实验六 差动放大电路
差动放大电路实验报告
差动放大电路实验报告差动放大电路实验报告引言在电子学领域中,差动放大电路是一种常见且重要的电路结构。
它能够将输入信号放大,并且抑制共模信号,从而提高信号的传输质量。
本实验旨在通过搭建差动放大电路并进行实验验证,进一步理解差动放大电路的原理和性能。
实验器材和步骤实验所需器材包括:两个双极性晶体管、电阻、电容、信号发生器、示波器等。
首先,按照实验指导书的要求,搭建差动放大电路。
然后,接入信号发生器和示波器,调节信号发生器的频率和幅度,观察并记录示波器上的波形和幅度。
实验结果分析通过实验观察和记录的数据,我们可以得出以下结论:1. 差动放大电路能够放大输入信号:在实验中,我们发现输入信号在经过差动放大电路后,其幅度得到了明显的放大。
这表明差动放大电路具有放大输入信号的功能。
2. 差动放大电路能够抑制共模信号:共模信号是指同时作用于两个输入端的信号,如电源噪声等。
通过实验观察,我们发现共模信号在差动放大电路中几乎没有被放大,而是被有效地抑制了。
这说明差动放大电路具有抑制共模信号的能力。
3. 差动放大电路对输入信号的放大程度和频率响应有一定的限制:在实验中,我们发现差动放大电路对不同频率的输入信号有不同的放大程度。
随着频率的增加,放大程度逐渐下降。
这是由于差动放大电路中的晶体管等元件存在一定的频率响应特性。
4. 差动放大电路的性能受到元件参数的影响:在实验过程中,我们尝试了不同的电阻和电容数值,发现它们对差动放大电路的性能有一定的影响。
例如,调节电阻的数值可以改变差动放大电路的放大倍数,而调节电容的数值可以改变差动放大电路的频率响应。
结论通过本次实验,我们对差动放大电路有了更深入的理解。
差动放大电路在电子学领域中具有广泛的应用,例如在放大器、通信系统等方面。
了解差动放大电路的原理和性能对于我们设计和调试电子系统具有重要意义。
通过实验,我们验证了差动放大电路的放大和抑制特性,并且了解了其对输入信号的频率响应和元件参数的影响。
差动放大电器实验报告
差动放大电器实验报告差动放大电路实验报告一、实验目的:1. 了解差动放大电路的工作原理;2. 掌握差动放大电路的参数测量方法;3. 研究差动放大电路的频率响应特性。
二、实验仪器和材料:1. 差动放大电路实验箱;2. 某型号差动放大电路芯片;3. 功能发生器;4. 串联耦合电容;5. 变阻器;6. 电压表。
三、实验步骤:1. 将差分放大器芯片正确插入实验箱中;2. 将功能发生器的输出端与差分放大器的输入端相连,设置合适的频率和振幅;3. 通过串联耦合电容将差分放大器的输出端与示波器相连,观察放大器的输出信号;4. 使用电压表测量输入端和输出端的电压;5. 调节变阻器,观察不同阻值对放大器增益和频率响应的影响;6. 记录实验数据。
四、实验结果与分析:1. 在不同频率下,测量输入端和输出端的电压,并计算差分放大器的增益。
根据实验数据绘制增益-频率曲线图,计算放大器的功率带宽积;2. 通过调节变阻器,观察不同阻值对放大器增益和频率响应的影响。
记录实验数据并进行分析。
五、实验结论:1. 差分放大器具有高增益和高共模抑制比等特点,适用于需要抑制共模干扰的场合;2. 通过实验可以得到差分放大器的频率响应特性曲线,了解其在不同频率下的放大倍数和相位特性;3. 实验结果还可以用于差分放大电路的性能优化,如选择合适的补偿网络,提高其频率响应特性。
六、实验心得:通过本次实验,我深入了解了差分放大器的工作原理和参数测量方法,掌握了差分放大器的频率响应特性的测试技巧。
同时,实验过程中需要注意对实验仪器的正确操作,准确测量并记录实验数据。
此外,实验中还应注意安全使用电器设备。
综上所述,通过这次差分放大器实验,我对差动放大电路有了更深入的了解,从实验中获得了实际的数据和结果,并对电路的参数和性能有了更深入的理解,为今后的学习和研究打下了坚实的基础。
2021年整理差动放大电路实验报告.doc
2021年整理差动放大电路实验报告.doc
本实验是用来验证差动放大电路的原理和工作原理的,具体做法是用两个NPN型晶体
管分别固定一个输入和另一个输出,通过电阻分压网络,从而使输入信号相互对立。
当电
压输入可调源供应器提供的输入电压变化时,输出信号的变化也会随着输入电压的变化而
变化,极大放大了输入信号的幅值以及获得阻抗变换。
具体实验步骤如下:
1.用DC电压表测量由可调源供应器输出的电压,设置电压为0V,在放大电路输入端
设定,将输出端连接到万用表,并观察万用表读数;
2.将输入电源的电压增加,同时观察输出信号的变化,并用万用表测量变差放大器的
输出大小,做出一系列有关输出信号的变化;
3.根据测量得到的输出电压与输入电压的比值,再做出放大器的灵敏度曲线,并得出
以及计算当输入输出相同时,放大器的增益系数。
实验结果表明:放大器的增益系数为53.8,放大电路可以将输入信号放大至53.8倍,此外,还发现放大器没有失真和相位变化现象,可以说明实验结果较为准确。
总结而言,本实验可以从实际操作中证实差动放大器的原理以及工作原理,证明了可
以运用差动放大器可以实现较大的增益并实现良好的稳定性及信号一致性。
差动放大电路实验
差动放大电路实验报告严宇杰141242069 匡亚明学院1.实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。
2.实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。
3.预习内容(1)差动放大器的工作原理性能。
(2)根据图3.1画出单端输入、双端输出的差动放大器电路图。
4.实验内容实验电路如图3.1。
它是具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。
对于共模信号,若Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0.差动放大器常被用作前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望只放大差模信号,不放大共模信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,0P07的输入电阻约为107Ω量级。
本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于这一数值,这是很小的输入电阻。
差动放大器实验
1V
UC1
UC2
Ad1= UC1/ Ui
/
/
Ad= UO/ Ui
/
/
AC1= UC1/ Ui
/
/
AC= UO/ Ui
/
/
CMRR
(3)共模抑制比计算 共模抑制比CMRR表征差动放大电路放大差模信号和抑 制共模信号的能力。其定义为放大电路对差模信号的放 大倍数Ad和对共模信号放大倍数Ac之比即:
CMRR Ad Ac
基础实验教学中心
三、实验内容
1.差动放大器静态工作点测试(直流参数)
按图连接电路,开关K拨向左边,构成典型差动放大器。
静态工作点的估算 β=100 (3DG6典
型值)
IE
UUi=E0,VEUE B1=U0.B62=(0,1U2)E=-10.1.m6AV。
RE
10k
IC1
共模输入范围指在这个范围之内输入可以变化的电
压。
基础实验教学中心
二、实验原理 差动放大器由两个元件参数相同的基本共射放大电
路组成。当开关K拨向左边时,构成典型的差动放大器。
基础实验教学中心
二、实验原理 1、实验电路
图1 差分放大器实验电路
①直接耦合
②用以放大极微
小的直流信号或
缓慢变化的交流 信号
③ 用恒流源代替
RE,可进一步提 高放大器抑制共 模信号的能力。
④可有效抑制零 点漂移
当直流放大电路 输入端不加信号时, 由于温度、电源电 压的变化或其他干 扰而引起的各级工 作点电位的缓慢变 化,都会经过各级 放大使末级输出电 压偏离零值而上下 摆动,这种现象称 为零点漂移
实验电路连 接图
差动放大电路实验报告
差动放大电路实验报告一、实验目的和背景差动放大电路作为一种常见的电路结构,在许多电子设备中都有广泛应用。
其主要功能是将输入信号放大,并且在信号放大过程中抑制了共模噪声的干扰。
本实验旨在通过搭建差动放大电路并对其进行测试,进一步了解其原理和性能。
二、实验器材与步骤1. 实验器材本次实验采用的实验器材包括:操作示波器、函数发生器、功能信号发生器、电阻、电容。
2. 实验步骤(1) 将差动放大电路按照给定的电路图连接好,并注意正确的电路连接。
(2) 将函数发生器的正弦波输出接入差动放大电路的输入端,调节函数发生器的输出信号频率和幅度。
(3) 通过示波器观察差动放大电路输入与输出的波形,并记录相应的数值。
(4) 对不同频率和幅度的输入信号进行测试,并观察测试结果的差异。
三、实验结果与分析在本实验中,我搭建了差动放大电路,并通过函数发生器输入不同频率和幅度的信号进行测试。
通过观察示波器上的波形和记录相应的数值,可以得到以下结果和分析:1. 输入信号与输出信号的关系:通过调节函数发生器的频率和幅度,可以观察到差动放大电路正确放大了输入信号,并产生了相应的输出信号。
而且,输出信号的幅度随着输入信号的幅度增大而增大,说明差动放大电路的放大增益较高。
2. 噪声抑制能力:差动放大电路的一个重要特性是抑制共模噪声。
在实验过程中,我引入了一些干扰信号,如电源纹波和环境的电磁干扰等,观察到差动放大电路能够有效地抑制这些共模噪声,并输出较为干净的信号。
3. 频率响应特性:通过改变输入信号的频率,可以观察到差动放大电路的频率响应特性。
实验结果表明,差动放大电路在较低频率时的放大增益较高,但随着频率增加,放大增益逐渐降低。
这是由于差动放大电路的内部结构和元器件参数导致的。
4. 幅度非线性:在一些高幅度的输入信号条件下,观察到差动放大电路存在一定的非线性现象。
这可能是由于电路中的元件饱和或者过载引起的。
在实际应用中,需要根据具体要求对差动放大电路进行调整,以优化其性能。
实验差动放大电路答案及数据
实验六差动放大电路一、实验目的1、掌握差动放大电路工作原理2、掌握差动放大电路的调试方法3、测试差动放大电路的性能二、实验仪器1、双踪示波器、数字万用表、信号发生器2、multisim 软件3、模电实验箱三、预习要求1、计算6-1图的静态工作点(设r bc=3K,β=100)及电压放大倍数。
2、在6-1图基础上画出单端输入和共模输入的电路。
四、实验内容及步骤1、差动放大电路的调零在两输入端都接零状态下,保持双输出端平衡测量此时的调零电阻分配比。
2、直流性能测试测量差动放大电路调零后的直流工作点测量差动放大电路在单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出时的差模电压增益。
比较差动放大电路单端输出与双端输出两种方式的共模抑制比。
测量双端输出的输出阻抗。
测量双端输入的输入阻抗。
3、交流性能测试测量差动放大电路单端输入单端输出时的幅频特性、相频特性、谐波失真4、用Multisim软件仿真完成上述内容,且和实际电路结果做比较。
三极管采用2N5551.图6-1差动放大器电原理图1、测量静态工作点。
(1) 调零将Vi1和Vi2输入端短路并接地,接通直流电源,调节电位器R P0,使双端(AB)输出电压V0=0。
断电后,测量R P0的电阻分配比。
(2)测量静态工作点测量V1、V2、V3各极对地电位填入表6.l中2、测量差模电压放大倍数。
在输入端加入直流电压信号V id =±0.lV ,按表6-2要求测量并记录,由测量数据算出单端和双端输出的电压放大倍数。
注意先调好直流信号的OUTl 和OUT2, 使其分别为十0.lV 和一0.lV ,再接入Vi1和Vi2。
3、测量共模电压放大倍数。
将输入端V i 1、Vi 2短接,接到信号源的输入端,信号源另一端接地。
分先后接OUTl 和OUT2测直流信号并填入表6.2。
由测量数据算出单端和双端输出的电压放大倍数。
进一步算出共模抑制比:4、在实验面板上组成单端输入的差放电路进行下列实验。
差动放大电路
实验六差动放大电路一、实验目的1.熟悉差放大电路的结构和性能特点。
2.掌握差动放大器的测试方法。
二、原理说明1.差动放大电路的主要特点差动放大电路广泛地应用于模拟集成电路中,它具有很高的共模抑制比。
诸如由电源波动、温度变化等外界干扰都会引起工作点不稳定,它们都可以看作是一种共模信号。
差动放大电路能抑制共模信号的放大,对上述变化有良好的适应性,使放大器有较高的稳定度。
图5-1为差动放大电路,它采用直接耦合形式,当电路①、②两点相连时是长尾式差动放大电路:当电路①、③两点相连时是恒流源式差动放大电路。
在长尾式差动放大电路中抑制零漂的效果和R E的数值有密切关系。
因此R E也成为共模反馈电阻,R E愈大,效果愈好。
但R E愈大,维持同样工作电流所需要的负电压V EE也愈高。
这在一般情况下是不适合的,恒流源的引出解决了上述矛盾。
在三极管的输出特性曲线上,有相当一段具有恒流源的性质,即当U CE变化时,I C电流不变。
图5-1中VT3管的电路为产生恒流源的电路,用它来代替长尾R E,从而更好地抑制共模性质的变化,提高了共模抑制比。
2. 动放大电路的几种接法差动放大电路的输入端,有单端和双端两种输入方式;其输出端,有单端和双端两种输出方式。
电路的放大倍数只与输出方式有关,而与输入方式无关。
故实验内容中我们不再做双端输入方式。
(1)单端输入:信号电压u i仅由VT1管A端输入,而VT2管B端接“地”。
(2)单端输出:VT1管单端输出(u o1),取自VT1管的集电极对“地“电压,输入u i与输出信号u o1相反;VT2管单端输出(u o2),取自VT2管的集电极对”地“电压,输入与输出信号同相。
单端输出的放大倍数是单管放大的一半。
图5-1 差动放大电路(3) 双端输出:为VT1管与VT2管集电极之间的电压。
但因晶体管毫伏表测量信号时,它的黑夹子只能接“地”。
所以测量时分别对“地”测出u o1和u o2,再进行计算(u o=u o1-u o2)。
差动放大电路_实验报告
一、实验目的1. 理解差动放大电路的工作原理及特点。
2. 掌握差动放大电路的性能指标测试方法。
3. 分析差动放大电路在抑制共模信号和放大差模信号方面的作用。
4. 通过实验验证理论分析的正确性。
二、实验原理差动放大电路由两个结构相同、参数对称的放大电路组成,分别称为同相输入端和反相输入端。
当输入信号同时作用于两个输入端时,电路能够有效抑制共模信号,放大差模信号。
三、实验器材1. 模拟电路实验箱2. 实验线路板3. 万用电表4. 信号发生器5. 示波器6. 线路连接线四、实验步骤1. 搭建电路:根据实验原理图,在实验线路板上搭建差动放大电路。
2. 静态测试:使用万用电表测量电路的静态工作点,确保电路正常工作。
3. 差模信号测试:向电路输入差模信号,使用示波器观察输出波形,并记录数据。
4. 共模信号测试:向电路输入共模信号,使用示波器观察输出波形,并记录数据。
5. 性能指标测试:根据测试数据,计算差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。
五、实验结果与分析1. 静态测试结果:电路静态工作点稳定,符合设计要求。
2. 差模信号测试结果:输入差模信号时,输出波形清晰,差模电压放大倍数符合理论计算值。
3. 共模信号测试结果:输入共模信号时,输出波形基本消失,说明电路对共模信号抑制效果良好。
4. 性能指标测试结果:差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标均达到预期目标。
六、实验结论1. 差动放大电路能够有效抑制共模信号,放大差模信号,具有较好的线性度和稳定性。
2. 通过实验验证了理论分析的正确性,加深了对差动放大电路的理解。
3. 实验过程中,掌握了差动放大电路的搭建、测试和性能指标计算方法。
七、实验注意事项1. 实验过程中,注意电路的连接和调整,确保电路正常工作。
2. 测试数据要准确记录,以便后续分析。
3. 注意安全,避免触电等事故发生。
八、实验拓展1. 研究不同类型的差动放大电路,如具有恒流源的差动放大电路、差分放大电路的频率响应等。
差动放大器实验报告
差动放大器实验报告一、实验目的了解差动放大器的基本原理,熟悉差模信号的特性,并掌握差动放大器的基本应用,学会操作实验平台,提高实验技能。
二、实验原理差动放大器是指以两个输入端口分别输入信号,且两个输入信号具有差分特性的放大器。
差分信号的特性是一对相同但反向的信号之间差值很小,例如:两个电压信号U1、U2,其差分信号可以表示为ΔU=U1-U2,ΔU是差分信号,Ucm=(U1+U2)/2是公模信号,Ucm通常是系统中所需要忽略的信号部分。
差动放大器主要用于放大两个输入信号的差分信号,将差分信号经过放大之后通过放大器的输出端口输出,同时忽略公模信号的影响。
三、实验内容本次实验我们需要完成的是基于差动放大器的实验,具体实验的内容主要包括:实验步骤:1.准备实验平台,连接相应的差动放大器模块及指令控制模块;2.调整输入信号的具体参数,将输出信号直接接入示波器;3.测试差动输出信号的波形及幅值,并记录数据;4.调整输入信号进行多次测试,以得到更为有效的实验数据;5.分析实验数据,并撰写实验报告,评估实验结果。
四、实验结果在本实验中,我们得到了多组差分输出信号的数据,进行了数据的处理并绘制了相应的波形图。
通过图形可以得到,差分信号具有非常明显的幅值放大特性,而在公模信号的干扰下,差分信号的放大倍数会降低,但依然具备较高的放大幅度。
五、实验分析通过本次实验的数据,我们可以看到,差动放大器作为一种专门用于放大差分信号的放大器,在实际中具有非常明显的优势。
相比于传统的单端或双端放大器,差动放大器可以处理高频及精确信号,具备极佳的线性特性,并且可以有效的忽略共模信号的影响,从而实现高精度的放大输出。
同时,我们也可以看到,作为一种高精度的放大器,差动放大器也有其自身存在的局限性。
在实际中,必须通过对输入信号及差分放大器本身进行调整,才能够实现高精度的输出。
因此,在使用差动放大器的同时,必须根据具体的应用需求进行精心设计和调试。
差动放大器实验报告
差动放大器实验报告一、前言差动放大器是一种常见的电路,广泛应用于仪器仪表、通信、音频等领域。
它的主要作用是实现信号的放大和传输。
本文将介绍差动放大器实验的操作流程、结果分析及实验感悟。
二、实验目的1、了解差动放大器原理。
2、掌握差动放大器的实际应用。
3、实现差动放大器的搭建和测试。
三、实验器材1、操作板。
2、备注信号发生器。
3、万用表。
4、示波器。
5、电阻箱。
4、实验原理差动放大器是一种比较常见的电路,由于其技术特点以及应用场合的限制,在其设计和应用过程中,需要做出一些规定。
这些规定包括:输入和输出的连接方式、输出端基准点的接地方式、引脚连接以及电路参数的设定等。
差动放大器的原理如图所示:5、实验步骤1、搭建差动放大器电路。
2、将函数信号发生器的输出接到差分输入终端。
3、将差动放大器的输出接到示波器的A输入端,并将示波器的A端接地。
4、开启函数信号发生器和示波器。
5、调整函数信号发生器的输出频率,观察示波器屏幕上波形的形状和幅度。
6、将信号发生器输出的电压分别变化,观察示波器屏幕上波形的大小和变化情况。
6、实验结果分析通过上述实验步骤,我们对差动放大器的原理有了一定的了解。
在实验过程中,我们可以发现,随着信号的变化,示波器屏幕上的波形也会相应地变化。
实验结果表明,当我们将信号发生器的输出电压降低到一定的值之后,差动放大器的输出电压就会开始出现偏差。
这说明差动放大器的输出电压是与输入电压的变化相对应的。
此外,我们还检测了差动放大器的输入电阻和输出电阻。
实验结果表明,输入电阻为几兆欧姆,输出电阻为几千欧姆。
7、实验感想本次差动放大器实验,使我们更加深入地了解了差动放大器的电路结构、原理和应用。
它不仅可以在现代科技产业中得到广泛的应用,还可以在日常生活中用于放大音乐、电视、电影等娱乐设备中的音频信号。
在实验过程中,我们还学习了如何搭建电路、连接电器、使用万用表和示波器等实验操作技能,使我们更加具备了解决实际问题的能力。
差动放大电路实验原理
差动放大电路实验原理差动放大电路是一种常见的电子电路,主要用于放大微弱信号,并在放大过程中实现信号的抑制和抵消。
差动放大电路的实验原理可以通过以下几个方面进行阐述。
一、差动放大电路的基本原理差动放大电路由两个输入端和一个输出端组成。
其中,两个输入端分别连接信号源和参考源,输出端连接负载。
差动放大电路的工作原理是通过对两个输入端的信号进行差分放大,从而实现对输入信号的放大和抑制。
二、差动放大器的工作模式差动放大电路有两种工作模式:共模模式和差模模式。
在共模模式下,两个输入信号相同且同相,此时差动放大电路对共模信号进行抑制,只放大差模信号。
在差模模式下,两个输入信号有差异,此时差动放大电路对差模信号进行放大。
三、差动放大电路的特点1. 高增益:差动放大电路可以实现高增益放大,对微弱信号具有很好的放大效果。
2. 抗干扰能力强:差动放大电路可以通过对输入信号的差分放大来抵消共模信号的干扰,提高系统的抗干扰能力。
3. 信号抑制效果好:差动放大电路可以实现对共模信号的抑制,减少对输出信号的影响。
4. 输入阻抗高:差动放大电路的输入阻抗较高,对输入信号源的影响较小。
5. 输出阻抗低:差动放大电路的输出阻抗较低,可以驱动负载。
四、差动放大电路的应用领域差动放大电路广泛应用于各种电子设备中,如功放、音频放大器、差分信号传输等。
在这些应用中,差动放大电路能够提供高品质的音频放大效果,并保持信号的稳定和纯净。
五、差动放大电路的实验过程1. 搭建电路:按照实验要求搭建差动放大电路的原型板,连接好信号源、参考源和负载。
2. 调节电路参数:根据实验需要,调节差动放大电路的电阻、电容等参数,使其符合实验要求。
3. 输入信号:给差动放大电路的输入端接入信号源,通过调节信号源的电平和频率,观察输出端的信号变化。
4. 测量输出信号:使用示波器等测试设备,测量差动放大电路输出端的信号,记录输出信号的幅值和频率。
5. 分析实验结果:根据实验测量数据,分析差动放大电路的放大倍数、频率响应等性能指标,评估差动放大电路的实验效果。
实验六 差动放大电路
六、思考题
根据实验电路参数, 1 . 根据实验电路参数 , 估算典型差动放大器和具 有恒流源的差动放大器的静态工作点及差模电压放大倍 100) 数(取β1=β2=100)。 测量静态工作点时, 放大器输入端A 2 . 测量静态工作点时 , 放大器输入端 A 、 B 与地应 如何连接? 如何连接? 实验中怎样获得双端和单端输入差模信号? 3 . 实验中怎样获得双端和单端输入差模信号 ? 怎 样获得共模信号?画出A 端与信号源之间的连接图。 样获得共模信号?画出A、B端与信号源之间的连接图。 4.怎样进行静态调零点?用什么仪表测UO ? 怎样进行静态调零点?用什么仪表测U 5.怎样用交流毫伏表测双端输出电压UO ? 怎样用交流毫伏表测双端输出电压U
三、实验原理
图6-1 差动放大器实验电路 -
是差动放大器的基本结构。 图6-1是差动放大器的基本结构。它由两个元件参 - 是差动放大器的基本结构 数相同的基本共射放大电路组成。 数相同的基本共射放大电路组成。 当开关K拨向左边时 构成典型的差动放大器。 拨向左边 典型的差动放大器 ①当开关 拨向左边时,构成典型的差动放大器。 调零电位器R 用来调节T 管的静态工作点, 调零电位器 P 用来调节 1 、 T2 管的静态工作点 , 使得输入信号U 使得输入信号 i=0时,双端输出电压 O=0。 时 双端输出电压U 。 RE为两管共用的发射极电阻, 它对差模信号无负 为两管共用的发射极电阻, 反馈作用,因而不影响差模电压放大倍数, 反馈作用,因而不影响差模电压放大倍数,但对共模信 号有较强的负反馈作用,故可以有效地抑制零漂, 号有较强的负反馈作用,故可以有效地抑制零漂,稳定 静态工作点。 静态工作点。 当开关K拨向右边时 构成具有恒流源 拨向右边 具有恒流源的差动放 ②当开关 拨向右边时,构成具有恒流源的差动放 大器。 它用晶体管恒流源代替发射极电阻R 大器 。 它用晶体管恒流源代替发射极电阻 E , 可以进 一步提高差动放大器抑制共模信号的能力。 一步提高差动放大器抑制共模信号的能力。
差动放大电路 实验报告
差动放大电路实验报告差动放大电路实验报告一、引言差动放大电路是电子学中常见的一种电路结构,它可以用于信号放大、滤波、抑制噪声等应用。
本实验旨在通过搭建差动放大电路,了解其基本原理和性能特点,并通过实际测量验证理论分析。
二、实验原理差动放大电路由两个共射放大器组成,其输入端分别连接两个输入信号源,输出端连接负载电阻。
两个放大器的输出信号通过电阻网络相互耦合,形成差分输出。
差动放大电路的原理基于差分放大器的工作原理,即通过差分输入信号的放大,实现对差分输出信号的放大。
三、实验步骤1. 搭建差动放大电路根据实验电路图,依次连接电源、信号源、放大器和负载电阻。
注意正确接线,避免短路或接反。
2. 调节电源电压根据放大器的工作要求,调节电源电压,使其稳定在适当的工作范围。
通常,差动放大电路的电源电压为正负12V。
3. 设置输入信号连接信号源,设置输入信号的频率和幅度。
可以选择不同的频率和幅度进行测试,以观察差动放大电路的响应情况。
4. 测量输出信号连接示波器,测量输出信号的波形和幅度。
可以通过调节输入信号的幅度和频率,观察输出信号的变化情况。
四、实验结果与分析通过实际测量,我们得到了差动放大电路的输出波形和幅度。
根据测量结果,我们可以得出以下几点结论:1. 差动放大电路具有良好的共模抑制比。
在理想情况下,差动放大电路输出信号只包含差分信号,而共模信号被完全抑制。
实际测量中,我们可以观察到输出信号中共模信号的幅度非常小,说明差动放大电路具有较好的共模抑制能力。
2. 差动放大电路的增益与输入信号的差分模式有关。
在差分模式下,差动放大电路的增益较高,可以实现信号的有效放大。
而在共模模式下,差动放大电路的增益较低,对信号的放大效果较差。
因此,在实际应用中,我们需要尽可能提高差动信号的幅度,以获得更好的放大效果。
3. 差动放大电路的频率响应较好。
在实验中,我们可以通过改变输入信号的频率,观察输出信号的变化情况。
实验结果显示,差动放大电路在较宽的频率范围内都能保持较好的放大效果,没有明显的频率衰减。
差动放大电路
差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。
特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。
基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。
设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。
它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。
温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。
它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。
如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。
因此:。
于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。
如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。
差动放大电路实验报告数据
差动放大电路实验报告数据
[object Object]
实验所用仪器设备:
1.差动放大电路实验板
2.信号发生器
3.示波器
4.万用表
实验步骤:
1.将差动放大电路实验板连接电源,确保电路正常工作。
2.将信号发生器的输出端与差动放大电路的输入端相连,输入一个特定频率和幅度的正弦信号。
3.将示波器的探头的地线连接到差动放大电路的共地,将信号输入口连接到差动放大电路的输出端口,通过示波器观察输出信号波形。
4.调节信号发生器的频率和幅度,观察输出信号的变化,并记录相关数据。
5.通过万用表测量差动放大电路的电流、电压等参数,并记录相关数据。
实验结果:
1.在不同频率下,观察输出信号的波形,记录幅度和相位的变化。
2.测量输入信号和输出信号的幅度,计算增益。
3.测量差动放大电路的偏置电压、共模抑制比和通频带等参数。
实验讨论:
1.分析差动放大电路的放大特性,如增益、频率响应等。
3.探讨如何提高差动放大电路的性能,如增加共模抑制比、减小失调电压等方法。
实验结论:
通过本次实验,我们成功构建了差动放大电路,并对其进行了性能测试。
实验结果表明,差动放大电路具有较好的放大特性,能够有效放大输入信号,并且在一定频率范围内具有较好的频率响应。
然而,实际测量值与理论值存在一定差异,可能是由于元器件的参数误差、线路布局等因素所致。
为了提高差动放大电路的性能,可以采取一些措施,如选用高精度元器件、合理设计电路布局等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六、差动放大电路
一. 实验目的
1. 熟悉差动放大器的工作原理
2. 掌握差动放大器的静态测试方法。
3. 掌握差动放大电路的动态参数测量方法
二. 实验仪器
双综示波器 数字万用表 直流稳压电源 交流信号源
三. 预习要求
1. 分析实验电路图的结构特点及工作原理
2. 计算试验电路的静态工作点(设300,100be r β=Ω=)及差模电压放大倍数
3. 抑制差放电路静态值及动态值的测试方案及记录表格
四. 实验原理及测试原理
差动放大器是由参数完全对称的两个单级放大器组成。
有两个输入端和两个
输出端,所以在使用时,有四种组态可以供选择,分别为,双入双出,双入
单出,单入双出,单入单出。
差动放大器在电路对称程度比较高的情况下能
够很好的抑制零点漂移。
下图电位器用来调整电路的对称程度,但是会影响
电路对有用信号的放大能力。
1. 差模电压放大倍数ud A
差模信号指大小相等,相位相反的两个信号。
双端空载输出时,对应差模电压放大倍数为:111(1)/2
26300(1)
od c ud id be p be E u R A u r R mV
r I βββ=
=-++=++其中: 单端空载输出时,差模电压放大倍数为双端输出放大倍数的1/2。
电路图如下:
2. 共模电压放大倍数uc A 共模信号指大小相等,相位相同的两个信号。
对应的共模电压放大倍数为:
oc uc ic
U A U = 差动放大器工作,不可能理想对称,所以在输入共模信号是时,总是有很小
的共模信号输出信号存在,此信号可以通过测量得到,通过计算得到电路的
共模电压放大倍数uc A 。
3 共模抑制比cmrr K
共模抑制比定义为电路的差模放大倍数于共模放大倍数的比值 即:
ud cmrr uc
A K A =他综合表征了电路对有用信号的放大能力和对零点漂移的抑制能力,值越大表明差动电路的性能越好。
五. 实验内容及步骤
1. 按图电路连线,测量静态工作点。
将输入端1,2短接并接地,接通直流电源
12V ,调节调零电位器,测量Uc1,Uc2间的电压Uo ,尽量使他为0,表明电
路基本对称。
然后测量差放电路中T1,T2,T3的静态值,主要有基极电位和集
电极电位值。
调节电位器为50%时,U o =
测得:U b1= U b2= U b3= U c1=
U c2= U c3 =
2. 测量差模电压放大倍数
输入差模信号f=1kHz,id U =20mV ,用示波器观察输出波形,调节输入信号id U 的大小,使输出波形基本不失真,用数字万用表测量此时电路的输入信号及输出信号的电压值,并注意单端输出时电压值和双端输出电压值的区别,注意输出波形大小及相位关系。
其中红色为双端输入i U ,蓝色和粉红色分别为单端输出为输出;
其中绿色为双端输出,由图可知双端输出是单端输出的二倍。
仿真和实际调试结果相符:
输入电压为i U =
单端输出时,两个输出端电压都为为
12o o U U ==
双端输出电压为o U =
双端空载输出时,对应的差模放大倍数为:
A ud=U od /U id =
相位关系为:单端输出U c1与输入反相,单端输出U c2与输入同相
双端输出与输入反相
3. 测量共模电压放大倍数
将输入端子1.2短接,接至交流信号源的输出端,信号源另一端接地。
调解此时信号大小,在差放输出不失真的情况下,测量此时的单端输出电压值,并考虑怎样计算双端输出的共模电压值。
单端输出U c1= 单端输U c2= 双端输出 U oc=
得到:共模放大倍数:
4.计算电路的共模抑制比 :
六 实验结果分析
1.经过本次,加深了对差动放大电路具有放大差模信号,抑制共模信号的功
2.差动放大器工作,不可能理想对称,所以在输入共模信号时,总是有很小
的共模信号输出信号存在,但输入共模时,实验测得输出为0,存在一定误差,其原因有:。