最新第八章-酶的模拟ppt课件
合集下载
酶的人工模拟或模拟酶
通过对生物体系的结构与功 能的研究,为设计和建造新的技 术提供新的思想、新原理、新方 法和新途径。
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下,反应速度(v)直接 与底物浓度[S]成正比;在高底物浓度[S]下,速度趋向于最大值(Vmax),此时反应 速度与底物浓度[S]无关(如图2-1)。
(2-7)除以(2-8),并整理得
(2-9)
这就是米-曼氏方程(Michaelis-Menten equation),又称为米氏方程,式中 的Km是一常数值,称为米氏常数。在特殊情况下,当v = Vmax时,米氏方程可转化 为下式:
第一节 酶促反应动力学
整理上式可得 Km= [S] 由此可以看出,Km的物理意义就是当酶反应速度达到最大反应速度的一半时的 底物浓度,其单位与物质摩尔浓度单位相同,用mol/L表示。Km数值大小与酶的浓 度无关,是酶反应的特性常数。不同酶的Km值不同,且同一酶在不同的底物下, 其Km值也不同。米氏常数可由实验测得,也可用下面的公式求得:
一般说来,模拟酶是在分子 水平上模拟酶活性部位的形状、 大小及其微环境等结构特征,以 及酶的作用机理和立体化学等特 性的一门科学。
模拟酶的研究就是吸收酶中 那些起主导作用的因素利用有机 化学、生物化学等方法,设计和 合成一些较天然酶简单的非蛋白 分子或蛋白质分子,以这些分子 作为模型来模拟酶对其作用底物 的结合和催化过程。
图2-1 单底物酶促反应的反应速度与底物浓度的关系
第一节 酶促反应动力学
1913年前后,米彻利斯(Michaelis)和曼吞(Menten)在前人工作的基础上, 通过大量的定量研究,提出了酶促动力学基本原理,并推导出了著名的米-曼氏方 程,推导过程如下:
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下,反应速度(v)直接 与底物浓度[S]成正比;在高底物浓度[S]下,速度趋向于最大值(Vmax),此时反应 速度与底物浓度[S]无关(如图2-1)。
(2-7)除以(2-8),并整理得
(2-9)
这就是米-曼氏方程(Michaelis-Menten equation),又称为米氏方程,式中 的Km是一常数值,称为米氏常数。在特殊情况下,当v = Vmax时,米氏方程可转化 为下式:
第一节 酶促反应动力学
整理上式可得 Km= [S] 由此可以看出,Km的物理意义就是当酶反应速度达到最大反应速度的一半时的 底物浓度,其单位与物质摩尔浓度单位相同,用mol/L表示。Km数值大小与酶的浓 度无关,是酶反应的特性常数。不同酶的Km值不同,且同一酶在不同的底物下, 其Km值也不同。米氏常数可由实验测得,也可用下面的公式求得:
一般说来,模拟酶是在分子 水平上模拟酶活性部位的形状、 大小及其微环境等结构特征,以 及酶的作用机理和立体化学等特 性的一门科学。
模拟酶的研究就是吸收酶中 那些起主导作用的因素利用有机 化学、生物化学等方法,设计和 合成一些较天然酶简单的非蛋白 分子或蛋白质分子,以这些分子 作为模型来模拟酶对其作用底物 的结合和催化过程。
图2-1 单底物酶促反应的反应速度与底物浓度的关系
第一节 酶促反应动力学
1913年前后,米彻利斯(Michaelis)和曼吞(Menten)在前人工作的基础上, 通过大量的定量研究,提出了酶促动力学基本原理,并推导出了著名的米-曼氏方 程,推导过程如下:
第八章酶的非水相催化ppt课件
– 1984 年之后,非水相中的酶催化研究开始活跃起来。
– 近年来,人们对非水介质中的酶结构与功能、酶作用 机制、酶作用动力学等进行了大量研究,建立起非水 酶学(non-aqueous enzymology)。
– 同时人们还对酶催化的介质进行了大量研究,开发出 各种非水介质和新的酶促反应体系,发展出了介质工 程(medium engineering),拓宽了酶催化反应的应 用范围,使酶法合成逐步发展成为与化学法合成相互 补充的合成方法。
– 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一 篇关于酶在有机介质中催化条件和特点的文章,他们 指出,只要条件适合,酶可以在非水体系中表现出活 性,并催化天然或非天然的底物发生转化,这一报道 引起了全球科学界的关注
• 引起全球关注的“非水相酶催化”的报道
– Porcine pancreatic lipase catalyzes the trans-esterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet counterpart, the dry enzyme does not react with bulky tertiary alcohols.
– 近年来,人们对非水介质中的酶结构与功能、酶作用 机制、酶作用动力学等进行了大量研究,建立起非水 酶学(non-aqueous enzymology)。
– 同时人们还对酶催化的介质进行了大量研究,开发出 各种非水介质和新的酶促反应体系,发展出了介质工 程(medium engineering),拓宽了酶催化反应的应 用范围,使酶法合成逐步发展成为与化学法合成相互 补充的合成方法。
– 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一 篇关于酶在有机介质中催化条件和特点的文章,他们 指出,只要条件适合,酶可以在非水体系中表现出活 性,并催化天然或非天然的底物发生转化,这一报道 引起了全球科学界的关注
• 引起全球关注的“非水相酶催化”的报道
– Porcine pancreatic lipase catalyzes the trans-esterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet counterpart, the dry enzyme does not react with bulky tertiary alcohols.
第八章 酶定向进化
其基本操作过程如下 : 靶基因经随机突 变产生含不同突变类型的亲本基因群, 用 DNase I 随机切割; 得到的片段经过不加 引物的多次PCR 循环, 在该过程中, 这些 片段之间互为引物和模板进行扩增, 直至 获得全长基因; 再加入基因的两端引物进 行常规PCR, 最终获得发生改组的基因库。
2.1交错延伸重组(Stagger extension process)
图给出最常用的大肠杆菌克隆用质粒pUC19的图 谱,此质粒的复制起点处序列经过改造,能高频 率起动质粒复制,使一个细菌pUC19的拷贝数可 达500-700个; 质粒携带一个抗氨芐青霉素基因,编码能水解β内酰胺环,从而破坏氨芐青霉素的酶,当用 pUC19转化细菌后放入含氨芐青霉素的培养基中, 凡不含pUC19者都不能生长,结果长出的细菌就 是都含有pUC19的。
它是由两个相互独立的关键技术组成. 一个是随机基因文 库的构建, 另一个是特定酶( 特别是增加催化活性、增强 选择性或稳定性) 的筛选策略。
第二节 定向进化的方法
一、酶基因的随机突变
1.易错PCR技术 (Error prone PCR)
易错PCR 是指从酶的单一基因出发,通过 改变PCR 的反应条件 , 使碱基在一定程度上 随机错配而引入多点突变, 构建 行全面的筛选。为此要求构建 可能完变基库容量。
所有的质粒载体都有三个 共同的特征:一个复制子、一 个选择性标志和一个克隆位点。 复制子是含有DNA复制起始 位点的一段DNA(ori),也包 括表达由质粒编码的复制必需 的RNA和蛋白质的基因。 选择性标志对于质粒在细 胞内持续存在时必不可少的。 克隆位点是限制性内切酶 切割位点,外源性DNA可由此插 入质粒内,而且并不影响质粒 的复制能力,或为宿主提供选 择性表型。
酶工程5 第八章_酶定向进化
1992年Gram H.等用噬菌体呈现技术体外筛选抗体时,用易错PCR 向抗体的重链可变区和轻链可变区引入突变。
Stemmer将DNA改组方法引用到酶分子定向进化中,
他用β内酰胺酶作为模型分子,对其正向突变库进行DNA改组,以逐 渐增加头孢氨00倍的突变体。
酶工程5 第八章_酶定向进化
主要内容
第一节 酶定向进化介绍 第二节 酶基因体外随机突变 第三节 酶突变基因的定向选择 第四节 酶分子定向进化的应用
2/169
第一节 酶定向进化介绍
3/169
获得具有新功能和特性的酶的途径 (1) 从大量未知的生物种系中寻找
(2) 改造现有已知的酶。
4/169
22/169
定向进化研究的历史
1 萌芽阶段
首先在分子水平上进行改造单一分子的是Sol Spiegelman。在20世纪60年代,利用RNA噬菌体 Q进行的试验, 证明达尔文的自然选择也可在非细 胞体进行.
23/169
2 奠基阶段
1981年,Hall B G等报道了他们定向改变了大肠杆 菌K12中的第二半乳糖苷酶的底物专一性,开发出对 几种糖苷键有水解能力的酶。
天然酶的作用
生物体系之所以能够相对独立地存在于自然界中, 并维持其独立性和生命的延续性,都是因为生物体内 的一系列酶在发挥着作用。
酶保证了生物体内组成生命活动的大量生化反应得 以按照预定的方向有序、精确而顺利地进行,几乎所 有生物的生理现象都与酶的作用紧密相关,可以这样 说,没有酶的存在,就没有生物体的一切生命活动。
HallB G等利用lacz缺陷型的菌株为宿主菌,分别在含有某种碳源的培养 基上培养.从酶的自发突变库中筛选出分别可以水解半乳糖、乳果糖、乳 糖酸的突变酶,而野生型的酶不能水解这些底物。
Stemmer将DNA改组方法引用到酶分子定向进化中,
他用β内酰胺酶作为模型分子,对其正向突变库进行DNA改组,以逐 渐增加头孢氨00倍的突变体。
酶工程5 第八章_酶定向进化
主要内容
第一节 酶定向进化介绍 第二节 酶基因体外随机突变 第三节 酶突变基因的定向选择 第四节 酶分子定向进化的应用
2/169
第一节 酶定向进化介绍
3/169
获得具有新功能和特性的酶的途径 (1) 从大量未知的生物种系中寻找
(2) 改造现有已知的酶。
4/169
22/169
定向进化研究的历史
1 萌芽阶段
首先在分子水平上进行改造单一分子的是Sol Spiegelman。在20世纪60年代,利用RNA噬菌体 Q进行的试验, 证明达尔文的自然选择也可在非细 胞体进行.
23/169
2 奠基阶段
1981年,Hall B G等报道了他们定向改变了大肠杆 菌K12中的第二半乳糖苷酶的底物专一性,开发出对 几种糖苷键有水解能力的酶。
天然酶的作用
生物体系之所以能够相对独立地存在于自然界中, 并维持其独立性和生命的延续性,都是因为生物体内 的一系列酶在发挥着作用。
酶保证了生物体内组成生命活动的大量生化反应得 以按照预定的方向有序、精确而顺利地进行,几乎所 有生物的生理现象都与酶的作用紧密相关,可以这样 说,没有酶的存在,就没有生物体的一切生命活动。
HallB G等利用lacz缺陷型的菌株为宿主菌,分别在含有某种碳源的培养 基上培养.从酶的自发突变库中筛选出分别可以水解半乳糖、乳果糖、乳 糖酸的突变酶,而野生型的酶不能水解这些底物。
杨荣武生物化学第八章-酶学概论PPT课件
2021/7/24
9
酶的专一性
是指酶对参与反应的底物有严格的选择性,即一种酶仅能作用于一 种底物,或一类分子结构相似的底物,发生某种特定类型的化学反 应,产生特定的产物。
专一性一般有四种类型:
(1)绝对专一性
是指一种酶仅催化一个特定的反应。例如,脲酶只能催化尿素的水 解反应;
(2)基团专一性
是指一种酶只作用于含有特定官能团的分子。如磷酸酶只水解特定 底物分子上的磷酸基团;
2021/7/24
12
2021/7/24
胰凝乳蛋白酶的活性中心
13
解释酶专一性的三种模型: (1)锁与钥匙学说
(2)诱导契合学说 (3)“三点附着”模型
2021/7/24
14
2021/7/24
“锁与钥匙”模型
15
2021/7/24
“诱导契合”模型
16
2021/7/24
己糖激酶的诱导契合
17
病毒性肝炎——谷丙转氨酶 心肌梗塞——谷草转氨酶、肌酸激酶、LDH(H4) 急性胰腺炎——淀粉酶、脂肪酶
2021/7/24
22
酶的分类及其实例
2021/7/24
23
个人观点供参考,欢迎讨论
第八章 酶学概论
2021/7/24
1
提纲
一. 酶的化学本质 二. 酶的催化性质
1. 酶与非酶催化剂的共同性质 2. 酶催化的特有性质
三. 酶的分类和命名
2021/7/24
2
酶的定义
酶就是由细胞合成的,在机体内行使催化功能 的生物催化剂。
没有酶的反应
2021/7/24
有酶催化的反应
3
酶的化学本质
2021/7/24
第八章酶工程
第八章酶工程
按现代观点,酶工程主要包括以下内容 ① 酶的大量生产和分离纯化及它们在细胞外的应用 ② 新颖酶的发现、研究和应用 ③ 酶的固定化技术和固定化酶反应器 ④ 基因工程技术应用于酶制剂的生产与遗传修饰酶的研究 ⑤ 酶分子改造与化学修饰以及酶结构与功能之间关系的研究 ⑥ 有机介质中酶的反应 ⑦ 酶的抑制剂、激活剂的开发及应用研究 ⑧ 抗体酶、核酸酶的研究 ⑨ 模拟酶、合成酶以及酶分子的人工设计、合成的研究
第八章-酶工程
2023/12/28
第八章酶工程
酶工程
一. 概述 二. 酶的命名和分类 三. 酶的化学本质、来源和生产 四. 酶催化反应机理及反应动力学 五. 酶的固定化和固定化酶反应器 六. 酶工程的应用 七. 酶工程的研究进展
第八章酶工程
一 酶和酶工程的概述
(一)、 酶的概念 (二)、 对酶的认识和研究历程 (三)、 酶工程的概念
通过适应、诱导、诱变以及基因工程等方法 培育出新的高产酶的菌株。
第八章酶工程
微生物细胞产生的酶分类 结构酶:在细胞的生长过程中出于其自身需要而表达, 诱导酶:加入相应的诱导剂后才会表达,诱导剂一般是
该酶所催化反应的底物或产物。 一般而言,野生型微生物需要经过遗传改造后,才能变
为高产酶的菌株。其方法包括 ① 物理诱变育种 ② 化学诱变育种 ③ 基因工程构建
第八章酶工程
3)发酵条件控制 营养条件 环境条件,注意溶氧浓度、温度、pH值 特别注意剪气力对蛋白质的影响,因为在高剪
切力下,蛋白质容易失活。 注意发酵的泡沫,因为蛋白质是表面活性剂,
大量的蛋白质积累在发酵液中使得在鼓泡条 件下很容易形成泡沫,影响发酵正常操作。 因此应该考虑除泡装置,并添加消泡剂。
第八章酶工程
按现代观点,酶工程主要包括以下内容 ① 酶的大量生产和分离纯化及它们在细胞外的应用 ② 新颖酶的发现、研究和应用 ③ 酶的固定化技术和固定化酶反应器 ④ 基因工程技术应用于酶制剂的生产与遗传修饰酶的研究 ⑤ 酶分子改造与化学修饰以及酶结构与功能之间关系的研究 ⑥ 有机介质中酶的反应 ⑦ 酶的抑制剂、激活剂的开发及应用研究 ⑧ 抗体酶、核酸酶的研究 ⑨ 模拟酶、合成酶以及酶分子的人工设计、合成的研究
第八章-酶工程
2023/12/28
第八章酶工程
酶工程
一. 概述 二. 酶的命名和分类 三. 酶的化学本质、来源和生产 四. 酶催化反应机理及反应动力学 五. 酶的固定化和固定化酶反应器 六. 酶工程的应用 七. 酶工程的研究进展
第八章酶工程
一 酶和酶工程的概述
(一)、 酶的概念 (二)、 对酶的认识和研究历程 (三)、 酶工程的概念
通过适应、诱导、诱变以及基因工程等方法 培育出新的高产酶的菌株。
第八章酶工程
微生物细胞产生的酶分类 结构酶:在细胞的生长过程中出于其自身需要而表达, 诱导酶:加入相应的诱导剂后才会表达,诱导剂一般是
该酶所催化反应的底物或产物。 一般而言,野生型微生物需要经过遗传改造后,才能变
为高产酶的菌株。其方法包括 ① 物理诱变育种 ② 化学诱变育种 ③ 基因工程构建
第八章酶工程
3)发酵条件控制 营养条件 环境条件,注意溶氧浓度、温度、pH值 特别注意剪气力对蛋白质的影响,因为在高剪
切力下,蛋白质容易失活。 注意发酵的泡沫,因为蛋白质是表面活性剂,
大量的蛋白质积累在发酵液中使得在鼓泡条 件下很容易形成泡沫,影响发酵正常操作。 因此应该考虑除泡装置,并添加消泡剂。
第八章酶工程
酶定向进化
• 细胞定向进化是在细胞水平上进行定向进化
的过程,以各种细胞为进化对象,通过人工随机
突变,改良细胞的各种特征,主要包括微生物细
胞的定向进化、动物细胞的定向进化、植物细胞
的定向进化等。
分子定向进化
• 分子定向进化是在分子水平上进行定
向进化的过程。通过从细胞内提取或者通
过PCR等方法获得目标分子的基因,在体
• 概念断,经过不加引物的多次PCR循环, 使DNA的碱基序列重新排布而引起基因突 变的技术过程。
DNA重排技术的基本过程
两条以上正突变基因
酶切
DNA随机片断
无引物PCR
酶切
突变本过程
基因家族若干同源基因 酶切 DNA随机片断 无 酶切
进化酶
DNA家族重排技术与DNA重排技术的异同点
• 相同点:DNA家族重排技术与DNA重排技术的过 程大致相同,都要经过基因的随机切割、无引物 PCR等步 • 不同点: DNA家族重排技术从基因家族的若干同 源基因出发进行DNA序列的重新排布,而DNA重 排技术则从采用易错PCR等技术所获得的两个以上 的正突变基因出发进行DNA序列的重新排布。
三、基因家族重排技术
• 概念:又称为基因家族改组技术,是从基 因家族的若干同源基因出发,用酶(DNase Ⅰ)切割成随机片断,经过不加引物的多次 PCR循环,使DNA的碱基序列发生重新排 布而引起基因突变的技术过程。
基因家族:是来源于同一个祖先,由一个基因通过基因重复而产生两 个或更多的拷贝而构成的一组基因,它们结构相似、功能相关、进化 上同源。
•
特点
• 基因突变发生在单一分子内,为无性进化。
• 操作简便、随机突变丰用于较小基因
的定向进化。
• 因此要控制好突变率,一般一个目的基因错配碱基数目应 控制在2~5个
的过程,以各种细胞为进化对象,通过人工随机
突变,改良细胞的各种特征,主要包括微生物细
胞的定向进化、动物细胞的定向进化、植物细胞
的定向进化等。
分子定向进化
• 分子定向进化是在分子水平上进行定
向进化的过程。通过从细胞内提取或者通
过PCR等方法获得目标分子的基因,在体
• 概念断,经过不加引物的多次PCR循环, 使DNA的碱基序列重新排布而引起基因突 变的技术过程。
DNA重排技术的基本过程
两条以上正突变基因
酶切
DNA随机片断
无引物PCR
酶切
突变本过程
基因家族若干同源基因 酶切 DNA随机片断 无 酶切
进化酶
DNA家族重排技术与DNA重排技术的异同点
• 相同点:DNA家族重排技术与DNA重排技术的过 程大致相同,都要经过基因的随机切割、无引物 PCR等步 • 不同点: DNA家族重排技术从基因家族的若干同 源基因出发进行DNA序列的重新排布,而DNA重 排技术则从采用易错PCR等技术所获得的两个以上 的正突变基因出发进行DNA序列的重新排布。
三、基因家族重排技术
• 概念:又称为基因家族改组技术,是从基 因家族的若干同源基因出发,用酶(DNase Ⅰ)切割成随机片断,经过不加引物的多次 PCR循环,使DNA的碱基序列发生重新排 布而引起基因突变的技术过程。
基因家族:是来源于同一个祖先,由一个基因通过基因重复而产生两 个或更多的拷贝而构成的一组基因,它们结构相似、功能相关、进化 上同源。
•
特点
• 基因突变发生在单一分子内,为无性进化。
• 操作简便、随机突变丰用于较小基因
的定向进化。
• 因此要控制好突变率,一般一个目的基因错配碱基数目应 控制在2~5个
第八章酶的定向进化
改进方法
其它改组方法
交错延伸重组( 交错延伸重组 StEP : Stagger extension process) 随机引物体外重组( 随机引物体外重组 RPR: Random2priming in vitro recombination) 临时模板随机嵌合生长( 临时模板随机嵌合生长 RACHITT : Random chimeragenesis on transient templates)
定向进化的历史
1 萌芽阶段 首先在分子水平上进行改造 单一分子的是 Sol Spiegelman在20世纪60年代,利用RNA噬 菌体Q进行的试验,目的是证明达尔文的自然 选择也可在非细胞体进行. 病毒基因组 Q复制酶扩增 DNA突变库 复制快的保留(能被Q酶选择识别的)
2奠基阶段
1981年,Hall B G等报道了他们定向改变了 大肠杆菌K12中的第二半乳糖苷酶的底物专 一性,开发出对几种糖苷键有水解能力的酶. HallB G等利用lacz缺陷型的菌株为宿主菌, 分别在含有某种碳源的培养基上培养.从酶 的自发突变库中筛选出分别可以水解半乳糖, 乳果糖,乳糖酸的突变酶,而野生型的酶不 能水解这些底物.
第八章 酶的定向进化
8.1 简介
通常可通过两条途径获得具有新功能和特性 的酶 一是从大量未知的生物种系中寻找; 二是改造现有已知的酶.
人工改造之定点突变
首先分析蛋白质的三维空间结构,搞清结构 与功能的关系,然后采用定点突变技术改变 蛋白质中的个别氨基酸残基,从而得到新的 蛋白质,理性化设计. 定点突变技术对天然酶蛋白的催化活性,抗 氧化性,底物特异性,热稳定性及拓宽酶反 应的底物范围,改进酶的别构效应等进行了 成功的改造.
实例
Stemmer 等从不同种微生物中选择编码头孢 菌素酶的4 个同源基因, 对它们进行单独进化 和同源重组进化, 来对这两种进化模式进行比 较.在对单基因进化得到的突变酶中, 对头孢 羟羧氧胺的抗性最高的增加了8 倍, 而采用 Family shuffling 的方法使抗性比其中两种微 生物来源的天然酶提高270 倍, 比另两种酶提 高了540 倍.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成的聚合物(MIP)内保留有与印迹分子的形 状、大小完全一样的孔穴,也就是说印迹的聚 合物能维持相对于印迹分子的互补性,因此, 该聚合物能以高选择性重新结合印迹分子。
一般来说,聚合物空穴对印迹分子的选择性结
合作用来源于空穴中起结合作用的官能团的排 列以及空穴的形状。大量研究表明官能团的排
列在空穴特异性结合中起决定性作用,而空穴 的形状在某种程度上是次要因素。
(一)分子印迹原理
在生物体中,分子复合物通常通过非共价键如氢 键、离子键或范德华力相互作用而形成。同共价 键相比,非共价键相互作用较弱,但几个或多个 相互作用的合力却很强,这使复合物具有很高的 稳定性。
当模板分子(印迹分子)与带有官能团的单体分子 接触时,会尽可能同单体官能团形成多重作用点 ,待聚合后,这种作用就会被固定下来。当模板 分子被除去后,聚合物中就形成了与模板分子在 空间上互补的具有多重作用位点的结合部位,这 样的结合部位对模板分子可产生多重相互作用, 因而对此模板分子具有特异性结合能力。
分子印迹制备步骤
①选定印迹分子和功能 单体,使二者发生互补 反应;
②在印迹分子-单体复合 物周围发生聚合反应;
③用抽提法从聚合物中 除掉印迹分子。
用抽提法从聚合物中除去 印迹分子。则聚合物中留 有恰似印迹分子的空间, 可用于高分子高选择性分 离材料。 此技术又叫主一客体聚合
(Host-Guest Polymerization)或模板聚 合(Template Polymerization)。
化学特征,这对形成良好的反应特异性和催化 效力是相当重要的。
二.按照模拟酶的属性
主-客体酶模型 胶束酶模型 肽酶 抗体酶 分子印迹酶模型 半合成酶
环糊精结构示意
水解酶模型
ß-Benzyme人工酶,能模拟胰凝乳蛋白酶活 性,催化速度达天然酶同一数量级。 由ß-环糊精和催化侧链组成,催化侧链含天 然酶的三种基团(羟基、咪唑基和羧基), 且处在恰当位置上。 该全合成酶是非蛋白分子,比天然酶稳定。
印迹分子与聚合单体的结合方式
预组织法:印迹分子预先共价联结到单体上, 待聚合后共价键可逆打开,去除印迹分子。此 方法中结合部位的官能团预先与印迹分子定向 排列。
自组织法:印迹分子与功能单体之间预先自组 织排列,以非共价键形式形成多点相互作用, 聚合后这种作用保持下来。
影响印迹分子选择性识别的因素
研究热点
CD分子
原来:在CD的两面引入催化基团,通过柔性或刚 性加冕引入疏水基团,改善CD的疏水结合和催化 功能
现在,桥联环糊精和聚合环糊精,可得到双重或多 重疏水结合作用和多重识别作用
2、胶束酶模型
3、肽酶
就是模拟天然酶活性部位而人工合成的具有催 化活性的多肽。
4、半合成酶
它是以天然蛋白质或酶为母体,用化学或 生物学方法引进适当的活性部位或催化基 团,或改变其结构从而形成一种新的 “人 工酶”。
第八章-酶的模拟
模拟酶
在结构和必须具有两个特殊部位: ①底物结合位点,②催化位点。
一般构成底物的结合位点比较容易,而构 建催化位点比较困难,但两个位点可以分 开设计。
设计模拟酶
催化基团的定向引入对催化效率的提高至关重 要。
要考虑到与底物的定向结合的能力。 催化基团和底物之间必须具有相互匹配的立体
④ 聚合条件:低温聚合较好
从人工酶角度来看,若用过渡态类似物作 为印迹分子,则所得聚合物具有相应的催 化活性,此时代替抗体的只是人工聚合物。
分子印迹技术一出现,人们就意识到可以 应用此技术制备人工模拟酶。
分子印迹酶
通过分子印迹技术可以产生类似于酶的活性中 心的空腔,对底物产生有效的结合作用,更重 要的是利用此技术可以在结合部位的空腔内诱 导产生催化基团,并与底物定向排列。
这样的类似于抗体和酶的结合部位能否在聚合 物中产生呢?
如果以一种分子充当模板,其周围用聚合物交 联,当模板分子除去后,此聚合物就留下了与 此分子相匹配的空穴。如果构建合适,这种聚 合物就像‘‘锁”一样对钥匙具有选择性识别 作用,这种技术被称为分子印迹。
分子印迹
所谓分子印迹(molecular imprinting)是 制备对某一化合物具有选择性的聚合物的 过程,这个化合物叫印迹分子(print molecule,P),也叫做模板分子 (template,T)。
黄素木瓜蛋白酶——著名的人工酶
将辅酶引入蛋白质上制备半合成酶:
E.T.Kaiser等构建的黄素木瓜蛋白酶。黄素的溴 酰衍生物可与木瓜蛋白酶的Cys25共价结合成黄素 木瓜蛋白酶。此半合成酶的酶活力可与天然黄素 酶相比拟。
其他的辅酶(如维生素Bl、吡哆醛、卟啉等)都可 以共价偶联到某些酶的结合部位.从而产生新的 实用催化剂。
第二节 印迹酶
一、分子印迹技术概述
模拟生物分子的分子识别和功能是当今最富 挑战的课题之一。
在分子水平上模拟酶对底物的识别与催化功 能已引起各国科学工作者的广泛关注。
自然界中,分子识别在生物体如酶、受体和 抗体的生物活性方面发挥着重要作用,这种 高选择性来源于与底物相匹配的结合部位的 存在。
分子印迹
① 底物结构和互补性:底物必须与模板分子的结构、
大小相似,孔穴内的功能基团要排列正确,要有适当取 向。
② 聚合物与模板分子间作用力:增加二者间的多种
作用力,且键的数目又多,可大大改善聚合物的识别能 力。
③ 交联剂的类型和用量:交联少会减低聚合物的坚固
程度,难于限定负责选择性部位的形状和其中的基团取 向,导致识别力下降。使用旋光性交联剂,则可能造成 与模板分子有附加的手性相互作用,提高识别力。
1.将具有催化活性的金属或金属有机物与具有特 异性的化剂[Rn(BH3)5]3+ 与巨头鲸肌红 蛋白结合——半合成无机生物酶
2.将具有特异性的物质与具有催化活力的酶相结 合,形成半合成酶。
例:人工合成寡聚核苷酸链经化学法连接到RNA酶的166 位的Cys上,获得的半合成酶借寡聚核苷酸链的碱基互补 关系,显示了对RNA链特定位点的水解作用,——不同 于DNA限制性内切酶的天然来源的RNA限制性内切酶。