2017年七年级数学下册5月月考试卷(有答案)
七年级下5月月考数学试题含答案
班级____ 姓名_______准考证号_______密封线内不要答题一、选择题(本大题共10小题,每小题3分,共30分.)1.下面四个图形中,∠1=∠2一定成立的是 ( ) A . B . C . D .. 15)2)(3(-+-+mx n x x ,则 A .5,1=-=n m B .5,1-==n m C .5,1-=-=n m D .5,1==n m A .44° B .60°A .18cmB .21cmC .27cmD .30cm9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,则可列方程组为 ( )53第3题图A .如果b a =,那么b a =B .三角形的一个外角大于它的任何一个内角C .一个多边形最多有3个锐角D .互补的两个角一定是一个为锐角,一个为钝角 二、填空题(本大题共8小题,每空2分,共20分)11.若一个多边形的每个外角都是36°,则这个多边形的边数为____________. 12.命题“互为相反数的两个数的和为零”的逆命题_______________________. 13.已知2=+b a ,1-=ab ,则22b a +=______; )3)(3(--b a =________.14.已知6=m x ,3=n x ,则nm x -=____________, n m x x ⋅-2)(=____________.15.若不等式组⎩⎨⎧>-<-ax x 012的解集是21<x ,则a 的取值范围是____________.16.如图,一个长方体的表面展开图中四边形ABCD 是正方形,则原长方体的体积是____________.17.一次生活常识竞赛一共有25道题,答对一题得4分, 不答得0分,答错一题扣2分,小明有2题没答,竞赛 成绩要超过74分,则小明至多答错____________道题. 18.若二元一次方程组⎩⎨⎧=++=+my x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________. 三、解答题(本大题共8小题.共60分) 19.计算与化简:(10分)(1)(4分)0201420131)3(2)21()31(-+⨯+-π(2)(6分)先化简,再求值:)(5)2)(2()(2b a b b a b a b a -+-+--, 其中31-=a ,3=b .D20. 分解因式:(6分)(1)42-y (2)482432-+-x x21.(8分)⑴解方程组:⎩⎨⎧-=+-=-15335y x y x ⑵解不等式组:⎪⎩⎪⎨⎧+≤-+<-2353)1(213xx x x 并写出它的整数解.22.(本题满分6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC 的三个顶点的位置 如图所示,现将△ABC 平移后得△EDF ,使点B 的 对应点为点D ,点A 对应点为点E . (1)画出△EDF ;(2)线段BD 与AE 有何关系?_______________;(3)连接CD 、BD ,则四边形ABDC 的面积为_________.23.(6分)如图,AB ∥CD ,直线EF 分别交AB 、CD 于点G 、H ,P 为CD 上一点,连接 GP ,若∠HPG =50°,∠HGP =70°,求∠AGF 的度数.24.(8分)对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1D(1)[0.5]= ;[-2.5]= ; (2)若 410x +⎡⎤⎢⎥⎣⎦=5,求x 的取值范围25.(8分)某公司经营甲、乙两种商品,每件甲种商品进价12万元售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.26.(8分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E , 求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第_____________________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 参考答案1.B ;2.C ;3.D ;4.A ;5.D ;6.C ;7.C ;8.D ;9.B ;10.C ;11.10;12. 和是0的两个数互为相反数;13.6,()93++-b a ab ;14.2,108;15. 21-≤a ;16.12;17.2;18.2; 19.(1)6(2)ab 3,-3;20.(1)()()22-+y y (2)()243--x ;21.(1)⎪⎩⎪⎨⎧=-=521y x ,(2)31 x ≤-,-1、0、1、222.解:(1)△EDF 如图所示;(2)BD 与AE 平行且相等;(3)四边形ABDC 面积=4×3-21×2×3-21×1×2-21×1×3-21×1×1=12-3-1-23-21=12-6=6. 故答案为:6.23.∵AB ∥CD ,∴∠BGP=∠HPG=50°,∴∠BGH=∠HGP+∠BGP=50°+70°=120°. ∴∠AGF=∠BGH=120°. 24.(1)1,-3(2)根据题意得: 5≤104+x <5+1, 解得:46≤x <56, 25.解:(1)设购进甲种商品x 件,乙种商品(20-x )件,根据题意得 190≤12x+8(20-x )≤200 解得7.5≤x ≤10 ∵x 为非负整数 ∴x 取8,9,10 有三种进货方案:①购甲种商品8件,乙种商品12件;②购甲种商品9件,乙种商品11件;③购甲种商品10件,乙种商品10件。
扬州市七年级(下)第二次月考数学试卷(5月份)含答案
月考试卷一、选择题(本大题共8小题,共24.0分)1.下列运算中,正确的是()A. a3+a3=a6B. a2•a3=a6C. (a2)3=a6D. (2a3)2=2a62.某种细菌用肉眼是根本看不到的,用显微镜测其直径大约是0.000005米,将0.000005用科学记数法表示为()A. 50×10-7B. 50×10-5C. 50×10-3D. 5×10-63.下列式子由左到右的变形中,属于因式分解的是()A. (x+2y)2=x2+4xy+4y2B. x2-2y+4=(x-1)2+3C. 3x2-2x-1=(3x+1)(x-1)D. m(a+b+c)=ma+mb+mc4.下列多项式中是完全平方式的是()A. 2x2+4x-4B. 16x2-8y2+1C. 9a2-12a+4D. x2y2+2xy+y25.如图,∠1=∠B,∠2=20°,则∠D=()A. 20°B. 22°C. 30°D. 45°6.如果3a7x b y+7和-7a2-4y b2x是同类项,则x,y的值是()A. x=-3,y=2B. x=2,y=-3C. x=-2,y=3D. x=3,y=-27.下列命题是真命题的是()A. 内错角相等B. 如果a2=b2,那么a3=b3C. 三角形的一个外角大于任何一个内角D. 平行于同一直线的两条直线平行8.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(本大题共10小题,共30.0分)9.若a m=2,a n=3,则a3m+n=______.10.关于x的方程3x+2a=0的根是2,则a等于______.11.计算:已知:a+b=3,ab=1,则a2+b2=______.12.分解因式:x2-25=______.13.若(x2-mx+1)(x-1)的积中x的二次项系数为零,则m的值是______.14.若代数式x2+(a-1)x+16是一个完全平方式,则a=______.15.由3x-2y=5,得到用x表示y有式子为y=______.16.不等式组的正整数解的个数有______.17.多项式ax2-4a与多项式x2-4x+4的公因式是______.18.若不等式2x<1-3a的解集中所含的最大整数为4,则a的范围为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)(-2a2)(-3ab)2;(2)(2x-y)2-4(x-y)(x+2y).四、解答题(本大题共9小题,共88.0分)20.因式分解:(1)x2-4y2;(2)9x2+18xy+9y2.21.解方程组:(1);(2).22.解下列不等式组:(1);(2).23.已知关于x,y的方程组和有相同解,求(-a)b值.24.解不等式组,并写出它的所有非负整数解.25.已知:如图,AB∥CD,MG、NH分别是∠BME、∠DNE的角平分线.求证:MG∥NH.26.已知关于x,y的方程组(实数m是常数).(1)若-1≤x-y≤5,求m的取值范围;(2)在(1)的条件下,化简:|m+2|+|m-3|27.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:()求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?28.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,需购买A、B型电脑的总数为50台,购买A、B型电脑的总费用不超过145250元.①请问A型电脑最多购买多少台?②从学校教师的实际需要出发,其中A型电脑购买的台数不少于B型电脑台数的3倍,该校共有几种购买方案?试写出所有的购买方案.答案和解析1.【答案】C【解析】解:A、a3+a3=2a3,故A错误;B、a2•a3=a5,故B错误;C、(a2)3=a6,故C正确;D、(2a3)2=4a6,故D错误.故选:C.依据合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则进行计算即可.本题主要考查的是合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则,熟练掌握相关法则是解题的关键.2.【答案】D【解析】解:将0.000005用科学记数法表示为5×10-6.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.【答案】C【解析】解:符合完全平方公式的只有9a2-12a+4.故选:C.完全平方公式:(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=(a±b)2才成立.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟练掌握完全平方公式.5.【答案】A【解析】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.根据平行线的判定和性质即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.6.【答案】B【解析】解:由同类项的定义,得,解这个方程组,得.故选:B.本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.根据同类项的定义列出方程组,是解本题的关键.7.【答案】D【解析】解:A、两直线平行,内错角相等,所以A选项错误;B、如果a2=b2,那么a3=b3或a3=-b3,所以B选项错误;C、三角形的一个外角大于任何一个不相邻的一个内角,所以C选项错误;D、平行于同一直线的两条直线平行,所以D选项正确.故选:D.根据平行线的性质对A、D进行判断;根据平方根的定义对B进行判断;根据三角形外角性质对C进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】D【解析】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.9.【答案】24【解析】解:∵a m=2,a n=3,∴a3m+n=(a m)3•a n=8×3=24.故答案为:24.根据幂的乘方与积的乘方和同底数幂的乘法法则求解.本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握各知识点的运算法则是解答本题的关键.10.【答案】-3【解析】解:把x=2代入3x+2a=0得:3×2+2a=0解得:a=-3.故填-3.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.11.【答案】7【解析】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2-2ab=32-2=9-2=7.故答案为:7将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.12.【答案】(x+5)(x-5)【解析】解:x2-25=(x+5)(x-5).故答案为:(x+5)(x-5).直接利用平方差公式分解即可.本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.13.【答案】-1【解析】解:∵(x2-mx+1)(x-1)的积中x的二次项系数为零,∴x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,则1+m=0,解得:m=-1.故答案为:-1.直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.14.【答案】9或-7【解析】解:∵x2+(a-1)x+16是一个完全平方式,∴a-1=±8,解得:a=9或-7,故答案为:9或-7利用完全平方公式的结构特征判断即可得到a的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【答案】【解析】解:3x-2y=5,移项得:-2y=5-3x,解得:y=.故答案为:.将x看作已知数,y看作未知数,求出y即可.此题考查了解二元一次方程,其中将x看作已知数,y看作未知数是解本题的关键.16.【答案】3【解析】解:解①得:x≤4;解②得:x>1;不等式组的解集为:1<x≤4,不等式组的正整数解为:2,3,4,有3个,故答案为3.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其正整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】x-2【解析】解:∵ax2-4a=a(x2-4)=a(x+2)(x-2),x2-4x+4=(x-2)2,∴多项式ax2-4a与多项式x2-4x+4的公因式是x-2.分别将多项式ax2-4a与多项式x2-4x+4进行因式分解,再寻找他们的公因式.本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.18.【答案】-3≤a<-【解析】解:2x<1-3a,x<,∵不等式2x<1-3a的解集中所含的最大整数为4,∴4<≤5,解得:-3≤a<-,故答案为:-3≤a<-.先求出不等式的解集,根据最大整数为4得出关于a的不等式组,求出不等式组的解集即可.本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式的整数解的应用,解此题的关键是能求出关于a的不等式组,难度适中.19.【答案】解:(1)原式=(-2a2)(9a2b2)=-18a4b2;(2)原式=4x2-4xy+y2-4x2-4xy+8y2=9y2-8xy.【解析】(1)原式先计算乘方运算,再计算乘法运算即可求出值;(2)原式利用完全平方公式,以及多项式乘多项式法则计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)x2-4y2;=(x+2y)(x-2y);(2)9x2+18xy+9y2=9(x2+2xy+y2)=9(x+y)2.【解析】(1)原式利用平方差公式分解即可;(2)原式提公因式后,利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.【答案】解:(1)①+②得:3x =6,解得:x =2.x =2代入①中,解得:x =3. 所以这个方程组的解是; (2)①×2-②×3②得:x =1, 把x =1代入①中,解得:y =-1. 所以这个方程组的解是.【解析】(1)利用加减法解答即可;(2)利用加减法解答即可.本题考查了二元一次方程组,此题难度不大,计算时认真审题、选择适当的方法是关键. 22.【答案】解:(1),由不等式①,得x ≥3,由不等式②,得x ≤5,故原不等式组的解集是3≤x ≤5;(2), 由不等式①,得x ≥-2,由不等式②,得x <4,故原不等式组的解集是-2≤x <4.【解析】(1)根据解一元一次不等式组的方法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法. 23.【答案】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得, 代入(2)得. 所以(-a )b =(-2)3=-8.【解析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b的方程组即可得出a,b的值.此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.24.【答案】解:,解①得x>-2,解②得x≤.则不等式组的解集是:-2<x≤.则非负整数解是:0,1、2.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.25.【答案】证明:∵AB∥CD,∴∠BME=∠DNE.∵MG、NH分别是∠BME、∠DNE的角平分线,∴∠EMG=∠BME,∠ENH=∠DNE,∴∠EMG=∠ENH,∴MG∥NH.【解析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠BME=∠DNE,结合角平分线的定义可得出∠EMG=∠ENH,再利用“同位角相等,两直线平行”可证出MG∥NH.本题考查了平行线的判定与性质以及角平分线,利用平行线的性质结合角平分线的定义,找出∠EMG=∠ENH是解题的关键.26.【答案】解:(1),①-②,得x-y=2m-1,∵-1≤x-y≤5,-1≤2m-1≤5,解得,0≤m≤3,即m的取值范围是0≤m≤3;(2)∵0≤m≤3,∴|m+2|+|m-3|=m+2+3-m=5.【解析】(1)将题目方程组中的两个方程做差,即可得到x-y与m的关系,然后根据x-y的不等式,从而可以求得m的取值范围;(2)根据(1)中m的取值范围,可以化简题目中的式子.本题考查二元一次方程组的解,解不等式组,解题的关键是明确题意,找出所求问题需要的条件.27.【答案】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z-25)+2×200×(26-20)≥3680,解得:z≥33,答:乙种口罩每袋售价为每袋33元.【解析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可.本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.28.【答案】解:(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据题意得:,解得:.答:购买1台A型电脑需要3000元,购买1台B型电脑需要2500元.(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:3000m+2500(50-m)≤145250,解得:m≤40.5,∵m为整数,∴m≤40.答:A型电脑最多购买40台.②设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:m≥3(50-m),解得:m≥37.5,∵m为整数,∴m≥38.∴有3种购买方案,方案一:购买A型电脑38台,B型电脑12台;方案二:购买A型电脑39台,B型电脑11台;方案三:购买A型电脑40台,B型电脑10台.【解析】(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据“购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据总价=单价×数量结合购买A、B型电脑的总费用不超过145250元,即可得出关于m的一元一次不等式,解之取其中的最大整数即可得出结论;②设购买A型电脑m台,则购买B型电脑(50-m)台,根据A型电脑购买的台数不少于B型电脑台数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论即可找出各购买方案.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.。
〖月考数学〗2016-2017学年七年级下数学5月月考试题含答案
下学期七年级数学五月月考(测试范围:相交线与平行线,实数,坐标,方程)姓名 分数 .一、选择题(共10小题,每小题3分,共30分)1.下列汽车标志中可以看作是由某图案平移得到的是( )A B C D2.∠1、∠2是邻补角的为( )A B C D3.下列方程组中是二元一次方程组的是( )A .⎩⎨⎧=+=+1487764z x y xB .⎪⎪⎩⎪⎪⎨⎧=-=+211342y x y xC .⎩⎨⎧=+=0321y x xyD .⎪⎪⎩⎪⎪⎨⎧=+=+422652y x y x4.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上.若∠ADE =125°,则∠DBC 的度数为( ) A .55° B .65° C .75° D .125°4题图 6题图 8题图 10题图5.若⎩⎨⎧-==12y x 是关于x 、y 的二元一次方程ax +by -5=0的一组解,则2a -b -2的值为( )A .-3B .3C .-7D .7 6.如图,下列条件中不能判断AB ∥CD 的是( ) A .∠1+∠3=180° B .∠1=∠2 C .∠1+∠2=180° D .∠1=∠4 7.下列命题是真命题的是( )A .互补的角是邻补角B .内错角相等C .过一点,有且只有一条直线与这条直线平行D .在同一平面内,已知直线a ⊥b ,直线b ⊥c ,则直线a ∥c 8.将一张长方形纸条ABCD 沿EF 折叠后点B 、A 分别落在B ′、A ′位置上,FB ′与AD 的交点为G .若∠DGF =100°,则∠FEG 的度数为( ) A .40° B .45° C .50° D .55°9.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤.设有x 人、y 两银(古代1斤等于16两),则所列方程组正确的是( )A .⎩⎨⎧=+=-y x y x 8877B .⎩⎨⎧=-=-y x y x 8877C .⎩⎨⎧=+=+y x y x 8877D .⎩⎨⎧=-=+y x y x 887710.如图,AB ∥CD ,则∠1、∠2、∠3、∠4的关系是( ) A .∠1-∠2+∠3+∠4=180° B .∠1+∠2+∠4=∠3C .∠3+∠2=∠4+∠1 D .∠1+∠2+∠3-∠4=180°题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是___________________________ 12.如图,AD ∥BC ,∠C =30°,∠2=2∠1,则∠2的度数是____________13.如图,将周长为14的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于___________11题图 12题图 13题图 16题图14.同一平面内的直线满足l 1⊥l 2、l 2⊥l 3、l 3⊥l 4、……、l 10⊥l 11,则直线l 1与直线l 2017的位置关系是___________ 15.∠1的两边平行于∠2的两边,且∠1比∠2的3倍少40°,则∠1的度数是___________16.如图,把一个长21 cm 、宽15 cm 的长方形分成五块,其中两个大正方形和两个长方形形状和大小完全相同,那么中间小正方形的面积是___________cm 2 三、解答题(共8题,共72分)17.(本题8分)解二元一次方程组:⎩⎨⎧-=--=+52312y x y x18.(本题8分)填空,并在后面的括号中填理由: 如图,已知∠B +∠E =∠BCE ,求证:AB ∥DE证明:如图,过点C 作CF ∥AB∴∠B =∠_______( ) ∵∠B +∠E =∠BCE 即∠B +∠E =∠1+∠2 ∴∠E =∠_______∴_______∥_______( ) ∵AB ∥CF ,____________(已证)∴_______∥_______( )19.(本题8分)若关于x 、y 的方程组⎩⎨⎧--=++=-4525223k y x k y x 的解x 、y 互为相反数,求k 的值20.(本题8分)如图,AC平分∠BCD,过点A作AM∥CD交BC于点M,过点D作DN∥AC交BC延长线于点N(1) 请依题意补全图形(2) 判断∠MAC与∠CDN的大小关系,并证明21.(本题8分)如图,DE⊥BC,AF⊥BC,∠1+∠2=180°,求证:∠FGA+∠CAB=180°22.(本题10分)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE∶∠EOC=2∶5(1) 如图1,若∠BOD=70°,求∠BOE(2) 如图2,若OF平分∠BOE,∠BOF=∠AOC+10°,求∠EOF23.(本题10分)童老师为学校购买运动会的奖品后,回学校向后勤处郑老师交账说:“我买了两种书共90本,单价分别为8元和12元,买书前我领了900元,现在还余158元”.郑老师算了一下说:“你肯定搞错了”(1) 郑老师为什么说他搞错了,试用方程组的知识给予解释(2) 童老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认应为不超过10元的整数,请问笔记本的单价可能为多少元?24.(本题12分)如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°(1) 求证:AB∥CD(2) 如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E(3) 保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说明理由2016~2017学年度下学期七年级数学月考二参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共6小题,每小题3分,共18分)11.垂线段最短 12.100°13.16 14. 平行15.20°或125°16.9三、解答题(共8题,共72分) 17.解:⎩⎨⎧=-=11y x18.解:1、两直线平行,内错角相等2DE 、CF 、内错角相等,两直线平行 DE ∥CFAB 、DE 、平行于同一条直线的两条直线平行 19.解:k =5提示:将x =-y 代换 20.解:略 21.解:略22.解:(1) 160°;(2) 80°23.解:(1) 设两种笔记本分别购买x 本、y 本 ⎩⎨⎧-=+=+15890012890y x y x ,解得⎩⎨⎧==5.55.84y x∵x 、y 不是整数∴郑老师说他搞错了 (2) 2、5或1024.解:(1) ∵∠ACB +∠BED =180°,∠CED +∠BED =180°∴∠ACB =∠CED ∴AC ∥DE 延长DE 交AB 于F ∴∠A =∠DFB ∵∠A =∠D ∴∠DFB =∠D ∴AB ∥CD(2) 设∠ABG =∠EBG =α,∠EDH =∠FDH =β ∴∠E =2α+180°-2β,∠H =β-α ∵∠E 比∠H 大60°∴2α+180°-2β=β-α+60°,得β-α=40° ∴∠E =100°(3) ∠PBM =40°为定值。
【月考试卷】江西省抚州市崇仁2016-2017学年七年级下第一次月考数学试卷含答案解析
2016-2017学年江西省抚州市崇仁七年级(下)第一次月考数学试卷一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3 D.3y3•5y3=15y92.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣84.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.8.用科学记数法表示0.000000023=.9.计算:22016×()2017所得的结果是.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=.11.若x+y=2,x2﹣y2=6,则x﹣y=.12.已知∠α=72°,则∠α的余角是,∠α的补角是.三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是,∠COD的余角是(2 )OE是∠BOC的平分线吗?请说明理由.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)()=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算1+4+42+43+…+42013=.2016-2017学年江西省抚州市崇仁七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3 D.3y3•5y3=15y9【考点】单项式乘单项式.【分析】直接利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而求出答案.【解答】解:A、9a3•2a2=18a5,正确,符合题意;B、2x5•3x4=6x9,错误,不合题意;C、3x3•4x3=12x6,错误,不合题意;D、3y3•5y3=15y6,错误,不合题意;故选:A.2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)【考点】平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣8【考点】完全平方式.【分析】根据两平方项确定出这两个数是x和4,再根据完全平方公式的乘积二倍项列式求解即可.【解答】解:∵x2+mx+16是完全平方式,∴mx=±2×4•x,解得m=±8.故选D.4.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz【考点】完全平方公式的几何背景.【分析】根据大长方形的面积=3个正方形的面积+6个小长方形的面积,即可解答.【解答】解:根据题意得:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz,故选:C.5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.【考点】同底数幂的除法.【分析】根据指数相减,可得同底数幂的除法,可得答案.【解答】解:a m﹣n=a,故选:C.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④【考点】余角和补角.【分析】根据余角和补角的定义进行选择即可.【解答】解:①互为补角的两个角不可以都是锐角,故①错误;②互为补角的两个角可以都是直角,故②正确;③互为补角的两个角可以都是钝角,故③错误;④互为补角的两个角之和是180°,故④正确;故选D.二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=12.【考点】单项式乘单项式.【分析】根据单项式乘以单项式法则即可求出m、n的值.【解答】解:由题意可知:x n y4×2xy m=2x n+1y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12,故答案为:128.用科学记数法表示0.000000023= 2.3×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000023=2.3×10﹣8.故答案为:2.3×10﹣8.9.计算:22016×()2017所得的结果是.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法,积的乘方,可得答案.【解答】解:原式=[22016×()2016]×()=(2×)2016×=,故答案为:.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=﹣7.【考点】多项式乘多项式.【分析】先把(x2+p)(x2+7)的展开,再让x2项的系数为0即可得出p的值.【解答】解:原式=x4+(7+p)x2+7p∵(x2+p)(x2+7)的展开式中不含有x2项,∴7+p=0,∴p=﹣7;故答案为﹣7.11.若x+y=2,x2﹣y2=6,则x﹣y=3.【考点】平方差公式.【分析】已知第二个等式左边利用平方差公式化简,把x+y=2代入即可求出x﹣y 的值.【解答】解:∵x+y=2,x2﹣y2=(x+y)(x﹣y)=6,∴x﹣y=3,故答案为:3.12.已知∠α=72°,则∠α的余角是18°,∠α的补角是108°.【考点】余角和补角.【分析】根据两个角的和为90°,则这两个角互余;两个角的和等于180°,则这两个角互补计算即可.【解答】解:根据定义∠α的余角度数是90°﹣72°=18°.∠α的补角是180°﹣72°=108°′.故答案为:18°,108°三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.【考点】平方差公式;完全平方公式.【分析】(1)根据平方差公式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)99×101==1002﹣1=9999;(2)992=2=1002﹣2×100+1=9801.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=1+4﹣1=4;(2)原式=4x6y2•(﹣2xy)+(﹣8x9y3)•=﹣8x7y3﹣4x7y3=﹣12x7y3.16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?【考点】垂线.【分析】先根据邻补角的定义计算出∠COE=30°,再利用对顶角相等得∠DOF=30°,然后根据垂直的定义得∠AOD=90°,最后利用∠AOF=∠AOD+∠DOF进行计算.【解答】解:∵∠FOC=5∠COE,而∠FOC+∠COE=180°,∴5∠COE+∠COE=180°,∴∠COE=30°,∴∠DOF=30°,∵CD⊥AB,∴∠AOD=90°,∴∠AOF=∠AOD+∠DOF=120°.17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.【考点】整式的混合运算.【分析】根据题意表示出原来正方形桌子的面积,以及改变后长方形的面积,比较即可得到结果.【解答】解:根据题意得:(x+2)(x﹣1)﹣x2=x2+x﹣2﹣x2=x﹣2,∵x<1.5,∴x﹣2<0,则改变后的桌子面积比原正方形桌子的面积是减少了.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.【考点】完全平方公式.【分析】(1)根据和的完全平方公式,可得答案;(2)根据差的完全平方公式与和的完全平方公式,可得答案.【解答】(1)a2+b2=(a+b)2﹣2ab=72﹣2×12=49﹣24=25;(2)(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据题意,利用非负数的性质求出x与y的值,原式化简后代入计算即可求出值.【解答】解:∵|2x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,原式=(x2﹣4y2﹣x2+2xy﹣y2)÷2y=(2xy﹣5y2)÷2y=x﹣y,当x=2,y=﹣1时,原式=4.5.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式和梯形的面积公式即可求解;(2)根据(1)所得的两个式子相等即可得到.【解答】解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2﹣b2.S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)根据题意得:(a+b)(a﹣b)=a2﹣b2.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是∠COE、∠BOE,∠COD的余角是∠COE、∠BOE (2 )OE是∠BOC的平分线吗?请说明理由.【考点】余角和补角.【分析】(1)直接利用角平分线的定义得出∠AOD=∠COD,进而利用已知得出∠AOD、∠COD的余角;(2)利用(1)中所求得出OE是∠BOC的平分线.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠COD,∵∠DOE=90°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∴∠AOD+∠COE=90°,∴∠AOD的余角是:∠COE、∠BOE;∠COD的余角是:∠COE,∠BOE;故答案为:∠COE,∠BOE;∠COE,∠BOE;(2)OE平分∠BOC,理由:∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COD+∠DOE=90°,∴∠AOD+∠BOE=∠COD+∠DOE∵OD平分∠AOC,∴∠AOD=∠COD,∴∠COE=∠BOE∴OE平分∠BOC.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)利用该规律计算1+4+42+43+…+42013=.【考点】平方差公式.【分析】(1)利用平方差公式,依此类推得到结果即可;(2)利用发现的规律填写即可;(3)利用得出的规律计算得到结果;(4)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)1+4+42+43+…+42013=×(4﹣1)×(1+4+42+43+…+42013)=.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;(2)x5+x4+x3+x2+x+1;(3)x7﹣1;(4).2017年4月7日。
2017年七年级数学下第一次月考试卷(西安有答案)
2017年七年级数学下第一次月考试卷(西安有答案)2016-2017学年度第二学期第一次月考七年级数学试题一.选择题(共10小题,满分30分,每小题3分) 1.计算10�2的结果是()A.�20 B. C.�100 D. 2.计算(�a3)2的结果是() A.a6 B.�a6 C.a5 D.�a5 3.下列计算正确的是() A.2a+3a=6a B.a2•a3=a6 C.a8÷a4=a2 D.(�2a3)2=4a6 4.下列能平方差公式计算的式子是() A.(a�b)(b�a) B.(�x+1)(x�1) C.(�a�1)(a+1) D.(�x�y)(�x+y) 5.在天文学上,计算星球之问的距离通常用“光年”作单位,1光年即光在一年内通过的路程.已知光的速度是3×105km/s,一年约为3×107s,则1光年约等于() A.9×1012km B.6×1035km C.6×1012km D.9×1035km 6.若x2+6x+m2是一个完全平方式,则m的值为() A.3 B.9 C.±3 D.±9 7.若□×3xy=3x2y,则□内应填的单项式是() A.xy B.x C.3xy D.3x 8.已知am=3,an=2,那么am+n+2的值为() A.8 B.7 C.6a2 D.6+a2 9.对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2�b2,根据这个定义,代数式(x+y)☆y可以化简为() A.xy+y2 B.xy�y2 C.x2+2xy D.x2 10.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.增加6m2 B.减少6m2 C.增加9m2 D.减少9m2 二.填空题(共6小题,满分18分,每小题3分) 11.用科学记数法表示�0.00012= . 12.若|a+3|+(b-2)2 =0,则(a+b)2017= . 13.若(x+m)(x+3)中不含x的一次项,则m的值为. 14.340 430 (填“>”“<”或“=”) 15.若x2�y2=12,x+y=6,则x�y= . 16.下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)=a+b (a+b)2=a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3 则(a+b)6=a6+6a5b+15a4b2+ a3b3+15a2b4+6ab5+b6.三.解答题(共6道题,满分72分) 17.(18分)计算:①(�2x)(4x2�2x+1)②(6a3�4a2+2a)÷2a③ a4 +(a2)4 -(a2)2 ④⑤(2a+b)2 ⑥(3x+7y)(3x-7y)18(8分)利用公式计算:①103×97 ② 20152�2014×2016.19(10分)先化简,再求值:①(x+1)(x�1)�(x�2)2,其中x= .②[(x+y)2�y(2x+y)�8xy]÷2x,其中x=2,.21.(9分)已知:,求①( )2 , ② ,③22.(8分)已知3×9m×27m=321,求m的值.23.(9分)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=13 BC,现打算在阴影部分种植一片草坪,求这片草坪的面积。
七年级数学第二学期5月份月考测试卷含解析
七年级数学第二学期5月份月考测试卷含解析一、选择题1.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( )A .15B .﹣15C .16D .﹣162.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y+=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y+=⎧⎨=⎩D .22103x y x y+=⎧⎨=⎩3.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A .329557230x y x y +=⎧⎨+=⎩ B .239557230x y x y +=⎧⎨+=⎩ C .329575230x y x y +=⎧⎨+=⎩ D .239575230x y x y +=⎧⎨+=⎩5.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>6.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②7.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)8.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种9.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .210.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件. 13.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____. 14.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道. 15.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.19.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)20.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A 有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B 有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C 有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A 、B 、C 三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.三、解答题21.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.22.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.23.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.25.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆) 5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送) 26.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x a y b== ,用数表可表示为10)01ab (.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,∴2227a bb a=,=+⎧⎨+⎩解得14ab-⎧⎨⎩=,=∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.2.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .4.B解析:B 【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可. 详解:设每个排球x 元,每个实心球y 元, 则根据题意列二元一次方程组得:239557230x y x y +=⎧⎨+=⎩,故选B .点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.5.C解析:C 【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >, 于是有31425x x x x x >>>>. 故选C . 【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.6.B解析:B 【分析】根据等式基本性质进行分析即可. 【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确. 故选B. 【点睛】考核知识点:二元一次方程.7.D解析:D 【解析】 【分析】根据新定义运算法则列出方程 {ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.8.A解析:A 【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解. 【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔, 根据题意得:2330x y ,且,x y 为正整数,变形为:3023xy,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x ,即2y =时,12x =是整数,符合题意; 当3029x,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意; 当30215x ,即5y =时,7.5x =不是整数,舍去; 当30218x ,即6y =时,6x =是整数,符合题意; 当30221x ,即7y =时, 4.5x =不是整数,舍去; 当30224x ,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去;故共有4种购买方案, 故选:A . 【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.9.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.10.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件. 【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答. 【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品. 则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.13.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①②, ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.14.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
2016-2017年武汉市黄陂区七年级下数学五月月考试题含答案
武汉市黄陂区七年级下数学五月月考试题含答案七数 5 月月考试卷(测试范围:订交线与平行线,实数,坐标,方程,不等式 ) 姓名 分数一、选择题(共 10 小题,每题 3 分,共 30 分)1.以下四个实数,此中无理数的是( )A . 0B .11C . 3D .3872.计算 4 的结果是( )A . 2B .± 2C .- 2D .4 3.点 P(3,- 4)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.二元一次方程 kx +3y = 5 有一个解是x 2,则 k 的值是( )y 1A . 1B .- 1C . 0D .25.如图,直线 AB 与 CD 订交于点 O ,∠ COE = 2∠BOE .若∠ AOC = 120 °,则∠ DOE 等于( )A .135°B .140°C . 145 °D .150 °5 题图6 题图9 题图6.如图的围棋盘搁置在某个平面直角坐标系内,白棋②的坐标为 (5, 2),白棋④的坐标为(6,- 2),那么黑棋①的坐标应当是( )A .(9,3)B . (-1,- 1)C . (- 1, 3)D . (9,- 1)7.假如 a < b ,那么以下结论必定正确的选项是()A . a -3> b - 3B . 3- a > 3-bC . ac 2< bc 2 D .2a 2< 2b 28. 用白铁皮做罐头盒, 每张铁皮可制盒身 25 个,或制盒底 40 个,一个盒身与两个盒底配成一套罐头盒. 现 有 36 张白铁皮,设用 x 张制盒身, y 张制盒底,能够使盒身与盒底正好配套则依据题意,列方程组正确的 是( )x y 36 x y 36x y 36 x y 36A .40 x25 yB .25 x 40 yC .2 25 yD .2 40 y2 2 40 x25 x9.如图, AB ∥ EF ,则∠ A 、∠ C 、∠ D 、∠ E 知足的数目关系是( ) A .∠ A +∠ C +∠ D +∠ E = 360 ° B .∠ A +∠ D =∠ C +∠ E C .∠ A -∠ C +∠ D +∠ E = 180 ° D .∠ E -∠ C +∠ D -∠ A = 90° 10.购置铅笔 7 支,作业本 3 本,圆珠笔 1 支共需 3 元;购置铅笔 10 支,作业本 4 本,圆珠笔 1 支,共需 4元,则购置铅笔 11 支,作业本 5 本,圆珠笔 2 支共需 ( ) A. 4.5 元元元元题号 12345 67 8 9 10答案二、填空题(本大题共6 个小题,每题3 分,共18 分)11.9 = _________; 38= _________;|13 |= _________2712. 己知方程 5x + 3y - 4= 0,用含 x 的代数式表 y 的形式则 y =_________13. 假如不等式ax>b 的解集是xb,那么 a 的取值范围是_______ a14.如图, AB ∥CD ,∠ B= 160 °,∠ D= 120 °,则∠ E= _________15.若方程组 2 x 5 y 6t,则x= __________3x y t y1016. 假如对于 x 的不等式( 2m-n)x-m-5n>0 的解集为 x< ,那么对于 x 的不等式 mx>n 的解集为 __________三、解答题(共 8 题,共 72 分)717.(此题8分)(1) (-2)2+52+ 3 64 ; (2) 2x 3y 125x 6y 318.(此题8分)解不等式: 2x 1 10x 1 5x 53 6 419.(此题8 分)达成以下推理过程:如图,已知AE =DF ,∠ C=∠ F ,求证: BC∥EF 证明:∵∠ A=∠ EDF (已知)∴________∥ ________(∴∠ C= ________(又∵∠ C=∠ F (已知)∴∠ CGF =∠ F (等量代换)∴________∥ ________()))20.(此题 8 分)武汉市某花卉栽种基地欲购进甲、乙两种君子兰进行培养,若购进甲种 2 株,乙种 3 株,则共需成本1700 元;若购进甲种 3 株,乙种 1 株,则共需成本1500 元,(1)求甲乙两种君子兰每株成本多少元?(2)该栽种基地决定在成本不超出30000 元的前提下购进甲乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的 3 倍还多 10 株,求最多购进甲种君子兰多少株?21.(此题8分)∠1=∠2,,∠3=∠4,,∠5=∠C求证:DE//BF22.(此题10分)甲、乙两商场以相同价钱销售相同的商品,而且又各自推出不一样的优惠方案:在甲商场累计购物超出100 元后,高出100 元的部分按90%收费;在乙商场累计购物超出50 元后,高出50 元的部分按 95%收费.顾客到哪家商场购物花销少?(1)设顾客累计购物x 元,依据图表信息填空:购物款甲商场乙商场0<x ≤50 x x50<x≤100 xx>100(2)按图表信息剖析:顾客到哪家商场购物花销少?(3)若顾客到甲商场购物用了99 元,他实质购物 ________________ 元23. ( 10 分)如图 1. 将线段 AB平移至 CD,使 A 与 D 对应, B 与 C 对应,连 AD、 BC.(1) 填空: AB 与 CD的关系为∠ B 与∠ D 的大小关系为 ____________-(2) 如图 2,若∠ B=60 °, F、 E 为BC的延伸线上的点,∠ EFD= ∠ EDF, DG 均分∠ CDE 交 BE 于 G,求∠ FDG 。
2016-2017学年江西省抚州市崇仁县七年级下第一次月考数学试卷含答案
2017年初一下学期第一次月考·数学试卷一、 细心选一选,(每题只有一个正确选项,每题3分共18分) 1.下列计算正确的是 ( )A 、2a -a =2B 、x 3+x 3=x 6C 、422)(ab b a =⋅ D 、2t 2+t 2=3t 22.已知32228287m n a b ab b ÷=,那么m,n 的取值为( ) A.m=4,n=3 B.m=4,n=1 C.m=1,n=3 D.m=2,n=33.计算a 2(2a )3-a (3a +8a 4)的结果是 ( )A .3a 2B .-3aC .-3a 2D .16a 54.如图,已知点O 是直线AB 上一点,∠1=65°,则∠2的度数( )A .25°B .65°C .105°D .115° 5.如图,下列各语句中,错误的是( )A .∠ADE 与∠B 是同位角 B .∠BDE 与∠C 是同旁内角 C .∠BDE 与∠AED 是内错角 D .∠BDE 与∠DEC 是同旁内角6.计算2221000252248-的结果是( )A.62500B.1000C.500D.250 二、细心填一填(每小题3分,共18分)7. 水的质量0.00000204kg,用科学记数法表示为__________.8. 试用几何语言描述下图:_____.9.若216x a x -+是一个完全平方数,则a =10.一个角是52度,那么这个角的补角是 度 11.已知a x=2 ,a y=3则a3x -2y=____________.12. 在下列代数式: ①(x-12y)(x+12y), ②(3a+bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1)中能用平方差公式计算的是 (填序号) 三、解答题。
(每小题6分,共30分) 13.计算下列各式:(1)(-x 2y 5)·(xy )3(2) (3a +2)(4a -1)14.计算下列各式: (1)-24+ ×(2 017+3)0-(2) )2)((422y x y x y x +---)(15.先化简,再求值:abb a ab a ab a 3)129(9)2(24322÷+-⋅-- 其中2,1-=-=b a .16.一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?DC17.直线AB.CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,求∠AOC 和∠COB 的度数.四.解答题(每小题8分,共32分)18.已知.三角形的底边长为(2x+1)cm ,高是(x -2)cm ,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x =3时三角形增加的面积。
2016-2017学年孝感市孝南区七年级下月考数学试卷(5月)含解析
2016-2017学年湖北省孝感市孝南区七年级(下)月考数学试卷(5月份)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.(3分)下列图形中∠1和∠2是对顶角的是()A.B.C.D.2.(3分)在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如果和都是某二元一次方程的解,则这个二元一次方程是()A.x+2y=﹣3 B.2x﹣y=2 C.x﹣y=3 D.y=3x﹣54.(3分)如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是()A.2.5 B.3 C.4 D.55.(3分)若a>b,则下列不等式不一定成立的是()A.a+m>b+m B.a(m2+1)>b(m2+1)C.D.a2>b26.(3分)一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°7.(3分)下列运算中,错误的有()①;②;③=2;④.A.1个 B.2个 C.3个 D.4个8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)9.(3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.0.6元B.0.7元C.0.8元D.0.9元10.(3分)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)若x、y为实数,且满足|x﹣3|+=0,则()2017的值是.12.(3分)3的绝对值是,相反数是.13.(3分)已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中正确的是.(填写序号)14.(3分)△ABC的三个顶点A(1,2),B(﹣1,﹣2),C(﹣2,3),将△ABC平移,使A与A′(﹣1,﹣2)重合,则B′、C′两点的坐标分别为、.15.(3分)若方程组的解也是方程2x﹣ay=18的解,则a=.16.(3分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.三、用心做一做,显显自己的能力!(本大题共7小题,满分72分.解答写在答题卡上)17.(10分)(1)计算:(﹣1)2017﹣(﹣3)++;(2)解方程组:.18.(10分)方程组的解满足2x﹣5y=﹣1,求m的值.19.(10分)解不等式x﹣+1≥,并把解集表示在数轴上.20.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;,若M为△ABC内(2)将△ABC向左平移7个单位,请画出平移后的△A′B′C′的一点,其坐标为(a,b),则平移后点M的对应点M'的坐标为.21.(10分)某班毕业时,结余经费 1 800元,一部分给老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念,已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.求每件文化衫和每本相册各多少元?22.(10分)如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.23.(12分)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?2016-2017学年湖北省孝感市孝南区七年级(下)月考数学试卷(5月份)参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.(3分)下列图形中∠1和∠2是对顶角的是()A.B.C.D.【解答】解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.故选D.2.(3分)在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.3.(3分)如果和都是某二元一次方程的解,则这个二元一次方程是()A.x+2y=﹣3 B.2x﹣y=2 C.x﹣y=3 D.y=3x﹣5【解答】解:A、不适合方程,故该选项错误;B、不适合方程,故该选项错误;C、两个解都适合方程,故该选项正确;D、不适合方程,故该选项错误.故选C.4.(3分)如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是()A.2.5 B.3 C.4 D.5【解答】解:已知,在△ABC中,∠C=90°,AC=3,根据垂线段最短,可知AP的长不可小于3,当P和C重合时,AP=3,故选:A.5.(3分)若a>b,则下列不等式不一定成立的是()A.a+m>b+m B.a(m2+1)>b(m2+1)C.D.a2>b2【解答】解:A、根据不等式的基本性质1,不等式两边同时加上同一个数,不等号的方向不变,故a+m>b+m一定成立,故此选项不合题意;B、根据不等式的基本性质2,不等式两边同时乘以同一个正数,不等号的方向不变,故a(m2+1)>b(m2+1)一定成立,故此选项不合题意;C、根据不等式的基本性质2,不等式两边同时除以同一个负数,不等号的方向改变,故﹣<﹣一定成立,故此选项不合题意;D、根据不等式的基本性质,a,b若都为负数,a2>b2不成立,故a>b,则不一定成立的是a2>b2,故此符合题意.故选:D.6.(3分)一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°【解答】解:从图中发现∠ABC等于60°﹣15°=45°.故选C.7.(3分)下列运算中,错误的有()①;②;③=2;④.A.1个 B.2个 C.3个 D.4个【解答】解:①原式==;②原式=|﹣4|=4;③原式=2;④原式===.故选C.8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C9.(3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.0.6元B.0.7元C.0.8元D.0.9元【解答】解:由已知通过分析可得:根据小刚通话的方式进行,需要电话费最少,即先打3分钟,挂断后再打3分钟,再挂断打10﹣3﹣3=4分钟,则费用为:0.2+0.2+0.2+0.1=0.7.故选:B.10.(3分)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.来源:Z。
人教版七年级第二学期5月份月考数学试题含解析
人教版七年级第二学期5月份月考数学试题含解析一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy2.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩4.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .45.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣26.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>7.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩8.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②9.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( ) A .6(1)5(211)y x x y=-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y xx y=⎧⎨+-=⎩D .65(21)y xx y=⎧⎨+=⎩10.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.12.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.13.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 14.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 15.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 16.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 17.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上) 18.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.19.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.20.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A 有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B 有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C 有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A 、B 、C 三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 22.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.25.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.26.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.2.B解析:B【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 3.A解析:A 【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答 【详解】设这所学校现初中在校生x 人,小学在校生y 人, 则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A 【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程4.D解析:D 【分析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值. 【详解】解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx-9中,得:-1=2k-9, 解得:k=4. 故选D. 【点睛】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.5.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.C解析:C 【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >, 于是有31425x x x x x >>>>. 故选C . 【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.7.C解析:C 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】解:111222327327a x b y c a x b y c +=⎧⎨+=⎩,11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩,设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a t b s c a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得:714x y =⎧⎨=⎩.故选C.【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.8.B解析:B【分析】根据等式基本性质进行分析即可.【详解】用x表示y为y=3x-5,故①不正确;用y表示x为53yx+=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确.故选B.【点睛】考核知识点:二元一次方程.9.A解析:A【分析】设原有树苗x棵,公路长为y米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x棵,公路长为y米,由题意,得6(1)5(211)y xx y=-⎧⎨+-=⎩,故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.10.B解析:B【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种. 故选B . 【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题11.【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①,解得:n=6m , ②,可得: 解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5.故答案为:3:5.【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.12.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.13.15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.14.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库 解析:358【分析】先设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a -=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a -=方程组可求得x 、y 关于a 的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y ÷-将x 、y 关于a 的关系式代入即可求解.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a7(23)80%4(32)80%x y a x y a -=⎧⎨-=⎩解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时) 故答案为:358【点睛】本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同. 15.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.16.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.17.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得:,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩ , 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.18.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.19.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.20.12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x个,设销售了A、B、C三种礼盒的数量分别为a盒,b盒,c盒,根据题意列出方程组,用x表示a、b、c,再根据“礼盒A和C的总数不超过200解析:12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意列出方程组,用x 表示a 、b 、c ,再根据“礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,列出x 的不等式组,求得x 的取值范围,再根据礼盒数与粽子数量为整数,求得x 的值,进而便可求得结果.【详解】解:设超市去年销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,5x 个,2x 个,则今年该超市销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,(1+20%)×5x =6x 个,(1﹣10%)×2x =1.8x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意得,2323435622 1.8a b c x a b c x a b c x ++=⎧⎪++=⎨⎪++=⎩,解得,0.150.30.9a x b x c x =⎧⎪=⎨⎪=⎩,∵礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,∴0.150.92000.30.9210x x x x +≤⎧⎨+>⎩, ∴1017519021x <≤, ∵a =0.15x 、b =0.3x 、c =0.9x 、1.8x 都为整数,∴x 必为20的倍数,∴x =180,∴a =27,b =54,c =162,∴这些礼盒全部售出的销售额为:(2×6+4×5+2×4+10)a+(3×6+3×5+2×4+12)b+(2×6+5×5+1×4)c =50a+53b+50c =50×27+53×54+50×162=12312,故答案为:12312.【点睛】本题主要考查了三元一次方程组的应用,不等式组的应用,列代数式,关键是根据题意正确列出方程组与不等式组.三、解答题21.(1){-6,+3};(2)①y=7,②a=3,点A 表示的数1;(3)-3或-21【分析】(1)直接根据关联数的定义解题即可;(2)①首先根据关联数的定义求出a 的值,然后即可求解;②通过关联数的定义建立方程组求解即可;(3)通过关联数的定义建立关于A ,B 的方程组,然后通过A ,B 的速度的关系找到A ,B之间的关系,最后通过解方程即可得出答案.【详解】(1)∵点A 表示-3,a =3,336,3233x y ∴=--=-=-+⨯=+,∴点A 的3关联数G (-3,3)={-6,+3};(2)①点A 表示-1,G (A ,a )={-5,y},51a ∴-=--解得4a =,1247y ∴=-+⨯=;②∵G (A ,a )={-2,7},272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},323x A y A =-⎧∴⎨=+⨯⎩,222m B n B =-⎧⎨=+⨯⎩. ∵点A 的速度是点B 速度的3倍,3A B ∴=,13B A ∴=. 6y m -=,()626A B ∴+--=,即16263A A ⎛⎫+--= ⎪⎝⎭, 解得3A =-或21A =-.【点睛】本题主要考查定义新运算,掌握关联数的定义是解题的关键.22.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)41222MNAC S MC NA OB t t t =+⋅=⨯+-⨯=-+四边形. 当812t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形;当812t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当812t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y+++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩, 所以正方形有16个,六边形有12个;(3)据题意,350t s +=,据题意,t s ≥,且,s t 均为整数,因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.25.(1) 1.56a c =⎧⎨=⎩;0≤x≤6时,y=1.5x ; x >6时,y=6x-27;(2)该户5月份水费是21元. 【解析】【分析】(1)根据3、4两个月的用水量和相应水费列方程组求解可得a 、c 的值;当0≤x≤6时,水费=用水量×此时单价;当x >6时,水费=前6立方水费+超出部分水费,据此列式即可;(2)x=8代入x >6时y 与x 的函数关系式求解即可.【详解】解:(1)根据题意,得:()57.56a 96c 27a =⎧⎨+-=⎩, 解得: 1.56a c =⎧⎨=⎩; 当0≤x≤6时,y=1.5x ;当x >6时,y=1.5×6+6(x-6)=6x-27;(2)当x=8时,y=6x-27=6×8-27=21.答:若某户5月份的用水量为8米3,该户5月份水费是21元.【点睛】本题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.26.(1)甲45人,乙30人 (2) 租65座的客车2辆,45座的客车2辆,30座的3辆【解析】分析:(1)根据题意,设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,由等量关系列方程组求解即可;(2)根据坐满的租车方案,由总人数列方程求解即可.详解:(1)设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,根据题意得 231803165x y x y +=⎧⎨+=⎩,解之得:4530x y =⎧⎨=⎩答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人.(2)设同时租65座.45座和30座的大小三种客车各m 辆,n 辆,(7﹣m ﹣n )辆, 根据题意得出:65m+45n+30(7﹣m ﹣n )=303+7,整理得出:7m+3n=20,故符合题意的有:m=2,n=2,7﹣m ﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.点睛:本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的等关系式,列出对应的方程.。
2017年5月七年级数学月考试卷(佛山市顺德区含答案)
2017年5月七年级数学月考试卷(佛山市顺德区含答案)2016学年度第二学期第14周教研联盟活动测试七年级数学试卷说明:l.本卷共4页,考试用时90分钟满分为100分2.解答过程写在答题卡相应位置上,监考教师只收答题卡3 非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B铅笔并描清晰一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上1.下列等式中,计算正确的是()A.B..D.2.以下列各组线段长(单位:)为边,能组成三角形的是()A.2,2,4 B.12,,6 .8,6,4 D.2,3,63.空气的密度是0001293g/3,这个数用科学记数法可表示为()A.B..D.4.已知, 则等于()A.B..D.10.如图,已知,,则的度数为()A.B..D.6.下列四个图形中,线段BE是△AB的高的是()A.B..D.7.如图,△≌△,那么下列结论错误的是()A.B.∥.∥D.8.在下列说法中,正确的个数有().①三角对应相等的两个三角形全等②两角、一边对应相等的两个三角形全等③三边对应相等的两个三角形全等④两边、一角对应相等的两个三角形全等A.1个B.2个.3个D.4个9.如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点、D,使D=B,再作出BF的垂线DE,使A、、E在一条直线上,这时可得≌,用于判定全等的最佳依据是()A.ASA B.SAS .SSS D.AAS10.星期天,小王去朋友家借书,下图是他离家的距离(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王去时走上坡路,回家时走下坡路.小王在朋友家停留了10分钟D.小王去时所花的时间少于回家所花的时间二、(本大题共6小题,每小题3分,共18分)请将下列各题的正确答案填写在答题卡相应的位置上11.已知在△AB中,∠A:∠B:∠=1﹕2﹕3,这个三角形是_________三角形.12.在运动会的百米赛场上,小亮正以7米/秒的速度冲向终点,那么小亮与终点的距离S(米)与他跑步的时间t(秒)之间的关系式为_________________.13.一个矩形的面积是,宽为,则矩形的长为____________ ___.14.已知,则的值为____________.1.如图,在△AB中,AD平分∠BA且与B相交于点D,∠B=40°,∠BAD=30°,则∠的度数是________度.16.如图,AB∥D,∠1=64°,FG平分∠EFD,则∠2=___________度.三、解答题(本大题共9小题,共2分)请在答题卡相应位置上作答17.(每小题3分,共9分)计算:(1)(2)(3)简便计算:18.(分)先化简再求值:,其中.19.(分)尺规作图:(不写作法,保留作图痕迹).如图,已知线段a和∠,求作一个△AB,使B=a,A=2a,∠BA=∠20.(6分)如右图,把过程补充完整:(1)∵∠2=_______∴BF∥D()(2)∵∠3 +_______=180°∴A∥D()(3)∵A∥E∴∠1=______ ()21.(6分)有一座锥形小,如图,要测量锥形小两端A、B的距离,先在平地上取一个可以直接到达A和B的点,连接A并延长到D,使D=A,连接B并延长到E,使E=B,连接DE,量出DE的长为0,你能求出锥形小两端A、B的距离吗?22.(6分)如图,A=AE,∠1=∠2,请你添加一个条,使得B=DE.(1)你添加的条是(2)理由是:23.(7分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)两个变量中,是自变量,是因变量;(2)甲的速度乙的速度(填<、=、或>);(3)路程为10时,甲行驶了小时,乙行驶了小时.(4)甲比乙先走了小时;在9时,走在前面。
新人教版初中数学七年级下册5月份月考检测及答案-精品试卷
2017-2018学年七年级(下)月考数学试卷(5月份)一、选择题(3分x10=30分)1.在实数,0,,π,中,无理数有()A. 1个B. 2个C. 3个D. 4个2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.下列方程中是二元一次方程的是()A. x﹣5=3 B. x+=3 C. x+=1 D. xy=34.若3x﹣2y﹣7=0,则4y﹣6x+12的值为()A. 12 B. 19 C.﹣2 D.无法确定5.已知是关于x,y的二元一次方程2mx﹣y=1的一个解,则m的值是()A. 2 B.﹣2 C. 1 D.﹣16.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.7.将一直角三角板与两边平行的纸条如图所示放置,若∠1=2∠2,则∠3的度数是()A. 100°B. 120°C. 130°D. 150°8.如图,一个机器人从O点出发,向正东方向走3m,到达A1点,再向正北走6m到达A2点,再向正西走9m到达A3点,再向正南走12m,到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是()A.(9,12) B.(9,9)C.(9,6)D.(9,3)9.一条进村公路修到湖边时需拐弯绕湖而过,如图,如果第一次拐弯∠A=100°,第二次拐弯∠B=160°,第三次拐弯的角是∠C,要使第三次拐弯后道路恰好与第一次拐弯之前道路平行,则∠C 度数是()A. 110°B. 120°C. 135°D. 155°10.m为正整数,已知二元一次方程组有整数解,则m2的值为()A. 4 B. 49 C. 4或49 D. 1或49 二、填空题(3分X6=18分)11.= ;= ;|﹣π|= .12.x的与7的差不小于3,用不等式表示为:.13.已知x、y满足方程组,则x﹣y的值为.14.在平面直角系中,已知直线l与坐标轴交于A、B(0,﹣5)两点,且直线l与坐标轴围成的图形面积为10,则点A的坐标为.15.如图,在矩形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=16cm,FG=4cm,则图中阴影部分的总面积是cm2.16.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需元.三、解答题17.解下列方程组:(1)(2).18.解方程组:(1)(2).19.如图,已知∠1,∠2互为补角,且∠3=∠B,求证:∠AFE=∠ACB.证明:∵∠1+ =180°,∠l+∠2=180°∴=∴DF∥AB∴∠3=又∵∠3=∠B∴∠B=∴EF∥CB∴∠AFE=∠ACB .20.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.21.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为.22.如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.(1)求证:AB∥DE;(2)BD平分∠EBC吗?为什么?23.某汽车制造厂开发了一种新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n名(0<n<10)新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,招聘的新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?24.在平面直角坐标系中,有一点B(a,b)的横纵坐标满足条件:|2a﹣24|+(a﹣b﹣7)2=0.(1)求点B的坐标.(2)如图1,过点B作BA⊥x轴于A,BC⊥y轴于C,P为CB延长线上一点,OP交BA于E,若S△OAE﹣S△BPE=18,求P、E两点坐标.(3)M为(2)中BC上一点,如图2,且OM⊥AM,Q为CM上一动点,F为OQ上一动点,∠FAO=∠COQ,ON、AN分别平分∠QOM与∠FAM,当Q点运动时,∠N变化吗?若不变,求其值;若变化,说明理由.七年级(下)月考数学试卷(5月份)参考答案与试题解析一、选择题(3分x10=30分)1.在实数,0,,π,中,无理数有()A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.解答:解:﹣是分数,0是整数,=3是整数,这三个数都是有理数,和π是无理数,故选B.点评:此题主要考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)考点:点的坐标.分析:点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.解答:解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选D.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列方程中是二元一次方程的是()A. x﹣5=3 B. x+=3 C. x+=1 D. xy=3考点:二元一次方程的定义.专题:方程思想.分析:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.解答:解:A、方程x﹣5=3中含有一个未知数,属于一元一次方程;故本选项错误;B、方程x+=3不是整式方程,是分式方程;故本选项错误;C、方程x+=1符合二元一次方程的定义;故本选项正确;D、方程xy=3的次数是2,属于二元二次方程;故本选项错误;故选C.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.4.若3x﹣2y﹣7=0,则4y﹣6x+12的值为()A. 12 B. 19 C.﹣2 D.无法确定考点:代数式求值.分析:把(3x﹣2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.解答:解:∵3x﹣2y﹣7=0,∴3x﹣2y=7,∴4y﹣6x+12=﹣2(3x﹣2y)+12=﹣2×7+12=﹣14+12=﹣2.故选C点评:本题考查了代数式求值,整体思想的利用是解题的关键.5.已知是关于x,y的二元一次方程2mx﹣y=1的一个解,则m的值是()A. 2 B.﹣2 C. 1 D.﹣1考点:二元一次方程的解.分析:把方程的已知解代入2mx﹣y=1中,得到一个含有未知数m的一元一次方程,然后就可以求出m的值.解答:解:把代入二元一次方程2mx﹣y=1,得2m+3=1,∴m=﹣1.故选D.点评:解题关键是把二元一次方程的已知解代入二元一次方程,使原方程转化为以系数m为未知数的方程,然后解此方程即可.6.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.考点:二元一次方程组的应用.专题:应用题.分析:要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.解答:解:设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意得:.故选C.点评:考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.本题的等量关系是:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食30吨,甲仓库和乙仓库共存粮450吨.列出方程组,再求解.7.将一直角三角板与两边平行的纸条如图所示放置,若∠1=2∠2,则∠3的度数是()A. 100°B. 120°C. 130°D. 150°考点:平行线的性质.分析:根据三角形内角和定理求出∠2的度数,再根据邻补角定义求出即可.解答:解:∵∠4=∠1,∠1=2∠2,∴∠4=2∠2,∵∠ACB=90°,∴3∠2=90°,∴∠2=30°,∴∠3=180°﹣30°=150°,故选D.点评:本题考查了平行线的性质,邻补角,三角形内角和定理的应用,能求出∠2的度数是解此题的关键.8.如图,一个机器人从O点出发,向正东方向走3m,到达A1点,再向正北走6m到达A2点,再向正西走9m到达A3点,再向正南走12m,到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是()A.(9,12) B.(9,9)C.(9,6)D.(9,3)考点:规律型:点的坐标.分析:由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A5A6=3×6=18,进而求得A6的横纵坐标.解答:解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).故选:A.点评:本题主要考查了点的坐标的意义.横坐标的绝对值是点到y轴的距离,纵坐标的绝对值是点到x轴的距离.解题关键是根据题意求出各条线段的长度.9.一条进村公路修到湖边时需拐弯绕湖而过,如图,如果第一次拐弯∠A=100°,第二次拐弯∠B=160°,第三次拐弯的角是∠C,要使第三次拐弯后道路恰好与第一次拐弯之前道路平行,则∠C度数是()A. 110°B. 120°C. 135°D. 155°考点:平行线的性质.专题:应用题.分析:过B作BE∥CD,求出AF∥BE∥CD,根据平行线的性质得出∠A=∠ABE,∠DCB+∠CBE=180°再逐个代入求出即可.解答:解:如图:过B作BE∥CD,∵AF∥CD,∴AF∥BE∥CD,∴∠A=∠ABE,∠DCB+∠CBE=180°∵∠A=100°,∴∠ABE=100°,∵∠ABC=160°,∴∠EBC=160°﹣100°=60°,∴∠C=180°﹣60°=120°,故选B.点评:本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键,注意:两直线平行,内错角相等,两直线平行,同旁内角互补.10.m为正整数,已知二元一次方程组有整数解,则m2的值为()A. 4 B. 49 C. 4或49 D. 1或49考点:二元一次方程组的解.分析:先解方程组,由条件方程组的解为整数,再讨论即可求得m的值,进一步计算m2即可.解答:解:解方程组可得,∵方程组有整数解,∴m+3为10和15的公约数,且m为正整数,∴m+3=5,解得m=2,∴m2=4,故选A.点评:本题主要考查二元一次方程组的解,求出方程组的解得出m满足的条件是解题的关键.二、填空题(3分X6=18分)11.= 3 ;= ﹣;|﹣π|= π﹣.考点:立方根;算术平方根;实数的性质.分析:直接利用算术平方根以及立方根和绝对值的性质化简求出即可.解答:解:=3,=﹣,|﹣π|=π﹣.故答案为:3,﹣,π﹣.点评:此题主要考查了算术平方根以及立方根和绝对值的性质,正确化简各数是解题关键.12.x的与7的差不小于3,用不等式表示为:x﹣7≥3 .考点:由实际问题抽象出一元一次不等式.分析:根据x的即x,再与7的差,即减7,最后大于等于3,得出即可.解答:解:由题意可得:x﹣7≥3.故答案为:x﹣7≥3.点评:此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.已知x、y满足方程组,则x﹣y的值为 1 .考点:解二元一次方程组.分析:方程组利用加减消元法求出即可.解答:解:,①﹣②得:x﹣y=1,故答案为:1点评:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.14.在平面直角系中,已知直线l与坐标轴交于A、B(0,﹣5)两点,且直线l与坐标轴围成的图形面积为10,则点A的坐标为(±4,0).考点:坐标与图形性质;三角形的面积.分析:根据三角形的面积公式和已知条件求解,注意a取正负数都符合题意.解答:解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴OA=4,故答案为:(±4,0).点评:本题考查了坐标与图形的性质,三角形的面积,知道点A 有两解是解题的关键.15.如图,在矩形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=16cm,FG=4cm,则图中阴影部分的总面积是82 cm2.考点:二元一次方程组的应用.分析:设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到大长方形的面积,再根据阴影部分的面积=大长方形的面积﹣6个小长方形的面积求解即可.解答:解:设小长方形的长为x,宽为y,如图可知,,解得:,因此,大矩形ABCD的宽CD=4+3y=13(厘米).阴影部分总面积=16×13﹣6×3×7=82(平方厘米),故答案为:82.点评:本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 5 元.考点:三元一次方程组的应用.分析:首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.解答:解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5,故答案为:5.点评:本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题17.解下列方程组:(1)(2).考点:解二元一次方程组.分析:(1)直接用代入消元法求解即可;(2)先用加减消元法求x的值,再用代入消元法求出y的值即可.解答:解:(1),将②代入①中得:6y﹣7﹣y=13,解得y=4将y=4代入②中得:x=17,故此方程组的解为;(2),①×2得:4x+6y=24,③②+③得:9x=27,x=3,将x=3代入①中得:y=2,故此方程组的解为.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.18.解方程组:(1)(2).考点:解三元一次方程组;解二元一次方程组.专题:计算题.分析:(1)方程组整理后,利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1)方程组整理得:,①+②×5得:46y=46,即y=1,把y=1代入①得:x=7,则方程组的解为;(2),①+②得:5x+z=16④,①×2+③得:7x+5z=26⑤,④×5﹣⑤得:18x=54,即x=3,把x=3代入④得:z=1,把x=3,z=1代入③得:y=8,则方程组的解为.点评:此题考查了解二元一次方程组,以及三元一次方程组,熟练掌握运算法则是解本题的关键.19.如图,已知∠1,∠2互为补角,且∠3=∠B,求证:∠AFE=∠ACB.证明:∵∠1+ ∠FDE =180°,∠l+∠2=180°∴∠FDE = ∠2∴DF∥AB∴∠3= ∠AEF又∵∠3=∠B∴∠B= ∠AEF∴EF∥CB∴∠AFE=∠ACB (两直线平行,同位角相等).考点:平行线的判定与性质.专题:推理填空题.分析:求出∠FDE=∠2,根据平行线的判定推出DF∥AB,根据平行线的性质得出∠3=∠AEF,求出∠AEF=∠B,根据平行线的判定得出EF∥CB即可.解答:证明:∵∠1+∠FDE=180°,∠1+∠2=180°,∴∠FDE=∠2,∴DF∥AB,∴∠3=∠AEF,∵∠3=∠B,∴∠AEF=∠B,∴EF∥CB,∴∠AFE=∠ACB(两直线平行,同位角相等),故答案为:∠FDE,∠FDE,∠2,∠AEF,∠AEF,两直线平行,同位角相等.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.20.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.考点:二元一次方程组的解.分析:本题是解二元一次方程的逆向思维,把所求得的x、y的值代入方程即可求出c的值,然后再利用算错的学生的答案找到另一方程,与代入得到的方程组成方程组,解方程即可.解答:解:将代入方程组中的②,解得:c=3.重组关于a、b的二元一次方程组,解得a=3,b=﹣1.解得abc=﹣9.点评:此题比较复杂,关键是利用解错的那位学生的答案,只可以得到一个正确的方程.21.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为 6 .考点:坐标与图形变化-平移.分析:(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.解答:解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.点评:此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)22.如图,∠1=∠2,∠BAE=∠BDE,EA平分∠BEF.(1)求证:AB∥DE;(2)BD平分∠EBC吗?为什么?考点:平行线的判定与性质.分析:(1)先根据对顶角相等得出∠2=∠ABE,再由∠1=∠2可知∠1=∠ABE,根据平行线的判定定理即可得出结论;(2)根据(1)中AB∥CD可知∠AED+∠BAE=180°,∠BEF=∠EBC,根据∠BAE=∠BDE可得∠AED+∠BDE=180°,故AE∥BD,所以∠AEB=∠DBE,再根据EA平分∠BEF可得出结论.解答:(1)证明:∵∠2与∠ABE是对顶角,∴∠2=∠ABE.∵∠1=∠2,∴∠1=∠ABE,∴AB∥DE;(2)解:BD平分∠EBC.理由:∵由(1)知AB∥CD,∴∠AED+∠BAE=180°,∠BEF=∠EBC.∵∠BAE=∠BDE,∴∠AED+∠BDE=180°,∴AE∥BD,∴∠AEB=∠DBE.∵EA平分∠BEF,∠BEF=∠EBC,∴BD平分∠EBC.点评:本题考查的是平行线的判定与性质,先根据同位角相等判断出AB∥CD是解答此题的关键.23.某汽车制造厂开发了一种新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n名(0<n<10)新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,招聘的新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?考点:一次函数的应用;二元一次方程的应用;二元一次方程组的应用.专题:应用题;方案型.分析:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.(2)设工厂有m名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据m,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.解答:解:(1)设每名熟练工和新工人每月分别可以安装x、y 辆电动汽车.根据题意,得,解得.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有m名熟练工.根据题意,得12(4m+2n)=240,2m+n=10,n=10﹣2m,又∵m,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,m=1,即新工人8人,熟练工1人;②n=6,m=2,即新工人6人,熟练工2人;③n=4,m=3,即新工人4人,熟练工3人;④n=2,m=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,m=1;或n=6,m=2;或n=4,m=3.根据题意,得W=2000m+1200n=2000m+1200(10﹣2m)=12000﹣400m.要使工厂每月支出的工资总额W(元)尽可能地少,则m应最大.显然当n=4,m=3时,工厂每月支出的工资总额W(元)尽可能地少.点评:本题主要考查一次函数,二元一次方程组,二元一次方程三个考点,此题要能够理解题意,正确找到等量关系和不等关系,熟练解方程组和根据条件分析不等式中未知数的值.24.在平面直角坐标系中,有一点B(a,b)的横纵坐标满足条件:|2a﹣24|+(a﹣b﹣7)2=0.(1)求点B的坐标.(2)如图1,过点B作BA⊥x轴于A,BC⊥y轴于C,P为CB延长线上一点,OP交BA于E,若S△OAE﹣S△BPE=18,求P、E两点坐标.(3)M为(2)中BC上一点,如图2,且OM⊥AM,Q为CM上一动点,F为OQ上一动点,∠FAO=∠COQ,ON、AN分别平分∠QOM与∠FAM,当Q点运动时,∠N变化吗?若不变,求其值;若变化,说明理由.考点:坐标与图形性质;三角形的面积.专题:计算题.分析:(1)根据非负数的性质得2a﹣24=0,a﹣b﹣7=0,解方程组求出a和b即可得到点B的坐标;(2)设P(m,5),E(12,n),根据平行线分线段成比例得=,解得n=,则E(12,),再利用三角形面积公式得到•12•﹣•(5﹣)•(m﹣12)=18,解得m=,则n=,所以P(,5),E(12,);(3)如图2,由∠FAO=∠COQ可得∠AOF+∠AOF=90°,则∠AFO=90°,根据三角形内角和可得∠QOM=∠MAF,再利用角平分线定义得∠NOM=∠QOM,∠MAN=∠MAF,所以∠NOM=∠MAN,然后再利用三角形内角和易得∠N=∠AMO=90°.解答:解:(1)∵|2a﹣24|+(a﹣b﹣7)2=0,∴2a﹣24=0,a﹣b﹣7=0,∴a=12,b=5,∴点B的坐标为(12,5);(2)设P(m,5),E(12,n),则PB=m﹣12,BE=5﹣n,∵PB∥OA,∴=,即=,∴n=,∴E(12,),∵S△OAE﹣S△BPE=18,∴•12•﹣•(5﹣)•(m﹣12)=18,解得m=,∴n=,∴P(,5),E(12,);(3)∠N不变化.如图2,∵∠FAO=∠COQ,∠AOF+∠COQ=90°,∴∠AOF+∠AOF=90°,∴∠AFO=90°,∵∠AMO=90°,∠1=∠2,∴∠QOM=∠MAF,∵ON、AN分别平分∠QOM与∠FAM,∴∠NOM=∠QOM,∠MAN=∠MAF,∴∠NOM=∠MAN,∵∠3=∠4,∴∠N=∠AMO=90°,即∠N不变化.点评:本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.也考查了非负数的性质、三角形内角和定理和三角形面积公式.。
七年级(下)月考数学试卷(5月份)附答案
七年级(下)月考数学试卷(5月份)一、选择题:(本大题共有10小题,每小题3分,共30分)1.下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a62.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>03.甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米4.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或85.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣46.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.连接三角形两边中点的线段7.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.8.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0 B.x>2 C.x<0 D.x<29.如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+∠E﹣∠C=180°C.∠B+∠C﹣∠E=180°D.∠C+∠E﹣∠B=180°10.方程5x+3y=54共有()组正整数解.A.2 B.3 C.4 D.5二、填空题:(本大题共10小题,每空2分,共24分)11.一个n边形的内角和是1260°,那么n=.12.已知m x=2,m y=4,则m x+2y=.13.如果a<b.那么3﹣2a3﹣2b.(用不等号连接)14.计算:(﹣2x3y)•(﹣x2y2)=.(x﹣1)(x+1)(x2+1)=.15.不等式3x﹣9>0的解集为,不等式14﹣2x>6的解集为.16.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为.17.关于x、y的方程组,则x+y的值为.18.4根小木棒的长度分别为2cm、3cm、4cm和5cm.用其中3根搭三角形,可以搭出不同的三角形.19.若m2+n2﹣6n+4m+13=0,m2﹣n2=.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.三、解答题:(本大题共9小题,共46分,解答时应写出必要的计算过程、推演步骤或文字说明).21.计算:(1)(﹣a)2•(a2)2÷a3(2)(x+2)(4x﹣2)+(2x﹣1)(x﹣4)22.把下列各式分解因式:(1)2x2﹣8xy+8y2(2)4x3﹣4x2y﹣(x﹣y)23.解方程组:(1)(2).24.代数式的值不小于的值,在数轴上表示出x的取值范围并求出x的最大整数值.25.解不等式组:.26.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.27.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.28.为了科学使用电力资源,我市对居民用电实行“峰谷”计费:8:00~21:00为峰电价,每千瓦时0.56元;其余时间为谷电价,每千瓦时0.28元,而不实行“峰谷”计费的电价为每千瓦时0.52元.小丽家某月共用电200千瓦时.(1)若不按“峰谷”计费的方法,小丽家该月原来应缴电费元;(2)若该月共缴电费95.2元,求小丽家使用“峰电”与“谷电”各多少千瓦时?(3)当峰时用电量小于总用电量的几分之几时,使用“峰谷”计费法比原来的方法合算?29.如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF 的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF=.(仅填结果)参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分)1.下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.解答:解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D点评:此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.2.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0考点:在数轴上表示不等式的解集.分析:根据在数轴上表示不等式解集的方法进行解答即可.解答:解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选A.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心原点的区别是解答此题的关键.3.甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00 000 008=8×10﹣8,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或8考点:等腰三角形的性质;三角形三边关系.分析:因为腰长没有明确,所以分①2是腰长,②3是腰长两种情况求解.解答:解:①2是腰长时,能组成三角形,周长=2+2+3=7,②3是腰长时,能组成三角形,周长=3+3+2=8,所以,它的周长是7或8.故选:D.点评:本题考查了等腰三角形的性质,易错点为要分情况讨论求解.5.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4考点:因式分解的意义.分析:根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.解答:解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.点评:此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.6.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.连接三角形两边中点的线段考点:三角形的角平分线、中线和高;三角形的面积.分析:根据等底等高的三角形的面积相等解答.解答:解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选:A.点评:本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.7.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”.如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设小刚的弹珠数为x颗,小龙的弹珠数为y颗,根据题意,列方程组即可.解答:解:设小刚的弹珠数为x颗,小龙的弹珠数为y颗,由题意得,x+y=10,x+y=10化简得,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.8.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0 B.x>2 C.x<0 D.x<2考点:不等式的解集.分析:首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法;大大取大可确定另一个不等式的解集,进而选出答案.解答:解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1,故选:A.点评:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.9.如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+∠E﹣∠C=180°C.∠B+∠C﹣∠E=180°D.∠C+∠E﹣∠B=180°考点:平行线的性质.分析:过点E作EF∥AB,根据两直线平行,同旁内角互补表示出∠1,两直线平行,内错角相等表示出∠2,再根据∠E=∠1+∠2整理即可得解.解答:解:如图,过点E作EF∥AB,则∠1=180°﹣∠B,∵AB∥CD,∴EF∥CD,∴∠2=∠C,∵∠1+∠2=∠E,∴180°﹣∠B+∠C=∠E,∴∠B+∠E﹣∠C=180°.故选B.点评:本题考查了平行线的性质,此类题目,过拐点作辅助线是解题的关键.10.方程5x+3y=54共有()组正整数解.A.2 B.3 C.4 D.5考点:解二元一次方程.分析:求出y=18﹣x,取3的倍数即可得出答案.解答:解:5x+3y=54y=18﹣x,共有3组正整数解:是,,.故选B.点评:本题考查了二元一次方程的解的应用,主要考查学生的理解能力和计算能力.二、填空题:(本大题共10小题,每空2分,共24分)11.一个n边形的内角和是1260°,那么n=9.考点:多边形内角与外角.分析:根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.解答:解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.点评:此题主要考查了多边形的内角和公式,关键是掌握内角和公式.12.已知m x=2,m y=4,则m x+2y=32.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积的乘方和幂的乘方的运算法则求解即可.解答:解:∵m x=2,m y=4,∴m x+2y=m x(m y)2=2×16=32.故答案为:32.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.13.如果a<b.那么3﹣2a>3﹣2b.(用不等号连接)考点:不等式的性质.分析:根据不等式的性质3,可得﹣2a>﹣2b,根据不等式的性质1,可得3﹣2a与3﹣2b的大小关系.解答:解:∵a<b,两边同乘﹣2得:﹣2a>﹣2b,不等式两边同加3得:3﹣2a>3﹣2b,故答案为:>.点评:本题考查了不等式的性质,注意计算顺序,先根据不等式的性质3,两边同乘﹣2,在根据不等式的性质1,不等式两边同加3.14.计算:(﹣2x3y)•(﹣x2y2)=2x5y3.(x﹣1)(x+1)(x2+1)=(x4﹣1).考点:平方差公式;单项式乘单项式.分析:利用单项式的乘法法则进行运算即可;两次运用平方差公式即可求得答案.解答:解:(﹣2x3y)•(﹣x2y2)=2x5y3;(x﹣1)(x+1)(x2+1)=(x2﹣1)(x2+1)=(x4﹣1).故答案为:2x5y3、(x4﹣1).点评:本题考查了平方差公式及单项式的乘法,属于基础运算,解题的关键是牢记平方差公式和单项式乘法的运算法则,难度较小.15.不等式3x﹣9>0的解集为x>3,不等式14﹣2x>6的解集为x<4.考点:解一元一次不等式.分析:先移项,然后将系数化为1,可得出不等式的解集.解答:解:3x﹣9>0,移项得:3x>9,系数化为1可得:x>3;14﹣2x>6,移项得:2x<8,系数化为1得:x<4.故答案为:x>3,x<4.点评:本题考查了解一元一次不等式的知识,解答本题的关键是掌握解一元一次不等式的步骤.16.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为4.考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,令一次项系数为0即可求出k的值.解答:解:(x+k)(x﹣4)=x2+(k﹣4)x﹣4k,∴k﹣4=0,即k=4.故答案为:4.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.17.关于x、y的方程组,则x+y的值为﹣1.考点:解二元一次方程组.分析:方程组的两个方程相加,再两边都除以3,即可求出答案.解答:解:,①+②得:3x+3y=﹣3,x+y=﹣1,故答案为:﹣1.点评:本题考查了解二元一次方程组的应用,主要考查学生能否选择适当的方法求出结果,题目比较好,难度适中.18.4根小木棒的长度分别为2cm、3cm、4cm和5cm.用其中3根搭三角形,可以搭出3不同的三角形.考点:三角形三边关系.分析:先写出不同的分组,再根据三角形的任意两边之和大于第三边对各组数据进行判断即可得解.解答:解:任取3根可以有一下几组:①2cm,3cm,4cm,能够组成三角形,②2cm,3cm,5cm,∵2+3=5,∴不能组成三角形;③2cm,4cm,5cm,能组成三角形,③3cm,4cm,5cm,能组成三角形,∴可以搭出不同的三角形3个.故答案为:3.点评:本题考查了三角形的三边关系,按照一定的顺序进行分组才能做到不重不漏.19.若m2+n2﹣6n+4m+13=0,m2﹣n2=﹣5.考点:配方法的应用;非负数的性质:偶次方.专题:计算题.分析:已知等式常数项13变形为9+4,结合后利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0求出m与n的值,即可求出所求式子的值.解答:解:∵m2+n2﹣6n+4m+13=(m2+4m+4)+(n2﹣6n+9)=(m+2)2+(n﹣3)2=0,∴m+2=0,n﹣3=0,即m=﹣2,n=3,则m2﹣n2=4﹣9=﹣5.故答案为:﹣5点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.20.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.考点:直角三角形全等的判定.分析:要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.解答:解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题:(本大题共9小题,共46分,解答时应写出必要的计算过程、推演步骤或文字说明).21.计算:(1)(﹣a)2•(a2)2÷a3(2)(x+2)(4x﹣2)+(2x﹣1)(x﹣4)考点:整式的混合运算.分析:(1)先算积的乘方和幂的乘方,再算同底数幂的乘除;(2)利用整式的乘法展开,进一步合并得出答案即可.解答:解:(1)原式=a2•a4÷a3=a3;(2)原式=4x2+6x﹣4+2x2﹣9x+4=6x2﹣3x.点评:此题考查整式的混合运算,掌握运算顺序于计算方法是解决问题的关键,注意符号的判断.22.把下列各式分解因式:(1)2x2﹣8xy+8y2(2)4x3﹣4x2y﹣(x﹣y)考点:提公因式法与公式法的综合运用.分析:(1)首先提取公因式2,再利用完全平方公式进行二次分解即可.(2)首先把前两项组合提取公因式4x2,然后再提取公因式(x﹣y)进行二次分解,最后利用平方差公式进行三次分解即可.解答:解:(1)2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2;(2)4x3﹣4x2y﹣(x﹣y)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1).点评:此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底.23.解方程组:(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解答:解:(1)方程组整理得:,①﹣②得:4y=16,即y=4,把y=4代入①得:x=10,则方程组的解为;(2)方程组整理得:,①+②×5得:7x=﹣7,即x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.代数式的值不小于的值,在数轴上表示出x的取值范围并求出x的最大整数值.考点:解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.分析:根据题意列出关于x的不等式,然后利用不等式的性质来解该一元一次不等式,并将其在数轴上表示出来.解答:解:根据题意,得:≥,去分母得,2(x++1)≥5(2x+3),去括号得,2x+2≥10x+15,移项得2x﹣10x≥15﹣2,合并同类项得﹣8x≥13,系数化为1,得x≤﹣所以x的最大整数值是﹣2.数轴上表示如下:点评:本题考查了利用不等式的性质来解一元一次不等式.不等式的性质是:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.25.解不等式组:.考点:解一元一次不等式组.分析:首先分别解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.解答:解:,解不等式①得:x≥0,解不等式②得:x<4,不等式组的解集为:0≤x<4.点评:此题主要考查了解一元一次不等式,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.26.先化简,再求值:(2a+b)2+5a(a+b)﹣(3a﹣b)2,其中a=3,b=﹣.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:(2a+b)2+5a(a+b)﹣(3a﹣b)2=4a2+4ab+b2+5a2+5ab﹣9a2+6ab﹣b2=15ab,当a=3,b=﹣时,原式=15×3×(﹣)=﹣30.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,题目比较好,难度适中.27.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.考点:全等三角形的判定与性质.专题:证明题.分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.解答:证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.点评:本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.28.为了科学使用电力资源,我市对居民用电实行“峰谷”计费:8:00~21:00为峰电价,每千瓦时0.56元;其余时间为谷电价,每千瓦时0.28元,而不实行“峰谷”计费的电价为每千瓦时0.52元.小丽家某月共用电200千瓦时.(1)若不按“峰谷”计费的方法,小丽家该月原来应缴电费104元;(2)若该月共缴电费95.2元,求小丽家使用“峰电”与“谷电”各多少千瓦时?(3)当峰时用电量小于总用电量的几分之几时,使用“峰谷”计费法比原来的方法合算?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)直接利用用电量×单价=总费用,得出即可;(2)设小丽家“峰电”与“谷电”分别用了x、y千瓦时,由题意得出方程组求出即可;(3)设“峰电”用电量占总用电量的比值为:x,总用电量为a千瓦时,由题意得出:0.56ax+0.28a(1﹣x)<0.52a,进而求出即可.解答:解:(1)200×0.52=104元;故答案为:104;(2)设小丽家“峰电”与“谷电”分别用了x、y千瓦时,由题意得:,解得:,答:小丽家“峰电”与“谷电”分别用了140千瓦时、60千瓦时;(3)设“峰电”用电量占总用电量的比值为:x,总用电量为a千瓦时,由题意得出:当0.56ax+0.28a(1﹣x)<0.52a时,“峰谷”计费方式便宜,解得:x<,答:当峰时用电量小于总用电量的时,使用“峰谷”计费法比原来的方法合算.点评:此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出不等式关系是解题关键.29.如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF 的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF=3.(仅填结果)考点:命题与定理;三角形的面积;直角三角形的性质.分析:(1)根据直角三角形两锐角互余可得∠A+∠B=90°,然后求出∠A+∠ACD=90°,从而得到∠ADC=90°,再根据垂直的定义证明即可;(2)根据角平分线的定义可得∠CAE=∠BAE,再根据直角三角形两锐角互余可得∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,从而得到∠AEC=∠AFD,再根据对顶角相等可得∠AFD=∠CFE,然后等量代换即可得证;(3)根据等高的三角形的面积的比等于底边的比求出S△ACD和S△ACE,然后根据S△CEF﹣S△ADF=S△ACE﹣S△ACD计算即可得解.解答:(1)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,即CD⊥AB,证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;(2)证明:∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,∴∠AEC=∠AFD,∵∠AFD=∠CFE(对顶角相等),∴∠AEC=∠CFE;(3)解:∵BC=3CE,AB=4AD,∴S△ACD=S△ABC=×36=9,S△ACE=S△ABC=×36=12,∴S△CEF﹣S△ADF=S△ACE﹣S△ACD=12﹣9=3.故答案为:3.点评:本题考查了命题与定理,三角形的面积,直角三角形两锐角互余的性质,有两个锐角互余的三角形是直角三角形,(3)利用等高的三角形的面积的比等于底边的比求出S△ACD和S△ACE是解题的关键.。
北京市2017-2018学年七年级数学下学期5月月考试题(答案不全) 新人教版
北京市2017-2018学年七年级数学下学期5月月考试题考试时间 120 分 试卷满分 120 分一、选择题:(本题共12小题,每小题3分,共36分). 1.下列方程中,二元一次方程是( ) A ﹒x +xy =8 B ﹒y =12x -1 C ﹒x +1x=2 D ﹒x 2+y -3=0 2﹒已知2x +3y =6,用含y 的代数式表示x 得( ) A ﹒x =3-32y B ﹒y =2-23x C ﹒x =3-3y D ﹒y =2-2x 3﹒已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A ﹒-1 B ﹒15 C ﹒35D ﹒1 4.若m >n ,下列不等式不一定成立的是( ) A. m +2>n +2 B. 2m >2n C.D. m 2>n 25.解不等式2x ≥x-1,其解集在数轴上表示正确的是( )A B C D 6.使不等式x-1≥2与3x-7<8同时成立的x 的整数值是( )A. 3,4B. 4,5C. 3,4,5D. 不存在 7.某商品的进价是120元,商家出售这样的一件商品时可获利润是进价的20%~ 30%,则售价的范围是( )A. 144~156元B. 126~144元C. 136~154元D. 145~155元 8.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获的场数可能是( ) A ﹒1或2 B ﹒2或3 C ﹒3或4 D ﹒4或5 9. 若是同类项,则与b a b a y x y x +--2315-51( ) A. a=2 b=-1 B. a=2 b=1 C. a=-2 b=-1 D. a=-2 b=1 10. 若0112523=+---mn yxnm 是二元一次方程,则( )A. m=1 n=2 B .m=2 n=1 C .m=-1 n=2 D. m=3 n=411.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A. 11B. 8C. 7D. 512.如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则x +y +a 的值为( )A ﹒5B ﹒6C ﹒7D ﹒8二、填空题:(本题共8小题,每小题4分,共32分) 12题图13.请你编写一个解为21x y =⎧⎨=⎩的二元一次方程组:______________.14.方程2x +3y =17的正整数解为________________. 15.写出一个解集为x >1的一元一次不等式: . 16.不等式2x+5≥1的负整数解是______________.17.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为___________.18.已知关于x 的方程3x+3k=2的解是正数,那么k 的取值范围___________.19..当a________时,不等式31224x a x -+>的解集是 x >2. 20.若不等式( a + 1 ) x > a + 1 的解集是 x < 1,则 a 的取值范围是____________ 三、解答题(本题有7小题,共60分)21.(10分)用合适的方法解下列方程组:(1)⎩⎨⎧==+651423y x y x — (2) 2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩22.(10分)解不等式:(1)5x-2(3-2x)≥4 (2)3)12+x (<16)15--x (23.(6分)若 |x-3| +(3x-y-m)2 = 0,当y ≥ 0时,求m的取值范围.24.(8分)在解方程组134ax bycx y-=⎧⎨-=⎩时,小明因看错了b的符号,从而求得的解为32xy=⎧⎨=⎩;小芳因看漏了c,求得的解为51xy=⎧⎨=⎩,求a+b+c的值?25.(8分)已知关于x 、y的方程组24221x y kx y k+=⎧⎨+=+⎩的解满足x-y < 0,求k的取值范围?26.(8分)某居民小区为了美化环境,建设温馨家园,准备将一块周长为76米的长方形空地绿化,空地恰好能设计成长和宽分别相等的9个长方形,如图所示,种上各种花卉.经市场预测,绿化每平方米空地造价为110元,请你计算出完成这项绿化工程预计花费多少万元?27.(10分)某服装店用6000元购进A、B两种新式服装,按标价售出后可获得利润3800元(利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A种服装按标价的八折出售,B种服装按标价的七折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?考试时间 120 分试卷满分 120 分一、选择题:(本题共12小题,每小题3分,共36分).1. 2.A 3.D 4.D 5.B 6.A 7、A8.C 9.A 10.D 11.B 12.C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年七年级数学下册5月月考试卷(有答案)
2016-2017年度第二学期第一联盟5月检测七年级数学试题考试时间:100分钟卷面总分:120分一、选择题(每题3分,共24分)1.下列各计算中,正确的是…………………………………………………………… () A. B.
C. D. 2.两根木棒长度分别是20厘米和30厘米,从下列木棒中再选1根与原来2根组成一个三角形(3根木棒首尾依次相接),应选的木棒长度为………………………………………() A.20厘米 B.10厘米 C.55厘米 D.60厘米 3.已知是完全平方式,则的值为……………………………… …() A.10 B.±10 C.20 D.±20 4.不等式的解集在数轴上表示出来应为…………………………………………()
5.如果a>b ,下列各式中不正确的是…………………………………………………() A.-5a>-5b B.a+3>b+3 C.a2>b2 D.a-b>0 6.将一副直角三角板,按如图所示叠放在一起,则图中∠α为()A. 45° B. 60° C. 75° D. 90° 7.观察下列4个命题:其中真命题是…………………………………………………… ()(1)三角形的外角和是180°;(2)三角形的三个内角中至少有两个锐角;(3)如果x2y<0,那么y<0;(4)直线a、b、c,如果a⊥b、b⊥c,那么a⊥c。
A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4) 8.如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为…………………………………………………… () A.4 B.3 C.4.5 D.3.5
(第6题图)二、填空题(每题3分,共30分) 9.五边形的内角和是____ ___°. 10.水是生命之源,水是由氢原予和氧原子组成的,其中氢原子的直径为0.0000000001米,把这个数值用科学记数法表示为米 . 11.计算:的结果是. 12.计算: = . 13.分解因式: = . 14.方程组的解是 . 15.已知:△ABC的三个内角满足∠A=2∠B=3∠C,则△ABC是三角形.(填“锐角”、“直角”、“钝
角”) 16.如图,△ABC的角平分线AD、BE相交于点O,且AD⊥BC,已知∠ABC=50°,则∠AOB= °. 17.已知x=-11是方程的解,那么不等式的解集是。
18.观察下列关于自然数的等式:
32�4×12=5 ① 52�4×22=9 ② 72�4×32=13 ③ … … 根据上述规律,写出你猜想的第n个等式(用含n的式子表示).
三、解答题(共66分) 19.(8分)计算或化简求值:(本题共有2
小题,每小题4分)(1)(2)先化简,再求值;其中, . 20. (14分)解方程组或不等式(组)(本题共有3小题,共4+4+6分):(1)解方程组
(2)解不等式,并把它的解集在数轴上表示出来.
(3)解不等式组,并写出不等式组的整数解.
21. (本题满分6分) 阅读材料:①1的任何次幂都等于1;②-1的偶数次幂都等于1③任何不等于零的数的零次幂都等于1. 试根据以上材料探索:等式成立的x的值。
22. (本题满分6分)如图,AE∥BD,∠CBD=50°,∠AEF=130°,求∠C的度数.
23.(10分)(1)①比较与的大小:(用“>”、“<”或“=”填充)当时,当时,当时,② 观察并归纳①中的规律,无论m 取什么值,(用“>”、“<”、“≥”或“≤”),并说明理由。
(2)利用上题的结论回答:①当m= 时,有最小值,最小值是;
②猜想:的最小值是 .
24. (本题满分10分) 根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准见下表: 一户居民一个月用电总量的范围电费价格(单位:元/千瓦时) 总量不超过150千
瓦时的部分
总量超过150千瓦时,但不超过300千瓦时的部分
总量超过300千瓦时的部分
2016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元. (1)求上表中、的值:
(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,
其当月的平均电价每千瓦时不超过0. 85元?
25. (12分)如图①,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E, CF∥AD. (1)如图①,∠B =30°,∠ACB=70°,求∠CFE 的度数; (2 )若(1)中的∠B= ,∠ACB= ,(<)则∠CFE=__ ___;(用、表示) (3)如图②,(2)中的结论还成立么?请说明理由.
一、选择题(每题3分,共24分): 1-4 CADD ; 5-8 ACBA 二、填空题(每题3分,共30分): 9. 540 ; 10. 10-10 ; 11. 1; 12. -4x8y4 ; 13. 2(x+2y)(x-2y) ;14. ; 15. 钝角; 16. 115 ; 17. y> ; 18 . 三、解答题(共66分) 19. (本题8分,共有2小题,每小题4分)(1) -2 ;(2)化简得:(化简3分),结果120(1分) . 20. (本题14分,共有3小题,每小题4+4+6分)(1)(2) x>2 (解3分,数轴表示1分)(3) ,整数解:-1,0.1,2(解对一个不等式得2分,写出解集1 分,整数解1分,共6分) 21. (本题满分6分) -2,-4,-2016(答对1个得2分) 22. (本题满分6分) 80° 23. (本题满分10分)(1)① >; = ; > ;(每空1分,共3分)② (2分,……5分)(说理2分,……7分)(2)① 0 ;4 (每空1分, …9分);② 6(1分,…10分) 24. (本题满分10分) (1)解,根据题意,得:…(2分)解之,得……………………………………………………………………(4分)(2)解,设该居民月用电x千瓦时,由题意,得:①当0<x≤150时,0.8x≤0.85x 显然成立…………………………………………(5分)②当150 ≤x≤300时,150×0.8+(x-150)
×1≤0.85x ……………………………( 6分) 解之,得:
150<x≤200…………………………………………………………(7分) ③当x>300时, 150×0.8+150×1+(x-300)× 1.3≤0.85 x 解之,得: x> (显然不合题意,舍去)(直接判断不合题意也可以)………………………………………(8分) 综上所述:0<x≤200(0≤x≤200,也可以)……………………………………(9分) 答:(略)……………………………………………………………………………(10分) 25. (本题满分12分) (1)
20°…………………………………………………………(4分)(2) …………… …………………………………………………………………(8分) (3) 成立(9分)(理由略)………………………………………………………(12分)。