最新第八章-酶的模拟ppt课件

合集下载

酶的人工模拟或模拟酶

酶的人工模拟或模拟酶
通过对生物体系的结构与功 能的研究,为设计和建造新的技 术提供新的思想、新原理、新方 法和新途径。
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下,反应速度(v)直接 与底物浓度[S]成正比;在高底物浓度[S]下,速度趋向于最大值(Vmax),此时反应 速度与底物浓度[S]无关(如图2-1)。
(2-7)除以(2-8),并整理得
(2-9)
这就是米-曼氏方程(Michaelis-Menten equation),又称为米氏方程,式中 的Km是一常数值,称为米氏常数。在特殊情况下,当v = Vmax时,米氏方程可转化 为下式:
第一节 酶促反应动力学
整理上式可得 Km= [S] 由此可以看出,Km的物理意义就是当酶反应速度达到最大反应速度的一半时的 底物浓度,其单位与物质摩尔浓度单位相同,用mol/L表示。Km数值大小与酶的浓 度无关,是酶反应的特性常数。不同酶的Km值不同,且同一酶在不同的底物下, 其Km值也不同。米氏常数可由实验测得,也可用下面的公式求得:
一般说来,模拟酶是在分子 水平上模拟酶活性部位的形状、 大小及其微环境等结构特征,以 及酶的作用机理和立体化学等特 性的一门科学。
模拟酶的研究就是吸收酶中 那些起主导作用的因素利用有机 化学、生物化学等方法,设计和 合成一些较天然酶简单的非蛋白 分子或蛋白质分子,以这些分子 作为模型来模拟酶对其作用底物 的结合和催化过程。
图2-1 单底物酶促反应的反应速度与底物浓度的关系
第一节 酶促反应动力学
1913年前后,米彻利斯(Michaelis)和曼吞(Menten)在前人工作的基础上, 通过大量的定量研究,提出了酶促动力学基本原理,并推导出了著名的米-曼氏方 程,推导过程如下:

第八章酶的非水相催化ppt课件

第八章酶的非水相催化ppt课件
– 1984 年之后,非水相中的酶催化研究开始活跃起来。
– 近年来,人们对非水介质中的酶结构与功能、酶作用 机制、酶作用动力学等进行了大量研究,建立起非水 酶学(non-aqueous enzymology)。
– 同时人们还对酶催化的介质进行了大量研究,开发出 各种非水介质和新的酶促反应体系,发展出了介质工 程(medium engineering),拓宽了酶催化反应的应 用范围,使酶法合成逐步发展成为与化学法合成相互 补充的合成方法。
– 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一 篇关于酶在有机介质中催化条件和特点的文章,他们 指出,只要条件适合,酶可以在非水体系中表现出活 性,并催化天然或非天然的底物发生转化,这一报道 引起了全球科学界的关注
• 引起全球关注的“非水相酶催化”的报道
– Porcine pancreatic lipase catalyzes the trans-esterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet counterpart, the dry enzyme does not react with bulky tertiary alcohols.

第八章 酶定向进化

第八章 酶定向进化

其基本操作过程如下 : 靶基因经随机突 变产生含不同突变类型的亲本基因群, 用 DNase I 随机切割; 得到的片段经过不加 引物的多次PCR 循环, 在该过程中, 这些 片段之间互为引物和模板进行扩增, 直至 获得全长基因; 再加入基因的两端引物进 行常规PCR, 最终获得发生改组的基因库。
2.1交错延伸重组(Stagger extension process)

图给出最常用的大肠杆菌克隆用质粒pUC19的图 谱,此质粒的复制起点处序列经过改造,能高频 率起动质粒复制,使一个细菌pUC19的拷贝数可 达500-700个; 质粒携带一个抗氨芐青霉素基因,编码能水解β内酰胺环,从而破坏氨芐青霉素的酶,当用 pUC19转化细菌后放入含氨芐青霉素的培养基中, 凡不含pUC19者都不能生长,结果长出的细菌就 是都含有pUC19的。
它是由两个相互独立的关键技术组成. 一个是随机基因文 库的构建, 另一个是特定酶( 特别是增加催化活性、增强 选择性或稳定性) 的筛选策略。
第二节 定向进化的方法
一、酶基因的随机突变
1.易错PCR技术 (Error prone PCR)
易错PCR 是指从酶的单一基因出发,通过 改变PCR 的反应条件 , 使碱基在一定程度上 随机错配而引入多点突变, 构建 行全面的筛选。为此要求构建 可能完变基库容量。
所有的质粒载体都有三个 共同的特征:一个复制子、一 个选择性标志和一个克隆位点。 复制子是含有DNA复制起始 位点的一段DNA(ori),也包 括表达由质粒编码的复制必需 的RNA和蛋白质的基因。 选择性标志对于质粒在细 胞内持续存在时必不可少的。 克隆位点是限制性内切酶 切割位点,外源性DNA可由此插 入质粒内,而且并不影响质粒 的复制能力,或为宿主提供选 择性表型。

酶工程5 第八章_酶定向进化

酶工程5 第八章_酶定向进化
1992年Gram H.等用噬菌体呈现技术体外筛选抗体时,用易错PCR 向抗体的重链可变区和轻链可变区引入突变。
Stemmer将DNA改组方法引用到酶分子定向进化中,
他用β内酰胺酶作为模型分子,对其正向突变库进行DNA改组,以逐 渐增加头孢氨00倍的突变体。
酶工程5 第八章_酶定向进化
主要内容
第一节 酶定向进化介绍 第二节 酶基因体外随机突变 第三节 酶突变基因的定向选择 第四节 酶分子定向进化的应用
2/169
第一节 酶定向进化介绍
3/169
获得具有新功能和特性的酶的途径 (1) 从大量未知的生物种系中寻找
(2) 改造现有已知的酶。
4/169
22/169
定向进化研究的历史
1 萌芽阶段
首先在分子水平上进行改造单一分子的是Sol Spiegelman。在20世纪60年代,利用RNA噬菌体 Q进行的试验, 证明达尔文的自然选择也可在非细 胞体进行.
23/169
2 奠基阶段
1981年,Hall B G等报道了他们定向改变了大肠杆 菌K12中的第二半乳糖苷酶的底物专一性,开发出对 几种糖苷键有水解能力的酶。
天然酶的作用
生物体系之所以能够相对独立地存在于自然界中, 并维持其独立性和生命的延续性,都是因为生物体内 的一系列酶在发挥着作用。
酶保证了生物体内组成生命活动的大量生化反应得 以按照预定的方向有序、精确而顺利地进行,几乎所 有生物的生理现象都与酶的作用紧密相关,可以这样 说,没有酶的存在,就没有生物体的一切生命活动。
HallB G等利用lacz缺陷型的菌株为宿主菌,分别在含有某种碳源的培养 基上培养.从酶的自发突变库中筛选出分别可以水解半乳糖、乳果糖、乳 糖酸的突变酶,而野生型的酶不能水解这些底物。

杨荣武生物化学第八章-酶学概论PPT课件

杨荣武生物化学第八章-酶学概论PPT课件

2021/7/24
9
酶的专一性
是指酶对参与反应的底物有严格的选择性,即一种酶仅能作用于一 种底物,或一类分子结构相似的底物,发生某种特定类型的化学反 应,产生特定的产物。
专一性一般有四种类型:
(1)绝对专一性
是指一种酶仅催化一个特定的反应。例如,脲酶只能催化尿素的水 解反应;
(2)基团专一性
是指一种酶只作用于含有特定官能团的分子。如磷酸酶只水解特定 底物分子上的磷酸基团;
2021/7/24
12
2021/7/24
胰凝乳蛋白酶的活性中心
13
解释酶专一性的三种模型: (1)锁与钥匙学说
(2)诱导契合学说 (3)“三点附着”模型
2021/7/24
14
2021/7/24
“锁与钥匙”模型
15
2021/7/24
“诱导契合”模型
16
2021/7/24
己糖激酶的诱导契合
17
病毒性肝炎——谷丙转氨酶 心肌梗塞——谷草转氨酶、肌酸激酶、LDH(H4) 急性胰腺炎——淀粉酶、脂肪酶
2021/7/24
22
酶的分类及其实例
2021/7/24
23
个人观点供参考,欢迎讨论
第八章 酶学概论
2021/7/24
1
提纲
一. 酶的化学本质 二. 酶的催化性质
1. 酶与非酶催化剂的共同性质 2. 酶催化的特有性质
三. 酶的分类和命名
2021/7/24
2
酶的定义
酶就是由细胞合成的,在机体内行使催化功能 的生物催化剂。
没有酶的反应
2021/7/24
有酶催化的反应
3
酶的化学本质
2021/7/24

第八章酶工程

第八章酶工程
第八章酶工程
按现代观点,酶工程主要包括以下内容 ① 酶的大量生产和分离纯化及它们在细胞外的应用 ② 新颖酶的发现、研究和应用 ③ 酶的固定化技术和固定化酶反应器 ④ 基因工程技术应用于酶制剂的生产与遗传修饰酶的研究 ⑤ 酶分子改造与化学修饰以及酶结构与功能之间关系的研究 ⑥ 有机介质中酶的反应 ⑦ 酶的抑制剂、激活剂的开发及应用研究 ⑧ 抗体酶、核酸酶的研究 ⑨ 模拟酶、合成酶以及酶分子的人工设计、合成的研究
第八章-酶工程
2023/12/28
第八章酶工程
酶工程
一. 概述 二. 酶的命名和分类 三. 酶的化学本质、来源和生产 四. 酶催化反应机理及反应动力学 五. 酶的固定化和固定化酶反应器 六. 酶工程的应用 七. 酶工程的研究进展
第八章酶工程
一 酶和酶工程的概述
(一)、 酶的概念 (二)、 对酶的认识和研究历程 (三)、 酶工程的概念
通过适应、诱导、诱变以及基因工程等方法 培育出新的高产酶的菌株。
第八章酶工程
微生物细胞产生的酶分类 结构酶:在细胞的生长过程中出于其自身需要而表达, 诱导酶:加入相应的诱导剂后才会表达,诱导剂一般是
该酶所催化反应的底物或产物。 一般而言,野生型微生物需要经过遗传改造后,才能变
为高产酶的菌株。其方法包括 ① 物理诱变育种 ② 化学诱变育种 ③ 基因工程构建
第八章酶工程
3)发酵条件控制 营养条件 环境条件,注意溶氧浓度、温度、pH值 特别注意剪气力对蛋白质的影响,因为在高剪
切力下,蛋白质容易失活。 注意发酵的泡沫,因为蛋白质是表面活性剂,
大量的蛋白质积累在发酵液中使得在鼓泡条 件下很容易形成泡沫,影响发酵正常操作。 因此应该考虑除泡装置,并添加消泡剂。
第八章酶工程

酶定向进化

酶定向进化
• 细胞定向进化是在细胞水平上进行定向进化
的过程,以各种细胞为进化对象,通过人工随机
突变,改良细胞的各种特征,主要包括微生物细
胞的定向进化、动物细胞的定向进化、植物细胞
的定向进化等。
分子定向进化
• 分子定向进化是在分子水平上进行定
向进化的过程。通过从细胞内提取或者通
过PCR等方法获得目标分子的基因,在体
• 概念断,经过不加引物的多次PCR循环, 使DNA的碱基序列重新排布而引起基因突 变的技术过程。
DNA重排技术的基本过程
两条以上正突变基因
酶切
DNA随机片断
无引物PCR
酶切
突变本过程
基因家族若干同源基因 酶切 DNA随机片断 无 酶切
进化酶
DNA家族重排技术与DNA重排技术的异同点
• 相同点:DNA家族重排技术与DNA重排技术的过 程大致相同,都要经过基因的随机切割、无引物 PCR等步 • 不同点: DNA家族重排技术从基因家族的若干同 源基因出发进行DNA序列的重新排布,而DNA重 排技术则从采用易错PCR等技术所获得的两个以上 的正突变基因出发进行DNA序列的重新排布。
三、基因家族重排技术
• 概念:又称为基因家族改组技术,是从基 因家族的若干同源基因出发,用酶(DNase Ⅰ)切割成随机片断,经过不加引物的多次 PCR循环,使DNA的碱基序列发生重新排 布而引起基因突变的技术过程。
基因家族:是来源于同一个祖先,由一个基因通过基因重复而产生两 个或更多的拷贝而构成的一组基因,它们结构相似、功能相关、进化 上同源。

特点
• 基因突变发生在单一分子内,为无性进化。
• 操作简便、随机突变丰用于较小基因
的定向进化。
• 因此要控制好突变率,一般一个目的基因错配碱基数目应 控制在2~5个

第八章酶的定向进化

第八章酶的定向进化

改进方法
其它改组方法
交错延伸重组( 交错延伸重组 StEP : Stagger extension process) 随机引物体外重组( 随机引物体外重组 RPR: Random2priming in vitro recombination) 临时模板随机嵌合生长( 临时模板随机嵌合生长 RACHITT : Random chimeragenesis on transient templates)
定向进化的历史
1 萌芽阶段 首先在分子水平上进行改造 单一分子的是 Sol Spiegelman在20世纪60年代,利用RNA噬 菌体Q进行的试验,目的是证明达尔文的自然 选择也可在非细胞体进行. 病毒基因组 Q复制酶扩增 DNA突变库 复制快的保留(能被Q酶选择识别的)
2奠基阶段
1981年,Hall B G等报道了他们定向改变了 大肠杆菌K12中的第二半乳糖苷酶的底物专 一性,开发出对几种糖苷键有水解能力的酶. HallB G等利用lacz缺陷型的菌株为宿主菌, 分别在含有某种碳源的培养基上培养.从酶 的自发突变库中筛选出分别可以水解半乳糖, 乳果糖,乳糖酸的突变酶,而野生型的酶不 能水解这些底物.
第八章 酶的定向进化
8.1 简介
通常可通过两条途径获得具有新功能和特性 的酶 一是从大量未知的生物种系中寻找; 二是改造现有已知的酶.
人工改造之定点突变
首先分析蛋白质的三维空间结构,搞清结构 与功能的关系,然后采用定点突变技术改变 蛋白质中的个别氨基酸残基,从而得到新的 蛋白质,理性化设计. 定点突变技术对天然酶蛋白的催化活性,抗 氧化性,底物特异性,热稳定性及拓宽酶反 应的底物范围,改进酶的别构效应等进行了 成功的改造.
实例
Stemmer 等从不同种微生物中选择编码头孢 菌素酶的4 个同源基因, 对它们进行单独进化 和同源重组进化, 来对这两种进化模式进行比 较.在对单基因进化得到的突变酶中, 对头孢 羟羧氧胺的抗性最高的增加了8 倍, 而采用 Family shuffling 的方法使抗性比其中两种微 生物来源的天然酶提高270 倍, 比另两种酶提 高了540 倍.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形成的聚合物(MIP)内保留有与印迹分子的形 状、大小完全一样的孔穴,也就是说印迹的聚 合物能维持相对于印迹分子的互补性,因此, 该聚合物能以高选择性重新结合印迹分子。
一般来说,聚合物空穴对印迹分子的选择性结
合作用来源于空穴中起结合作用的官能团的排 列以及空穴的形状。大量研究表明官能团的排
列在空穴特异性结合中起决定性作用,而空穴 的形状在某种程度上是次要因素。
(一)分子印迹原理
在生物体中,分子复合物通常通过非共价键如氢 键、离子键或范德华力相互作用而形成。同共价 键相比,非共价键相互作用较弱,但几个或多个 相互作用的合力却很强,这使复合物具有很高的 稳定性。
当模板分子(印迹分子)与带有官能团的单体分子 接触时,会尽可能同单体官能团形成多重作用点 ,待聚合后,这种作用就会被固定下来。当模板 分子被除去后,聚合物中就形成了与模板分子在 空间上互补的具有多重作用位点的结合部位,这 样的结合部位对模板分子可产生多重相互作用, 因而对此模板分子具有特异性结合能力。
分子印迹制备步骤
①选定印迹分子和功能 单体,使二者发生互补 反应;
②在印迹分子-单体复合 物周围发生聚合反应;
③用抽提法从聚合物中 除掉印迹分子。
用抽提法从聚合物中除去 印迹分子。则聚合物中留 有恰似印迹分子的空间, 可用于高分子高选择性分 离材料。 此技术又叫主一客体聚合
(Host-Guest Polymerization)或模板聚 合(Template Polymerization)。
化学特征,这对形成良好的反应特异性和催化 效力是相当重要的。
二.按照模拟酶的属性
主-客体酶模型 胶束酶模型 肽酶 抗体酶 分子印迹酶模型 半合成酶
环糊精结构示意
水解酶模型
ß-Benzyme人工酶,能模拟胰凝乳蛋白酶活 性,催化速度达天然酶同一数量级。 由ß-环糊精和催化侧链组成,催化侧链含天 然酶的三种基团(羟基、咪唑基和羧基), 且处在恰当位置上。 该全合成酶是非蛋白分子,比天然酶稳定。
印迹分子与聚合单体的结合方式
预组织法:印迹分子预先共价联结到单体上, 待聚合后共价键可逆打开,去除印迹分子。此 方法中结合部位的官能团预先与印迹分子定向 排列。
自组织法:印迹分子与功能单体之间预先自组 织排列,以非共价键形式形成多点相互作用, 聚合后这种作用保持下来。
影响印迹分子选择性识别的因素
研究热点
CD分子
原来:在CD的两面引入催化基团,通过柔性或刚 性加冕引入疏水基团,改善CD的疏水结合和催化 功能
现在,桥联环糊精和聚合环糊精,可得到双重或多 重疏水结合作用和多重识别作用
2、胶束酶模型
3、肽酶
就是模拟天然酶活性部位而人工合成的具有催 化活性的多肽。
4、半合成酶
它是以天然蛋白质或酶为母体,用化学或 生物学方法引进适当的活性部位或催化基 团,或改变其结构从而形成一种新的 “人 工酶”。
第八章-酶的模拟
模拟酶
在结构和必须具有两个特殊部位: ①底物结合位点,②催化位点。
一般构成底物的结合位点比较容易,而构 建催化位点比较困难,但两个位点可以分 开设计。
设计模拟酶
催化基团的定向引入对催化效率的提高至关重 要。
要考虑到与底物的定向结合的能力。 催化基团和底物之间必须具有相互匹配的立体
④ 聚合条件:低温聚合较好
从人工酶角度来看,若用过渡态类似物作 为印迹分子,则所得聚合物具有相应的催 化活性,此时代替抗体的只是人工聚合物。
分子印迹技术一出现,人们就意识到可以 应用此技术制备人工模拟酶。
分子印迹酶
通过分子印迹技术可以产生类似于酶的活性中 心的空腔,对底物产生有效的结合作用,更重 要的是利用此技术可以在结合部位的空腔内诱 导产生催化基团,并与底物定向排列。
这样的类似于抗体和酶的结合部位能否在聚合 物中产生呢?
如果以一种分子充当模板,其周围用聚合物交 联,当模板分子除去后,此聚合物就留下了与 此分子相匹配的空穴。如果构建合适,这种聚 合物就像‘‘锁”一样对钥匙具有选择性识别 作用,这种技术被称为分子印迹。
分子印迹
所谓分子印迹(molecular imprinting)是 制备对某一化合物具有选择性的聚合物的 过程,这个化合物叫印迹分子(print molecule,P),也叫做模板分子 (template,T)。
黄素木瓜蛋白酶——著名的人工酶
将辅酶引入蛋白质上制备半合成酶:
E.T.Kaiser等构建的黄素木瓜蛋白酶。黄素的溴 酰衍生物可与木瓜蛋白酶的Cys25共价结合成黄素 木瓜蛋白酶。此半合成酶的酶活力可与天然黄素 酶相比拟。
其他的辅酶(如维生素Bl、吡哆醛、卟啉等)都可 以共价偶联到某些酶的结合部位.从而产生新的 实用催化剂。
第二节 印迹酶
一、分子印迹技术概述
模拟生物分子的分子识别和功能是当今最富 挑战的课题之一。
在分子水平上模拟酶对底物的识别与催化功 能已引起各国科学工作者的广泛关注。
自然界中,分子识别在生物体如酶、受体和 抗体的生物活性方面发挥着重要作用,这种 高选择性来源于与底物相匹配的结合部位的 存在。
分子印迹
① 底物结构和互补性:底物必须与模板分子的结构、
大小相似,孔穴内的功能基团要排列正确,要有适当取 向。
② 聚合物与模板分子间作用力:增加二者间的多种
作用力,且键的数目又多,可大大改善聚合物的识别能 力。
③ 交联剂的类型和用量:交联少会减低聚合物的坚固
程度,难于限定负责选择性部位的形状和其中的基团取 向,导致识别力下降。使用旋光性交联剂,则可能造成 与模板分子有附加的手性相互作用,提高识别力。
1.将具有催化活性的金属或金属有机物与具有特 异性的化剂[Rn(BH3)5]3+ 与巨头鲸肌红 蛋白结合——半合成无机生物酶
2.将具有特异性的物质与具有催化活力的酶相结 合,形成半合成酶。
例:人工合成寡聚核苷酸链经化学法连接到RNA酶的166 位的Cys上,获得的半合成酶借寡聚核苷酸链的碱基互补 关系,显示了对RNA链特定位点的水解作用,——不同 于DNA限制性内切酶的天然来源的RNA限制性内切酶。
相关文档
最新文档