概率论与数理统计随机事件

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计

概率论与数理统计

一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,

概率论与数理统计总复习参考

概率论与数理统计总复习参考
运算的优先次序: 逆,积,和,差
定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.

概率论与数理统计教程

概率论与数理统计教程
第一章 事件与概率
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
1、包含关系 若事件 A 出现, 必然导致 B 出现 则称事件 B 包含事件 A,记作B A 或 A B.
特别地 若事件A包含事件B,而且事件B包含 事件A, 则称事件A与事件B相等,记作 A=B.
2.两事件的和与并
“二事件 A, B至少发生一个”也是一个事件, 称为事件 A 与事件B的和事件.记作A B,显然 A B {e | e A或e B}.
若事件 A 、B 满足 A B 且 AB .
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
五、随机事件的关系及运算
(1)、随机事件间的关系
设试验 E 的样本空间为 , 而 A, B, Ak (k 1,2,)是 的子集.
推广:
N元情形
n
推广 称 Ak 为n个事件 A1, A2 ,, An 的积事件,
k 1
即A1, A2 ,, An同时发生;

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。

下面将对概率论与数理统计的一些重要知识点进行总结。

一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。

- 概率:用来描述随机事件发生的可能性大小的数值。

2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。

- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。

3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。

- 离散随机变量:取有限个或可列个数值的随机变量。

- 连续随机变量:取无限个数值的随机变量。

4. 期望与方差- 期望:反映随机变量平均取值的数值。

- 方差:反映随机变量取值偏离期望值的程度。

5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。

- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。

二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。

- 抽样分布:指用统计量对不同样本进行计算所得到的分布。

2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。

- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。

3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。

- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。

4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。

- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。

5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论与数理统计随机事件与概率条件概率与乘法公式

概率论与数理统计随机事件与概率条件概率与乘法公式

概率论与数理统计第1章随机事件与概率第4讲条件概率与乘法公式01 条件概率02 乘法公式本 讲 内容在解决许多概率问题时,往往需要在某些附加条件下世界万物都是互相联系、互相影响的,随机事件也不例?条件概率外.通事故发生的可能性明显比天气状况优良情况下要大得定程度的相互影响.多.在同一个试验中的不同事件之间,通常会存在着一例如,在天气状况恶劣的情况下交求事件的概率.概率,将此概率记作P(B|A).如在事件A 发生的条件下求事件B 发生的在100件产品中有72件为一等品,从中取两件产品,记A表示“第一件为一等品”,B表示“第二件为一等品”. 求P(B),P(B|A).Ὅ例1解由前例可知无论有放回抽样和无放回抽样都有(1)有放回抽样(2)无放回抽样独立性如何定义?.设A 、B 为两事件, P ( A ) > 0 , 则称为事件 A 发生的条件下事件 B 发生的条件概率.称为在事件B 发生的条件下事件A 的条件概率.同理Ὅ 定义Ὅ性质条件概率也是概率, 故概率的重要性质都适用于条件概率.例如:在100件产品中有72件为一等品,从中取两件产品,记A 表示“第一件为一等品”,B 表示“第二件为一等品”. Ὅ例2 2) 可用缩减样本空间法1) 用定义计算:P (A )>0A 发生后的缩减样本空间所含样本点总数在缩减样本空间中B 所含样本点个数无放回抽样Ὅ 计算.在全部产品中有4%是废品,有72%为一等品. 现从其中任取一件,发现是合格品,求它是一等品的概率.Ὅ例3解设A=依题意,P(A)=所求概率为P(B|A) .{任取一件为合格品},B={任取一件为一等品}0.96,0.72.P(B)=利用事件的关系及概率性质公式求条件概率Ὅ例4设A,B,C 是随机事件,A与C互不相容,则.由条件概率的定义:若已知P(A), P(B|A)时, 可以反过来求P(AB).὎注乘法公式.某工厂有职工400名,其中男女职工各占一半,Ὅ例5男女职工中技术优秀的分别为20人和40人,从中任选一名职工,计算(1)该职工技术优秀的概率;(2)已知选出的是男职工,他技术优秀的概率.解设A表示“选出的职工技术优秀”,B表示“选出的职工为男性”,则:(1)利用古典概率有.(2)通过缩减样本空间,有.Ὅ例6某杂志包含三个栏目“艺术”(记为事件A)、“图书”(记为事件B)、“电影”(记为事件C),调查读者的阅读习惯有如下结果:试求解01 条件概率02 乘法公式本 讲 内容乘法公式推广ab -1ab O F (x )xb a 1xf (x )O盒中装有100个产品, 其中3个次品,从中不放回Ὅ例7地取产品, 每次1个, 求(1)取两次,两次都取得正品的概率;(2)取三次,第三次才取得正品的概率.解令A i为第 i 次取到正品(波利亚罐子--传染病模型)一个罐子中包含b 个白球和r 个红球. b 个白球, r 个红球Ὅ 乘法公式应用举例8随机地抽取一个球,观看颜色后放进行四次,试求第一、二次取到白 球且第三、四次取到红球的概率.回罐中,并且再加进c 个与所抽出 的球具有相同颜色的球.这种手续于是W 1W 2R 3R 4表示事件“连续取四个球,第一、二个是白球,第三、四个是红球. ”设W i =R j ==P (W 1)P (W 2|W 1)P (R 3|W 1W 2)P (R 4|W 1W 2R 3)P (W 1W 2R 3R 4)解1,2,3,4{第i 次取出是白球},i =j ={第j 次取出是红球},1,2,3,4记A=为了防止意外,在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,系统(Ⅰ)和系统(Ⅱ)的有效概率分别为0.92和0.93,在系统(Ⅰ)失灵的情况下,系统(Ⅱ)仍有效的概率为0.85,求两个报警系统至少有一个有效的概率.Ὅ例9解报警系统至少一个有效”可表示为A ∪B ,由于“两个“系统(Ⅰ) 有效”,B=“系统(Ⅱ)有效”,且A 和 互斥,因此:学海无涯,祝你成功!概率论与数理统计。

《概率论与数理统计》1.1 随机试验与随机事件

《概率论与数理统计》1.1 随机试验与随机事件

i点 5, 6
}
在一起所构成的事件)
复合事件
事件 B = { 掷出奇数点 }
五. 随机事件间的关系及其运算
设试验 E 的样本空间为 S, A, B, Ak (k 1, 2, ) 是 S 的子集.
1. 事件的包含:如( A果中事的件每A个发样生本必点然都导包致含事在件BB中发)生.
注 ▲
则称 事件 B 包含事件 A 或 A 含于事 件 B 。记作:B A或 A B
从观察试验开始 研究随机现象,首先要对 研究对象进行观察或试验.
这里的试验指的是随机试验.
第一节 随机试验与随机事件
一. 试 验 : 为了研究随机现象,就要对客观事物进行 观察,观察的过程称之为试验。记为 E。
例1 E1:掷一枚硬币观察正面,反面出现的情况。 E2:记录一小时内,到某保险公司投保的户数 E3:射手射击一个目标,直到射中为止,观察 其射击的次数。 E4:从一批产品中抽取十件,观察其次品数。 E5:抛一颗骰子,观察其出现的点数。
A
B
为 A 与 B 的和 (并), 记作:
A B 或 A B x xA 或 xB
AB

▲ 它是由事件 A 和 B 所有样本点构成的集合 n
▲ 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件
k1
k 1 Ak 为可列个事件 A1 , A2 ,
的和事件
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件,
样本空间元素 是由试验目的 所确定的,不 同的试验目的 其样本空间也 是不一样的。
S
.e
样本点e
例 3.若试验 E是将一枚硬币抛掷两次. 试写出该试验 E 的样本空间.

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。

以下是对概率论与数理统计主要知识点的详细总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

我们通常用大写字母A、B、C 等来表示。

随机事件的关系包括包含、相等、互斥(互不相容)和对立等。

2、概率的定义概率是用来度量随机事件发生可能性大小的数值。

概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。

概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。

3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。

二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。

其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。

2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。

三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。

2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。

概率论与数理统计知识点

概率论与数理统计知识点

概率论与数理统计知识点概率论和数理统计是数学中的两个重要分支,研究随机现象的规律性和推断问题的方法。

概率论主要研究随机事件的概率及其计算方法,数理统计则是利用概率论的理论和方法,通过对数据进行收集、处理和分析,从中得到有关总体的参数估计和假设检验结果。

本文将介绍一些常见的概率论与数理统计的知识点。

一、随机事件与概率1. 随机事件的定义:随机事件指在一次试验中可能发生也可能不发生的事件。

2. 必然事件与不可能事件:必然事件是指在每次试验中一定发生的事件,而不可能事件则是指在每次试验中一定不会发生的事件。

3. 事件的运算:事件的运算包括并、交、补三种基本运算,分别表示两个事件的并集、交集以及一个事件的补集。

4. 概率的定义与性质:概率是度量随机事件发生可能性的数值,其范围介于0和1之间。

对于任意一个事件,其概率不小于0且不大于1,且必然事件的概率为1,不可能事件的概率为0。

二、概率分布1. 离散型随机变量及其概率分布:离散型随机变量的取值是可以数出来的,其概率分布由概率质量函数(Probability Mass Function,简称PMF)给出。

2. 连续型随机变量及其概率分布:连续型随机变量的取值是连续的,其概率分布由概率密度函数(Probability Density Function,简称PDF)给出。

3. 常见概率分布:- 二项分布:描述了一系列独立的伯努利试验中成功次数的概率分布。

- 正态分布:也称为高斯分布,是最重要的概率分布之一,常用于自然科学和社会科学的统计分析。

- 泊松分布:用于描述在一段固定时间或空间内事件发生的次数的概率分布。

- 指数分布:用于描述连续时间上事件发生的间隔时间的概率分布。

- t分布:用于小样本情况下对总体均值的推断。

三、参数估计1. 点估计与区间估计:参数估计分为点估计和区间估计两种方法。

点估计是通过样本数据直接估计出总体参数的取值,而区间估计是通过样本数据给出总体参数的一个区间估计范围。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计随机事件与概率随机事件

概率论与数理统计随机事件与概率随机事件

概率论与数理统计第1章随机事件与概率第1讲随机事件第一讲随机事件随机现象随机现象的统计规律性随机试验如何研究随机现象的规律性?概率统计的研究对象概率统计的研究内容全概率统计的研究方法本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机现象的规律性是通过大量试验呈现出来的,为了研究这种规律性,我们需要对随机现象进行调查、观察或试验.这类工作我们统称为“随机试验”,简称为“试验”,用E表示.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定. 例1给微信好友发消息,观察对方是否回复;检验10件产品,记录其中的次品数;调查某收银台一天内使用移动支付的次数;研究某品牌电脑的使用寿命.随机试验E 所有可能的结果组成的集合,记为S 或Ω.E 1给微信好友发消息,观察对方是否回复.E 2检验10件产品,记录其中的次品数.1=S 2=S 样本空间 例2{0,1,2,,10}E 4研究某品牌电脑的使用寿命.E 3调查某收银台一天内使用移动支付的次数.3=S 4=S 注研究随机现象时, 第一步就是建立样本空间.{0,1,2,3,}{|0}≥t t本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机事件样本空间的子集, 记为A ,B ,…基本事件仅由一个元素(样本点)组成的子集,每次试验必定生.发生且只可能发生一个的结果.复合事件由若干个基本事件组成的随机事件.每次试验必定不发生的事件,记为每次试验必定发生的事件,即样本空间S . 必然事件不可能事件∅=A =B =C =D 抛骰子例3.AS文氏图(Venn diagram)在一般情况下,事件的关系是怎样的呢?事件是样本空间的子集,因此,事件的关系和运算与01随机事件集合的关系和运算是完全相似的. 要学会利用概率论的语言来解释这些关系及其运算.这里需要强调的是,本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算A=BSAB它表示事件A 发生,则事件B 一定发生.它表示:事件A 与事件B 的样本点完全相同.().⊂⊃A B B A 包含关系如果事件A 的样本点都在事件B 中,则称事件A 包含于事件B .抛一枚骰子中的随机试验中=A例4相等关系=B{2},A B⋃ 事件的和(并)考察某同学期末考试的成绩情况.=A 例5事件A 与事件B 的样本点合在一起构成的事件.它表示:“事件A 与事件B 至少有一个发生”.A B ⋃=BA ABS=B推广推广它表示英语、高数至少有一门及格.1=ni i A 至少有一个发生.表示12,,,n A A A 1∞=i i A 同时发生.表示12,,A A它表示英语、高数两门课都及格.A B AB⋂或 事件的积(交)表示事件A 与事件B 共有的样本点构成的事件.考察某同学期末考试的成绩情况.A = 例5它表示:“事件A 与事件B 同时发生”.AB =B=推广推广1=ni i A 12,,n A A A 表示同时发生.1∞=i i A 12,,A A 表示同时发生.A B- 事件的差由属于A 但不属于B 的样本点构成的事件.A =考察电视机的使用寿命t (:h) 例4它表示:“事件A 发生而事件B 不发生”.B =A B -=SBA -A B{t |t 3000}.>{t |t 10000}≥,{t |3000t 10000}<<,互不相容(互斥)若事件A ,B 不能同时发生.即考察电视机的使用寿命t (:h)A = 例5B =ABS则事件A 与B 互不相容. 对立事件(逆事件)"A∩B=Φ".则称事件A 与B 互不相容.对于事件A ,由所有不包含在A 中的样SAB A=本点所组成的事件称为A 的对立件,{t |t 3000}>,{t |t 10000}≥,记对应事件运算集合运算()=A B C ()=A B C 03随机事件的关系和运算运算规律BA ,=AB =A B .BA ()ABC ,()=A B C ().A B C ()().A CBC ()=A B C ()().A B A C (1)交换律:(2)结合律:(3)分配律:逆交和差=A B 1==ni i A 03随机事件的关系和运算运算顺序括号优先AB ,.A B =A B 1=ni i A , 1.=ni i A 1==ni i A(4)对偶律:(D.Morgan 律)CAB ABCABC A B C利用事件的关系和运算可表达复杂事件01随机事件的关系与运算例6设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列(1)A 发生, B 与C 不发生.(2)A 与B 发生, C 不发生.(3)A 、B 、C 中至少有一个发生.(4)A 、B 、C 都发生.事件ABC =ABACBCC B A CB AC B A C B A C B A ——A ,B ,C 不都发生.=ABC ⋃⋃A B C03随机事件的关系和运算设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列事件(5)A 、B 、C 都不发生.(6)A 、B 、C 中不多于一个发生.(7)A 、B 、C 中不多于两个个发生(8)A 、B 、C 中不至少有两个发生.D 如右图所示的电路中,设事件A 、B 、C 分别表示开关a 、b 、c 闭合,用A 、B 、C 表示事件“指示灯亮”及事件“指示灯不亮”. 例701排列及其逆序数解=D设abc=D ().A B C =D ,,则D 发生当且仅当A 及B ∪C 都发生A 发生当且仅当发生或 BC 发生=ABC =ABCABCABCABC A B C ABCABCABC设A ,B ,C 分别表示第1,2,3个产品为次品, 例8A B C AB BC CA用A ,B ,C 的运算可表示下列各事件(1)至少有一个次品(2)没有次品(3)恰有一个次品(4)恰有两个个次品()()()ABCABCABC ABCABCABC ABC ABC=(5)至多有两个次品(考虑其对立事件)ABC =第1讲随机事件这一讲我们学习了随机事件以及事件间的关系与运算,利用这些关系与运算,我们可以用简单事件去表示复杂事件,从而利用简单事件的概率得到复杂事件的概率.下一讲我们介绍一类简单概率模型——古典概型.学海无涯,祝你成功!概率论与数理统计。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例14 观察一个新灯泡的寿命 其样本点也有无穷多个 (且不可数!) t小时 0t 样本空间为 {t小时|0t} 或简记为 {t|0t}[0 )
四、随机事件
随机事件 在随机试验中 人们除了关心试验的结果本身外 往往还 关心试验的结果是否具备某一指定的可观察的特征 概率论 中将这一可观察的特征称为一个事件 如果一个事件在随机试验中可能发生也可能不发生 则 这样的事件称为随机事件
六 事件的关系与运算
事件 事件之间的关系与事件的运算
集合
集合之间的关系与集合的运算
子事件 (事件的包含Contain )
事件A是事件B的子事件
事件A发生必然导致事件B发生 事件A的样本点都是事件B的样本点

A 例如 B
记作
A B
BA
抛掷两颗骰子,观察出现的点数
A={出现1点}
B={出现奇数点}
( 1)A1, A2 ,, An 互不相容
(2)A1 A2 An
举例
:A与A构成一个完备事件组
概率论
集合论
样本空间(必然事件) Ω
不可能事件 Φ
全集
空集Φ
子事件 A⊂B
和事件 A∪B
子集A⊂B
并集A∪B
积事件 A∩B
差事件 A-B
交集A∩B
差集A-B
对立事件
A
补集
A
七、随机事件的运算律
A B
相等事件(Equal)
B A且 A B


A=B
B A 事件A与事件B含有相同的样本点
例如:在投掷一颗骰子的试验中,事件“出现偶数点”
与事件“出现2,4或6点”是相等事件。
和事件 Union
和事件A∪B发生 A发生或B发生
事件A与事件B至少有一个发生 由事件A与事件B所有样本点组成
举例 投掷一枚骰子 “点数为偶数”就是一个事件 同样 “点数小于7”也是一个事件
随机事件
如果一个事件在随机试验中可能发生也可能不发生 则 这样的事件称为随机事件 必然事件与不可能事件 如果一个事件在随机试验中必然发生 则这样的事件称 为必然事件 如果一个事件在随机试验中一定不发生 则这样的事件 称为不可能事件 举例 投掷一枚骰子 “点数小于7”是必然事件 “点数不小于 7”是不可能事件
说明 虽然必然事件与不可能事件是完全对立的 但它们有一 个共同的特点 那就是在试验之前我们能够准确预知其是否 发生 因而均不是随机事件 通常称之为确定性事件 概率论研究的是随机事件 但为方便起见常常将必然事 件和不可能事件视为随机事件的极端情形 并将随机事件简 称为事件 通常记作A B 基本事件:由一个可能结果,即单个样本点构成的事件 (复合)事件:含有多个样本点的随机事件.
4 关于求对立事件的运算
( A) A (自反律)
5 关于和及交事件的对立事件
(1) A B A B (第一对偶律) (2) A B A B (第二对偶律)
例1.9:复合事件的表示
某射手向目标射击三次,用 Ai 表示第
i 1, 2,3,
i 次击中目标
投掷一枚硬币 我们不能事先预知将出现正面还是反面 确定性现象与随机现象 在自然界和人类社会生活中普遍存在着两类现象 一类 是在一定条件下必然出现的现象 称为确定性现象 另一类则 是我们事先无法准确预知其结果的现象 称为随机现象
二、随机现象的统计规律性
由于随机现象的结果事先不能预知 初看起来 随机现象 毫无规律可言 然而人们发现同一随机现象在大量重复出现 时 其每种可能的结果出现的频率却具有稳定性 从而表明随 机现象也有其固有的量的规律性 人们把随机现象在大量重复出现时所表现出来的量的规 律性称为随机现象的统计规律性
例12 在投掷一枚骰子 观察其出现的点数的试验中 有6 个样本点 1点 2点 6点 样本空间为 {1点 2点 6点} 或干脆将样本点分别简记为1 2 6 相应地 样本空间记为 {1 2 6} 例13 观察某电话交换台在一天内收到的呼叫次数 其样 本点有可数无穷多个 i次 i0 1 2 样本空间为 {0次 1次 2次 } 或简记为{0 1 2 }
五、事件的集合表示
事件的集合表示
样本空间Ω的任一子集A称为随机事件。
A
属于事件A的样本点出现,则称事件A发生。
由于样本空间包含所有可能结果 试验结果必是其中之一 所以样本空间作为一个事件是必然发生的 即为必然事件 今 后用表示必然事件 空集作为的子集不含有任何样本点 不管试验的结果 是什么 作为一个事件总不会发生 因而是不可能事件 今 后用来表示不可能事件
例15 在投掷一枚骰子的试验中 分别记 “点数是6”为A “点数小于5”为B “点数小于5的偶数”为C 则A B C均为事件 其中事件A为基本事件 事件B和C均是复 合事件
注:事件可以看成由基本事件复合而成的。而基本事件是最 小的 ,不能分割的事件!基本事件是事件的子集!
A
多个事件的积
A1A 2 A n A i
i 1
无穷可列个事件的积
A1A 2 A n A i
i 1

差事件 Difference
差事件A-B发生 事件A发生且事件B不发生
由属于事件A但不属于事件B的样本点组成

B
A
A-B 性质
A B A B,
A B A AB

B
A
A B A B
A1 A2 An = Ai A1 A2 An =
i 1 n
多个事件的和
无穷可列个事件的和
A
i 1

i
积事件Intersection
积事件AB发生 事件A和事件B同时发生
由事件A和事件B的公共样本点组成

B
AB A∩B
n
试用 Ai 及其运算符表示下列事件:
(1) 三次都击中目标:
A1 A2 A3
(2) 至少有一次击中目标: A1 A2 A3 (3) 恰好有两次击中目标: A 1A 2A 3A 1A 2A 3A 1A 2A 3
(4) 至多击中一次:
A1 A2 A1 A3 A2 A3
(5)至少有一次没有击中目标: A1 A2 A3 A1 A2 A3 (6)三次都没有击中目标:
互斥事件 (互不相容事件) Exclusive
事件A与事件B互斥 AB=Φ
事件A与事件B不能同时发生 事件A与事件B没有公共的样本点

A
B
对立事件 Contrary
事件A不发生
是由所有不属于A的样本点组成

记作
A
性质
A
A
AA
A A
完备事件组
完备事件组 A 1 , A2 ,, An
§11 随 机 事 件
一、随机现象 二、随机现象的统计规律性 三、样本空间 四、随机事件 五、事件的集合表示 六、事件间的关系与运算 七、下述试验的性质有什么不同?
一物体从高度为 h(米)处垂直下落 则必然在 2h 秒后落到 g 地面 其中 g98(米/秒 2)为重力加速度
1 关于求和运算 (1) A∪BB∪A (交换律) (2) (A∪B)∪CA∪(B∪C)A∪B∪C (结合律) 2 关于求交运算 (1) A∩BB∩A (交换律) (2) (A∩B)∩CA∩(B∩C)A∩B∩C (结合律) 3 关于求和与求交运算的混合 (1) A∩(B∪C)(A∩B)∪(A∩C) (第一分配律) (2) A∪(B∩C)(A∪B)∩(A∪C) (第二分配律)
三、样本空间
样本空间 我们把随机试验的每一个可能结果称为一个样本点 而 把所有样本点的全体称为样本空间 样本空间通常用表示 中的点 即样本点 用表示
样本空间举例 例11 在投掷一枚硬币观察其出现正面还是反面的试验 中 有两个样本点 正面、反面 样本空间为 {正面 反面} 记1“正面” 2“反面” 则样本空间可表示为 {1 2}
A1 A2 A3 A1 A2 A3
二、随机现象的统计规律性
随机试验 为了对随机现象的统计规律性进行研究 人们往往要对 随机现象进行观察 我们把对随机现象的观察称为随机试验 简称为试验 一般地 一个随机试验要求满足下列特点 (1)可重复性 在相同条件下试验可重复进行 (2)可观察性 每次试验的结果具有多种可能性 而且试验 前所有可能的结果是明确的 (3)随机性 每次试验之前不能准确的预言该次试验将出 现哪一种结果
相关文档
最新文档