高速与超高速加工技术

合集下载

超精密加工与超高速加工技术

超精密加工与超高速加工技术

超精密加工与超高速加工技术第一篇:超精密加工与超高速加工技术超精密加工与超高速加工技术一、技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。

目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150-1000m/min,纤维增强塑料为2000-9000m/min。

各种切削工艺的切速范围为:车削700-7000m/min,铣削300-6000m/min,钻削200-1100m/min,磨削250m/s以上等等。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。

超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。

二、现状及国内外发展趋势1.超高速加工工业发达国家对超高速加工的研究起步早,水平高。

在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。

在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。

目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。

(三)先进制造工艺3-超高速加工技术

(三)先进制造工艺3-超高速加工技术
of Mining & Technology
(2)汽车工业领域
高速加工在汽车生产领域的应用主要体现在模具和零件 两个方面。 加工两个方面。应用高速切削加工技术可加工零件的范围相 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、电机 转子、汽缸体和模具等。汽车零件铸模以及内饰件注塑模的制 转子、汽缸体和模具等。 造正逐渐采用高速加工。 造正逐渐采用高速加工。
China University of Mining & Technology
China University of Mining & Technology
2、超高速加工技术的应用
(1)航空航天工业领域
高速加工在航空航天领域应用广泛,如大型整体结构件、 高速加工在航空航天领域应用广泛,如大型整体结构件、 薄壁类零件、微孔槽类零件和叶轮叶片等。 薄壁类零件、微孔槽类零件和叶轮叶片等。国外许多飞机及发 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、舵机 壳体、雷达组件、热敏感组件、钛和钛合金零件、 壳体、雷达组件、热敏感组件、钛和钛合金零件、铝或镁合金 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 即直接在实体毛坯上进行高速切削,加工出高精度、 即直接在实体毛坯上进行高速切削,加工出高精度、高质量的 铝合金或钛合金等有色轻金属及合金的构件, 铝合金或钛合金等有色轻金属及合金的构件,而不再采用铆接 等工艺,从而可以提高生产效率,降低飞机重量。 等工艺,从而可以提高生产效率,降低飞机重量。
China University of Mining & Technology

超高速加工技术

超高速加工技术

应用案例二:汽车发动机缸体加工
总结词
提高缸体质量和加工效率
详细描述
在汽车发动机缸体加工中,超高速加工技术能够提高缸体的加工效率和精度,同时降低废品率。通过高速旋转的 刀具和高效的切削液系统,可以快速去除材料,减少切削力和热量的产生,提高缸体的表面质量和耐久性。
应用案例三:模具钢材料加工
总结词
提高模具寿命和加工效率
发展趋势
随着新材料、新工艺的不 断涌现,超高速加工技术 正朝着智能化、绿色化、 复合化等方向发展。
主题重要性
促进制造业转型升级
满足市场需求
超高速加工技术的应用有助于提高生 产效率、降低成本,推动制造业向智 能化、柔性化、绿色化方向转型升级。
随着市场对产品品质和性能要求的不 断提高,超高速加工技术的应用能够 满足消费者对高品质产品的需求。
超高速加工技术能够大幅提高航空航天材料的加工效率,缩 短生产周期,降低制造成本,同时保证零部件的加工精度和 质量。
汽车制造
汽车制造领域需要大量高精度零部件 ,超高速加工技术能够快速、准确地 加工出汽车发动机缸体、缸盖、变速 器壳体等复杂零部件。
超高速加工技术能够提高汽车零部件 的加工效率,降低生产成本,同时提 高零部件的耐磨性、耐腐蚀性和疲劳 强度等性能。
数字化
超高速加工技术将向数字化方向发展, 实现数字化的加工模型和加工过程的 仿真与优化。
05
超高速加工技术的实际案例
应用案例一:航空叶片加工
总结词
提高加工效率,降低生产成本
详细描述
超高速加工技术应用于航空叶片加工,能够显著提高加工效率,缩短生产周期, 降低生产成本。通过高转速的刀具和精确的数控系统,可以快速、准确地完成 叶片的切削和磨削,提高表面质量和精度。

_超高速加工技术

_超高速加工技术

2、超高速主轴系统动态特性及热态特性研究:动刚度、固有 频率等参数的影响。 3、超高速主轴系统的润滑和冷却技术研究:润滑充分问题、 冷却效果问题。 4、超高速主轴系统多目标优化设计、虚拟设计技术研究。
第四节 超高速加工进给单元制造技术
超高速加工进给单元是超高速加工机床的重要组成部分。 一、超高速加工进给单元的基本要求: 1、要求具有大的加、减速度:在瞬时达到高速,瞬时准停。 2、要求具有搞的定位精度:能精确控制零件的尺寸精度。 二、超高速加工进给单元的关键技术: 1、高速位置环芯片研制;
4、超高速加工中工件状态的测试技术; 5、超高速加工中自适应控制技术; 6、超高速加工中智能控制技术。
第五节 超高Βιβλιοθήκη 加工测试技术从某种意义上讲,超高速加工测试技术是超高速加工得到应 用的技术关键。 一、超高速加工测试技术的概念: 主要是指在超高速加工过程中,通过传感、分析、信号处理 等,对超高速机床及系统的状态进行实时在线监测和控制的监测 技术。 监测主要基于对切削力、声发射、切削功率和温度等信息参 数检测,来监测加工状态。 二、超高速加工测试的关键技术: 1、基于监控参数的在线检测技术; 2、超高速加工的多传感器融合检测技术; 3、超高速加工机床中各单元系统功能部件的测试技术;
3、超高速进给单元制造技术; 4、超高速加工用刀具和磨具材料; 5、超高速机床支承; 6、超高速加工测试技术。
二、超高速切削机理: 1、萨洛蒙超高速切削理论: 三个切削速度区: ⑴ 常规的切削速度区:现行的切削加工速度范围; ⑵ 不能切削区:此区切削速度下,切削温度过高,刀具不能 承受; ⑶ 高速切削区:当切削速度达到某一数值后,切削温度不再 升高,反而随切削速度继续增加,切削温度呈下降趋势,切削 温度降到刀具能承受的切削速度时,即为高速切削的最低速度。 试验表明,萨洛蒙超高速切削理论并不适用于所有的加工 材料,有些材料在超高速切削时不存在不能切削区。 2、超高速磨削最大切屑厚度hmax理论: 在保持其它参数不变,仅增大磨削速度情况下, hmax会减 小,每个磨削刃上的作用切削力也会减小。

超高速超精密加工技术主要内容

超高速超精密加工技术主要内容

加工方法及机理研究 刀具、 刀具、磨具的研究 加工装备技术研究 测量技术研究
超精密加工技术的应用 超精密加工技术的发展趋势
作 业
(1)超高速、超精密加工技术二者选择其一。 超高速、超精密加工技术二者选择其一。 (2)按照上述提纲要求查阅文献,然后归纳总结写出 按照上述提纲要求查阅文献, 文献综述” “文献综述”。 (3)要求条理清晰,内容精练,3000~5000字。 要求条理清晰,内容精练,3000~5000字 (4)必需手写,不能打印。 必需手写,不能打印。 (5)该作业作为本课程平时成绩的一部分,占15%。 该作业作为本课程平时成绩的一部分, 15%。
超高速超精密加工技术主要内容
一 超高速加工技术
超高速加工技术的内涵 超高速加工技术的关键技术(重点) 超高速加工技术的关键技术(重点)
加工机理研究 主轴单元制造技术研究 进给单元制造技术研究 刀具、 刀具、磨具研究
Байду номын сангаас
超高速加工技术的应用 超高速加工技术的发展趋势
二 超精密加工技术
超精密加工技术的内涵 超精密加工技术的关键技术(重点) 超精密加工技术的关键技术(重点)

高速加工与超高速加工

高速加工与超高速加工
度低,离心力小;弹性模量高, 刚度大;摩擦系数低;抗腐蚀性 能好。
轴承润滑:油脂润滑、油雾 润滑、油气润滑等。
1.2 超高速切削加工关键技术
2.超高速切削的主轴系统
主轴轴承: 气浮轴承--高回转精度、高转速、低温升,承载能力低。
1.2 超高速切削加工关键技术
2.超高速切削的主轴系统
主轴轴承: 液体静压轴承--运动精度高,动态刚度大,有油升影响。
1.3 超高速磨削技术
超高速磨削砂轮 砂轮基体--必须考虑高速离心力作用; 砂轮磨粒--立方氮化硼、金刚石。
高速砂轮典型结构 变截面等力矩腹板结构,无中心法兰孔, 通过多个小螺孔与主轴安装固定,以降低法兰孔应力。
1.3 超高速磨削技术
超高速磨床结构 具有高动态精度、
高阻尼、高抗振性和 热稳定性。
时,刀具的主要失效形式为刀尖破损,设计时应 着重考虑提高刀尖的抗冲击强度。 超高速铣削刀具材料:有整体硬质合金、涂层硬 质合金、陶瓷、硬质合金和立方氮化硼等。
思考与练习
1. 在怎样的速度范围下加工属于高速加工?分析 高速切削加工所要解决的关键技术。 2. 超高速切削包含哪些相关技术? 3. 简述超高速磨削特点及关键技术。 4. 简述超高速铣削特点及关键技术。
1. 高速与超高速加工技术
1.1 高速与超高速切削技术概述 1.2 超高速切削加工关键技术 1.3 超高速磨削技术 1.4 超高速铣削技术
1.1 高速与超高速切削技术概述
“高速加工”的起源
Salomon切削理论: 工件材料均有一个
临界切削速度,在该速 度下有最高切削温度。
为什么要进行高速加工?
萨洛蒙曲线
常用结构有龙门式、并联式机床结构。
1.2 超高速切削加工关键技术

超高速加工技术

超高速加工技术

(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
• Bremen大学在高效深磨的研究方面取得了世界公 认的高水平成果,并积极在铝合金、钛合金、铬镍 合金等难加工材料方面进行高效深磨的研究。
近年来,我国在高速、超高速加工的各关键领域 (如大功率高速主轴单元、高加减速直线进给电机、 陶瓷滚动轴承等方面)也进行了较多的研究并有相应 的研究成果。

超高速加工技术ppt课件

超高速加工技术ppt课件
。随着数控机床、加工中心和柔性制造系统的应 用,使机械加工的辅助工时大大缩短。在这种情 况下,辅助工时在生产过程中占的比重已经较小 ,所以不能通过一味的减小辅助工时来提高生产 率。而切削工时占了总工时的主要部分,成为主 要矛盾,只有大幅减少切削工时,提高切削速度 和进给速度等,才能大幅提高生产率。
概述 • 超高速加工技术的历史背景
超高速加工技术的应用
高速切削的应用领域
• 航空航天工业轻合金的加工:飞机上的零件通常 采用“整体制造法”,其金属切除量相当大〔一 般在70%以上),采用高速切削可以大大缩短切 削时间。
超高速加工技术的应用
• 美国波音公司的F15战斗机两个方向舵之间的气动减速板 以前需要500多个零件装配而成,制造一个需要交货期为3 个月;而现在应用高速切削技术直接在实体铝合金毛坯上 铣削加工出来交货期只需要几天时间。
超高速加工技术的应用
高速切削的应用领域
✓难加工材料的加工〔如:Ni基高温合金和Ti合金) ✓ 纤维增强复合材料加工 ✓ 精密零件加工 ✓ 薄壁易变形零件的加工
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
超高速加工技术的相关技术
概述
• 超高速加工技术的内涵和范围 • 超高速加工技术是指采用超硬材料刀具磨具和能
可靠地实现高速运动的高精度、高自动化、高柔 性的制造设备,以极大地提高切削速度来达到提 高切除率、加工精度和加工质量的现代制造加工 技术。
概述
内涵
高速切削是一个相对概念,是相对常规切削而言,用较高
的切削速度对工件进行切削。一般认为应是常规切削速度的
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展趋势 • 超高速加工技术的发展趋势应符合加工中心或

超高速加工技术的基本概念,技术原理与特点

超高速加工技术的基本概念,技术原理与特点

超高速加工技术的基本概念,技术原理与特点下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超高速加工技术:基本概念、技术原理与特点解析一、基本概念超高速加工技术,简称HSM(High-Speed Machining),是指在保证加工精度和表面质量的前提下,通过大幅度提高切削速度和进给速度来实现高效、高质量的切削加工工艺。

机械制造的新工艺和新方法

机械制造的新工艺和新方法

机械制造与自动化的新工艺和新方法随着机械工业的发展和科学技术的进步,机械制造工艺的内涵和外延不断发生变化常规工艺不断优化并普及,原来十分严格的工艺界限和分工,如下料和加工、毛坯制造和零件加工,粗加工和精加工、冷加工和热加工等在界限上逐步趋于淡化,在功能上趋于交叉,各种先进加工方法不断出现和发展。

以下为一些机械制造的新工艺和新方法:1、超高速加工技术超高速加工技术是指采用超硬材料刀具磨具和高速运动的自动化制造设备,以极大的切削速度来达到提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工能使被加工金属材料在切除过程中的剪切滑移速度达到或超过某个极限值,使切削加工过程所消耗的能量、切削力、加工表面温度、刀具磨具磨损、加工表面质量、加工效率等明显优于常规切削速度下的指标,它是提高切削和磨削效果、提高加工质量、加工精度和降低加工成本的重要手段。

与常规切削加工相比,超高速加工有以下优点:(1)随着进给速度的提高,单位时间内材料的切除率可以增加3—6倍,可以大幅度缩短零件加工的切削工时,显著提高生产率.(2)切削力可以降低30%以上。

(3)切削过程极其迅速,95%以上的切削热被切屑带走,来不及传给工件,故特别适合加工容易热变形的零件.(4)机床作高速运转,振动频率特别高,工作平稳振动小,因而能加工非常精密、非常光洁的零件。

2、超精密加工技术超精密加工是指加工精度和表面质量达到极高程度的精密加工工艺。

目前超精密加工的主要手段有:金刚石刀具超精切削,金刚石砂轮和CBN砂轮超精密磨削、超精密研磨和抛光、精密特种加工和复合加工.金刚石砂轮超精密磨削是当前超精密加工的重要研究方向之一,其主要加工方式有外圆磨、无心磨、、沟槽磨和切割等,被加工材料有陶瓷、半导体等难加工材料,其关键技术包括金刚石砂轮的修整、微粉金刚石砂轮超精密磨削等.金刚石砂轮的修整包括整形和修锐两部分,对于密实型无气孔的金刚石砂轮,如金属结合剂金刚石砂轮,一般在整形后还需要修锐;有气孔型陶瓷结合剂金刚石砂轮在整形后即可使用。

先进制造技术第4章超高速加工技术

先进制造技术第4章超高速加工技术
单元,电主轴。 快速进给和高加/减速的驱动系统,直线电机驱动。 高性能的高速CNC控制系统。配以高速加工的 CAD/CAM软件。 超硬的刀具材料(包括涂层工艺及材料)。
目前市场上出现的铣削加工机床主轴转速在 20000~60000r/min,最高达到150000 r/min;
20世纪80年代,计算机控制的自动化生产技术的 高速发展成为国际生产工程的突出特点,工业发达国 家机床的数控化率已高达70%~80%。随着数控机 床、加工中心和柔性制造系统在机械制造中的应用, 使机床空行程动作(如自动换刀、上下料等)的速度和 零件生产过程的连续性大大加快,机械加工的辅助工 时大为缩短。在这种情况下,再一味地减少辅助工时, 不但技术上有难度,经济上不合算,而且对提高生产 率的作用也不大。这时辅助工时在总的零件单件工时 中所占的比例已经较小,切削工时占去了总工时的主 要部分,成为主要矛盾。只有大幅度地减少切削工时, 即提高切削速度和进给速度等,才有可能在提高生产 率方面出现一次新的飞跃和突破。这就是超高速加工 技术(Ultra-high speed machining UHSM)得以 迅速发展的历史背景。。
日本约在20世纪60年代开始了对超高速切削机 制的研究,田中义信利用来复枪改制的超高速切削 装置,实现了高达200~700m/s的超高速切削,对主 切削力和加工表面的变形层性能进行研究。指出: 超高速切屑形成完全是剪切作用的结果,随着切削 速度的提高,剪切角急剧增大,工件材料的变质层 厚度与普通速度下相比降低了50%。
W9Mo3Cr4V等。
硬质合金:是由高硬难熔金属碳
化物粉末,以钴或镍为粘接剂,用粉末
冶金的方法制成的。它的硬度可达
74 ~82(90)HRC。目前多用于制 造各种简单刀具,如车刀、铣刀、刨刀 的刀片等。

超高速加工

超高速加工

2、超高速切削刀具结构
超高速切削刀具的结构主要从加工精度、安全性、 高效方面考虑,如超高速刀具的几何结构和刀具的装 夹结构。 为了使刀具具有足够的使用寿命和低的切削力,刀 具的几何角度必须选择最佳数值。如超高速切削铝合 金时,刀具最佳前角数值为 12°~ 15°,后角数值为 13°~ 15°;超高速切削钢材时,对应的是 0°~ 5° 和 12°~ 16°,铸铁对应的是 0°和 12°,铜合金是 8°和16°;超高速切削纤维强化复合材料时,最佳前 角数值为20°,后角为15°~20°。
1、超高速切削的刀具材料
(3) 陶瓷刀具材料。陶瓷刀具材料主要有氧化铝基 和氮化硅基两大类,是通过在氧化铝和氮化硅基体 中分别加入碳化物、氨化物、硼化物、氧化物等得
到的,此外还有多相陶瓷材料。目前国外开发的氧
化铝基陶瓷刀具约有20余个品种,约占陶瓷刀具总 量的2/3;氮化硅基陶瓷刀具约有10余个品种,约占 陶瓷刀具总量的1/3。陶瓷刀具可在200~1000 m/min的切削速度范围内高速切削软钢(如A3钢)、淬
先进机械制造技术—— 超高速加工技术
陈春
目录

一、超高速加工含义 二、超高速加工中的刀具技术 三、超高速切削机床 四、加工策略改变
一、超高速加工的含义
1、超高速加工的定义

超高速加工技术:采用超硬材料刀具磨具和能 可靠地实现高速运动的高精度、高自动化、高 柔性的制造设备,以极大地提高切削速度来达 到提高材料切除率、加工精度和加工质量的现 代制造加工技术。
硬钢、铸铁等。
1、超高速切削的刀具材料
(4) PCD刀具材料。PCD是在高温高压条件下通过 金属结合剂将金刚石微粉聚合而成的多晶材料。虽然 它的硬度低于单晶金刚石,但有较高的抗弯强度和韧 性。PCD材料还具有高导热性和低摩擦系数。另外,

高速与超高速加工技术解析

高速与超高速加工技术解析

高速加工技术的发展与应用 高速加工技术的应用
1.在航空、汽车工业中的应用 2.在模具制造领域的应用 3.在特殊材料加工的应用
整体叶轮加工图
石墨电机加工
薄壁加工
高速加工技术的发展与应用 高速加工技术的关键技术
①高速主轴 ②快速进给系统 ③高性能的CNC控制系统 ④先进的机床结构 ⑤高速切削的刀具系统
超高速切削概念示意图
概述 高速和超高速切削的特点
①可减少工序,提高生产率 ②切削力小,热变形小 ③加工精度高 ④加工能耗低,节省制造资源
高速加工技术的发展与应用 高速加工技术的发展与现状
高速加工技术的发展的发展经历了高速切削的理论探索、 应用探索、初步应用、较成熟的应用四个发展阶段。美国 60年代初由空军主持开始超高速切削机理研究。德国自 1984年开始至今,对超高速切削机床、刀具等相关技术 进行系统的研究。日本于20世纪60年代着手高速切削机 理的研究,现在已后来居上,跃居世界领先地位。20世纪 90年代以来发展更迅速,于1996年研制出了日本第一台 卧式加工中心,日本先端技术研究会把超高速切削 列为 五大现代制造技术之一。如今,美、德、日、法、瑞士、 意大利生产的不同规格的各种 商业化超高速机床已经进 入市场,应用于飞机、汽车及模具制造。近年来,我国在 高速超高速加工的各关键领域如大功率高速主轴单元、高 加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多 的研究,但总体水平同国外尚有较大差距,必须急起直追。
高速加工技术的关键技术 高速主轴
高速主轴单元是高速加工机床最关键的部件。在超高速运转的情况下, 传统的齿轮变速和皮带传动方式已不能满足要求,为适应这种切削加 工,高速主轴应具有先进的主轴结构,优良的主轴轴承,良好的润滑 和散热等新技术。

超高速超精密加工技术主要内容

超高速超精密加工技术主要内容
超精密加工技术可以保证加工的高 精度,提高产品的质量和性能。
高可靠性
超高速超精密加工技术可以保证加 工过程的稳定性和可靠性,减少故 障和误差。
技术挑战
设备成本高
超高速超精密加工设备成本较高,需要大量的资 金投入。
技术难度大
超高速超精密加工技术难度较大,需要高技能的 技术人员操作和维护。
加工材料有限
纳米级加工技术是利用纳米级的加工工具和工艺来制造纳米 级零件和结构的技术。
详细描述
纳米级加工技术采用特殊的加工工具和工艺,如纳米压印、 纳米光刻等,实现纳米级别的加工精度。该技术能够制造出 具有纳米级精度和复杂结构的零件和结构,广泛应用于微电 子、生物医学等领域。
加工设备与工具
总结词
加工设备与工具是实现超高速超精密加工的关键因素之一。
详细描述
加工设备与工具的精度、稳定性和可靠性对超高速超精密加工的加工效果和效率有着至关重要的影响 。先进的加工设备与工具能够提供更高的加工精度和效率,同时减少误差和故障率,提高加工质量和 效率。
04
技术优势与挑战
技术优势
高效率
超高速加工技术可以大大提高加 工效率,缩短加工时间,降低生
产成本。
高精度
微型机械零件
该技术还可以用于制造微型机械零件,如微型传感器、微型执行器等,以满足微电子领域对高精度、小尺寸零件 的需求。
其他ቤተ መጻሕፍቲ ባይዱ域应用案例
医疗器械领域
超高速超精密加工技术可以用于制造医疗器械,如人工关节、牙科种植体等,以提高其 表面质量和生物相容性。
能源领域
该技术还可以用于制造能源设备,如太阳能电池板、燃料电池等,以提高其光电转换效 率和能量密度。
优化切削参数和刀具路径, 提高工件表面完整性和光 洁度。

超高速与超精密加工技术

超高速与超精密加工技术

(5)加工环境
• 超精密加工不仅要有精密的加工设备、加工刀具以 及超精密测量仪器和手段,高稳定性的加工环境也是保 证超加工精度的主要因素。加工环境主要有温度、湿度、 净化和防震等方面的要求。 • 环境温度可根据不同加工要求控制在20摄氏度左右, 并采用专门恒温室和恒温罩的局部恒温来达到恒温要求。 • 在恒温室内,湿度一般保持在55%-60%,以防止设备 锈蚀以及一些仪器的影响(如激光干涉仪的零点漂移 等)。 • 超精密加工应在高洁净室内进行。灰尘的混入会使工 件表面划伤,使工件精度受到影响,为此要进行空气的 净化处理。根据加工性质与加工零件要求的不同,通常 要求洁净度为你100-10000级。(即每立方英尺体积中直 径大于0.5μ m的灰尘粒不得超过100-10000个)。

在超精密切削加工中,振动对加工精度、表 面粗糙度均有较大影响,且会降低金刚石刀具的 使用寿命。其中,机床振动已有本身解决,而为 防止由外界传入的振动,就需要将加工设备安放 在带防振沟和隔振器的防振地基上,同时可将加 工设备放在空气弹簧垫上来隔离低频振动。 • 超精密加工有时还需要一些特殊工作环境,如 防磁、防静电、防电子辐射、防X射线、防原子辐 射等,则可根据需要进行整体环境或局部环境的 处理。
2、超高速切削的速度范围
1. 高速加工切削速度的范围 超高速加工切削速度范围因不同的工件材料而异 ◎铝合金(Aluminum Alloy):1600m/min以上 ◎铜(Cu):900-5000 m/min ◎钢(Steel):500-2000 m/min ◎灰铸铁(Gray cast iron):1500m/min以上 ◎钛(Ti):150-1000m/min 超高速加工切削速度范围随加工方法不同也有所不同 ◎车削(Turing):700-7000 m/min ◎铣削(Milling):300-6000 m/min ◎钻削(Drilling):200-1100 m/min ◎磨削(Grinding):250 m/s以上 ◎ 镗削(Boring):35-75m/min

05第二节 高速与超高速加工技术

05第二节 高速与超高速加工技术
第三章 先进制造工艺技术
第二节 高速加工及超高速加工技术
一、超高速加工技术的内涵、范围
内涵:采用超硬材料的刃具,通过极大地提 高切削速度和进给速度来提高材料切除率、 加工精度和加工质量的现代加工技术,其切 削速度通常比常规高10倍左右。
不同加工工艺、加工材料 超高速加工切削速度范围
加工 工艺 车削 铣削 钻削 磨削 拉削 铰削 锯削 切削速度范围 切削速度范围 加工材料 (m/min) (m/min) 700~7000 2000~7500 铝合金 300~6000 900~5000 铜合金 200~1100 600~3000 钢 5000~10000 800~3000 铸钢 30~75 >500 耐热合金 20~500 150~1000 钛合金 50~500 2000~9000 纤维增强塑料
超高速切削的刀具材料:
涂层刀具、 金属陶瓷刀具、 陶瓷刀具、 立方氮化硼、 聚晶金刚石(PCD)刀具 CBN(立方氮化硼)刀具材料
表1 不同CBN含量的刀片及用途 CBN含量(%) 50 65 80 90 80~90 用 途 连续切削淬硬钢(45HRC~65HRC) 半断续切削淬硬钢(45HRC~65HRC) Ni-Cr铸铁 连续重载切削淬硬钢(45HRC~65HRC) 高速切削铸铁(45HRC~65HRC), 粗、半精切削淬硬钢
90年代从两个方向上发展:
一、在普通机床的基础上对关键零部件 进行改进; 二、研制完全不同于普通机床的新型结 构机床。
关键技术
进给驱动系统高速化 运动部件较量化和伺服进给控制精密化 新运动原理机床的出现
直线电机驱动系统 :电动机与滑台刚性连接
X、Y、Z三轴均采用直线电机驱动 、 、 三轴均采用直线电机驱动
1、加工效率高 :切削速度、进给速度比常规切削高5~10倍, 、 加工时间通常可缩减到原来的1/3。 2、切削力小 :加工切削力比常规降低30%,单位功率材料切 、 除率可提高 40%以上,通常刀具寿命可提高约70%。 3、热变形小:95%以上的切削热来不及传给工件而被切屑迅 、热变形小: 速带走。 4、加工精度高 :切屑被飞快地切离工件,切削力和切削热影 、 响小,从而使工件表面的残余应力小,使刀具和工件的变形 小,保持了尺寸的精确性、较好的表面质量。

超高速加工技术

超高速加工技术

超高速加工技术070212班:王川前言:现在随着工业技术的进一步发展,超高速度切削加工技术已成为切削加工的主流,日益广泛地被应用于模具、航空、高速机车和汽车工业等领域,并应取得了巨大的经济效益。

尤其在模具制造工业中,德国、日本、美国等大约有30%-50%的公司用超高速切削加工技术。

这样做的优点既是加工效率高,质量好,又减少了后续的手工打磨和抛光工序。

在航空与高速机车行业,飞机的骨架与机翼、高速机车的车厢骨架均为铝合金整体薄壁构件,都需要切除大量的金属,从毛坯开始的切除量甚至达到90%。

采用超高速切削加工技术,加工时间按缩短到原来的几分之一。

汽车工业发动机铝合金和铸铁缸体,广泛采用超高速切削加工技术,大大地提高了加工效率,降低成本。

此外,超高速切削加工技术还应用于快速成形、光学精密零件和仪器仪表等加工领域。

我国的超高速切削加工技术最早应用于轿车工业,20世纪80年代后期相继从别的先进国家引进了轿车自动生产线,其中大量应用了超高速切削加工技术。

近年来,我国航天、航空、汽轮机磨具等制造行业也引进了大量加工中心和数控机床,都不同程度地开始推广应用超高速切削加工技术。

超高速加工是切削加工发展的方向,在21世纪必将成为切削加工的主流。

作为先进制造技术的一项全新的共性实用技术,超高速切削加工技术将克服当前存在的一些技术障碍,在未来得到更好的发展!(图一):超高速铣削(图二):超高速钻削一、“超高速加工”概念:采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料“切除率”、“加工精度”和“加工质量”的现代加工技术,其切削速度通常比常规加工高10倍左右。

(1)、超高速加工的“前提”和“先决条件”:超硬材料刀具刀具材料:从碳素钢和合金工具钢,高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石、立方氮化硼、氮化硅及聚晶立方氮化硼等。

刀具结构:主要有“整体”和“镶牙”两类。

“镶牙刀具”主要采取机夹结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速主轴单元是高速加工机床最关键的部件。在超高速运转的情况下, 传统的齿轮变速和皮带传动方式已不能满足要求,为适应这种切削加 工,高速主轴应具有先进的主轴结构,优良的主轴轴承,良好的润滑 和散热等新技术。 高速主轴采用的轴承有滚动轴承、气浮轴承、液体静压轴承和磁浮轴 承几种形式。

高速加工技术的关键技术 快速进给系统
超高速切削概念示意图
概述 高速和超高速切削的特点
①可减少工序,提高生产率
②切削力小,热变形小 ③加工精度高
④加工能耗低,节省制造资源
高速加工技术的发展与应用 高速加工技术的发展与现状

高速加工技术的发展的发展经历了高速切削的理论探索、 应用探索、初步应用、较成熟的应用四个发展阶段。美国 60 年代初由空军主持开始超高速切削机理研究。德国自 1984年开始至今,对超高速切削机床、刀具等相关技术进 行系统的研究。日本于20世纪60年代着手高速切削机理的 研究,现在已后来居上,跃居世界领先地位。20世纪90年 代以来发展更迅速,于1996年研制出了日本第一台卧式加 工中心,日本先端技术研究会把超高速切削 列为五大现 代制造技术之一。如今,美、德、日、法、瑞士、意大利 生产的不同规格的各种 商业化超高速机床已经进入市场, 应用于飞机、汽车及模具制造。近年来,我国在高速超高 速加工的各关键领域如大功率高速主轴单元、高加减速直 线进给电机、陶瓷滚动轴承等方面也进行了较多的研究, 但总体水平同国外尚有较大差距,必须急起直追。
直线电机驱动系统
高速加工技术的关键技术 高性能的CNC控制系统

随着计算机技术的发展,许多高速切削机床的CNC控制系统采用多个 32位甚至64位CPU,同时配置功能强大的计算机处理软件,使工件加 工质量在高速切削时得到明显的改善。相应地,伺服系统则发展为数 字化、智能化和软件化,从而保证了高速进给速度的加工要求。
高速加工技术的关键技术 先进的机床结构
混联结构机床示意图
六杆机床结构示意图
高速加工技术的关键技术 高速切削的刀具系统


硬质合涂层刀具
陶瓷刀具 聚晶金刚石刀具
立方氮化硼刀具
陶瓷刀具
硬质合涂层刀具
立方氮化硼刀具
聚晶金刚石刀具
高速与超高速切削技术
--------12模具设计与制造3班 密亚囡
概述 高速加工技术的发展与应用
高速切削加工的关键技术
概述 高速切削的概念与高速切削技术

高速切削是一个相对概念,是相对常规切削而言, 用 较高的切削速度对工件进行切削。一般认为应 是常规切削 速度的5~10倍。 高速切削的速度范 围与加工方法和工工技术的应用
1.在航空、汽车工业中的应用
2.在模具制造领域的应用
3.在特殊材料加工的应用
整体叶轮加工图
石墨电机加工
薄壁加工
高速加工技术的发展与应用 高速加工技术的关键技术
①高速主轴
②快速进给系统
③高性能的CNC控制系统
④先进的机床结构 ⑤高速切削的刀具系统
高速加工技术的关键技术 高速主轴
相关文档
最新文档