相似三角形压轴题精选
2023年河南省各地市中考数学三模压轴题精选之四边形和相似三角形(含解析)
2023年河南省各地市中考数学三模压轴题精选之四边形和相似三角形1.(2023·河南省商丘市·三模)如图,平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,对角线AC和OB交于点D,作∠ABO的平分线,交OA于点P,交AC于点Q.若OP=2,则点Q的坐标为( )A. (3,2)B. (2+1,1)C. (2+2,2)D. (3,1)2.(2023·河南省天宏大联考·三模)如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若∠ABC=120°,AB=2,则PE―PF的值为( )A. 32B. 3 C. 2 D. 523.(2023·河南省天一大联考·三模)如图,△ABC是边长为8的等边三角形,以AC为底边在右侧作等腰三角形ADC,连接BD,交AC于点O,过点D作DF//AB交AC于点E,交BC于点F,若AD=5,则DF的长为( )A. 32B. 3+3C. 4+3D. 3+324.(2023·河南省天宏大联考·三模)如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是______.5.(2023·河南省天一大联考·三模)如图,在平行四边形ABCD中,∠B=60°,BC=1,点E是直线AB上一点,连接CE,将△BCE沿直线CE折叠,点B落在点B′处,若四边形BEB′C是菱形,则CE的长为______.6.(2023·河南省商丘市·三模)如图,矩形ABCD中,对角线AC,BD交于点O,AD=6,∠ABD=30°,点E为CD 的中点,点P为BC,AB上一个动点,将△PEC沿PE折叠得到△PEQ,点C的对应点为点Q,当点Q落在矩形ABCD的对角线上时,PC的长为______.7.(2023·河南省郑州市外国语学校·三模)如图,直角△ABC中,∠ACB=90°,∠A=30°,BC=4,点E是边AC 上一点,将BE绕点B顺时针旋转60°到点F,则CF长的最小值是.8.(2023·河南省郑州一中·三模)如图,在△ABC中,AB=AC=3+1,∠BAC=120°,P、Q是边BC上两点,将△ABP沿直线AP折叠,△ACQ沿直线AQ折叠,使得B、C的对应点重合于点R.当△PQR为直角三角形时,线段AP的长为______.9.(2023·河南省洛阳市·三模)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F.且点F在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN=1,AB=4,当点H为GN三等分点时,MD的长为______.10.(2023·河南省濮阳市·三模)矩形ABCD中,AB=3,BC=4,对角线AC、BD交于点O,点M是BC边上一动点,连接OM,以OM为折痕,将△COM折叠,点C的对应点为E,ME与OB交于点G,若△BGM为直角三角形,则BM的长为______.11.(2023·河南省商丘一中·三模)折纸游戏:小明剪出一个直角三角形的纸片ABC,其中,∠A=60°,AC=1,找出BC的中点M,在AB上找任意一点P,以MP为对称轴折叠△MPB,得到△MPD,点B的对应点为点D,小明发现,当点P的位置不同时,DP与△ABC的三边位置关系也不同,请帮小明解决问题:当DP⊥BC 时,AP的长为______.12.(2023·河南省驻马店市二中·三模)如图,在△ABC中,∠ACB=90°,AB=15,AC=12,E为AB上的点,将EB绕点E在平面内旋转,点B的对应点为点D,且点D在△ABC的边上,当△ADE恰好为直角三角形时,BE的长为______.13.(2023·河南省驻马店市确山县·三模)如图所示,在Rt△ABC中,∠ACB=90°,BC=23,∠B=30°,点D在AB上且AD=2,点P为AC的中点,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ、DQ.当∠DAQ=60°时,DQ的长为______.14.(2023·河南省周口市西华县·三模)如图1,将两个等腰直角△ABC和△DEF如图1放置,∠C=∠F=90°,AC=DF=2,D为AB的中点.如图2,将△DEF绕点D在平面内旋转,当△DEF的边恰好经过点C时,AF的长为______.15.(2023·河南省天宏大联考·三模)(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系______,位置关系______;(2)如图2,矩形ABCD和矩形DEFG,3AD=2DG,3AB=2DE,DC=DG,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,3AD=2DG=6,3AB=2DE=12,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点B、E、G在同一条直线上时,请直接写出线段BE的长.16.(2023·河南省天一大联考·三模)综合与实践【问题发现】(1)如图1,在正方形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且EG⊥FH于点O.试猜想线段EG与FH的数量关系为______;【类比探究】(2)如图2,在矩形ABCD中,AB=a,BC=2a,点E,F,G,H分别在边AB,BC,CD,DA上,连接EG,FH,且EG⊥FH,垂足为O.试写出线段EG与FH的数量关系,并说明理由;【拓展应用】(3)如图3,在四边形ABCD中,∠ABC=90°,∠BCD=60°,点M,N分别在边AB,BC上,连接CM,DN,且CM⊥DN,垂足为O.已知AB=3,BC=DC=4,若点M为AB的三等分点,直接写出线段DN的长.17.(2023·河南省郑州市外国语学校·三模)【问题发现】小明在一次利用三角板作图的过程中发现了一件有趣的事情:如图1,在Rt△ABC中,∠A=30°,AB=6,点M和点P分别是斜边AB上的动点,并且满足AM=BP,分别过点M和点P作AC边的垂线,垂足分别为点N和点Q,那么MN+PQ的值是一个定值.问题:若AM=BP=2时,MN+PQ值为______;【操作探究】如图2,在Rt△ABC中,∠C=90°,∠A=α,AB=m;爱动脑筋的小明立即拿出另一个三角板进行了验证,发现果然和之前发现的结论一样,于是他猜想,对于任意一个直角三角形,当AM=BP时,MN+PQ的值都是固定的,小明的猜想对吗?如果对,请利用图2进行证明,并用含α和m的式子表示MN+PQ的值.【解决问题】如图3,在菱形ABCD中,AB=8,BD=14.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为______.18.(2023·河南省郑州市十九中·三模)如图,在矩形ABCD中,点M、N分别为AD、BC上的点,将矩形ABCD 沿MN折叠,使点B落在CD边上的点E处(不与点C,D重合),连接BE,过点M作MH⊥BC于点H.(1)如图①,若BC=AB,求证:△EBC≌△NMH;(2)如图②,当BC=2AB时,①求证:△EBC∽△NMH;②若点E为CD的三等分点,请直接写出AM的值.BN【问题背景】如图(1),在矩形ABCD中,AB=5,BC=4,点E为边BC上一点,沿直线DE将矩形折叠,使点C落在AB边上的点C′处.(1)【问题解决】填空:AC′的长为______;(2)如图(2),展开后,将△DC′E沿线段AB向右平移,使点C′的对应点与点B重合,得到△D′BE′,D′E′与BC 交于点F,求线段EF的长.(3)【拓展探究】如图(3),在△DC′E沿射线AB向右平移的过程中,设点C′的对应点为C″,则当△D′C″E′在线段BC上截得的线段PQ的长度为1时,直接写出平移的距离.=k,F是AC边上一动点,将△AFB沿着BF翻折得点A 【问题情景】如图3,在Rt△ABC中,∠ACB=90°,ACBC的对应点D,连接CD,将射线CD绕点C顺时针旋转90°交BF于点E.【问题发现】(1)如图1,若k=1,设∠ABF=α.①求∠DAC的度数.(用含α的式子表示)②求证:CD=CE.【拓展应用】(2)如图2,若k=3,BC=2,在点F移动的过程中,当△ACD为直角三角形时,请直接写出BE的长.21.(2023·河南省商丘一中·三模)如图,矩形ABCD中,点M为CD上一点,AM⊥BM,点P为直线CD上一个动点,将射线PB绕点P逆时针旋转90°交直线AM于点Q.(1)当△AMB为等腰直角三角形时,①如图1,当点Q落在线段MA上时,试判断MB,MQ,MP的数量关系______;②如图2,当点Q落在射线MA上时,①中的结论是否变化,若不变,请证明.若变化,请说明理由;(2)如图3,若其他条件不变,Rt△AMB中,∠ABM=60°,AB=4,MQ=3,请直接写出MP的长.22.(2023·河南省周口市西华县·三模)实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM______(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答______;进一步计算出∠MNE=______;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=______;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A′处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA′交ST于点O,连接AT、A′S.求证:四边形SATA′是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A′处,并且折痕交AB 边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值______.23.(2023·河南省驻马店二中·三模)阅读以下材料,并按要求完成相应的任务.《数学的发现》是2006年科学出版社出版的图书,作者是(美)乔治⋅波利亚.本书通过对各种类型生动而有趣的典型问题(有些是非数学的))进行细致剖析,提出它们的本质特征,从而总结出各种数学模型.共高三角形:有一条公共高的三角形称为共高三角形.共高定理:如图①,设点M在直线AB上,点P为直线外一点,则有S△PAMS△PBM =AMBM.下面是该结论的证明过程:证明:如图①,过点P作PQ⊥AB于点Q,……按要求完成下列任务:(1)请你按照以上证明思路,结合图①完成剩余的证明;(2)如图②,△ABC,①画出∠BAC的平分线(不写画法,保留作图痕迹,使用2B铅笔作图);②若∠BAC的平分线交BC于D,求证:ABAC =BDCD.(3)如图③,E是平行四边形ABCD边CD上一点,连接BE并延长,交AD的延长线于点F,连接AE,CF,若△ADE的面积为2,则△CEF的面积为______.24.(2023·河南省新乡市封丘县·三模)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:正方形透明纸片ABCD,点E在BC边上,如图1,连接AE,沿经过点B的直线折叠,使点E的对应点E′落AE在上,如图2,把纸片展平,得到折痕BF,如图3,折痕BF交AE于点G.根据以上操作,请直接写出图3中AE与BF的位置关系:______,BE与CF的数量关系:______.(2)迁移探究小华将正方形透明纸片换成矩形透明纸片,继续探究,过程如下:将矩形透明纸片ABCD按照(1)中的方式操作,得到折痕BF,折痕BF交AE于点G,如图4.若mAB=nAD,改变点E在BC上的位置,那么BFAE 的值是否能用含m,n的代数式表示?如果能,请推理BFAE的值,如果不能,请说明理由;(3)拓展应用如图5,已知正方形纸片ABCD的边长为2,动点E在AD边上由点A向终点D匀速运动,动点F在DC边上由点D 向终点C匀速运动,动点E,F同时开始运动,且速度相同,连接AF,BE,交于点G,连接DG,则线段DG长度的最小值为:______,点G的运动路径长度为:______(直接写出答案即可).参考答案1.【答案】B【解析】解:如图,过顶点P作PE⊥OB于点E,∵四边形ABCD为正方形,∴OC=BC=AB=OA,∠OAB=90°,∴∠AOB=45°,∵PE⊥OB,∴△OPE为等腰直角三角形,∴PE=OP2=22=2,∵BP为∠ABO的平分线,PA⊥AB,PE⊥OB,∴PE=PA=2,∴OA=OP+PA=2+2,∴C(0,2+2),A(2+2,0),P(2,0),B(2+2,2+2),设直线AC的解析式为y=kx+b(k≠0),将C(0,2+2),A(2+2,0)代入得,b=2+2(2+2)k+b=0,解得:k=―1b=2+2,∴直线AC的解析式为y=―x+2+2,设直线BP的解析式为y=mx+n(m≠0),将P(2,0),B(2+2,2+2)代入得,2m+n=0(2+2)m+n=2+2,解得:m=2+1n=―22―2,∴直线BP的解析式为y=(2+1)x―22―2,联立直线AC 与直线BP 的解析式得,y =―x +2+ 2y =( 2+1)x ―2 2―2,解得:x = 2+1y =1,∴Q( 2+1,1).故选:B .过顶点P 作PE ⊥OB 于点E ,根据矩形的性质可得∠AOB =45°,则△OPE 为等腰直角三角形,PE =OP 2= 2,根据角平分线的性质可得PE =PA = 2,进而求出OA =2+ 2,于是C(0,2+ 2),A(2+ 2,0),P(2,0),B(2+ 2,2+ 2)再利用待定系数法分别求出直线AC 与直线BP 的解析式,最后联立求解即可.本题主要考查正方形的性质、坐标与图形性质、等腰直角三角形的判定与性质、角平分线的性质、用待定系数法求一次函数解析式,解题关键是利用待定系数法正确求出一次函数解析式是解题关键.2.【答案】B【解析】解:设AC 交BD 于O ,如图:∵菱形ABCD ,∠ABC =120°,AB =2,∴∠BAD =∠BCD =60°,∠DAC =∠DCA =30°,AD =AB =2,BD ⊥AC ,Rt △AOD 中,OD =12AD =1,OA = AD 2―OA 2= 3,∴AC =2OA =2 3,Rt △APE 中,∠DAC =30°,PE =12AP ,Rt △CPF 中,∠PCF =∠DCA =30°,PF =12CP ,∴PE ―PF =12AP ―12CP =12(AP ―CP)=12AC ,∴PE ―PF = 3,故选:B .设AC 交BD 于O ,根据已知可得AC =2 3,而PE ―PF =12AP ―12CP =12(AP ―CP)=12AC ,即可得到答案.本题考查菱形的性质及应用,解题的关键是求出AC ,把PE ―PF 转化为12AC .3.【答案】C【解析】解:在等边△ABC 中,AB =BC =AC =8,在等腰△ADC 中,AD =DC =5,∴BD 垂直平分AC ,∴AO =4,∠AOD =∠AOB =90°,∴∠ABO =∠CBO =30°,根据勾股定理,得OD = AD 2―AO 2= 52―42=3,BO = AB 2―AO 2= 82―42=4 3,∴BD =3+4 3,∵DF//AB ,∴∠FDB =∠ABD =30°,∴∠FDB =∠FBD =30°,∴DF =BF ,过点F 作FH ⊥BD 于点H ,则H 是BD 的中点,∴DH =12BD =3+432,设DF =x ,则FH =12x ,根据勾股定理,得(12x )2+(3+4 32)2=x 2,解得x =4+ 3或x =―4― 3(舍去),∴DF =4+ 3,故选:C .根据等边三角形和等腰三角形的性质可知BD 垂直平分AC ,再根据勾股定理求出OD 和BO 的长,进一步可得BD 的长,根据平行线的性质进一步可得DF =BF ,过点F 作FH ⊥BD 于点H ,根据等腰三角形的性质可得DH 的长,设DF =x ,则FH =12x ,根据勾股定理列方程,求解即可.本题考查了等边三角形的性质,等腰三角形的性质,平行线的性质,勾股定理等,熟练掌握这些性质是解题的关键.4.【答案】1或78【解析】【分析】分为三种情况:①PQ =BP ,②BQ =QP ,③BQ =BP ,由等腰三角形的性质和勾股定理即可求解.本题考查了勾股定理,等腰三角形的性质,全等三角形的判定和性质的应用,题目综合性比较强,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.【解答】解:∵OA=4,OB=3,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC=5,此时OP=5―4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4―x在Rt△OBP中,PB2=OP2+OB2,∴(4―x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,.此时OP=78∴当△PQB为等腰三角形时,OP的长度是1或7.8故答案为:1或7.85.【答案】1【解析】解:∵四边形BEB′C是菱形,∴BC=BE=B′E=B′C=1,∵∠B=60°,∴△BCE是等边三角形,∴CE=BC=1,故答案为:1.根据菱形的性质证明△BCE是等边三角形,进而可以解决问题.本题考查了翻折变换,平行四边形的性质,菱形的性质,解决本题的关键是掌握翻折的性质.6.【答案】3或63【解析】解:当点P在BC上时,如图:由折叠的性质可知,DE=EQ,PC=PQ,∠EQP=90°,∵∠ABD=30°,四边形ABCD是矩形,∴∠EDQ=∠EQD=30°,∠PBQ=60°,∴∠PQB=60°,∴△PBQ是等边三角形,BC=3,∴PC=PQ=PB=12当点P在AB上时,Q刚好和点D重合,如图:由勾股定理得AB=63,∵E是中点,∴DE=33,由折叠的性质知PE⊥DC,在Rt△PEC中,CE=33,PE=6,∴PC=CE2+PE2=63.故答案为:3或63.分两种情况讨论,当点P在BC上时,可得△PBQ是等边三角形,从而得出PC=PQ=PB,此时PC=3,当点P在AB上时,Q刚好和点D重合,此时PC=63.本题考查矩形的性质和折叠的性质及勾股定理,本题要数形结合即可解答.7.【答案】2【解析】【分析】取AB的中点D,连接DE,过点D作DH⊥AC于点H,可证得△BCF≌△BDE(SAS),得出CF=DE,当且仅当AD=2为DE的最小值,即可得出CF的最小值为2.DE⊥AC,即点E与点H重合时,DE=DH=12本题考查了直角三角形性质,旋转变换的性质,全等三角形的判定和性质,垂线段最短等,添加辅助线构造全等三角形是解题的关键.【解答】解:如图,取AB的中点D,连接DE,过点D作DH⊥AC于点H,则AD =BD =12AB ,∠AHD =∠ACB =90°,∵∠A =30°,BC =4,∴AB =2BC =8,∠ABC =90°―30°=60°,由旋转得:BF =BE ,∠EBF =60°,∴∠EBC +∠CBF =60°,∵∠EBC +∠DBE =60°,∴∠CBF =∠DBE ,∵AD =BD =12AB =4,∴BC =BD ,在△BCF 和△BDE 中BF =BE ∠CBF =∠DBE BC =BD∴△BCF ≌△BDE(SAS),∴CF =DE ,当且仅当DE ⊥AC ,即点E 与点H 重合时,DE =DH =12AD =2为DE 的最小值,∴CF 的最小值为2.故答案为:2.8.【答案】 2或 6+ 22【解析】【分析】由翻折的性质,等腰三角形的性质可得∠PRQ =60°,要使△PQR 为直角三角形,于是有两种情况:即∠RPQ =90°或∠RQP =90°,分别画出相应的图形,根据等腰三角形的性质,直角三角形的边角关系以及勾股定理进行计算即可.本题考查翻折变换的性质,等腰三角形的性质,直角三角形的边角关系,掌握翻折变换的性质,等腰三角形的性质,直角三角形的边角关系以及勾股定理是正确解答的前提.【解答】解:过点A 作AD ⊥BC 于点D ,由翻折可知,∠ARQ =∠C ,∠ARP =∠B ,在△ABC 中,∠BAC =120°,AB =AC = 3+1,∴∠B =∠C =30°,AD =12AB = 3+12,BD =CD = 32AB =3+32,∴∠PRQ =∠B +∠C =60°,①当∠RPQ =90°时,如图1,设AR 与BC 交于点E ,∴RP//AD ,∴∠EAD =∠ERP =∠B =30°,在Rt △ADE 中,AD =3+12,∠EAD =30°,∴DE = 33AD =3+ 36,设BP =a ,则PR =a ,PE =BD ―BP ―DE =3+ 32―a ―3+ 36=3+33―a ,在Rt △PRE 中,∠PRE =30°,∴PR = 3PE ,即a = 3×(3+33―a),解得a =1,∴BP =PR =1,PE =3+ 33―1=33,∴PD =PE +DE = 33+3+ 36=3+12=AD ,∴△PAD 是等腰直角三角形,∴AP = 2AD = 6+22;②当∠RQP =90°时,如图2,由①可得,CQ =QR =1,DQ =AD =3+12,设PD =b ,则BP =PR =BD ―PD =3+32―b ,在Rt △PQR 中,由勾股定理得,PR 2―PQ 2=QR 2,即(3+ 32―b )2―( 3+12+b )2=1,解得b =3―12,即PD =3―12,在Rt △APD 中,由勾股定理得,AP 2=AD 2+PD 2=( 3+12)2+(3―12)2=2,∴AP=2,综上所述,AP=2或AP=6+22,故答案为:2或6+22.9.【答案】73―12或3【解析】【分析】根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.【解答】解:当HN=13GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD//BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴FG EN =GHHN=2,∴FG=2EN=2,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG =GN =x +2,∴CG =x +3,∴PM =3,∵GP 2+PM 2=MG 2,∴42+32=(x +2)2,解得:x =3或―7(舍去),∴MD =3;当GH =13GN 时,HN =2GH ,∵△FGH ∽△ENH ,∴FG EN =GH HN =12,∴FG =12EN =12,∴MG =GN =x +12,∴CG =x +32,∴PM =32,∵GP 2+PM 2=MG 2,∴42+(32)2=(x +12)2,解得:x =73―12或― 73―12(舍去),∴MD = 73―12;故答案为:73―12或3.10.【答案】0.5或1.5【解析】解:①∠BMG 是直角,如图,过O 点作OH ⊥BC 于H ,∵四边形ABCD是矩形,AB=3,BC=4,∴AC=5,∴BH=CH=2,∴CO=2.5,∴OH=1.5,由折叠的性质可得∠OMH=45°,∴MH=OH=1.5,∴BM=BH―MH=4―2―1.5=0.5;②∠BGM是直角,如图,由折叠的性质可得OE=OC=2.5,∠ACB=∠E,∵∠ABC=∠EGO=90°,∴△OEG∽△ACB,∴OG:OE=AB:AC,即OG:2.5=3:5,解得OG=1.5,∴BG=2.5―1.5=1,∵∠ACB=∠MBG,∠ABC=∠MGB=90°,∴△ABC∽△MGB,∴BM:BG=CA:CB,即BM:1=5:4,解得BM=1.25.综上所述,线段BM的长为0.5或1.25.故答案为:0.5或1.25.分两种情况:①∠BMG是直角和②∠BGM是直角,进行讨论即可求解.本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰直角三角形的性质;熟练掌握矩形和翻折变换的性质,勾股定理是解决问题的关键.11.【答案】12或32【解析】【分析】分两种情形:如图1中,当DP ⊥BC ,延长DP 交BC 于点J.如图2中,当PD ⊥BC 于点J 时,分别求出PB ,可得结论.本题考查翻折变换,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【解答】解:如图1中,当DP ⊥BC ,延长DP 交BC 于点J .∵∠C =90°,AC =1,∠A =60°,∴∠B =30°,∴AB =2AC =2,BC = 3AC = 3,由翻折变换的性质可知,∠D =∠B =30°,DM =BM =32,∴JM =12DM =34,∴BJ =BM ―JM =34,∴PB =BJ cos 30∘=12,∴AP =AB ―PB =2―12=32.如图2中,当PD ⊥BC 于点J 时,同法可得MJ =JC =34,∴BJ =334,∴PB =BJ cos 30∘=32,∴AP =AB ―PB =2―32=12.综上所述,AP 的值为12或32.故答案为:12或32.12.【答案】458或457【解析】解:∵∠ACB =90°,AB =15,AC =12,∴BC = 152―122=9.△ADE 为直角三角形时分两种情况:①如图,当∠ADE =90°时,设DE =x =BE ,由∠ADE =∠ACB ,∠A =∠A ,∴△ADE ∽△ACB ,∴DE CB =AE AB,∴x 9=15―x 15,解得x =458;②当∠AED =90°时,设DE =y =BE ,同理可得:△AED ∽△ACB ,∴DE CB =AE AC,∴y 9=15―y 12,解得y =457.故答案为:458或457.先求解BC =9,再分两种情况讨论:如图,当∠ADE =90°时,当∠AED =90°时,再利用相似三角形的判定与性质解答即可.本题考查的是勾股定理的应用,旋转的性质,相似三角形的判定与性质,作出正确的图形是解本题的关键.13.【答案】 7或 3【解析】解:∵∠ACB =90°,BC =2 3,∠B =30°,点P 为AC 的中点,∴∠BAC =60°,AC =BC ⋅tan30°=2,AP =12AC =1,AB AC 2+BC 2= 22+(2 3)2=4.∵AD =2,∴D 是AB 的中点.当∠DAQ =60°时,存在两种情况,当点Q 与点P 重合时,如图1所示,AQ =AP =1,此时DQ 为△ABC 的中位线,∴DQ=1BC=3;2当点Q在AP延长线上时,连接DP、DQ,如图2所示,∵PD为△ABC的中位线,∴PD//BC,∴∠DPQ+∠ACB=180°,∴∠DPQ=90°,∴DQ=PD2+PQ2=(3)2+22=7,综上,DQ的长为7或3,故答案为:7或3.AC=1,AB AC2+BC2=根据直角三角形的性质得到∠BAC=60°,AC=BC⋅tan30°=2,AP=1222+(23)2=4.求得D是AB的中点.当∠DAQ=60°时,存在两种情况,当点Q与点P重合时,如图1所示,AQ=AP=1,当点Q在AP延长线上时,连接DP、DQ,根据三角形的中位线定理即可得到结论.本题考查了旋转的性质,勾股定理,三角形中位线定理,直角三角形的性质,分类讨论是解题的关键.14.【答案】2或6【解析】【分析】分两种情况讨论,由等腰直角三角形的性质可得AD=CD=2,利用勾股定理和平行四边形的性质可求解.本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,平行四边形的判定和性质,利用分类讨论思想解决问题是解题的关键.【解答】解:如图,当点C落在DF上时,∵AC=DF=2,∠CAB=∠EDF=45°,∠ACB=∠DFE=90°,△ACB和△DFE都是等腰直角三角形,∴AB=DE=22,∵点D是AB的中点,∴AD=CD=2,∴AF=AD2+DF2=2+4=6;当点C落在DE上时,连接CF,∵DE=AB=22,CD=2,∴CE=CD=2,∵△EFD是等腰直角三角形,∴CF=CD=2=AD,CF⊥DE,∴CF//AD,∴四边形ADCF是平行四边形,∴AF=CD=2,故答案为:2或6.15.【答案】相等垂直【解析】解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,新结论:3CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵3AD=2DG,3AB=2DE,AD=DE,∴DG AD =32,DECD=DEAB=32,∴DG AD =EDDC=32,∴△GDA ∽△EDC ,∴AG CE =AD DC =32,即3CE =2AG ,∵△GDA ∽△EDC ,∴∠ECD =∠GAD ,∵∠COD =∠AOH ,∴∠AHO =∠CDO =90°,∴AG ⊥CE ;(3)①当点G 在线段BE 上时,如图3―1,连接BD ,过点D 作DT ⊥BE 于点T .∵3AD =2DG =6,3AB =2DE =12,∴AD =2,DG =3,AB =4,DE =6,∵∠A =∠EDG =90°,∴BD = AD 2+AB 2= 22+42=2 5,EG = DG 2+DE 2= 32+62=3 5,∵DT ⊥EG ,∴12⋅DE ⋅DG =12⋅EG ⋅DT ,∴DT =3×63 5=6 55,∴ET =DE 2―DT 2=12 55,BT =BD 2―DT 2=(25)2―(655)2=855,∴BE =ET +BT =4 5.②当点G在EB放延长线上时,如图3―2,同法可得BE=ET―BT=1255―855=455,综上所述,满足条件的BE的值为45或455.(1)证明△GDA≌△EDC(SAS),即可求解;(2)根据两边对应成比例且夹角相等证明△GDA∽△EDC,即可求解;(3)①当点G在线段BE上时,如图3―1,利用勾股定理求出ET,TB即可;②当点G在EB的延长线上时,如图3―2,同法可解.本题是四边形综合题,涉及旋转的性质,矩形的性质,三角形全等和相似的性质和判定,勾股定理等知识,难度适中,其中(3)正确画图和分类讨论是解题的关键.16.【答案】EG=FH【解析】(1)证明:过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,∵四边形ABCD是正方形,∴MG=HN,∵HF⊥EG,∴∠MGE=∠NHF,∴△HFN≌△GEM(ASA),∴HF=EG;故答案为:HF=EG;(2)解:EG=2FH;理由:过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,由(1)可得,∠QHF=∠PGE,∴△QHF∽△PGE,∴HF GE =HQPG,∵AB=a,BC=2a,∴PG=2a,HQ=a,∴HF GE =a2a=12;∴EG=2FH;(3)解:如图3,过点D作DS⊥BC于S,∴∠DSN=∠DSC=∠B=90°,∵∠DCS=60°,CD=4,∴DS=32CD=23,∵点M为AB的三等分点,AB=3,∴BM=2或BM=1,∵BC=4,∴CM=BC2+BM2=25或17,由(1)知△BCM∽△SDN,∴CM DN =BCSD,∴25DN =423或17DN=423,解得DN=15或512.(1)过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,证明△HFN≌△GEM(ASA)即可求解;(2)过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,由(1)可得△QHF∽△PGE;(3)如图3,过点D作DS⊥BC于S,根据垂直的定义得到∠DSN=∠DSC=∠B=90°,根据已知条件得到BM=2或BM=1,根据勾股定理得到CM=BC2+BM2=25或17,根据勾股定理即可得到结论.本题考查了四边形的综合题,正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.17.【答案】解:【问题发现】3;【操作探究】对,证明:∵MN⊥AC于点N,PQ⊥AC于点Q,AM=BP,∴∠ANM=∠AQP=∠C=90°,∵∠A=∠A,∴△AMN∽△ABC,△APQ∽△ABC,∴MNBC =AMAB,PQBC=APAB,∵AP=AM+MP=BP+MP=MB,∴PQ BC =MBAB,∴MNBC +PQBC=AMAB+MBAB=ABAB=1,∴MN+PQ=BC,∵BCAB=sinA,∠A=α,AB=m,∴BC=AB⋅sinA=m⋅sinα,∴MN+PQ=m⋅sinα,∴MN+PQ的值为定值,MN+PQ=m⋅sinα.【解决问题】15.【解析】【分析】此题重点考查直角三角形中30°角所对的直角边等于斜边的一半、勾股定理、锐角三角函数、全等三角形的判定与性质、相似三角形的判定与性质、菱形的性质等知识,此题综合性强,难度较大,属于考试压轴题.【问题发现】由∠ANM =∠AQP =∠C =90°,∠A =30°,得MN =12AM ,PQ =12AP =12(AM +PM),而AM =BP ,则MN +PQ =12AM +12BM =12AB =3,于是得到问题的答案.【操作探究】由∠ANM =∠AQP =∠C =90°,∠A =∠A ,可证明△AMN ∽△ABC ,△APQ ∽△ABC ,得MN BC=AM AB ,PQ BC =APBC ,因为AP =AM +MP =BP +MP =MB ,则PQ BC =MB AB ,于是可推导出MN BC +PQ BC =AB AB=1,所以MN +PQ =BC =m ⋅sinα;【解决问题】连AC 交BC 于点O ,在BC 上截取BL =DM ,作LI ⊥BO 于点I ,由菱形的性质得BC =AB =AD =8,BO =DO =12BD =7,∠BOC =90°,可求得CO = BC 2―BO 2= 15,再由AD =BC ,AM =BN ,证明DM =CN ,再证明△BLI ≌△DME ,得LI =ME ,则BL =CN ,由∠BOC =90°,LI ⊥BO ,NF ⊥BO ,得LI +NF =CO = 15,则ME +NF = 15.【解答】解:【问题发现】∵MN ⊥AC 于点N ,PQ ⊥AC 于点Q ,∴∠ANM =∠AQP =∠C =90°,∵∠A =30°,∴MN =12AM ,PQ =12AP =12(AM +PM),∵AM =BP ,∴PQ =12(BP +PM)=12BM ,∴MN +PQ =12AM +12BM =12AB ,∵AB =6,∴MN +PQ =12×6=3,故答案为:3.【操作探究】见答案;【解决问题】如图3,连AC 交BC 于点O ,在BC 上截取BL =DM ,作LI ⊥BO 于点I ,∵四边形ABCD 是菱形,AB =8,BD =14,∴BC =AB =AD =8,BO =DO =12BD =12×14=7,AC ⊥BD ,∴∠BOC =90°,∴CO = BC 2―BO 2= 82―72= 15,∵AD =BC ,AM =BN ,∴AD ―AM =BC ―BN ,∴DM =CN ,∵BC//AD ,∴∠LBI =∠MDE ,∵ME ⊥BD ,LI ⊥BO ,∴∠BIL =∠DEM =90°,在△BLI 和△DME 中,∠LBI =∠MDE∠BIL =∠DEM =90°BL =DM ,∴△BLI ≌△DME(AAS),∴LI =ME ,∵AM =BN ,AD =BC ,∴DM =CN ,∴BL =CN ,∵∠BOC =90°,LI ⊥BO ,NF ⊥BO ,∴△BIL ∽△BFN ∽△BOC ,∴LI CO =BL BC ,NF CO =BN BC ,∴LI CO +NF CO =BL BC +BNBC ,即LI +NF CO =BL +BNBC=1,∴LI +NF =CO = 15,∴ME +NF = 15,故答案为: 15.18.【答案】(1)证明:如图①,BE 与MN 的交点记作点O ,由折叠知,∠BON =90°,∴∠CBE+∠BNM=90°,∵MH⊥BC,∴∠MHN=90°,∴∠HMN+∠BNM=90°,∴∠CBE=∠HMN,∵四边形ABCD为矩形,∴∠A=∠ABC=∠C=90°=∠BHM,∴四边形ABHM是矩形,∴AB=MH,∵BC=AB,∴BC=MH,在△EBC和△NMH中,∠C=∠BHMBC=MH∠CBE=∠HMN,∴△EBC≌△NMH(ASA);(2)①证明:同(1)的方法得,∠C=∠BHM,∠CBE=∠HMN,∴△EBC∽△NMH;②解:设DE=x(x>0),∵点E为CD的三等分点,Ⅰ、当CE=2DE时,∴CE=2x,CD=3x,∵BC=2BA,∴BC=6x,同①的方法得,四边形CDMH是矩形,∴MH=CD=3x,由①知,△EBC∽△NMH,∴EC NH =BCMH,∴2xNH =6x 3x,∴NH =x ,设AM =y(y >0),同①的方法得,四边形AMHB 是矩形,∴BH =AM =y ,∴BN =x +y ,∴CN =BC ―BN =5x ―y ,由折叠知,EN =BN =x +y ,在Rt △ECN 中,根据勾股定理得,CN 2+CE 2=EN 2,∴(5x ―y )2+(2x )2=(x +y )2,∴y =73x 或x =0(舍),∴AM =73x ,BN =x +y =103x ,∴AM BN =73x 103x =710,Ⅱ、当DE =2DE 时,同Ⅰ的方法得.AM BN=3137,即AMBN=710或3137. 【解析】(1)根据同角的余角相等得出∠CBE =∠HMN ,再判断出四边形ABHM 是矩形,得出AB =MH ,进而判断出△EBC ≌△NMH ;(2)①同(1)的方法得,∠C =∠BHM ,∠CBE =∠HMN ,即可得出结论;②设DE =x(x >0),Ⅰ、当CE =2DE 时,则CE =2x ,CD =3x ,BC =6x ,进而得出MH =CD =3x ,再根据△EBC ∽△NMH ,得出NH =x ,设AM =y(y >0),表示出BH =AM =y ,BN =x +y ,CN =BC ―BN =5x ―y ,再根据勾股定理得,CN 2+CE 2=EN 2,建立方程得出y =73x 或x =0(舍),Ⅱ、当DE =2CE 时,同Ⅰ的方法,即可求出答案.此题是相似形综合题,主要考查了矩形的性质和判定,折叠的性质,勾股定理,相似三角形的判定和性质,利用勾股定理得出y =73x 是解本题的关键.19.【答案】解:(1)3.(2)由(1)得:AC′=3,∴BC′=AB ―AC′=2,由折叠的性质得:C′E =CE ,设BE =x ,则C′E =CE =4―x ,在Rt △BEC′中,BE 2+BC′2=C′E 2,即x 2+22=(4―x )2,解得x =32,即BE =32,CE =4―32=52,连接EE′,如图所示:由平移的性质得:E′E =BC′=2,EE′//AB//CD ,D′E′//DE ,∴△FEE′∽△FCD′∽△ECD ,∴EF EE′=CE CD =525=12,∴EF =12EE′=1.(3)45或195.【解析】【分析】本题考查四边形综合,矩形的性质、折叠的性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、平移的性质、平行四边形的判定等知识;本题综合性强,熟练掌握矩形的性质、折叠的性质、平移的性质以及勾股定理是解题的关键,属于中考常考题型.(1)由矩形的性质得∠A =90°,AB =CD =5,BC =AD =4,再由折叠的性质得C′D =CD =5,然后由勾股定理求解即可;(2)由折叠的性质得C′E =CE ,设BE =x ,则C′E =CE =4―x ,在Rt △BEC′中,由BE 2+BC′2=C′E 2求出BE =32,CE =52,连接EE′,根据相似三角形的判定可得△FEE′∽△FCD′∽△ECD ,即可求解;(3)分类讨论:当C″在AB 内(B 的左侧)时,连接EE′,根据相似三角形的判定和性质可得E′E E′Q =45,根据平移的性质和等角对等边的性质可得PQ =QE′=1,即可求得;当C″在射线AB 上(B 的右侧)时,连接EE′,根据相似三角形的判定和性质可得CD′=2CP ,CD′=34CQ ,求解可得CP =35,即可求得.【解答】解:(1)∵四边形ABCD 是矩形,∴∠A =∠B =90°,AB =CD =5,BC =AD =4,由折叠的性质得:C′D =CD =5,∴AC′= C′D 2―AD 2= 52―42=3,故答案为:3.(2)见答案.(3)当C″在AB 内(B 的左侧)时,连接EE′,如图所示:由平移的性质得:E′E =C′C″,EE′//AB ,C″E′//C′E ,∴△QEE′∽△QBC″∽△EBC′,∴E′E E ′Q =C′B C ′E =252=45,∵∠CPD′=∠EPE′=∠CED =∠D′E′Q ,∴PQ =QE′=1,∴E′E =45E′Q =45;当C″在射线AB 上(B 的右侧)时,连接EE′,如图,由平移的性质得:E′E =DD′,DE//D′E ,DC′//D′C″,∴△CD′P ∽△CDE ,△CD′Q ∽△AC′D ,。
第4章相似三角形(压轴题45道)(原卷版)
第4单元相似三角形(压轴题45道)一.选择题(共14小题)1.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.32.如图,O为矩形ABCD的中心,将直角△OPQ的直角顶点与O重合,一条直角边OP与OA重合,使三角板沿逆时针方向绕点O旋转,两条直角边始终与边BC、AB相交,交点分别为M、N.若AB=4,AD=6,BM=x,AN =y,则y与x之间的函数图象是()A.B.C.D.3.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP ;③S △AOD =S 四边形OECF ;其中正确结论的个数( )A .1B .3C .2D .04.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE 、AF 于M 、N ,下列结论:①AF ⊥BG ;②;③S 四边形CGNF =S △ABN ;④.其中正确的有( )A .①②③B .②③④C .①②④D .①③④5.如图,在△ABC 中,∠ACB =90°,CD 、CE 分别是高和角平分线,已知△BEC 的面积是15,△CDE 的面积为3,则△ABC 的面积为( )A .22.5或20B .22.5C .24或20D .206.如图,在正方形ABCD 中,点E 、F 分别是BC 、DC 边上的两点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N .下列结论:①AB 2=BN •DM ;②AF 平分∠DFE ;③AM •AE =AN •AF ;④.其中正确的结论是( )A.①②B.①③C.①②③D.①②③④7.如图,▱ABCD中,E为AD的中点.已知△DEF的面积为1,则▱ABCD的面积为()A.9B.12C.15D.188.如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A.﹣1B.C.1D.9.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A.B.C.6D.1010.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为()A.6B.5C.D.11.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.12.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.214.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.二.填空题(共11小题)15.如图,△ABC中,AB=8,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=.16.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.17.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ的最小值为.18.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为.19.如图,在正方形ABCD中,AB=2,M为CD的中点,N为BC的中点,连接AM和DN交于点E,连接BE,作AH⊥BE于点H,延长AH与DN交于点F,连接BF并延长与CD交于点G,则MG的长度为.20.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.21.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是.(写出所有正确结论的序号)22.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,AD⊥BC,那么EH的长为.23.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.24.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A 和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.25.把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.三.解答题(共20小题)26.如图,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P、Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P、Q 同时停止运动、设PQ=x,△PQR与△ABC重叠部分的面积为S,当x=时,点R恰好在AB边上.(1)填空:点R恰好经过AB边时,S的值为;(2)求S关于x的函数关系式,并写出x的取值范围.27.在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB>AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.(用含x的式子表示)28.如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形,平行四边形对角线AE交BD、CD分别为点G和点H.(1)证明:DG2=FG•BG;(2)若AB=5,BC=6,则线段GH的长度.29.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A (2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO 上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=2时,求点E的坐标;(2)若AB平分∠EBP时,求t的值;(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.30.已知:如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点,且∠MAN=45°①求证:MN=BM+DN;②若AM、AN交对角线BD于E、F两点.设BF=y,DE=x,求y与x的函数关系式.31.如图,已知ED∥BC,∠EAB=∠BCF,(1)四边形ABCD为平行四边形;(2)求证:OB2=OE•OF;(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.32.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D、E、F、G分别在三角形的三条边上.求正方形的边长.33.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?34.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B 出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.35.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.36.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.37.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.38.如图,已知在矩形ABCD中,AD=8cm,CD=4cm,点E从点D出发,沿线段DA以每秒1cm的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2cm的速度移动,当B、E、F三点共线时,两点同时停止运动.设点E移动的时间为t(秒),(1)求证:△BCF∽△CDE;(2)求t的取值范围;(3)连接BE,当t为何值时,∠BEC=∠BFC?39.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.40.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.41.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC与∠ACN的数量关系,并说明理由.42.在△ABC中,∠BAC=90°,AB=AC,点O在BC上(与B,C不重合),连接AO,F是线段AO上的点(与A,O不重合),∠EAF=90°,AE=AF,连接FE,FC,BE,BF.(1)如图1,若AO⊥BC,求证:BE=BF;(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF 交AB于点G,交BE于点K.①求证:△AGC∽△KGB;②当△BEF为等腰直角三角形时,请你直接写出AB:BF的值.43.在矩形ABCD中,AB=6cm,BC=8cm.(1)如图①,若动点Q从点C出发,在对角线CA上以每秒3cm的速度向A 点匀速移动,同时动点P从点B出发,在BC上以每秒2cm的速度向点C匀速移动,运动时间为t秒(0≤t<3),t取何值时,四边形ABPQ的面积最小?(2)如图②,若点Q在对角线CA上,CQ=4cm,动点P从点B出发,以每秒1cm的速度沿BC运动至点C停止.设点P运动了t秒,当t为何值时,以Q、P、C为顶点的三角形是等腰三角形?44.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.45.已知:如图,△ABC中,AD⊥BC,过点D作DE⊥AB,DF⊥AC,连接EF,(1)若AD2=BD•DC,①求证:∠BAC=90°.②AB=4,DC=6,求EF.(2)如图2,若AD=4,BD=2,DC=4,求EF.。
与相似三角形有关的压轴题
(六) 与相似三角形有关的压轴题1.(08苏州)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线4yx=上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线y x=上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A( ,)、B( ,)和C( ,);(2)发现C船,三船立即停止训练,并分别从A、O、B 三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
2.(08湖州)已知:在矩形AOBC中,4OB=,3OA=.分别以OB OA,所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B C,重合),过F点的反比例函数(0)ky kx=>的图象与AC边交于点E.(1)求证:AOE△与BOF△的面积相等;(2)记OEF ECFS S S=-△△,求当k为何值时,S有最大值,最大值为多少?(3)请探索:是否存在这样的点F,使得将CEF△沿EF对折后,C点恰好落在OB上?若存在,求出点F 的坐标;若不存在,请说明理由.如图1,已知双曲线y=xk (k>0)与直线A ,B 两点,点A 在第一象限.试解答下列问A 的坐标为(4,2).则点B 的坐标A 的横坐标为m ,则点B 的坐标可表示2,过原点O 作另一条直线l ,交双曲线于P ,Q 两点,点P 在第一象限.①说明四边A.P 的横坐标分别APBQ 可能是短形吗?可能是正方形吗?mn 应满足的条件;若不可能,请说5.(08德州)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.6. (08内江)如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y轴交于点C,与x轴交于点D,OB =B 横坐标是点B 纵坐标的2倍.(1)求反比例函数的解析式; (2)设点A 横坐标为m ,ABO △面积为S,求S 与m 的函数关系式,并求出自变量的取值范围.ABDC图 17.(07常州)已知A(-1,m)与B(2,m+3 3 )是反比例函数y=kx图象上的两个点.(1)求k的值;(2)若点C(-1,0),则在反比例函数y=kx图象上是否存在点D,使得以A、B、C、D四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由.8.(07济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍?对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决,小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程.(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?第(1)题图第(2)题图9.(07长春)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数2(0)y x x=-<的图象于B ,交函数6(0)y x x =>的图象于C ,过C 作y 轴的平行线交BD 的延长线于D . (1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比.(2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比.(3)在(2)的条件下,四边形AODC 的面积与 .10.(07上海)如图,在直角坐标平面内,函数m y x=(0x >,m 是常数)的图象经过A (1,4),B(a ,b ),其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若△ABD 的面积为4,求点B 的坐标; (2)求证:DC//AB ;(3)当AD=BC 时,求直线AB 的函数解析式.y。
中考三角形相似压轴题
选择题在△ABC和△DEF中,若△A = △D,AB/DE = AC/DF,则下列结论正确的是:A. △ABC △ △DEFB. △ABC和△DEF不一定相似C. △ABC和△DEF仅在一种情况下相似D. △ABC △ △DEF(正确答案)已知△PQR中,PQ = 6,QR = 8,RP = 10,且△STU中,ST/PQ = SU/QR = 3/4,则:A. △PQR与△STU的周长比为4:3B. △PQR与△STU的面积比为3:4C. △PQR与△STU是等腰三角形D. △PQR △ △STU且相似比为4:3(正确答案)下列哪组条件不能判定两个三角形相似?A. 两角分别相等B. 三边对应成比例C. 两边对应成比例且夹角相等D. 两边对应成比例且一边的对角相等(正确答案)在△ABC和△A'B'C'中,若AB/A'B' = BC/B'C'且△B = △B',则:A. △A = △A'且△C = △C'(正确答案)B. △A = △C'且△C = △A'C. △A与△A'、△C与△C'均不相等D. 无法确定△A、△C与△A'、△C'的关系已知△MNO与△XYZ相似,且MN = 2,NO = 3,MO = 4,XY = 6,则YZ的长度为:A. 8B. 9(正确答案)C. 10D. 12下列关于相似三角形的性质,错误的是:A. 相似三角形的对应角相等B. 相似三角形的对应边成比例C. 相似三角形的面积比等于对应边长的平方比D. 相似三角形的周长比等于对应边长的立方比(正确答案)在△GHK和△LMN中,若GH/LM = HK/MN,且△G = △L,△H = △M,则:A. △GHK与△LMN仅面积相等B. △GHK与△LMN仅周长相等C. △GHK与△LMN全等D. △GHK △ △LMN且全等方面也成立(正确答案,但更严谨的表述应为“△GHK △ △LMN”)已知△ABC中,AB = 5,BC = 6,AC = 7,△DEF中,DE = 10,EF = 12,且△A = △D,则:A. DF = 15且△ABC △ △DEFB. DF = 14且△ABC与△DEF不全等C. DF = 16且△ABC △ △DEFD. DF = 14且△ABC △ △DEF(正确答案)下列哪组条件足以证明△PQR与△STU相似,但不需要额外条件即可直接判定?A. △P = △S,△Q = △TB. PQ/ST = QR/TU,且QR = 2PTC. PQ/ST = QR/TU = RP/SU(正确答案)D. △P = △S,PQ/ST = RP/SU且QR ≠ TU。
九年级数学 相似三角形(压轴必刷30题专项训练)(解析版)
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
2023年中考压轴题专题训练-旋转中的相似三角形
2023中考压轴题专题训练-旋转中的相似三角问题姓名: 成绩:模型证明:(1)全等旋转中的相似已知△ABC 顺时针旋转一定角度,得到△DBE ,且k BCAB=,求证:△ABD ∽△CBE ,求它们相似比; 证明:∵∠ABD=∠ABC -∠CBD ∠CBE=∠DBE -∠CBD又∵∠ABC=∠DBE ∴∠ABD=∠CBE ∵AB=DB,BC=BE∴k BEBDBC AB == ∴△ABD ∽△CBE ∴k BEBDBC AB CE AD ===(2)相似旋转中的相似已知△ABC ∽△ADE , 求证:△ABD ∽△ACE 证明:∵△ABC ∽△ADE∴AC AEAB AD= ∴ACABAEAD = ∴∠DAE=∠BAC∴∠DAE -∠BAE=∠BAC -∠BAE ∴∠BAD=∠CAE ∴△ABD ∽△ACE ∴CEBDAC AB AE AD == 1、(4分)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边''C B 交CD 边于点G .连接B 'B 、'CC .若AB =3,AD =4,则''BB CC =2、(4分)如图,在Rt△ABC中,∠ACB=90°,D为AB边上一点,且点D到BC的距离等于点D到AC的距离.将△ABC绕点D旋转得到△A′B′C′,连接BB′,CC′.若=,则的值为.3、(10分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=4,BD=8,连接DD1,设AC1=kBD1.请求出(AC1)2+(kDD1)2的值。
中考数学复习---相似三角形综合压轴题练习(含答案解析)
中考数学复习---相似三角形综合压轴题练习(含答案解析)一.平行线分线段成比例(共1小题)1.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE 交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为.【答案】5【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.二.相似三角形的性质和判定2.(2022•鞍山)如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=;②S△EBH:S△DHF =3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).【答案】①③④【解答】解:如图,过点G作GQ⊥DF于点Q,GP⊥EF于点P.设正方形ABCD的边长为2a.∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∵AE=EB=a,BC=2a,∵DF⊥CE,∴∠CFD=90°,∴∠ECB+∠DCF=90°,∵∠DCF+∠CDF=90°,∴∠CDF=∠ECB,∴tan∠CDF=,故①正确,∵BE∥CD,∴===,∵EC===a,BD=CB=2a,∴EH=EC=a,BH=BD=a,DH=BD=a,在Rt△CDF中,tan∠CDF==,CD=2a,∴CF=a,DF=a,∴HF=CE﹣EH﹣CF=a﹣a﹣a=a,∴S△DFH=•FH•DF=×a×a=a2,∵S△BEH=S△ECB=××a×2a=a2,∴S△EBH:S△DHF=a2:a2=5:8,故②错误.∵FM平分∠DFE,GQ⊥EF,GP⊥FE,∴GQ=GP,∵==,∴=,∴BG=DG,∵DM∥BN,∴==1,∴GM=GN,∵S△DFH=S△FGH+S△FGD,∴×a×a=××GP+×a×GQ,∴GP=GQ=a,∴FG=a,过点N作NJ⊥CE于点J,设FJ=NJ=m,则CJ=2m,∴3m=a,∴m=a,∴FN=m=a,∴MG=GN=GF+FN=a+a=a,∴MG:GF:FN=a:a:a=5:3:2,故③正确,∵AB∥CD,∴∠BEF=∠HCD,∵==,==,∴=,∴△BEF∽△HCD,故④正确.故答案为:①③④.3.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∵EF=3,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.4.(2022•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是;③当MN最小时S△CMN=S菱形ABCD;④当OM⊥BC时,OA2=DN•AB.A.①②③B.①②④C.①③④D.①②③④【答案】D【解答】解:∵四边形ABCD是菱形,∴AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,∴∠BAC=∠ACD=60°,∴△ABC和△ADC都是等边三角形,∴∠ABM=∠ACN=60°,AB=AC,∵∠MAN=60°,∴∠BAM=∠CAN=60°﹣∠,∴△BAM≌△CAN(ASA),∴AM=AN,∴△AMN是等边三角形,故①正确;当AM⊥BC时,AM的值最小,此时MN的值也最小,∵∠AMB=90°,∠ABM=60°,AB=2,∴MN=AM=AB•sin60°=2×=,∴MN的最小值是,故②正确;∵AM⊥BC时,MN的值最小,此时BM=CM,∴CN=BM=CB=CD,∴DN=CN,∴MN∥BD,∴△CMN∽△CBD,∴===,∴S△CMN=S△CBD,∵S△CBD=S菱形ABCD,∴S△CMN=×S菱形ABCD=S菱形ABCD,故③正确;∵CB=CD,BM=CN,∴CB﹣BM=CD﹣CN,∴CM=DN,∵OM⊥BC,∴∠CMO=∠COB=90°,∵∠OCM=∠BCO,∴△OCM∽△BCO,∴=,∴OC2=CM•CB,∴OA2=DN•AB,故④正确,故选:D.5.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB =9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.【答案】A【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.6.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE =DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【解答】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.7.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④【答案】D【解答】解:∵四边形ABCD、四边形BEFG是正方形,∴AB=BC,BG=BE,∠ABC=90°=∠GBE,∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,∴△ABG≌△CBE(SAS),∴∠BAG=∠BCE,∵∠BAG+∠APB=90°,∴∠BCE+∠APB=90°,∴∠BCE+∠OPC=90°,∴∠POC=90°,∴EC⊥AG,故①正确;取AC的中点K,如图:在Rt△AOC中,K为斜边AC上的中点,∴AK=CK=OK,在Rt△ABC中,K为斜边AC上的中点,∴AK=CK=BK,∴AK=CK=OK=BK,∴A、B、O、C四点共圆,∴∠BOA=∠BCA,∵∠BPO=∠CPA,∴△OBP∽△CAP,故②正确,∵∠AOC=∠ADC=90°,∴∠AOC+∠ADC=180°,∴A、O、C、D四点共圆,∵AD=CD,∴∠AOD=∠DOC=45°,故④正确,由已知不能证明OB平分∠CBG,故③错误,故正确的有:①②④,故选:D.8.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【答案】A【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C =CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.9.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B 点时,点M的运动路径长为()A.B.3C.2D.4【答案】B【解答】解:如图,过点A作AH⊥BC于点H.当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,点M的运动轨迹是△ECF″的中位线,M′M″=CF″,∵AB=AC,AH⊥BC,∴BH=CH,∵AE∥BC,AE=BC,∴AE=CH,∴四边形AHCE是平行四边形,∵∠AHC=90°,∴四边形AHCE是矩形,∴EC⊥BF″,AH=EC,∵BC=2,S△ABC=2,∴×2×AH=2,∴AH=EC=2,∵∠BEF″=∠ECB=∠ECF″,∴∠BEC+∠CEF″=90°,∠CEF″+∠F″=90°,∴∠BEC=∠F″,∴△ECB∽△F″CE,∴EC2=CB•CF″,∴CF″==6,∴M′M″=3故选:B.10.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是()A.3B.4C.5D.【答案】B【解答】解:过点D作DH⊥AB于点H,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=.∵点E是边CD的中点,∴DE=CD,∴HF=CD=AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4,故选:B.11.(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F 是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP﹣BP=OP;④若BE:CE =2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【答案】B【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠FOC+∠EOC=90°.∴∠BOE=∠COF.在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF.在△BAE和△CBF中,,∴△BAE≌△CBF(SAS),∴∠BAE=∠CBF.∵∠ABP+∠CBF=90°,∴∠ABP+∠BAE=90°,∴∠APB=90°.∴AE⊥BF.∴①的结论正确;②∵∠APB=90°,∠AOB=90°,∴点A,B,P,O四点共圆,∴∠APO=∠ABO=45°,∴②的结论正确;③过点O作OH⊥OP,交AP于点H,如图,∵∠APO=45°,OH⊥OP,∴OH=OP=HP,∴HP=OP.∵OH⊥OP,∴∠POB+∠HOB=90°,∵OA⊥OB,∴∠AOH+∠HOB=90°.∴∠AOH=∠BOP.∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,∴∠OAH=∠OBP.在△AOH和△BOP中,,∴△AOH≌△BOP(ASA),∴AH=BP.∴AP﹣BP=AP﹣AH=HP=OP.∴③的结论正确;④∵BE:CE=2:3,∴设BE=2x,则CE=3x,∴AB=BC=5x,∴AE==x.过点E作EG⊥AC于点G,如图,∵∠ACB=45°,∴EG=GC=EC=x,∴AG==x,在Rt△AEG中,∵tan∠CAE=,∴tan∠CAE===.∴④的结论不正确;⑤∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,∴△OAB≌△OBC≌△OCD≌△DOA(SAS).∴.∴.由①知:△BOE≌△COF,∴S△OBE=S△OFC,∴.即四边形OECF的面积是正方形ABCD面积的.∴⑤的结论正确.综上,①②③⑤的结论正确.故选:B.12.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.【答案】【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E 作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),∵E为OD中点,∴E(﹣,),设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:,解得,∴直线CE解析式为y=x+,在y=x+中,令x=﹣1得y=,∴G(﹣1,),∴GE==,∵将线段CE绕点C逆时针旋转90°得到CF,∴CE=CF,∠ECF=90°,∴∠MCE=90°﹣∠NCF=∠NFC,∵∠EMC=∠CNF=90°,∴△EMC≌△CNF(AAS),∴ME=CN,CM=NF,∵E(﹣,),C(1,1),∴ME=CN=,CM=NF=,∴F(,﹣),∵H是EF中点,∴H(,0),∴OH=,∴==.故答案为:.13.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.【答案】3或2【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,当∠APQ=90°时,如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,∵∠APQ=∠ACB=90°,∠CAP=∠BAC,∴△CAP∽△BAC,∴,即,∴AP=3,当∠AQP=90°时,如图2,∵PD⊥AC,PE⊥BC,∠ACB=90°,∴四边形DPEC是矩形,∴CQ=QP,∵∠AQP=90°,∴AQ垂直平分CP,∴AP=AC=2,综上所述,当△APQ为直角三角形时,AP的长是3或2,故答案为:3或2.14.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD ⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.【答案】或5【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.15.(2022•甘肃)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.16.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF 恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.【答案】【解答】解:如图,连接DQ,∵将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,∴DE=DF,∠FDE=90°,∴∠DFE=∠DEF=45°,∵四边形ABCD是正方形,∴∠DAC=45°=∠BAC,∴∠DAC=∠DFQ=45°,∴点A,点F,点Q,点D四点共圆,∴∠BAQ=∠FDQ=45°,∠DAF=∠DQF=90°,∠AFD=∠AQD,∴DF=DQ,∵AD=AB,∠BAC=∠=45°,AQ=AQ,∴△ABQ≌△ADQ(SAS),∴BQ=QD,∠AQB=∠AQD,∵AB∥CD,∴∠AFD=∠FDC,∴∠FDC=∠AQB,又∵∠BAC=∠DFP=45°,∴△BAQ∽△PFD,∴,∴AQ•DP=3=BQ•DF,∴3=BQ•BQ,∴BQ=,故答案为:.17.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.【答案】【解答】解:如图,设AD交A′B′于点Q.设BN=NB′=x.∵=,∴可以假设AB=2k,CB=3k,∵四边形ABCD是矩形,∴AD=BC=3k,CD=AB=2k,∠C=∠D=90°,在Rt△CNB′中,CN2+CB′2=NB′2,∴(3k﹣x)2+k2=x2,∴x=k,∴NB′=k,CN=3k﹣k=k,由翻折的性质可知∠A′B′N=∠B=90°,∴∠DB′Q+∠CB′N=90°,∠CB′N+∠CNB′=90°,∴∠DB′Q=∠CNB′,∵∠D=∠C=90°,∴△DB′Q∽△CNB′,∴DQ:DB′:QB′=CB′::NB′=3:4:5,∵DB′=k,∴DQ=k,∵∠DQB′=∠MQA′,∠D=∠A′,∴△DQB′∽△A′QM,∴A′Q:A′M:QM=DQ:DB′:QB′=3:4:5,设AM=MA′=y,则MQ=y,∵DQ+QM+AM=3k,∴k+y+y=3k,∴y=k,∴===,解法二:连接BB′,过点M作MH⊥BC于点H.设AB=CD=6m,CB=9m,设BN=NB′=n,则n2=(3m)2+(9m﹣n)2,∴n=5m,CN=4m,由△BB′C∽△MNH,可得=2m,∴AM=BH=3m,∴===,故答案为:.18.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.【答案】2+2【解答】解:如图,连接AP,由图2可得AB=BC=4cm,∵∠B=36°,AB=BC,∴∠BAC=∠C=72°,∵AP平分∠BAC,∴∠BAP=∠PAC=∠B=36°,∴AP=BP,∠APC=72°=∠C,∴AP=AC=BP,∵∠PAC=∠B,∠C=∠C,∴△APC∽△BAC,∴,∴AP2=AB•PC=4(4﹣AP),∴AP=2﹣2=BP,(负值舍去),∴t==2+2,故答案为:2+2.19.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.【答案】90°,.【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∴=,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF==5,∵EF⊥AD,∴•AE•AF=•EF•AJ,∴AJ=,∴EJ===,∵EJ∥AB,∴=,∴=,∴OJ=,∴OA=AJ+OJ=+=4,∴OB===4,OD=AD﹣AO=6﹣4=2,∵cos∠ODH=cos∠ABO,∴=,∴DH=.故答案为:90°,.20.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).【答案】①②③【解答】解:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,∴△ACD≌△ABD′,故①正确;∵AC=AB,AD=AD′,∠BAC=∠D′AD=θ,∴=,∴△ACB∽△ADD′,故②正确;∵△ACB∽△ADD′,∴=()2,∵当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,∴BD=CD,∴当BD=CD时,△ADD′的面积取得最小值,故③正确;故答案为:①②③.21.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是.【答案】②③【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.22.(2022•丹东)如图,四边形ABCD是边长为6的菱形,∠ABC=60°,对角线AC与BD交于点O,点E,F分别是线段AB,AC上的动点(不与端点重合),且BE=AF,BF与CE交于点P,延长BF交边AD(或边CD)于点G,连接OP,OG,则下列结论:①△ABF≌△BCE;②当BE=2时,△BOG的面积与四边形OCDG面积之比为1:3;③当BE=4时,BE:CG=2:1;④线段OP的最小值为2﹣2.其中正确的是.(请填写序号)【答案】①②【解答】解:①∵四边形ABCD是菱形,∴AB=BC=AD=CD,∴∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ABC=60°,在△ABF和△BCE中,,∴△ABF≌△BCE(SAS),故①正确;②由①知:△ABC是等边三角形,∴AC=AB=6,∵AF=BE=2,∴CF=AC﹣AF=4,∵四边形ABCD是菱形,∴AD∥BC,OB=OD,OA=OC,∴△AGF∽△CBF,S△BOG=S△DOG,S△AOD=S△COD,∴,∴,∴AG=3,∴AG=,∴S△AOD=2S△DOG,∴S△COD=2S△DOG,∴S四边形OCDG=S△DOG+S△COD=3S△DOG=3S△BOG,故②正确;③如图1,∵四边形ABCD是菱形,∴AB∥CD,∴△CGF∽△ABF,∴,∴,∴CG=3,∴BE:CG=4:3,故③不正确;④如图2,由①得:△ABF≌△BCE,∴∠BCE=∠ABF,∴BCE+∠CBF=∠ABF+∠CBF=∠ABC=60°,∴∠BPC=120°,作等边三角形△BCH,作△BCH的外接圆I,则点P在⊙I上运动,点O、P、I共线时,OP最小,作HM⊥BC于M,∴HM==3,∴PI=IH=,∵∠ACB+∠ICB=60°+30°=90°,∴OI===,∴OP最小=OI﹣PI=﹣2,故④不正确,故答案为:①②.三.相似三角形的应用23.(2022•衢州)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.【答案】1.8;.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.24.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD =13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.【答案】10,(10+)【解答】解:解法一:如图,过点O作OP∥BD,交MG于P,过P作PN ⊥BD于N,则OB=PN,∵AC∥BD,∴AC∥OP∥BD,∴=,∠EGF=∠OPM,∵OA=OB,∴CP=PD=CD=6.5,∴MP=CM+CP=8.5+6.5=15,tan∠EGF=tan∠OPM,∴OM=×15=10;∵DB∥EG,∴∠EGF=∠NDP,∴sin∠EGF=sin∠NDP,即=,∴OB=PN=,以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.解法二:如图,设AC与OM交于点H,过点C作CN⊥BD于N,∵HC∥EG,∴∠HCM=∠EGF,∵∠CMH=∠EFG=90°,∴△HMC∽△EFG,∴==,即=,∴HM=,∵BD∥EG,∴∠BDC=∠EGF,∴tan∠BDC=tan∠EGF,设CN=2x,DN=3x,则CD=x,∴x=13,∴x=,∴AB=CN=2,∴OA=OB=AB=,在Rt△AHO中,∵∠AHO=∠CHM,∴sin∠AHO==,∴=,∴OH=,∴OM=OH+HM=+=10(米),以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.故答案为:10,(10+).49。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
2023年九年级数学中考综合培优测试卷《相似三角形综合》压轴题【含答案】
2023年九年级数学中考综合培优测试卷《相似三角形综合》压轴题1.如图,CD是等腰直角△ABC斜边AB的中线,以点D为顶点的∠EDF绕点D旋转,角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AE交于点M,DE 与BC交于点N,且∠EDF=45°.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,若CE≠CF,求证:CD2=CE•CF;(3)如图2,过D作DG⊥BC于点G,若CD=2,CF=,求DN的长.2.如图,Rt△ABC中,∠C=90°,BC=5,AB=13,动点P从点A开始以每秒4个单位长度的速度匀速沿A﹣C﹣A运动,回到A点时停止运动,动点Q同时从点C开始以每秒1个单位长度的速度匀速沿C﹣B运动,到达B点时停止运动,点D为AB的中点,连接PQ,DP,DQ.设运动时间为t秒.(1)当点P沿A﹣C运动时,①BQ= ,PC= (用含t的式子表示);②当DP⊥AB时,求t的值;(2)当△CPQ与△ABC相似时,直接写出t的值.3.如图,在平面直角坐标系中,已知▱ABCD,AD=6,OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)AB= ;(直接写出结果)(2)若点E在x轴上,且S△AOE=.①E点坐标为 ;(直接写出结果)②求证:△AOE∽△DAO.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A,C,F,M 为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.4.如图,Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,动点E从点A出发沿AC方向运动,动点F从点C出发沿CB方向运动,点E,F同时出发,且速度均为1cm/s,设运动时间为t(s)(0<t<4).过E作线段EP∥BC,且EP=BC,连接EF,PF,解答下列问题:(1)当点F运动到BC中点时,求EC的长;(2)连接PC,当△PFC的面积为1cm2时,求t的值;(3)是否存在某一时刻t,使△EFP为直角三角形,若存在,请直接写出t的值;若不存在,请说明理由.5.已知矩形ABCD,点E为线段BC上的一点,连接AE,过点B作线段AE的垂线分别交线段AE,CD交于点G,F,延长CG交边AB于点M.(1)如图1,若四边形ABCD是正方形,且点M为边AB的中点,①求证:BE=CF;②若正方形ABCD的边长为2,求证:;(2)如图2,若GC平分∠FGE,若,求的值.6.在等边△ABC中,点D是BC的中点,点E为AC上一点,将线段DE绕点D逆时针方向旋转60°得线段DF,(1)如图1,当DF与AB交于点G时,求证:BD2=BG•EC;(2)如图2,在(1)的条件下,连接FE交AB于点H,当时,求AH:HG:GB;(3)若AB=4,当点E在线段AC上运动时,△BDF能否成为直角三角形,若能,请求出此时DF的值,若不能,请说明理由.7.【模型建立】(1)如图1,在等边△ABC中,点D、E分别在BC、AC边上,∠ADE=60°,求证:AB•CE=BD•DC;【模型应用】(2)如图2,在ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,点E在AC边上,AE=AD,点F在DC边上,∠EFD=60°,则的值为 ;【模型拓展】(3)如图3,在钝角△ABC中,∠ABC=60°,点D、E分别在BC、AC 边上,∠DAE=∠ADE=60°,若AB=5,CE=6,求DC的长.8.已知△ABC为直角三角形,点D在直线CB上,以AD为直角边做直角三角形ADE,连接CE.(1)如图1,当时,请直接写出线段BD与线段CE的数量关系与位置关系;(2)如图2,当时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,当点D在射线CB上,且时,连接BE,分别取线段BE,DE的中点M,N,连接MN,CM,CN,若,请直接写出△CMN 的面积.9.如图1,在矩形ABCD中,AB=8,BC=6,点E,F分别是AB,AD边上的动点,EF∥BD.将△AEF沿直线EF对折,点A对应点为点G,连结DG.(1)如图2,当点G落在对角线BD上时,求DG的长;(2)如图3,当∠DGF=Rt∠时,求AF的长;(3)若直线FG交BD于点H,在点E的运动过程中,是否存在某一位置,使得以E,H,G为顶点的三角形与△AEF相似?若存在,请求出AE的长;若不存在,请说明理由.10.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点D 在BC上,连接CE.(1)如图1,当=1时,则线段BD与线段CE的数量关系是 ,位置关系是 ;(2)如图2,当=3时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BE,分别取线段BE,DE的中点M,N,连接MN,MC,NC,若AB=,∠ADB=60°,求出△MNC的面积.11.几何学的产生,源于人们对土地测量的需要,后来由实际问题抽象成为数学问题.初中数学常见的几何模型有很多,通过整理归纳,可以从这些基本模型中找到其所藻蕴含的规律.【提出问题】如图1,△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,△ADE绕点A旋转,连结BD、EC,小明通过探究得到∠ABD与∠BCE的大小存在某种数量关系,具体探究过程如下.【探究问题】小明先将上述问题“特值化”,如图1,令AB=1,AD=,∠ABD=100°,则可证明△ABD和△ACE相似,进而可求得∠BCE的度数.请你帮助小明完成解答过程.【解决问题】将问题“一般化”,如图2,在△ADE绕点A旋转过程中,∠ABD与∠BCE满足的数量关系为 .【拓展应用】如图3,过线段AB的端点B作射线BM⊥AB,Rt△ADE的直角顶点D在射线BM上运动,连结BE,若AB=4,=,则BE的最小值为 .12.[基础巩固](1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,AF交DE于点G,求证:=.[尝试应用](2)如图2,已知D、E为△ABC的边BC上的两点,且满足BD=2DE=4CE,一条平行于AB的直线分别交AD、AE和AC于点L、M和N,求的值.[拓展提高](3)如图3,点E是正方形ABCD的边CD上的一个动点,AB=3,延长CD至点F,使DF=2DE,连接AE,BF,AE与BF相交于点G,连接CG,求CG的最小值.13.(1)例题再现:如图1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为 .(2)类比探究:如图2,△ABC中,AC=14,BC=6,点D,E分别在线段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的长.(3)拓展延伸:如图3,△ABC中,点D,点E分别在线段AB,AC上,∠EDB=∠ACB=60°.延长DE,BC交于点F,AD=4,DE=5,EF=6,求BD的长.14.如图,已知在菱形ABCD中,AB=5,cos B=,点E、F分别在边BC、CD上,AF的延长线交BC的延长线于点G,且∠EAF=∠BAD.(1)求证:AE2=EC•EG;(2)如果点F是边CD的中点,求S△ABE的值.(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE 的长.15.已知Rt△ABC,∠BAC=90°,点D为直线BC上的一个动点(点D不与点B重合),连接AD,以AD为一边构造Rt△ADE,使∠DAE=90°,连接CE.(1)如图1,当==1时,直接写出线段BD与线段CE的数量关系与位置关系:①数量关系: ;②位置关系: ;(2)如图2,当==2时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BE,分别取线段BE,DE的中点M,N,连接MN,CM,CN,若AB=2,∠ADB=45°,请直接写出△CMN的面积.16.定义:一般地,如果两个相似多边形任意一组对应顶点P,P'所在的直线都经过同一点O,且有OP'=k⋅OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心,(1)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm.点P在AB上,点Q 在AC上,以PQ为边作菱形PQMN,点N在线段PB上且∠APQ=120°,在△ABC及其内部,以点A为位似中心,请画出菱形PQMN的位似菱形P'Q'M'N',且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图,四边形ABCD、AEFG是全等的两个菱形,CD、EF相交于点M,连接BG、CF.请用定义证明:△ABG与△MCF位似.17.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图1,在△ABC与△AED中,BA=BC,EA=ED,且△ABC~AED,所以称△ABC与△AED为“关联等腰三角形”,设它们的顶角为α,连接EB,DC,则称为“关联比”.下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:(1)当△ABC与△AED为“关联等腰三角形”,且α=90°时,①如图2,若点E落在AB上,则“关联比”= ;②如图3,探究△ABE与△ACD的关系,并求出“关联比”的值.(2)如图4,当△ABC与△AED为“关联等腰三角形”,且α=120°时,“关联比”= .[迁移运用](3)如图5,△ABC与△AED为“关联等腰三角形”.若∠ABC=∠AED=90°,AC=4,点P为AC边上一点,且PA=1,点E为PB上一动点,求点E自点B运动至点P时,点D所经过的路径长.18.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,那么我们就把点E叫四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,那么我们就把点E叫四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图1,∠A=∠B=∠DEC=50°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由.(2)如图2,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长均为1)的格点(即每个小正方形的顶点)上,试在图中画出矩形ABCD的边AB上的强相似点.(3)如图3,将矩形ABCD沿着CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.19.如图,把两块全等的等腰直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点E与三角板ABC的斜边中点重合,其中∠BAC=∠EDF=90°,∠C=∠F=45°,AB=DE=6.把三角板ABC固定不动,三角板DEF由图1所示的位置绕点E沿顺时针方向旋转,设旋转角为α,其中0°<α<90°.设射线ED与射线BA相交于点P,射线EF与线段CA相交于点Q(当三角板旋转到图3所示位置时,线段EP交线段CA于点M).(1)如图1,当射线EF经过点A,即点Q与点A重合时,易证△BPE∽△CEQ.此时,BP•CQ= ;(2)当三角板DEF转到如图2的位置时,BP•CQ的值是否改变?说明你的理由;(3)在三角板DEF旋转的过程中,两三角板重合部分的面积是否可能为?若可能,直接写出此时CQ的长;若不可能,请说明理由.20.如图①,已知在正方形ABCD中,点E是边BC的中点,以BE为斜边构造等腰直角△BEF,将△BEF绕点B在平面内作逆时针旋转.(1)如图②,当∠EBC=30°时,若CG=,则BG= ;AG= ;(2)如图③,延长BE,与AC、DC分别相交于点G、N,延长BF,与AC、AD分别相交于点H、M,求证:△AMH∽△CGN;(3)如图④,连接CE、DE,请直接写出当DE+4CE取得最小值时,∠ECB的正切值.参考答案1.(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF(SAS),∴DE=DF;(2)证明:∵∠DCE=∠DCF=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴=,即CD2=CE•CF;(3)解:如图,∵DG⊥BF,∴∠DGN=∠ECN=90°,CG=DG,当CD=2,CF=时,由CD2=CE•CF可得,CE=,在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴===2,∴GN=CG=,∴DN===.2.解:(1)∵∠C=90°,BC=5,AB=13,∴AC=12,①BQ=BC﹣CQ=5﹣t,PC=AC﹣AP=12﹣4t,故答案为:5﹣t,12﹣4t;②如图1,∵∠C=∠ADP=90°,∴cos A=,∴,∴t=,∴当t=时,PD⊥AB;(2)∵∠C=∠C,∴△CPQ∽△CAB或△CPD∽△CBA,∴或,当0<t≤3时,=或,∴t=或t=,当3<t≤6时,或,∴t=(舍去)或t=,综上所述:t=或或.3.解:(1)解x2﹣7x+12=0,得x1=4,x2=3,∵OA>OB,∴OA=4,OB=3,在Rt△AOB中,由勾股定理有AB===5.故答案为:5.(2)①∵点E在x轴上,S△AOE=,∴AO×OE=,∴OE=,∴E(,0)或E(﹣,0).故答案为:(,0)或(﹣,0).②在△AOE中,∠AOE=90°,OA=4,OE=,在△AOD中,∠OAD=90°,=4,AD=6,∵=,∠AOE=∠DAO,∴△AOE∽△DAO.(3)存在,理由如下:由题意,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(﹣3,0).②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F(3,8).③AC是对角线时,AC解析式为y=﹣x+4,AC的垂直平分线经过点(,2),解析式为y=x+,由题意直线AB的解析式为y=x+4,由,解得,联立直线L与直线AB求交点,∴F(﹣,﹣).④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=,勾股定理得出,AN===.作点A关于N的对称点即为F,AF=,过F作y轴垂线,垂足为G,FG=×=,∴F(﹣,).综上所述,满足条件的点有四个:F1(3,8),F2(﹣3,0),F3(﹣,﹣),F4(﹣,).4.解:(1)∵AB=3cm,AC=4cm,∴BC===5(cm),∵F为BC的中点,∴CF=BC=cm,∴AE=cm,∵AC=4cm,∴CE=AC﹣AE=4﹣=(cm);(2)过点E作EM⊥CB于M,∵∠EMC=∠A=90°,∠ECM=∠ACB,∴△EMC∽△BAC,∴,∴,∴EM=,过点P作PG⊥CF,交BC的延长线于G,∵EP∥BC,EM⊥BC,四边形EMGP是矩形,∴EM=PG=(cm),∵S△PFC=CF•PG=1,∴=1,解得t=,∴当t=时,△PFC的面积为1cm2;(3)存在.分两种情况:①若∠FEP=90°时,∵EP∥BC,∴EF⊥BC,∵∠EFC=∠A,∠ECF=∠ACB,∴△EFC∽△BAC,∴,∴,解得t=;②当∠EFP=90°时,过点E作EM⊥BC,过点P作PG⊥BC,交BC的延长线于G,由(2)可知EM=(cm),,∴CM=(cm),∴MF=CM﹣CF=﹣t=(cm),∵EP=MG=5cm,∴FG=5﹣MF=5﹣=(cm),∵∠EFM+∠PFG=90°,∠PFG+∠FPG=90°,∴∠EFM=∠FPG,又∵∠EMF=∠PGF,∴△EMF=∽△FGP,∴,∴EM2=FG•MF,∴,∴2t2﹣3t=0,解得t=或t=0(舍去),综上所述,t=或t=时,△EFP为直角三角形.5.(1)证明:①∵BG⊥AE,∴∠BGA=90°,∴∠BAG+∠ABG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF(ASA),∴BE=CF;②∵∠AGB=90°,点M为AB的中点,∴GM=BM=1,∴∠MGB=∠MBG,∵∠CGF=∠MGB,∠CFB=∠ABG,∴∠CFG=∠CGF,∴CF=CG,在Rt△CBM中,由勾股定理得,CM=,∴CF=CG=CM﹣MG=,∴;(2)解:由(1)同理可得△∽△BCF,∴,延长DC和AE交于点N,作CK⊥CG,交AN于K,∵DC∥AB,∴∠N=∠BAE=∠CBG,∵CG平分∠EGF,∴∠CGE=45°,∵CK⊥CG,∴CK=CG,∠BCG=∠KCN,∴△BCG≌△NCK(AAS),∴CN=CB,∵,∴,∵CN∥AB,∴,设CE=2m,BE=3m,则FC=2m,CN=5m,AB=,∴,∴,∴,∴AM=m,∴=.6.(1)证明:∵点D是BC的中点,故BD=CD,∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵∠CED+∠CDE=180°﹣∠C=120°,∠CDE+∠FDB=180°﹣∠EDF=120°,∴∠CED=∠FDB,∵∠B=∠C=60°,∴△CED∽△BDG,∴,∵BD=CD,∴BD2=BG•EC;(2)解:当时,设AE=3x,则EC=5x,∵DE=DF,∠EDF=60°,∴△EFD为等边三角形,则∠FED=60°,∵∠AEH+∠CED=120°,而∠AHE+∠AEH=180°﹣∠BAC=120°,∴∠CED=∠AHE且∠HAC=∠C=60°,∴△AHE∽△CED,∴,∴AH=,∵BD2=BG•EC,即(4x)2=BG×5x,∴BG=x,∴GH=AB﹣AH﹣BG=8x﹣﹣=,∴AH:HG:GB=75:21:64;(3)解:能,理由:①如图3,当∠FDB为直角时,由(1)知,△CED∽△BDF,∴∠DEC=∠BDF=90°,在Rt△CDE中,DE=CD sin C=2×==DF,∴DF=;②当∠FBD为直角时,如图4,过点D作DM⊥AC,由(1)知,∠DEC=∠FDB,∵∠EMD=∠FBD=90°,DE=DF,∴△EMD≌△DBF(AAS),∴DM=BF,由①得:DM==BF,在Rt△BDF中,DF===;③当∠BFD为直角时,如图5,过点D作DM⊥AC,由(1)知,∠DEC=∠FDB,∵∠EMD=∠BFD=90°,DF=DE,∴△EMD≌△DFB(ASA),∴BD=ED=DF,即BD=DF,这与∠BFD为直角矛盾,故该情况不存在,综上,DF=或.7.(1)证明:∵△ABC是等边三角形;,∴∠B=∠C=60°,∴∠ADB+∠BAD=180°﹣∠B=120°.∵∠ADE=60°,∴∠ADB+∠EDC=180°﹣∠ADE=120°,∴∠BAD=∠EDC,∴△BAD∽△CDE,∴,∴AB•CE=BD•DC;(2)解:∵∠BAC=90°,∠B=60°,∴∠C=30°.∵∠BAC=90°,AD⊥BC,∴∠BAD=30°,∴∠DAE=60°.∵AE=AD,∴△ADE为等边三角形,∴DE=AD=AE,∠ADE=∠AED=60°.∵∠AED=∠C+∠EDC=60°,∴∠EDC=∠C=30°,∴DE=EC.∵∠EFD=60°,∴∠DEF=180°﹣∠EFD﹣∠EDC=90°,∴DF=2EF.∵∠DFE=∠C+∠FEC=60°,∴∠FEC=∠C=30°,∴EF=FC,∴DF=2FC,即=2,故答案为:2;(3)解:在DC上截取DF=EF,如图,∵∠DAE=∠ADE=60°,∴∠DAE=∠ADE=∠AED=60°,∴△ADE为等边三角形,∴AD=DE.∵∠ABC=60°,∠ADE=60°,∴∠ADB+∠BAD=120°,∠ADB+∠EDF=120°,∴∠BAD=∠EDF,在△BAD和△FDE中,,∴△BAD≌△FDE(SAS),∴∠B=∠EFD=60°,∴∠EFC=120°.∵∠AED=60°,∴∠DEC=120°,∴∠EFC=∠DEC,∵∠C=∠C,∴△EFC∽△DEC,∴,∴,∴CF2+5CF﹣36=0,∵CF>0,∴CF=4.∴DC=DF+CF=5+4=9.8.解:(1)BD与线段CE的数量关系为:BD=CE,它们的位置关系为:BD⊥EC,理由:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=1,∴△BAD∽△CAE,∴=1,∠ABD=∠ACE,∴BD=EC,∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;(2)线段BD与线段CE的数量关系为:,位置关系为:BD⊥EC,理由:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=1,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;(3)①当点D在线段CB上时,过点A作AF⊥BD于点F,如图,∵,tan∠ABC=,∴tan∠ABC=2,∵tan∠ABC=,∴=2,设BF=k,则AF=2k,∴AB==k=2,∴k=2,∴AF=4,BF=2.∵tan∠ADB==,∴DF=3,∴BD=DF+BF=3+2=5.∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∴EC=2BD=10.∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;∵点N为DE的中点,点M为BE的中点,∴CN=NE=DN=DE,CM=EM=BM=BE,在△CMN和△EMN中,,∴△CMN≌△EMN(SSS),∴S△CMN=S△EMN.∵点N为DE的中点,店M为BE的中点,∴M,N为△EDB的中位线,∴MN∥BD,MN=BD,∴△EMN∽△EBD,∴.∵BD•EC=5×10=25,∴S△EMN=,∴.②当点D在线段CB的延长线上时,过点A作AF⊥BD于点F,如图,∵,tan∠ABC=,∴tan∠ABC=2,∵tan∠ABC=,∴=2,设BF=k,则AF=2k,∴AB==k=2,∴k=2,∴AF=4,BF=2.∵tan∠ADB==,∴DF=3,∴BD=DF﹣BF=3﹣2=1.∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE=90°,∴∠BAD=∠CAE.∵=,∴△BAD∽△CAE,∴=,∠ABD=∠ACE,∴EC=2BD=2.∵∠B+∠ACB=90°,∴∠ACE+∠ACB=90°,即:∠BCE=90°,∴BD⊥EC;∵点N为DE的中点,点M为BE的中点,∴CN=NE=DN=DE,CM=EM=BM=BE,在△CMN和△EMN中,,∴△CMN≌△EMN(SSS),∴S△CMN=S△EMN.∵点N为DE的中点,店M为BE的中点,∴M,N为△EDB的中位线,∴MN∥BD,MN=BD,∴△EMN∽△EBD,∴.∵BD•EC=1×2=1,∴S△EMN=,∴S.综上,△CMN的面积为或.9.解:(1)连结AG,如图2,∵四边形ABCD是矩形,∴AD=BC=6,∠BAD=90°,∴BD===10,由折叠的性质得:AG⊥EF,∵EF∥BD,∴AG⊥BD,∴∠AGD=90°,∵∠ADG=∠BDA,∴△AGD∽△BAD,∴=,即=,解得:DG=,即DG的长为;(2)当∠DGF=90°时,此时点D,G,E三点共线,由折叠的性质得:FG=FA,∵EF∥BD,∴△AEF∽△∠ABD,∴===,设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,在Rt△DFG中,由勾股定理得:DG2=DF2﹣FG2=(6﹣3t)2﹣(3t)2=36﹣36t,∵∠GDF=∠ADE,∠DGF=∠DAE,∴△DGF∽△DAE,∴=,即,解得:t=,经检验,t=是原方程的解,且符合题意,∴AF=3t=.(3)①当点E与点B重合时,点H与点D重合,如图4,此时,△EHG与△AEF全等,符合条件.∴AE=8.②当△GHE∽△AEF时,如图5,则,∴,设AF=3t,则AE=4t,∴FG=3t,DF=6﹣3t,GE=4t,,∴,由折叠的性质得:∠AFE=∠GFE,∵EF∥BD,∴∠AFE=∠ADB,∠GFE=∠DHF,∴∠AFE=∠ADB=∠DHF,∴DF=FH,即,解得:,∴AE=;③当△GHE∽△AFE时,如图6,∴==,∴,由折叠的性质得:FG=AF,GE=AE,设AF=3t,则AE=4t,∴FG=3t,DF=6﹣3t,GE=4t,GH=3t,∴FH=FG+GH=3t+3t=6t,同②得:DF=FH,∴6﹣3t=6t,解得:,∴AE=;综上所述,在点E的运动过程中,存在某一位置,使得以E,H,G为顶点的三角形与△AEF相似,AE的长为8或或.10.解:(1)∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,又∵=1,∴△ABD∽△ACE,∴==1,∠B=∠ACE,∴BD=CE,∠BCE=∠ACB+∠ACE=∠ACB+∠B=90°,∴BD⊥CE,故答案为:BD=CE,BD⊥CE;(2)CE=3BD,BD⊥CE,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,又∵=3,∴△ABD∽△ACE,∴==3,∠B=∠ACE,∴CE=3BD,∠BCE=∠ACB+∠ACE=∠ACB+∠B=90°,∴BD⊥CE;(3)如图3,过点A作AH⊥BC于H,∵,AB=,∴AC=3,∴BC===10,∵S△ABC=×AB×AC=×BC×AH,∴AH==3,∴BH===1,∵∠ADB=60°,AH⊥BC,∴∠DAH=30°,∴AH=DH,∴DH=,∴BD=1+,∵CE=3BD,∴CE=3+3,∴S△BDE=×BD×CE=6+3,∵点M是BE的中点,点N是DE的中点,∠BCE=90°,∴CM=BE,CN=DE,MN=BD,∴=,∴△MNC∽△BDE,∴=,∴S△MNC=×(6+3)=.11.解:【探究问题】如图1,∵△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,∴AB=CB=1,AD=ED=,∴AC===,AE===2,∴==,∵∠BAC=∠BCA=45°,∠DAE=∠DEA=45°,∴∠CAE=∠BAD=45°﹣∠BAE,∴△CAE∽△BAD,∴∠ACE=∠ABD=100°,∴∠BCE=∠ACE﹣∠BCA=100°﹣45°=55°,∴∠BCE的度数是55°.【解决问题】如图2,∵△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,∴AB=CB,AD=ED,∴AC===AB,AE===AD,∴==,∵∠BAC=∠BCA=45°,∠DAE=∠DEA=45°,∴∠BAD=∠CAE=45°+∠BAE,∴△BAD∽△CAE,∴∠ABD=∠ACE,∴∠ABD﹣∠BCE=∠ACE﹣∠BCE=45°,故答案为:∠ABD﹣∠BCE=45°.【拓展应用】如图3,延长BG到点G,使BG=3,连结AG,∵AB=4,=,∴==,∵BM⊥AB,∠ADE=90°,∴∠ABG=∠ADE=90°,∴△ABG∽△ADE,∴=,∠BAG=∠DAE,∴=,∠BAG﹣∠BAE=∠DAE﹣∠BAE,∴∠GAE=∠BAD,∴△GAE∽△BAD,∴∠AGE=∠ABD=90°,∴点E在过点G且垂直于AG作BF⊥EG于点F,则∠GFB=∠ABG=90°,∵∠FGB=∠BAG=90°﹣∠AGB,∴△FGB∽△BAG,∴=,∵BG=3,GA===5,∴FB===,∵BE≥BF,∴BE≥,∴BE的最小值为,故答案为:.12.(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AGE∽△AFC,∴,=,∴,∴;(2)解:如图2,过点M作MG∥BC,交AB于点G,交AD于点H,交AC于点F,∵MG∥BC,∴△AHG∽△ADB,△AMH∽△AED,∴,=,∴=,∴==2,∴GH=2HM,同理可得:HM=2MF,∴GH=4MF,GF=7MF,∵NL∥AB,∴△FMN∽△FAG,∴=,∴MN=AG,∵NL∥AB,∴△MHL∽△GHA,∴=,∴ML=AG,∴=;(3)解:如图3,连接DG,并延长DG交AB于Q,∵AB∥CD,∴△ABG∽△EFG,△AQG∽△EDG,∴,,∴,∵DF=2DE,∴EF=3DE,∴=,∴AQ=1,∴QD===,∵点G在QD上运动,∴当CG⊥QD时,CG有最小值,此时,∠CGD=∠DAQ=90°,∵AB∥CD,∴∠AQD=∠CDG,∴△AQD∽△GDC,∴=,∴CG==.13.解:(1)∵∠ADE=∠C=90°,∠A=∠A,∴△ADE∽△ACB,∴=,∵AB=10,AC=8,AE=5,∴=,解得:AD=4,故答案为:4;(2)如图2,在AC上截取CH=CB,连接BH,∵∠ACB=60°,∴△BCH为等边三角形,∴CH=BH=BC=6,∠CHB=60°,∴AH=AC﹣CH=8,∠AHB=120°,∵∠EDB=60°,∴∠ADE=120°,∴∠ADE=∠AHB,∵∠A=∠A,∴△ADE∽△AHB,∴=,即=,解得:AD=;(3)过点B作BM⊥DE于点M,过点E作EN⊥AB于点N,∴∠BMD=∠BME=∠ANE=90°,∵∠EDN=60°,∴∠DEN=30°,∴DN=DE=,则EN==,∴AN=AD+DN=4+=,设DM=a,∵∠BDM=60°,∠DMB=30°,∴∠MBD=30°,∴BD=2a,∴BM==a,∵DE=5,EF=6,∴MF=DE+EF﹣DM=11﹣a,∵∠BCA=∠F+∠FEC,∠BDE=∠A+∠AED,∠AED=∠FEC,∠BCA=∠BDE,∴∠A=∠F,∴△AEN∽△FMB,∴=,即=,解得:a=,∴BD=2a=.14.(1)证明:∵四边形ABCD为菱形,∴AD∥BC,∠BAC=∠CAD=∠BAD,又∵∠EAF=∠BDA,∴∠CAD=∠EAF,∴∠EAC=∠DAF,∵AD∥BC,∴∠DAF=∠G,∴∠EAC=∠G,又∵∠AEC=∠GAE,∴△AEC∽△GAE,∴,即AE2=EC•EG;(2)解:过点A作AH⊥BC交CB于点H,∵四边形ABCD为菱形,∴AD=AB=BC=CD=5,AD∥BC,∵AD∥BC,点F是CD的中点,,∴CG=AD=5,设BE=x,则EC=5﹣x,EG=EC+CG=5﹣x+5=10﹣x,则AE2=EC•EG=(5﹣x)(10﹣x),在Rt△ABH中,cos B=,而AB=5,则HB=3,AH=4,则EH =3﹣x ,在Rt △AEH 中,AE 2=AH 2+EH 2,即AE 2=(3﹣x )2+42,∴(3﹣x )2+42=(5﹣x )(10﹣x ),解得x ==BE ,则S △ABE =BE ×AH =××4=;(3)解:由(1)知,∠EAC =∠DAF ,则∠BAE =∠CAG ,∴∠BAC =∠EAF ,∴当或时,△AGH 与△ABC 相似,当时,∵∠BAC =∠BAD ,∠EAF =∠BAD ,∴∠BAC =∠EAF ,∴∠BAE =∠CAG ,∵AB ∥CD ,∴∠BAE =∠AHC ,∴∠CAG =∠AHC ,又∵∠EAC =∠AGC ,∴△AHC ∽△GAC ,∴,又,∴CH =AB ,∵AB ∥CD ,∴,∴BE =EC =BC =;当时,同理可得:△AHC ∽△GAC ,∴,又∵,∴CG=AB,由(2)知,此时BE=,综上,BE=或.15.解:(1)①∵==1,∴AC=AB,AE=AD,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE,故答案为:BD=CE;②由①可知△BAD≌△CAE(SAS),∴∠ABD=∠ECA,∵∠ABD+∠ACB=90°,∴∠ECA+∠ACB=90°,∴∠CEB=90°,∴CE⊥BD,故答案为:CE⊥BD;(2)EC=2BD,CE⊥BD,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠ABD=∠ECA,∵==2,∴△BAD∽△CAE,∴=2,∴EC=2BD,∵∠ABD+∠ACB=90°,∴∠ECA+∠ACB=90°,∴∠CEB=90°,∴CE⊥BD,∴综上所述,EC=2BD,CE⊥BD;(3)当D点在线段BC上时,如图1,过点A作AF⊥BD交于F点,由(2)知,AC=2AB,∴tan∠ABC=2=,∴AF=2BF,∵AB=2,∴AF=4,BF=2,∵∠ADF=45°,∴DF=AF=4,∴BD=2+4=6,∵=2,∴EC=12,∴S△EBD=×BD×EC=×12×6=36,∵M、N分别是BE、DE的中点,∴MN∥BD,MN=BD,∴=,∵∠ECD=90°,∴CN=ED,CM=BE,∴EN=CN,EM=CM,∴△CMN≌△EMN(SSS),∴=,∴S△CMN=9;当D点在CB的延长线上时,如图2,过A点作AG⊥BD交于点G,同理可得BD=4﹣2=2,∵=2,∴EC=4,∴S△EBD=×BD×EC=×4×2=4,∵=,∴S△CMN=1;综上所述:△CMN的面积为1或9.16.解:(1)如图:(2)∵四边形P'Q'M'N'在△ABC内,∴当M'点在BC上时,菱形P'Q'M'N'的面积最大,∵四边形PQMN是菱形,四边形P'Q'M'N'是菱形,∴Q'M'∥AB,M'N'∥PQ,∴∠QPB=∠M'N'B=60°,∵∠CAB=30°,∠ACB=90°,∴∠B=60°,∴△BM'N'是等边三角形,∴M'B=M'N'=Q'M',∵AB=6cm,∴BC=3cm,∴CM'=3﹣BM',在Rt△CM'Q'中,∠CQ'M'=30°,∴Q'M'=2CM',∴BM'=2(3﹣BM'),解得BM'=2,在△BM'N'中,过点M'作M'E⊥BN'交于点E,∵BM'=2,∠B=60°,∴M'E=,∴菱形P'Q'M'N'的面积=2;(3)延长GF、BC交于O点,连接AO,∵四边形ABCD、AEFG是全等的两个菱形,∴AG=AB,∠AGF=∠ABC,∴∠OGB=∠OBG,∴OG=BO,∵GF=BC,∴OF=OC,∴=,连接OM,∵∠GFE=∠BCD,∴∠MFO=∠MCO,∵∠OFC=∠FCO,∴CM=FM,∴△MOF≌△MOC(SAS),∴∠FOM=∠COM,∵AG=AB,∠AGO=∠ABO,GO=BO,∴△AGO≌△ABO(SAS),∴∠FOA=∠BOA,∴MO与AO重合,∴A、M、O三点共线,∴GF、BC、AM的延长线交于一点O,∴MF∥AG,∴=,∵CM∥AB,∴=,∴==,∴△ABG与△MCF位似.17.解:(1)①∵△ABC与△AED为等腰直角三角形,∴∠BAC=∠EAD=45°,,∴∠BAC﹣∠CAE=∠EAD﹣∠EAC,∴∠BAE=∠CAD,∴△ABE∽△ACD,∴,故答案为:;②∵∠AED=∠CBA=90°,∴DE∥CB,∴==,故答案为:;(2)如图1,作EF⊥AD于F,∴∠AFE=90°,∵AE=DE,∠AED=120°,∴∠EAD=∠EDA=30°,AF=DF,∴AE=2EF,AF=EF,∴AD=2AF=2EF,∴,同理可证:△CAD∽△BAE,∴,故答案为:;(3)如图2,同理可得:△CAD∽△BAE,∴∠ACD=∠ABE,∴点D所经过的路径是线段CD,此时CP=AC﹣AP=1,PE=DE=1,∠CPD=90°,∴CD===,∴自点B运动至点P时,点D所经过的路径长为:.18.解:(1)结论:点E是四边形ABCD的边AB上的相似点.理由:∵∠A=∠DEC=50°∴∠ADE+∠AED=130°,∠BEC+∠AED=130°,∴∠ADE=∠BEC,又∵∠A=∠B,∴△ADE∽△BEC,∴点E是四边形ABCD的边AB上的相似点;(2)如图中所示的点E和点F为AB上的强相似点;(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM,由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,CE=AB,在Rt△BCE中,cos∠BCE=,∴=,∴=,∴AB=BC.19.解:(1)∵△ABC是等腰直角三角形,且点E是BC的中点,∴∠B=∠C=45°,AE⊥BC,BE=AE,∴∠BEP=∠AEP=∠EAC=45°,∴△BPE∽△CEQ,∴,∴BP•CQ=BE•CE=(BC)2=(•AB)2=18;故答案为:18;(2)BP•CQ的值不变,理由如下:由(1)可知:△BPE∽△CEQ,∴,∴BP•CQ=BE•CE=BE•BE=BE2=18;(3)过E点作EN⊥AC于点N,此时重叠部分为△MEQ,设CQ为x,∵BP•CQ=18,∴BP=,∴AP=,∵EN⊥AC,∴∠ENC=90°=∠BAC,∴EN∥AB,∴△ENM∽△PAM,∴,即,解得:AM==,∴MQ=6﹣AM﹣CQ=6﹣x﹣,∴y==(6﹣x﹣)×3,当y=时,代入得:=(6﹣x﹣)×3,整理可得:2x2﹣7x+6=0,∵x=或x=2,∴存在CQ使面积为.20.(1)解:过点G作GH⊥BC于H,∵四边形ABCD是正方形,∴∠ACB=45°,∴GH=CH=1,∵∠EBC=30°,∴BH=,BG=2,∴+1,∴AC=BC=+,∴AG=,故答案为:2,;(2)证明:∵∠EBF=∠ACB=45°,∴∠CGN=45°+∠CBN=∠MBC,∵AD∥BC,∴∠AMH=∠MBC,∴∠AMH=∠CGN,∵∠MAH=∠GCN=45°,∴△AMH∽△CGN;(3)解:连接BD,在BD上取点G,使BG=,连接EG,∵BE=BC,BD=BC,∴=,∵∠EBG=∠DBE,∴△EBG∽△DBE,∴EG=DE,∴DE+4CE=4(DE+CE)=4(EG+CE),∴点C、E、G三点共线时,EG+CE最小.过点G作GH⊥BC于H,设BG=x,则BE=x,BC=2x,∴BH=GH=,∴CH=,∴tan∠BCE==.。
相似三角形压轴题型
相似三角形压轴题型1.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为()米.A.6B.8C.9D.102.有一块直角边AB=4cm,BC=3cm,∠B=90°的Rt△ABC的铁片,现要按照如图所示方式截一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.3.如图,有一块锐角三角形材料,边BC=120mm,高AD=90mm,要把它加工成矩形零件,使其一边在BC上,其余两个顶点分别在AB,AC,且EH=2EF,则这个矩形零件的长为()A.36mm B.80mm C.40mm D.72mm压轴题型汇总14.如图,在△ABC中,AB=AC=6,D是AC中点,E是BC上一点,BE=,∠AED=∠B,则CE的长为()A.B.C.D.5.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是()A.①②③B.①③C.①②D.②③6.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤7.路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E点(如图),已知BC =5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是()A.6.75米B.7.75米C.8.25米D.10.75米8.在矩形ABCD中,AB=4,BC=2,E为BC中点,H,G分别是边AB,CD上的动点,且始终保持GH⊥AE,则EH+AG最小值为()A.2B.C.D.+19.如图,在矩形ABCD中,AB=4,BC=6,若点E是边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF的长为.10.如图,在边长为2个单位长度的正方形ABCD中,E是AB的中点,点P从点D出发沿射线DC以每秒1个单位长度的速度运动,过点P作PF⊥DE于点F,当运动时间为秒时,以P、F、E为顶点的三角形与△AED相似.11.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=;③HD∥BG;④△ABG∽△DHF.其中正确的结论有.(请填上所有正确结论的序号)12.如图,已知正方形ABCD的边长为4,E,F分别为AB,CD边上的点,且EF∥BC,G为EF上一点,且GF=1,M,N分别为GD,EC的中点,则MN=.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.14.在边长为4的正方形ABCD中,点E,F是AD上两点,且AE=DF,∠BCE=60°,CE交对角线BD于G,交BF于点P,连接AP.则四边形ABGP的面积为.15.如图,在菱形ABCD中,∠B=60°,点P是△ACD内一点,连接PA、PC、PD,若PA=5,PB=12,PC=13,则AC•BD=.16.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF.(1)求证:四边形EBFD是菱形;(2)若BK=3EK,AE=4,求四边形EBFD的周长.17.已知:如图,在平行四边形ABCD中,对角线AC与BD交于点O,点E是DB延长线上的一点,且EA =EC,分别延长AD、EC交于点F.(1)求证:四边形ABCD为菱形;(2)如果∠AEC=2∠BAC,求证:EC•CF=AF•AD.18.已知△ABC中,点O是AC中点,连接BO并延长到D,使OD=BO,连接DA,DC.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,过点A作AE⊥BC于E交BD于F,连接ED交AC于H,若∠CAD=45°,AF=3FE=3,求CH的长.19.如图,已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接BG.(1)如图1,若BG=2,AB=6,求AC的长度;(2)如图2,取BE的中点M,在EC上取一点N,使EN=BE,连接AN,过点M作AN的垂线,交AC 于点H,求证:BG=2CH.20.如图,△ABC是一块等腰三角形的废铁片,其中AB=AC=10cm,BC=12cm.利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F.G分别落在AC、AB上.Ⅰ.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.请你帮小聪求出正方形的边长.Ⅱ.小明想:不求正方形的边长也能画出正方形.具体作法是:①在AB边上任取一点G′,如图2作正方形G′D′E′F′;②连接BF′并延长交AC于点F;③过点F作FE∥F′E′交BC于点E,FG∥F′G′交AB于点G,GD∥G′D′交BC于点D,则四边形DEFG即为所求的正方形.你认为小明的作法正确吗?说明理由.1.如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,如果AD ⊥BC ,BC =3,AD =2,EF :EH =2:3,那么EH 的长为()A .B .C .D .22.如图,矩形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上,AH ⊥BC ,垂足为H ,AH 交DG 于点P ,已知BC =6,AH =4.当矩形DEFG 面积最大时,HP 的长是()A .1B .2C .3D .43.如图,在△ABC 中,D 是CB 延长线上一点,∠BAD =∠BAC .在AD 上有一点E ,∠EBA =∠ACB =120°.若AC =2BC =2,则DE 的长()A .B .C .D .压轴题型汇总24.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论中错误的是()A.FB垂直平分OC B.DE=EFC.S△AOE:S△BCM=3:2D.△EOB≌△CMB5.如图,在△ABC中,点E、F在边BC上,点E、B不重合.BE=CF,点D在边AC上,连接ED、DF,∠A=∠EDF=120°,若=m,,则m的值为()A.B.C.D.6.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个7.如图,正方形ABCD中,延长CB至E使CB=2EB,以EB为边作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K.则下列说法:①△ANH≌△GNF;②∠DAM=∠NFG;③FN=2NK;④S△AFN:S四边形DMKH=2:7.其中正确的有()A.4个B.3个C.2个D.1个8.如图,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC、BE、DO、DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有()A.①②③B.①②④C.①②D.②③④9.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.10.如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,正方形DEFG内接于△ABC,点G、F分别在边AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长是.11.如图,△ABC的中线AD、CE交于点G,点F在边AC上,GF∥BC,那么的值是.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则BD的长为.13.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P是线段AD上的动点,过P作PF⊥AE于F,当以点P、F、E为顶点的三角形与△ABE相似时,AP的长为.14.如图,正方形ABCD的边长是3,点E,F分别是AB,BC边上的点,且满足BE=2AE,CF=2BF,连结DE,AF交于点G,BD交AF于点H,则四边形GEBH的面积为.15.如图,矩形ABCD的边长AD=6,AB=4,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为.16.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为.17.如图,正方形ABCD的对角线AC、BD交于点O,∠CBD的平分线BG交AC于E,交CD于F,且DG⊥BG.(1)求证:BF=2DG;(2)若BE=,求BF的长.18.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.21.在Rt△ABC中,∠ACB=90°,AB=5,AC=3.矩形DEFG的顶点D、G分别在边AC、BC上,EF在边AB上.(1)点C到AB的距离为.(2)如图①,若DE=DG,求矩形DEFG的周长.(3)如图②,若矩形DEFG的周长是DE长的8倍,则矩形DEFG的周长为.。
(完整word版)初三相似三角形压轴题专题复习
1.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.2.(2017?二模)如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.3.(2016?苏州一模)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC 向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q 也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.4.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q 两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)5.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA=.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA 上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.6.在Rt△AOB中,OA=3,sin B=,P、M、分别是BA、BO边上的两个动点.点M从点B出发,沿BO以1单位/秒的速度向点O运动;点P从点B出发,沿BA以a单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.(1)线段AP的长度为(用含a、t的代数式表示);(2)如图①,连结PO、PM,若a=1,△PMO的面积为S,试求S的最大值;(3)如图②,连结PM、AM,试探究:在点P、M运动的过程中,是否存在某个时刻,使得△PMB为直角三角形且△PMA是等腰三角形?若存在,求出此时a和t的取值,若不存在,请说明理由.7.(2018?常熟市一模)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin∠BAC=.设AP的长为x.(1)AB=;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.(3)当△PCE是等腰三角形时.请求出x的值;8.△ABC,△DEC均为直角三角形,B,C,E三点在一条直线上,过D作DM⊥AC于M.(1)如图1,若△ABC≌△DEC,且AB=2BC.①过B作BN⊥AC于N,则线段AN,BN,MN之间的数量关系为:;(直接写出答案)②连接ME,求的值;(2)如图2,若AB=CE=DE,DM=2,MC=1,求ME的长.9.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG 重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD 的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x (s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.10.已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAD=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.设P 点坐标为(a,b),试求2S1S3﹣S22的最大值,并求出此时a、b的值.11.如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣x+8与x轴、y轴分别交于A、B两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为;线段OD的长为.(2)设△OPQ的面积为S,求S与t之间的函数关系(不要求写出取值范围),并确定t 为何值时S的值最大?(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.13.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.14.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC 交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.15.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD=.16.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.17.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2518.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=AB.若四边形ABCD的面积为,则四边形AMCD的面积是.19.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=.。
相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧
相似三角形(8大题型)(48道压轴题专练) 压轴题型一 相似形压轴题型1.(20-21九年级上·重庆渝中·期末)如图,△ABC 三个顶点的坐标分别是A (-2,2),B (-4,1),C (-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A'B'C .并把△ABC 的边长放大为原来的2倍,那么点A'的坐标为( )A .(1,-6)B .(1,-7)C .(2,-6)D .(2,-7)2.(23-24八年级下·山东淄博·(2)ABCD AD AB AD <<纸片,以它的一边为边长剪去一个菱形,在余下的平行四边形中,再以它的一边为边长剪去一个菱形.若剪去两个菱形后余下的平行四边形与原平行四边形ABCD 相似,则平行四边形ABCD 的相邻两边AD 与AB 的比值是 .3.(2024·湖北武汉·一模)如图是由小正方形组成的网格,四边形ABCD的顶点都在格点上,仅用无刻度的直尺在所给定的网格中按要求完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先以点A为位似中心,将四边形ABCD缩小为原来的12,画出缩小后的四边形111AB C D,再在AB上画点E,使得DE平分四边形ABCD的周长;(2)在图2中,先在AB上画点F,使得CF BC=,再分别在AD,AB上画点M,N,使得四边形BCMN 是平行四边形.4.(23-24九年级上·江苏南京·阶段练习)形状相同(即长与宽之比相等)的矩形是相似矩形,已知一个矩形长为()1a a³,宽为1.一分为二(1)如图1,将矩形分割为一个正方形(阴影部分)和小矩形,小矩形恰与原矩形相似,则a的值为______.(2)如图2,将矩形分割为两个矩形,使每个小矩形均与原矩形相似,则a的值为______.一分为多(3)有同学说“无论a为何值,该矩形总可以分割为几个小矩形,这几个小矩形都与原矩形相似”,你同意这个说法吗?若同意,在图3中画出一种可行的分割方案;若不同意,举出反例.一分为三(4)将矩形分割为三个矩形,使每个小矩形均与原矩形相似.画出所有可能的分割方案的示意图,并在每个示意图下方直接写出对应的a 的值.5.(20-21八年级下·山东淄博·期末)如图,四边形ABCD ∽四边形A B C D ¢¢¢¢,且62A Ð=°,75B Ð=°,140D Т=°,9AD =,11A B ¢¢=,6A D ¢¢=,8B C ¢¢=.(1)请直接写出:C Ð= 度;(2)求边AB 和BC 的长.6.(23-24九年级上·广西南宁·阶段练习)如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()3,2B ,()2,3C (每个方格的边长均为1个单位长度),请按下列要求画图:(1)111A B C △与ABC V 关于原点O 成中心对称,画出111A B C △并写出点1A 的坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC V 放大,画出放大后的222A B C △并写出点2B 的坐标;(3)根据信息回答问题:已知ABC V 的面积为32,AB ,请直接写出222A B C △的面积和22A B 边上的高的值.压轴题型二 比例线段压轴题型1.(2020古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底0.618≈,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm2.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为 .3.(23-24八年级下·贵州六盘水·期末)已知a ,b ,c ,d ,e ,f 六个数,如果()0a c e k b d f b d f ===++¹,那么a c e k b d f++=++.理由如下:∵()0a c e k b d f b d f===++¹∴a bk =,c dk =,e fk =(第一步)∴()k b d f a c e bk dk fk k b d f b d f b d f++++++===++++++(第二步)(1)解题过程中第一步应用了______的基本性质;在第二步解题过程中,()k b d f k b d f ++=++应用了______的基本性质;(2)应用此解题过程中的思路和方法解决问题:①如果22567a b c ===,则218a b c ++=______;②已知0345x y z ==¹,求23x y z x y z -++-的值.4.(23-24九年级上··的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽1AB =.(1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.5.(22-23九年级上·浙江·周测)若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+×+×+的值.6.(23-24九年级下·山东淄博·期末)已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b =,求a b b +与a b a b -+的值;(2)如果(),a c a b c d b d =¹¹,求证a c b a d c =--;(3)如果a c a b d b +=+,求证a c b d=.压轴题型三 相似三角形的判定压轴题型1.(21-22九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,E 是AD 边的中点,BE ^F ,连接DF ,分析下列四个结论,①AEF CAB △∽△,②CF 2AF =;③DF DC =;④CD AC =.其中正确的结论有( )A .4个B .3个C .2个D .1个2.(2024·广东深圳·二模)如图,在等腰直角ABC V 中,4AB BC ==,D 为BC 上一点,E 为BC 延长线上一点,且45DAE =°∠,2AE AD =,则BD = .3.(2024·广东梅州·模拟预测)(1)如图1,在矩形ABCD 中,点C ,D 分别在边DC ,BC 上,AB AB ^,垂足为点G .求证:ADE DCF ∽V V .【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H Ð=Ð.【类比迁移】(3)如图3,在菱形ABCD 中,E F 分别在边DC ,BC 上,10AE DF ==,7DE =,60AED Ð=°,求CF 的长.4.(2024·山西晋中·二模)综合与实践问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形ABCD 中,4AB =,点E ,F 分别是边AB ,AD 的中点,连接EF ,点G 是线段EF 上的一个动点,连接AG ,将线段AG 绕点A 逆时针方向旋转90°,得到AH ,连接HD ,GB .猜想证明:(1)针对老师给出的问题背景,“智慧小组”发现GB HD =,请你证明这一结论;操作探究:(2)“善思小组”提出问题:如图2,当点G 为线段EF 的中点时,连接FH ,试判断四边形AGFH 的形状,并说明理由;深入探究:(3)“创新小组”BG 与直线DH 交于点M ,当AHD V 为直角三角形时,请直接写出四边形AGMH 的面积.5.(2024·安徽蚌埠·一模)如图1,在四边形ABCD 中,120ABC Ð=°,60ADC Ð=°,对角线AC ,BD 相交于点O ,且AC AD =,BD 平分ABC Ð.(1)求证:DB AB CB =+;(2)如图2,过点D 作DE AB ∥,使DE BC =,连接AE ,取AE 中点 F ,连接DF ,求证:22AC DF OD =×.6.(23-24九年级上·湖南常德·期中)(1)如图1,在四边形ABCD 中,90BAD BCD Ð=Ð=°,连接AC BD ,,过点A 作AE AC ^交CB 的延长线于点E ,求证:E ACD Ð=Ð.(2)如图2,在四边形ABCD 中,AB AD =,(1)中的其它条件不变,点M ,N 分别是BD EC ,的中点,连接AN AM ,,MN .①求证:AE AC =﹔②求证:N ABE AM ∽△△.压轴题型四 相似三角形的性质压轴题型1.(22-23九年级上·上海长宁·期中)已知点D 在ABC V 的边BC 上,联结AD ,如果ABD △与ACD V 相似,那么下列四个说法:①BAD C Ð=Ð;②AD BC ^;③2AD BD CD =×;④22AB BD AC CD =.一定成立的是( ).A .②④B .①③C .①②③D .②③④2.(2024·上海浦东新·三模)如图,在ABC V 中,3AC BC ==,90C Ð=°,点D 在边BC 上(不与点B ,点C 重合),连接AD ,点E 在边AB 上,EDB ADC Ð=Ð.已知点H 在射线AC 上,连接EH 交线段AD 于点G ,当1CH =,且AEH BED Ð=Ð时,则BE AB = .3.(23-24八年级下·山东威海·期末)如图1,矩形ABCD ,点E ,点F 分别为AD ,BC 上的点,将矩形沿EF 折叠,使点B 的对应点B ¢落在CD 上,连接BB ¢.(1)如图2,当点B ¢与点D 重合时,连接BE ,试判断四边形BEB F ¢的形状,并说明理由;(2)若6AB =,8BC =,求折痕EF 的最大值.4.(23-24八年级下·山东东营·期末)综合与探究(1)如图1,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,且AE BF ^,则线段AE 与BF 的之间的数量关系为_____________;(2)【类比探究】如图2,在矩形ABCD 中,35AB AD ==,,点E ,F 分别在边BC ,CD 上,且AE BF ^,请写出线段AE 与BF 的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt ABC V 中,9046ABC AB BC Ð=°==,,,D 为BC 上一点,且2BD =,连接AD ,过点B 作BE AD ^于点F ,交AC 于点E ,求BE 的长.5.(23-24九年级下·广西南宁·阶段练习)已知等边ABC V ,以AC 为斜边向外作Rt ACD △,定义Rt ACD △为等边ABC V 的“关联直角三角形”,连接BD 交AC 于点E ,下面我们来研究与DE BE的值有关的问题.(1)如图①,当“关联直角三角形”是等腰直角三角形时,DE BE的值为______;(2)如图②,当“关联直角三角形”是含30°的直角三角形时,求DE BE的值;(3)如图③,当“关联直角三角形”是一般的直角三角形时,若16,3DE AB BE ==,求BD 的值.6.(2024·安徽·中考真题)如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF Ð=°,求AC BD 的值.压轴题型五 相似三角形的应用压轴题型1.(2024·浙江温州·三模)图1是《九章算术》中记载的“测井深”示意图,译文指出:“如图2,今有井直径CD 为5尺,不知其深AD .立5尺长的木CE 于井上,从木的末梢E 点观察井水水岸A 处,测得“入径CF ”为4寸,问井深AD 是多少?(其中1尺10=寸)”根据译文信息,则井深AD 为( )A .500寸B .525寸C .550寸D .575寸2.(2022·浙江金华·一模)将一本高为17cm (即17cm EF =)的词典放入高(AB )为16cm 的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F 离收纳盒最左端B 处8cm ,若此时将词典无滑动向右倒,书角H 的对应点H ¢恰为CD 中点.(1)收纳盒的长BC = ;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有本书可与边BC 有公共点.3.(2024·江苏南京·一模)在光学中,由实际光线会聚成的像,称为实像,而光线能会聚的是因为折射.图中,凸透镜EF 的焦距为f ,主光轴l EF ^,A ,B ,C ,D 都在l 上,其中O 是光心,2OB OD f ==,蜡烛PQ l ^(蜡烛可移动,且OQ f >),光线PG l ∥,其折射光线GC 与另一条经过光心的光线PP ¢相交于点P ¢(P Q l ¢¢^)即为蜡烛在光屏上所成的实像.图中所有点都在同一平面内.记物高()PQ 为h ,像高()P Q ¢¢为h ¢,物距()OQ ,像距()OQ ¢为v .(1)若10cm f =,10cm h =,15cm u =,=v cm .(2)求证111u v f+=.(3)当f 一定时,画出v 与u 之间的函数图象()u f >,并结合图象描述v 是怎么随着u 的变化而变化的?4.(23-24九年级上·河北邢台·1,小红家的阳台上放置了一个晒衣架,图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点在地面上,经测量得到136cm AB CD ==,51cm OA OC ==,34cm OE OF ==,现将晒衣架完全稳固张开,扣链EF 成一条线段.发现:连接AC .则AC 与EF 有何位置关系?并说明理由;探究:若32cm EF =,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?5.(22-23九年级上·浙江·单元测试)如图,Rt ABC V 为一块铁板余料,90B Ð=°,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.6.(2022九年级·全国·专题练习)阅读理解:如图1,AD 是△ABC 的高,点E 、F 分别在AB 和AC 边上,且EF //BC ,可以得到以下结论:AH EF AD BC=.拓展应用:(1)如图2,在△ABC 中,BC =3,BC 边上的高为4,在△ABC 内放一个正方形EFGM ,使其一边GM 在BC 上,点E 、F 分别在AB 、AC 上,则正方形EFGM 的边长是多少?(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为160cm 的等腰三角形展台.现需将展台用隔板沿平行于底边,每间隔10cm 分隔出一排,再将每一排尽可能多的分隔成若干个无盖正方体格子,要求每个正方体格子内放置一瓶葡萄酒.平面设计图如图3所示,将底边BC 的长度看作是0排隔板的长度.①在分隔的过程中发现,当正方体间的隔板厚度忽略不计时,每排的隔板长度(单位:厘米)随着排数(单位:排)的变化而变化.请完成下表:排数/排0123…隔板长度/厘米160__________________…若用n 表示排数,y 表示每排的隔板长度,试求出y 与n 的关系式;②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?压轴题型六 重心的性质压轴题型1.(23-24九年级上·浙江宁波·期末)如图,点G 是ABC V 的重心,过点G 作MN BC ∥分别交AB AC ,于点M ,N ,过点N 作ND AB ∥交BC 于点D ,则四边形BDNM 与ABC V 的面积之比是( )A .1:2B .2:3C .4:9D .7:92.(2023·上海·一模)在Rt ABC △中,9030B BAC BC Ð=°Ð=°=,,1,以AC 为边在ABC V 外作等边ACD V ,设点E 、F 分别是ABC V 和ACD V 的重心,则两重心E 与F 之间的距离是 .3.(2024·江苏盐城·中考真题)如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)4.(23-24七年级下·江苏扬州·阶段练习)作图.(1)直尺作图:如图1,已知D 、E 分别为AB 、AC 中点,过点A 作AF 平分ABC V 面积;(2)直尺作图:如图2,已知AD BC ∥,在四边形ABCD 中作一点O ,使AOB COD S S =△△;(3)尺规作图:如图3,已知D 为AC 中点,点M 在BC ,在AC 上作点N 使MN 平分ABC V 面积.5.(2024·辽宁丹东·二模)阅读与思考:三角形的重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.三角形重心的一个重要性质:重心与一边中点的连线的长是对应中线长的13.下面是小明证明性质的过程.如图,在ABC V 中,D 、E 分别是边BC 、AC 的中点,AD 、BE 相交于点G ,求证:13GE GD BE AD ==证明:连接ED ,∵D ,E 是边BC ,AC 的中点,∴DE AB ∥,12DE AB =(依据1)∴ABG DEGV V ∽∴12GE GD DE GB GA AB ===(依据2)∴13GE GD BE AD ==(1)任务一,在小明的证明过程中,依据1和依据2的内容分别是:依据1:______________________依据2:______________________(2)应用①如图,在ABC V 中,点G 是ABC V 中的重心,连接AG 并延长交BC 与点E ,若 3.5GE =,求AG 长.②在ABC V 中,中线AD 、BE 相交于点O ,若ABC V 的面积等于30,求BOD V 的面积.6.(2024·河南周口·三模)(1)古往今来,人们在生产和生活中对三角形的应用层出不穷,三角形也是我们平时研究的重点,如图1,已知ABC V 是等边三角形. P 是ABC V 的重心,连接BP CP ,并延长分别交边AC AB ,于点E ,D .试判断:①BPD Ð的度数为 ;②线段PB PD PE ,,之间的数量关系:PB PD PE +;(填写“>”“<”或“=”)(2)如图2,若在等边ABC V 中,点E 是射线AC 上一动点(其中点E 不与点A 重合,且12CE AC <),连接BE ,作边BA 关于直线 BE 的对称线段 BD ,直线CD ,BE 相交于点 P ,试探究线段PB PC PD ,,的数量关系,并说明理由.压轴题型七 平面向量的线性运算压轴题型1.(23-24九年级上·上海·期中)下列判断不正确的是( )A .()222a b a b +=+r r r r ;B .如果向量a r 与b r 均为单位向量,那么a b =r r 或a b =-r r ;C .如果a b =r r ,那么a b =r r ;D .对于非零向量b r ,如果()0a k b k =×¹r r ,那么a b r r P .2.(2024·上海普陀·二模)如图,梯形ABCD 中,AD BC ∥,过点A 作AE DC ∥分别交BD 、BC 于点F 、E ,23BE BC =,设AD a =uuu r r ,AB b =uuu r r ,那么向量FE uuu r 用向量a r 、b r 表示为 .3.(23-24八年级下·上海崇明·期末)如图,点E 在平行四边形ABCD 的对角线BD 的延长线上.(1)填空:BA AB +uuu r uuu r = ,BA AE ED DC +++uuu r uuu r uuu r uuu r = ;(2)图中与AB uuu r 相等的向量是 ,与AD uuu r 相反的向量是 ;(3)求作:DC DE +uuu r uuu r (不写作法,保留作图痕迹,写出结论).4.(23-24八年级下·上海·期末)如图,在四边形ABCD 中,AD BC ∥,点O 是对角线AC 的中点,DO 的延长线与BC 相交于点E ,设AB a uuu r r =,AD b =uuu r r ,BE c =uuu r r .(1)试用向量a r 、b r 、c r 表示向量:ED =uuu r ______;(2)写出图中所有与AD uuu r 互为相反向量的向量:______;(3)求作:AD OC +uuu r uuu r.(画出所求向量,并直接写出结论)5.(23-24八年级下·上海闵行·期末)如图,已知梯形ABCD 中,AB DC P ,点E 在AB 上,ED BC ∥.(1)填空:BE ED DC CB +++=uuu r uuu r uuu r uuu r ,(2)填空:BA AD DC EA ++-=uuu r uuu r uuu r uuu r ;(3)在图中直接作出AE ED AB +-uuu r uuu r uuu r .(不写作法,写结论)6.(2022八年级下·上海·专题练习)如图,已知点M 是△ABC 边BC 上一点,设AB uuu r =a r ,AC uuu r =b r .(1)当BM MC=2时,AM uuuu r =______;(用a r 与b r 表示)(2)当AM uuuu r =4377a b +r r 时,BM MC =______;(3)在原图上作出AM uuuu r 在AB uuu r 、AC uuu r 上的分向量.压轴题型八 相似三角形的动点问题1.(2020·山西·一模)如图,在ABC V 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位长度/秒的速度向点A 运动,同时点Q 从点C 出发以2个单位长度/秒的速度向点B 运动,其中一点到达另一点即停.当以B ,P ,Q 为顶点的三角形与ABC V 相似时,运动时间为( )A .2411秒B .95秒C .2411秒或95秒D .以上均不对2.(2023八年级上·江苏·专题练习)如图,在ABC V 中,90C Ð=°,3AC =,4BC =,动点P 从点B 出发以每秒1个单位长度的速度沿B A ®匀速运动;同时点Q 从点A 出发同样的速度沿A C B ®®匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.3.(2024·吉林长春·三模)如图,在Rt ABC △中,90ABC Ð=°,8AB =,6BC =,点D 为AC 中点,动点P 从点A 出发,沿边AB 以每秒5个单位长度的速度向终点B 运动,连结DP ,将线段DP 绕点D 逆时针旋转90°得线段DE ,连结PE .设点P 运动的时间为t 秒.(1)用含t 的代数式表示点P 到AC 的距离为________;(2)当点E 落在ABC V 内部(不包括边界)时,求t 的取值范围;(3)当PE 与ABC V 的一边平行时,求线段PE 的长度;(4)当经过点E 与ABC V 的一个顶点的直线平分ABC V 面积时,直接写出t 的值.4.(2024·江苏苏州·二模)如图,矩形ABCD 中,4AB =厘米,3BC =厘米,点E 从A 出发沿AB BC -匀速运动,速度为1厘米/秒;同时,点F 从C 出发沿对角线CA 向A 匀速运动,速度为1厘米/秒,连接DE DF EF 、、,设运动时间为t 秒.请解答以下问题:(1)当0 2.5t <<时①t 为何值时,EF AD ∥;②设DEF V 的面积为y ,求y 关于t 的函数;5.(2023·吉林松原·模拟预测)已知ABC V 中,90C Ð=°,3cm AC =,4cm CD =,BD AD =.点F 从点A 出发,沿AC CD -运动,速度为1cm/s ,同时点E 从点B 出发,沿BD DA -运动,运动速度为1cm/s ,一个点到达终点,另一点也停止运动.设AEF △ 的面积为S 2cm ,点E ,F 运动时间为t s .(1)求BD 的长;(2)用含t 的代数式表示DE ;(3)求S 与t 的函数关系式,并写出t 的取值范围.6.(23-24九年级下·河北邯郸·阶段练习)如图1和2,在矩形ABCD 中,6,8AB BC ==,点K 在CD 边上.且73CK =.点M N ,分别在,AB BC 边上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速运动,点E 在CD 边上随P 移动,且始终保持^PE AP ;点Q 从点D 出发沿DC 匀速运动,点P Q ,同时出发,点Q 的速度是点P 的一半,点P 到达点N 时停止,点Q 随之停止.设点P 移动的路程为x .(1)当点Q 与点K 重合时,通过计算确定点P 的位置;(2)若点P 在BN 上,当BP CE =时,如图2,求x 的值;(3)在点P 沿折线MB BN -运动过程中,求点Q ,E 的距离(用含x 的式子表示);(4)已知点P 从点M 到点B 再到点N 共用时20秒,请直接写出点K 在线段QE 上(包含端点)的总时长.。
相似三角形压轴题
相似三角形压轴题1. 题目- 在△ABC中,D为BC边上一点,E为AC边上一点,∠ADE = ∠B,已知AB = 5,BD = 3,BC = 9,求CE的长。
2. 解析- 因为∠ADE = ∠B,∠A = ∠A,所以△ADE∽△ABC。
- 根据相似三角形的性质,对应边成比例。
- 首先求DC的长,DC = BC - BD = 9 - 3 = 6。
- 由△ABD∽△ABC,可得(AB)/(BC)=(BD)/(DC)。
- 设CE = x,则AE = AC - x,AC=(AB× DC)/(BD)。
- 因为(AD)/(AB)=(AE)/(AC)(由△ADE∽△ABC得到)。
- 先求AC的值,AC=(5×6)/(3)=10。
- 再由(AD)/(AB)=(AE)/(AC),设AD = y,(y)/(5)=(10 - x)/(10)。
- 又因为(AD)/(BD)=(AE)/(EC)(由△ADE∽△ABC得到的比例关系变形),(y)/(3)=(10 - x)/(x)。
- 解方程组(y)/(5)=(10 - x)/(10) (y)/(3)=(10 - x)/(x),先由(y)/(5)=(10 - x)/(10)得y=(5(10 - x))/(10)=(10 - x)/(2)。
- 把y=(10 - x)/(2)代入(y)/(3)=(10 - x)/(x),(frac{10 - x)/(2)}{3}=(10 - x)/(x)。
- 化简得(10 - x)/(6)=(10 - x)/(x),因为10 - x≠0(若10 - x = 0,则x = 10,不符合三角形边长关系),所以x = 6,即CE = 6。
1. 题目- 已知△ABC和△DEF相似,相似比为2:3,△ABC的面积为16,求△DEF的面积。
2. 解析- 对于相似三角形,它们面积的比等于相似比的平方。
- 设△DEF的面积为S。
- 因为相似比为2:3,所以((2)/(3))^2=(16)/(S)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形压轴题精选(中位线与位似)一.选择题(共9小题)1.(2014•漳州模拟)△ABC的三边长分别为a、b、c,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第2009中点三角形的周长为()A.B.C.D.2.(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5C.4.5 D.43.(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A. 4 B.3C.2D.1第3题第4题第5题4.(2012•烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1D.h2=h15.(2011•太原)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm6.(锦州)如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()A.1cm2B.1.5cm2C.2cm2D.3cm2第6题第7题7.(铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28 B.32 C.18 D.258.(2011•江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形A n B n C n D n的面积是.A.①②B.②③C.②③④D.①②③④第8题第9题9.(2013•青岛)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()二.填空题(共9小题)第10题第11题第12题10.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是_________.11.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.12.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为_________.13.(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n的面积为_________.第13题第14题14.(2012•惠安县质检)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去…,则:(1)线段AB与A4B4的数量关系是_________;(2)四边形A5A4B4B5的面积为_________.15.(2010•翔安区模拟)如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,那么S△DMN:第15题第16题第17题16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_________.17.(2012•咸宁)如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为_________.18.(2014•槐荫区二模)正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为_________.三.解答题(共6小题)19.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.20.(2011•岳池县模拟)如图所示,在梯形ABCD中,AD∥BC,AD<BC,F,E分别是对角线AC,BD的中点.求证:EF=(BC﹣AD).21.(2010•顺义区)在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.22.几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=(AB+BC+AC).(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.23.(2009•潍坊)在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.(1)试判断三角形PBC的形状;(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.24.(2014•江西模拟)图①,②,③,④都是由24个边长为1的小正方形组成的4×6的网格,请你分别在图②,③,④的网格中只用直尺各画一个三角形.要求:(1)都与图①中的三角形相似,但四个三角形任何两个都不全等.(2)三角形顶点都是网格中小正方形的顶点.相似三角形压轴题精选(图形变换)一.选择题(共8小题)1.(2012•莆田)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)第1题第2题第3题2.(2010•武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)3.(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)4.(2012•深圳)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1D.a>5.(2009•黄埔区一模)如图,若△A'B'C'与△ABC关于直线AB对称,则点C的对称点C’的坐标是()6.(2013•红河州)在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)7.(2013•保康县模拟)已知点P关于x轴的对称点是P1,点P1关于原点O的对称点是P2,点P2的坐标为(3,4),则点P的坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)8.(2014•江西样卷)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)二.填空题(共6小题)9.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为_________(用n表示).10.(2013•兰州)如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为_________.11.(2008•达州)已知P1点关于x轴的对称点P2(3﹣2a,2a﹣5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是_________.12.(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=_________.13.(2012•铁岭)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为_________.14.(2012•钦州)如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________.参考答案与试题解析一.选择题(共9小题)1.(2014•漳州模拟)△ABC的三边长分别为a、b、c,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第2009中点三角形的周长为()A.B.C.D.解:根据中位线定理,第一个中点三角形的周长是原三角形的;第二个中点三角形的周长是第一个中点三角形的;第三个中点三角形的周长是第二个中点三角形的,…于是,第2009中点三角形的周长为(××××…×)(a+b+c)=.故选B.点评:本题重点考查了三角形的中位线定理,证得中点三角形的周长是原三角形周长的一半以及找到各中点三角形之间的数量关系是解题的关键.2.(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5C.4.5 D.4解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选A.点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.3.(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4B.3C.2D.1解答:解:连接DE并延长交AB于H,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE(AAS),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB﹣AH=AB﹣DC=2,∴EF=1.故选D.点评:本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.4.(2012•烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1D.h2=h1考点:三角形中位线定理.专题:压轴题;探究型.分析:直接根据三角形中位线定理进行解答即可.解答:解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.点评:本题考查的是三角形中位线定理,即三角形的中位线平行于第三边,并且等于第三边的一半.5.(2011•太原)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm考点:三角形中位线定理;等腰三角形的性质;勾股定理;正方形的性质.专题:计算题;压轴题.分析:根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC 的长.解答:解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选D.点评:本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.6.(2009•锦州)如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()A.1cm2B.1.5cm2C.2cm2D.3cm2考点:三角形中位线定理.专题:压轴题;整体思想.分析:根据题意,易得MN=DE,从而证得△MNO≌△EDO,再进一步求△ODE的高,进一步求出阴影部分的面积.解答:解:连接MN,作AF⊥BC于F.∵AB=AC,∴BF=CF=BC=×8=4,在Rt△ABF中,AF==,∵M、N分别是AB,AC的中点,∴MN是中位线,即平分三角形的高且MN=8÷2=4,∴NM=BC=DE,∴△MNO≌△EDO,O也是ME,ND的中点,∴阴影三角形的高是AF÷2=1.5÷2=0.75,∴S阴影=4×0.75÷2=1.5.故选B.点评:本题的关键是利用中位线的性质,求得阴影部分三角形的高,再利用三角形的面积公式计算.7.(2008•铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28 B.32 C.18 D.25考点:三角形中位线定理.专题:压轴题.分析:延长线段BN交AC于E,从而构造出全等三角形,(△ABN≌△AEN),进而证明MN是中位线,从而求出CE的长.解答:解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN,∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25,故选D.点评:本题主要考查了中位线定理和全等三角形的判定.解决本题的关键是作出辅助线,利用全等三角形来得出线段相等,进而应用中位线定理解决问题.8.(2011•江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形A n B n C n D n的面积是.A.①②B.②③C.②③④D.①②③④考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质.专题:压轴题;规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;故本选项错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故本选项正确;③根据中位线的性质易知,A5B5=A3B3=×A1B1=××AC,B5C5=B3C3=×B1C1=××BD,∴四边形A5B5C5D5的周长是2×(a+b)=;故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是;故本选项正确;综上所述,②③④正确.故选C.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.9.(2013•青岛)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()考点:位似变换;坐标与图形性质.专题:压轴题.分析:根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选D.点评:此题主要考查了位似图形的性质,根据已知得出对应点坐标的变化是解题关键.二.填空题(共9小题)10.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.考点:三角形中位线定理;勾股定理.专题:压轴题.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.11.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.考点:三角形中位线定理;等腰三角形的判定与性质.专题:压轴题.分析:延长CF交AB于点G,证明△AFG≌△AFC,从而可得△ACG是等腰三角形,GF=FC,点F是CG中点,判断出DF是△CBG的中位线,继而可得出答案.解答:解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,同学们要注意培养自己的敏感性,一般出现即是角平分线又是高的情况,我们就需要寻找等腰三角形.12.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.考点:三角形中位线定理;直角三角形斜边上的中线.专题:压轴题.分析:利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长解答:解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为1.5.点评:本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.13.(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n的面积为.考点:三角形中位线定理;菱形的性质.专题:压轴题;规律型.分析:由E、F、G、H分别为菱形A1B1C1D1各边的中点,得到A1H=C1F,又A1H∥C1F,利用一组边长平行且相等的四边形为平行四边形得到四边形A1HC1F为平行四边形,根据平行线间的距离相等及平行四边形与三角形的面积公式,可得出四边形A1HC1F的面积等于△HB1C1面积的2倍,等于△A1D1F面积的2倍,而这三个的面积之和为菱形的面积S,可得出四边形A1HC1F面积为菱形面积S的一半,再由平行线等分线段定理得到A2为A1D2的中点,C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,利用三角形的中位线定理得到HB2=A1A2,D2F=C1C2,可得出A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h),下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x),分别利用梯形的面积公式及平行四边形的面积公式表示出各自的面积,得出三个面积之比,可得出平行四边形A2B2C2D2的面积占三个图形面积的,即为四边形A1HC1F面积的,为菱形面积的,同理得到四边形A3B3C3D3的面积为菱形面积的()2,以此类推,表示出四边形A n B n C n D n的面积即可.解答:解:∵H为A1B1的中点,F为C1D1的中点,∴A1H=B1H,C1F=D1F,又A1B1C1D1为菱形,∴A1B1=C1D1,∴A1H=C1F,又A1H∥C1F,∴四边形A1HC1F为平行四边形,∴S四边形A1HC1F=2S△HB1C1=2S△A1D1F,又S四边形A1HC1F+S△HB1C1+S△A1D1F=S菱形A1B1C1D1=S,∴S四边形A1HC1F=S,又GD1=B1E,GD1∥B1E,∴GB1ED1为平行四边形,∴GB1∥ED1,又G为A1D1的中点,∴A2为A1D2的中点,同理C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,∴HB2=A1A2,D2F=C1C2,又A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h),下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x),∴S梯形A1A2B2H=S梯形C1C2D2F=(x+x)h=xh,S平行四边形A2B2C2D2=xh,即S梯形A1A2B2H:S梯形C1C2D2F:S平行四边形A2B2C2D2=3:3:4,又S梯形A1A2B2H+S梯形C1C2D2F+S平行四边形A2B2C2D2=S四边形A1HC1F,∴S平行四边形A2B2C2D2=S四边形A1HC1F=S,同理S四边形A3B3C3D3=()2S,以此类推得四边形A n B n C n D n的面积为()n﹣1S或.故答案为:()n﹣1S或.点评:此题考查了三角形的中位线定理,平行四边形的判定与性质,平行线等分线段定理,以及平行四边形与三角形面积的计算,利用了转化的数学思想,是一道规律型试题,灵活运用三角形中位线定理是解本题的关键.14.(2012•惠安县质检)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去…,则:(1)线段AB与A4B4的数量关系是A4B4=AB;(2)四边形A5A4B4B5的面积为.考点:三角形中位线定理;相似三角形的判定与性质.专题:压轴题;规律型.分析:(1)根据三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半,求解即可;(2)根据相似三角形的性质通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律即可求出四边形A5A4B4B5的面积.解答:解:(1)∵AC、BC两边的中点为A1、B1,∴A1B1=AB,同理:A2B2=A1B1,A3B3=A2B2,A4B4=A3B3,∴A4B4=AB,故答案为:A4B4=AB;(2)∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,∴△A1B1C的面积为1×=,∴四边形A1ABB1的面积=△ABC的面积﹣△A1B1C的面积==1﹣,∴四边形A2A1B1B2的面积=△A1B1C的面积﹣△A2B2C的面积=﹣==,∴第5个四边形的面积==.故答案为:.点评:本题考查了三角形的中位线性质定理和相似三角形的性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.15.(2010•翔安区模拟)如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,那么S△DMN:S四边形ANME=1:5.考点:三角形中位线定理;相似三角形的判定与性质.专题:常规题型;压轴题.分析:根据三角形的中位线定理,把各边的关系转化为面积的关系来解答.解答:解:DE是中位线,所以S△ADE=S△ABC,S四边形DBCE=S△ABC,连接AM,AE=CE,所以S△AEM=S△MEC所以S△MEC=×S△ABC=S△ABC,所以S四边形DBCM=(﹣)S△ABC=S△ABC,∵DM:BC=1:4,所以S△NDM:S四边形DBCM=1:15.所以S△NDM=S△ABCS△AMN=(﹣)S△ABC=S△ABC S四边形ANME=(+)S△ABC=S△ABC所以S△NDM:S四边形ANME=:=1:5.点评:解答此题,首先根据相似三角形的面积比等于相似比的平方,求出S△ADE=S△ABC,便可找到突破口解答.16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为2.考点:梯形中位线定理;等边三角形的性质.专题:压轴题;动点型.分析:分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.解答:解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=6﹣1﹣1=4,∴MN=2,即G的移动路径长为2.点评:本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.17.(2012•咸宁)如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为28.考点:梯形中位线定理;菱形的判定与性质.专题:压轴题;探究型.分析:先根据EF∥BC交AB于F,EG∥AB交BC于G得出四边形BGEF是平行四边形,再由BE平分∠ABC 且交CD于E可得出∠FBE=∠EBC,由EF∥BC可知,∠EBC=∠FEB,故∠FBE=∠FEB,由此可判断出四边形BGEF是菱形,再根据E为CD的中点,AD=2,BC=12求出EF的长,进而可得出结论.解答:解:∵EF∥BC交AB于F,EG∥AB交BC于G,∴四边形BGEF是平行四边形,∵BE平分∠ABC且交CD于E,∴∠FBE=∠EBC,∵EF∥BC,∴∠EBC=∠FEB,∴∠FBE=∠FEB,∴四边形BGEF是菱形,∵E为CD的中点,EF∥BC,AD=2,BC=12,∴EF是梯形ABCD的中位线,∴EF=(AD+BC)=×(2+12)=7,∴四边形BGEF的周长=4×7=28.故答案为:28.点评:本题考查的是梯形中位线定理及菱形的判定与性质,根据题意判断出四边形BGEF是菱形是解答此题的关键.18.(2014•槐荫区二模)正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2)..考点:位似变换;坐标与图形性质.专题:计算题;压轴题.分析:由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.解答:解:当位似中心在两正方形之间,连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上,∵点D的纵坐标为2,点F的纵坐标为1,∴其位似比为2:1,∴CH=2HO,即OH=OC,又C(﹣3,0),∴OC=3,∴OH=1,所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长,两延长线交于M,过M作MN⊥x轴,∵点D的纵坐标为2,点F的纵坐标为1,∴其位似比为2:1,∴EF=DC,即EF为△MDC的中位线,∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°,∴△DCE≌△MNE,∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2,则M坐标为(5,﹣2),综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2)点评:本题主要考查了位似变换以及坐标与图形结合的问题,能够熟练运用位似的性质求解一些简单的位似计算问题.三.解答题(共6小题)19.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.考点:三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.专题:压轴题.分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE 和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.解答:(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;。