PB=PC时,则∠PBC=∠PCB,如图,作BH⊥OQ,BG⊥OP,∵∠PCB=∠OQB,∠PBC=∠OBQ,∴∠OBQ=∠OQB,∴OB=OQ=t,∵∠QOC=∠POC=12∠MON=45°,∴BH=BG=√22t,∵S△OPQ=S△OBQ+S△OBP,∴12OQ⋅OP=12OQ⋅BH+12OP⋅BG,即:12t⋅(12−t)=12t×√22t+12(12−t)×√22t,解得:t=12−6√2;如图,当BC=BP时,则∠BPC=∠BCP=∠QOC=45°,∴∠OQP=∠BCP=45°,∴∠OPQ是等腰直角三角形,∴OP=OQ,即:12−t=t,解得:t=6;综上所述,当△PBC为等腰三角形时,求t的值为12−6√2或6.(3)解:设PQ的中点为D,∵△OPQ的内心为点I,OC平分∠MON,∴点I在OC上,∴ID+CD≥IC,∴当点I、D、C共线时,即点D与点B重合时,线段IC长度的值最小,如图,过点I作IE∠OQ于E,IF∠OP于F,∵点B为PQ中点,为圆心,∴OC为圆的直径,∴∠OPC=∠OQC=90°,∴∠OCP=∠POC=45°,∵∠OCP=∠OQP,∴∠OQP=∠OPQ=45°,∴OP=OQ,OB∠PQ,∴IE=IF=IB,即:12−t=t,解得:t=6;∴OC=√2OQ=6√2,OB=BC=3√2,∵∠QOC=45°,∴OI=√2EI,∵EI=FI=BI,OB=OI+BI,∴OB=√2BI+BI,即:3√2=√2BI+BI,解得:BI=6−3√2,IC=BC+BI=6−3√2+3√2=6,∴线段IC长度的最小为6.19.【答案】(1)解:①点Q如下图所示.∵点M(1,1),∴点P(−2,0)向右平移1个单位长度,再向上平移1个单位长度,得到点P′,∴P′(−1,1),∵点P′关于点N的对称点为Q,N(2,2),∴点Q的横坐标为:2×2−(−1)=5,纵坐标为:2×2−1=3,∴点Q(5,3),在坐标系内找出该点即可;②证明:如图延长ON至点A(3,3),连接AQ,∵AQ//OP,∴∠AQT=∠OPT,在ΔAQT与Δ∠OPT中,{∠AQT =∠OPT∠ATQ =∠OTP AQ =OP,∴ΔAQT ≅ΔOPT(AAS),∴TA =TO =12OA , ∵A(3,3),M(1,1),N(2,2),∴OA =√32+32=3√2,OM =√12+12=√2,ON =√22+22=2√2,∴TO =12OA =32√2, ∴NT =ON −OT =2√2−32√2=√22, ∴NT =12OM ; (2)解:PQ 长的最大值与最小值的差为4t −2.20.【答案】(1)30;6(2)解:①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,QC =AB+BC ﹣6t =90﹣6t ,OF =4t ,∵OF∠QC 且点F 是DC 的中点,∴OF =12QC , 即4t =12(90﹣6t ), 解得,t =457; ②设AB ,CD 的中点分别为E ,F ,∠O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH∠AD 于H ,如图2﹣1,当∠O 第一次与PQ 相切于点M 时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴∠QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=√2QH,∴150﹣20t=30√2,;∴t=15−3√22如图2﹣2,当∠O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴∠QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=√2QH,∴20t ﹣150=30√2,∴t =15+3√22, 综上所述,当PQ 与∠O 有公共点时,t 的取值范围为:15−3√22≤t≤15+3√22.。

2017武汉元调与圆有关的动点问题(答案)

2017武汉元调与圆有关的动点问题(答案)

1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO =12AB =4,∴点D 运动的路径长为:π×4=4π.2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD =12AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DAC '=30°,∴DC '=12AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3.3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =12AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得:12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365. 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD =12AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD在Rt △CEM 中,∠ECM =60°,∠CME =30°,CEEM,∴CM =2CE,CM +DM =CD+rr =6-第1题解图B第2题解图第3题图D第4题解图AF E CB6.【答案】C 【解析】由题可知=ABC ACD ABCD S S S + 四边形,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F ,如解图,则1=2ABCD S AC BF ∙四边形+12AC DE ∙=12+12DE,当点D 为劣弧 AC 的中点时,DE 取得最大值,此时∠DAC =∠ACD =∠ABD =12∠ABC =30°,在Rt △ADE 中,AE =12AC,DE =12AD ,由勾股定理可得DE =12,∴此时12ABCD S 四边形7.【答案】B 【解析】如解图,作直径BD ,连接CD ,OC ,BM ,CM ,OM ,则∠BCD =90°,则∠BAC =∠D ,∵BC =BD =2OB =4,∴CD2,∴CD =12BD ,∴∠DBC =30°,∴∠BAC =∠D =60°,∴∠BOC =2∠BAC =120°,∠ABC +∠ACB =120°,∵P 点是△ABC 的内心,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=60°,∴∠BPC =120°=∠BOC ,∴点O 在⊙M 上,∴OM =CM ,∵BM =CM ,∴ BM= CM ,∴∠BOM =∠COM =60°,∴△OCM 是等边三角形,∴CM =OC =2,即⊙M 的半径不变等于2.故选B . 8.【答案】B 【解析】如解图,连接OA 、OB ,∵∠ACB =45°,∴∠AOB =90°,又∵OA =OB ,∴△AOB 是等腰直角三角形,∵AB =6,∴OA =OB =6M 、N 分别是AB 、BC 的中点,∴MN 是△ABC 的中位线,∴MN =12AC ,要使MN 最大,即AC 最大,而AC 是⊙O 的弦,故AC 是⊙O 的直径时,值最大,此时AC=2OA MN 长的最大值是12AC =12⨯9.【答案】B 【解析】如解图,将⊙O 补全,延长BO 交⊙O 于点C ,连接AC 交MO 于点P ,连接BP ,∵CB ⊥MN ,OB =OC ,∴BP =CP ,∴PA +PB =PA +PC ,根据两点之间线段最短可知所作点P 即为所求,此时PA +PC =AC .∵CB 为⊙O 的直径,∴∠BAC =90°,在Rt △ABC中,AB =4,BC =2OB=10,∴AC10.【答案】C 【解析】如解图,∵AC 为其直径,∠ACB =30°,∴∠A =60°,∵点A '在AC第5题解图A第6题解图第7题解图第8题解图上运动,∴∠A '=∠A =60°,∵C 'B ⊥A 'B ,∴∠C '=90°-60°=30°,∵∠C '是定值,∴点C '的运动路径是一个圆,当点C '运动到C ''时,C C ''=2BC ,∵⊙O 的半径为7,∴AC =14,AB =7 ,∴BC =C C ''=C '以在C C ''中点M 为圆心,BC '的最大值为11.【答案】A 【解析】连接AE ,如解图①,∵∠BAC =90°,AB =AC ,BC =AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 的上,∵⊙O 的半径为2,∴当点E 为线段OC 与⊙O 的交点时,CE 最小.如解图②,在Rt △AOC 中,∵OA =2,AC =4,∴OCCE =OC -OE=-2.即线段CE长度最小值为2.当点E 为射线CO 与⊙O 的交点时,CE 最大,最大值为+2,∴-2≤CE ≤+2.12.【答案】A 【解析】如解图,连接OQ ,∵MN =OP (矩形对角线相等),⊙O 的半径为2,OQ =12MN =12OP =1,可得点Q 的运动轨迹是以O 为圆心,1为半径的圆.当点P 沿着圆周转过45°时,点Q 也是转过45°.∴Q 运动过的长度为45360︒︒×2π=4π.故选A . 13.【答案】C 【解析】如解图,连接CE ,∵点E 是AD 的中点,A 'E =AE =12AD ,点F 为动点,则随着F 的运动,A '的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的圆弧,则C A '、A 'E 和CE 围成三角形,根据三角形的三边关系,即A 'E + C A '>CE ,当E 、A '、C 在同一直线上时,则A 'E + C A '=CE ,此时C A '最小.在Rt △CDE 中,CD =3,DE =1,则CEC A '1.14.【答案】A 【解析】过点A 、B 作圆P ,且使OA 、OB 交⊙P 于A 、B 两点,如解图,连接第9题解 图第10题解图②图B①图第12题解图CF第13题解图第14题解图第15题解图AP ,BP ,∵OA =OB =AB =4,∴△OAB 是等边三角形,∴∠AOB =60°,∴∠ACB =12∠AOB =30°,∵BD ⊥BC ,∴∠D =60°,∵AB =4,是一个定值,∴点D 在圆P 上,要使△ABD 面积的最大,∴点D 到AB 的距离要最大时,此时D 为圆P 优弧AB 的中点,此时△ABD 为等边三角形,D 到AB 的距离为ABD S ∆=12△ABD 面积的最大值为15.【答案】B 【解析】当点C 运动到A 点处时,点D 在如解图D '的位置处,当点C 运动到B 点处时,点D 与点B 重合,∵△BCD 是等边三角形,∴∠CDB =60°,又∵CO =BO ,∴△CDO ≌△BDO ,∴∠ODB =30°,∴点C 在半圆AB 上运动时,点D 在以BD '为直径的圆上运动,当点O ,D 与BD '的中点M 共线时,线段OD 最长,为⊙M 的直径,∴OD 的长随点C 的运动而变化,最大值为16.【答案】B 【解析】如解图,连接OA 、OB ,∵∠AMB =45°,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵⊙O 的半径是2,∴AB==,∵A M BA NM A N B S S S ∆∆=+四边形,∴要使四边形MANB 面积最大,则需两个三角形的高的和最大,当MN 为直径时,NM 最大,∴由垂径定理可知MN ⊥AB 时,四边形MANB 面积有最大值,∴MANB S 四边形=12·AB ·MN =1217.【答案】C 【解析】如解图,取劣弧 CB的中点D ,连接AD ,BD ,∵∠BCA =90°,AB =2AC =4,∴CA =2,则∠ABC =30°,∴∠BAC =60°,∵D 为劣弧 CB的中点,∴BD =CD ,∴∠BAD =30°,∴BD =12AB =2,∠BPC =60°,∴∠BDC =120°,∵I 为△PBC 的内心,∴∠PBI =∠IBC ,∵BD =CD ,∴∠BPD =∠DBC ,∴∠PBI +∠BPD =∠IBC +∠DBC ,即∠BID =∠IBD ,∴ID =BD ,∵BD =CA =2,∴ID =2,∴动点I 到定点D 的距离为2,即点I 的轨迹是以点D 为圆心,2为半径的弧 CIB (不含C 、B ),弧 CIB的长为1202180π⨯=43π,则l 的取值范围是:0<l <43π18.【答案】A 【解析】如解图,分别作∠A 与∠B 的角平分线,交点为P ,∵△ACD 和△BCE第16题解图第17题解图第18题解图B第19题解图都是等边三角形,∴AP 与BP 为CD 、CE 的垂直平分线.又∵圆心O 在CD 、CE 垂直平分线上,则交点P 与圆心O 重合,即圆心O 是一个定点,连接OC ,若半径OC 最短,则OC ⊥AB .又∵∠OAC =∠OBC =30°,AB =4,∴OA =OB =2OC ,∴AC =BC =2,∴在Rt△AOC 中,2OC =2AO -2AC ,即2OC =42OC -4,解得OC19.【答案】C 【解析】如解图,连接OP ,∵PM ⊥CD ,PN ⊥AB ,∴∠PMO =∠PNO =90°,∴点M 、N 在以OP 为直径的圆上,∴∠MPN =90°,MN 有最大值2.20.【答案】B 【解析】如解图,连接DO 并延长,交⊙O 于点P ′,由圆的性质知,当点P运动到点P ′时,DP 的值最大.∵△ABC 为等腰直角三角形,且AB=∴BC=根据勾股定理得8AC ==,∵点D 、O 分别为AB 、AC 的中点,∴DO为△ABC的中位线,∴12DO BC ==DP ′=DO +OP ′=4,故DP 的最大值为4.第20题解图第22题解图第23题解图 21.C 【解析】如解图,点P 运动的路径是以G 为圆心的劣弧,在⊙G 上取一点H ,连接EH 、FH ,∵四边形AOCB 是正方形,∴∠AOC =90°,∵∠CEA =12∠COA =45°,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠APF =∠AFP =45°,∴∠H =∠APF =45°,∴∠EGF =2∠H =90°,∵EF =4,GE =GF ,∴GE =GF= EF=22.A 【解析】作DH ⊥BC 于H ,如解图,∵四边形ABCD 中,AD ∥BC ,∠ABC =90°,∴AB ⊥AD ,AB ⊥BC ,∴四边形ABHD 为矩形,∴AB 为直径,∴AD 和BC 为⊙O 的切线,∵CD 和MN 为⊙O 切线,∴DE =DA ,CE =CB ,NE =NF ,MB =MF ,∵四边形ABHD 为矩形,∴BH =AD =2,DH =AB =6,设BC =x ,则CH =x -2,CD =x +2,在Rt △DCH 中,∵222CH DH DC +=,∴222(2)6(2)x x -+=+,解得x =92,∴CB =CE =92,∴△MCN 的周长=CN +CM +MN =CN +CM +NF +MF =CE +CB =923.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在以AO 为直径的圆上,当点D 运动C到点C 处时,AE ′=12AC ;当点D 运动到点B 处时,AE ′′=12AB ,∴E ′E ′′为△ABC 的中位线,∴E ′E ′′=12BC =2,∵∠A =45°,∴ E E '''所对的圆心角为90°,点E 所在圆的半径rD 在优弧 BAC上运动,∴点E=.24.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在⊙M 上,点D 运动到D ′处时,D ′、O 、B 、M 共线,此时D ′B 为⊙O 的直径,∵BE =12BD ,∴BM =12BO ,在Rt △ABC 中,∵BC =AB =4,∴AC=BO =AO=BMD 与点A 重合时,点E 运动到E ′′处,∵△ABC 是等腰直角三角形,∴∠C =45°,∴∠BOA =90,∴∠E ′′MB =90°,∴当点D 从点A 运动至点B 时,点E的运动路径长为901802=.第24题解图第25题解图25.C 【解析】如解图,过点P 作PF ⊥OM ,交直线l 同侧的⊙O 于点F ,连接OF ,记OF 的中点为G ,∵CM ⊥直线l ,∴∠MCO =∠OPF =90°,在Rt △CMO 和Rt △POF ,∴∠POF =∠CMO ,OF ⊥直线l ,∵点G 是OF 的中点,∴OG =GP =GF ,∴点P 在以点G 或G ′为圆心,OG 或OG ′长为半径的圆上,当点M 运动一周时,点P 的运动路程是⊙G 周长的2倍,∵OF =OM =10,∴点P 运动路程为2×10π=20π.。

与圆有关的动点问题[下学期]--浙教版

与圆有关的动点问题[下学期]--浙教版
(1)当t为何值时,△ABC的一边与半圆O所在的圆相切?
(2)当△ABC的一边与半圆O所在的圆相切时,如果半圆O与 直径DE围成的区域与△ABC的三边围成的区域有重叠部分, 求重叠部分的面积.
小结:
1.复习整理所学圆的知识,注意前后知识的衔接.
2.解题要注重审题.在了解所用知识和产生解题方 案过程中,适时关注数学思想方法运用.
与圆有关的动点 问题
初三数学组
1.如图,⊙ O的半径为1,圆心O在正三角形的边
AB上沿图示方向移动,当⊙ O移动到与AC边相
23
切时,OA的长是 3 .
2.如图,从⊙ O外一点A作⊙ O的切线AB,AC,切点 分别为B、C, ⊙ O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从 A开始折线A——B——C——D以4cm/秒的 速度 移动, 点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q 分别从A、C同时出发,当其中一点到达D时,另一点也 随之停止运动,设运动的时间t(秒)
OF FH 1 AE AB 2
∴AE与以CD为直径的圆F相 切.
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=900, ∠ACBC=300.半圆O以每秒2个单位从左到右运动,在运动 过程中,点D,E始终在直线BC上,设运动时间为t秒.当t=0 时,半圆O在△ABC的左侧,OC=8.
y ( X 2 1) X 2
4
4
4
(2)作OF⊥CD,垂足为F,

中考数学专题:动点与动圆2

中考数学专题:动点与动圆2

ABxPO· · Cy 中考数学专题:动点与动圆21.如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐标为(-2,-2),半径为2. 函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B ,点P 为AB 上一动点 (1)连接CO ,求证:CO ⊥AB ;(2)若△POA 是等腰三角形,求点P 的坐标;(3)当直线PO 与⊙C 相切时,求∠POA 的度数;当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的函数关系,并写出t 的取值范围.变式练习:如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时, △PAC 的面积最大?并求出此时P 点的坐标和△PAC 的最大面积.AxyB OCD2、如图,已知射线DE 与x 轴和y 轴分别交于点D (3,0)和点E (0,4).动点C 从点M (5,0)出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、1/2 t 个单位长度为半径的圆C 与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .①当与射线DE 有公共点时,求t 的取值范围;②当△PAB 为等腰三角形时,求t 的值.3、如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,OC=4,∠OAC=600.(1)求∠AOC 的度数; (2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长; (3) 如图2,一动点M 从A 点出发,在⊙O 上按逆时针方向运动,当S △MAO =S △CAO 时, 求动点M 所经过的弧长.·图2M OBACA COPB图1变式练习:如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形.4、如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以3cm/s的速度,沿AC向C 作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动。

中考数学专题复习:与圆有关的动点问题(精品含答案)

中考数学专题复习:与圆有关的动点问题(精品含答案)

2014年中考数学专题复习:与圆有关的动点问题1、如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一动点(不与A.C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.2、如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.3、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.4、如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)当P异于A.C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?5、如图,在菱形ABCD中,AB=23,∠A=60º,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=3S△MDF时,求动点M经过的弧长(结果保留π).6、半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7、如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.8、如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.9、如图,⊙O 的半径为1,直线CD 经过圆心O ,交⊙O 于C 、D 两点,直径AB ⊥CD ,点M 是直线CD 上异于点C 、O 、D 的一个动点,AM 所在的直线交于⊙O 于点N ,点P 是直线CD 上另一点,且PM=PN .(1)当点M 在⊙O 内部,如图一,试判断PN 与⊙O 的关系,并写出证明过程; (2)当点M 在⊙O 外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由; (3)当点M 在⊙O 外部,如图三,∠AMO=15°,求图中阴影部分的面积.10、如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 为OC 上动点,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N . (1)求证:CF 是⊙O 的切线;(2)点M 在OC 上移动时(点M 不与O 、C 点重合),探究△ACM 与△DCN 之间关系,并证明 (3)若点M 移动到CO 的中点时,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.11、如图,已知AB 是圆O 的直径,BC 是圆O 的弦,弦ED ⊥AB 于点F,交BC于点G,过点C作圆O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知圆为O的半径为5,若点O到BC时,求弦ED的长.12、如图1,已知⊙O的半径长为3,点A是⊙O上一定点,点P为⊙O上不同于点A的动点.(1)当1A=时,求AP的长;tan2(2)如果⊙Q过点P、O,且点Q在直线AP上(如图2),设AP=x,QP=y,求y关于x的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4A=时(如图3),存在⊙M与⊙O相内切,同时与⊙Qtan3相外切,且OM⊥OQ,试求⊙M的半径的长.图1 图2 图3答案:1、解:(1)连接AC ,如图所示:∵AB=4,∴OA=OB=OC=12AB=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(全等)(2)试用表示,并写出的取值范围;(相似)(3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)① ② ③3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y 轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.(讨论对称轴+全等+相似)【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE [来源:学,科,网]∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.3.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;(圆心距+勾股)方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(相似+设半径)方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.(分类讨论)①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.4.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(相似)(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).(相似+切线)(数形结合+分类讨论)【考点】:圆的综合题.【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,[来源:学科网ZXXK]∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.5.如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(垂径定理+直线方程)(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.(相切+圆周角)【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,[来源:学科网]∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.6.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,[来源:学。

相关文档
最新文档