北京市海淀区2021届高三上学期期中考试考数学试题+Word版含解析
【高三】精品解析:北京市海淀区2021届高三上学期期中考试(数学理)
【高三】精品解析:北京市海淀区2021届高三上学期期中考试(数学理)试卷说明:北京市海淀区2021届高三上学期期中考试数学理题第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合,,则( )A. B. C. D.]2.下列函数中,值域为的函数是( )A. B. C. D.3.在中,若,则=( )A.B.C.D.【答案】B【解析】试题分析:因为,在中,若,所以,,,故选B.考点:任意角的三角函数4.在平面直角坐标系中,已知点,若,则实数的值为( )A. B. C. D. 5.若,则“”是“”的()A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.已知数列的通项公式,则数列的前项和的最小值是()A. B. C. D. 【答案】B7.已知,函数若,则实数的取值范围为()A. B.C.D. 8.已知函数,在下列给出结论中:①是的一个周期;②的图象关于直线对称;③在上单调递减.其中,正确结论的个数为()A. 0个B.1个C. 2个D. 3个【答案】C【解析】试题分析:因为,,第Ⅱ卷(共90分)二、填空题:本大题共6小题,每小题5分,共30分。
9.___________.【答案】2【解析】试题分析:,故答案为2.考点:定积分的计算10.已知数列为等比数列,若,则公比____________.11.已知,则的大小关系为____________.12..函数的图象如图所示,则______________,__________.13.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】试题分析:建立如图所示坐标系,不妨设,则,所以,,14.定义在上的函数满足:①当时,;②.设关于的函数的零点从小到大依次为.若,则 ________ ;若,则________________.【答案】14,【解析】试题分析:因为,定义在上的函数满足:①当时,;②.所以,的构成规律是:对于任意整数,在每一个区间,,,且在此区间满足;当时,的零点从小到大依次为,……,所以,当时,的零点从小到大依次满足,所以,考点:分段函数,函数的零点,等比数列的求和.三、解答题: 本大题共6小题,共80分。
2020-2021第一学期海淀区高三数学期中试题及答案
4 / 47 2 海淀区 2020~2021 学年第一学期期中练习高三数学参考答案2020.11一、选择题共 10 小题,每小题 4 分,共 40 分。
题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 答案ACCDBCABAB二、填空题共 5 小题,每小题 5 分,共 25 分。
题号 (11)(12)(13) (14)(15)答案2-3253 41 2π 3 π32 三、解答题共 6 小题,共 85 分。
(16)(本小题共 14 分)解:(Ⅰ)由正弦定理得:b sin B =c .sin C因为 sin B = 2sin C , 所以 b = 2c .因为 cos A = 3, 0 < A < π ,4所以 sin A =因为 S = ,= 7 .4所以 S = 1 bc sin A = 1 ⨯ 2c 2⨯ sin A = 2 2所以 c 2 = 4 .7 .所以 c = 2 .(Ⅱ)由(Ⅰ)知 b = 2c .因为 cos A = 3,4所以 a 2 = b 2 + c 2 - 2bc cos A = 4c 2 + c 2 - 4c 2 ⨯ 3= 2c 2 .4所以 a = 2c .所 以 a= .c(17)(本小题共 14 分)解:(Ⅰ)设等差数列{a n } 的公差为 d ,则 a n = a 1 + (n -1)d .数学答案 第 1 页(共 10 页)1- cos 2 A⎩ 因为 a 5 = 9 , a 3 + a 9 = 22 ,⎧a 1 + 4d = 9, 所以 ⎨2a+ 10d = 22. ⎩ 1⎧a 1 = 1,解得: ⎨d = 2.所以 a n = 2n -1 .(Ⅱ)选择①②设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 .因为 S 3 = 7 ,所以 b 2 = S 3 - b 1 - b 3 = 2 . 所 以 q =b 2= 2 .b 1b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择①③设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 . 所以 q 2 =b 3= 4 , q = ±2 .b 1因为 b n +1 > b n ,数学答案 第 2 页(共 10 页)所以 q = 2 .b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择②③设等比数列{a n } 的公比为 q .因为 S 3 = 7 , b 1 = 1,所以 1 + q + q 2 = 7 . 所以 q = 2 ,或 q = -3 .因为 b n +1 > b n , 所以 q = 2 .b (1 - q n )所 以 S n = 11 - q= 2n -1 .因 为 S n < 2020 ,所以 2n -1 < 2020所以 n ≤ 10 .即n 的最大值为10 .(18)(本小题共 14 分)解:(Ⅰ)因为e x > 0 ,由 f (x ) = e x (2x 2 - 3x ) > 0 ,得2x 2 - 3x > 0 . 所以 x < 0 ,或 x > 3 .2所以 不等式 f (x ) > 0 的解集为{x x < 0, 或 x > 3}.2(Ⅱ)由 f (x ) = e x (2x 2 - 3x ) 得: f '(x ) = e x (2x 2 + x - 3)数学答案 第 3 页(共 10 页)= e x(2x + 3)(x -1) .令f '(x) = 0 ,得x =1 ,或x =-3 (舍).2f (x) 与f '(x) 在区间[0, 2] 上的情况如下:x0 (0,1)1(1, 2) 2f '(x)- 0 +f (x) 0 ↘-e ↗2e2所以当x = 1 时,f (x) 取得最小值 f (1) =-e ;当x = 2 时,f (x) 取得最大值f (2) = 2e2.(19)(本小题共14 分)解:(Ⅰ)因为所以所以y = sin x 的单调递减区间为[2kπ +π, 2kπ +3π] (k ∈Z ).2 22kπ +π≤x +π≤ 2kπ +3π , k ∈Z .2 6 22kπ +π≤x ≤ 2kπ +4π , k ∈Z .3 3所以函数f (x) 的单调递减区间为[2kπ +π, 2kπ +4π] (k ∈Z ).3 3(Ⅱ)因为所以因为所以f (x) = 2sin(x +π) ,6f (x -π) = 2sin x .6g(x) =f (x) f (x -π) ,6g(x) = 4sin(x +π)sin x6= 4(3sin x +1cos x)sin x2 2= 2 3 sin2x + 2 cos x sin x= 3 (1- cos 2x)+ sin 2x= 2sin(2x -π) +33 .因为0 ≤x ≤m ,所 以-π≤ 2x -π≤ 2m -π .3 3 3因为g(x) 的取值范围为[0, 2 + 3] ,数学答案第 4 页(共10 页)所以 sin(2x -π) 的取值范围为[-33,1].2所 以 π≤ 2m -π≤4π.2 3 3解得: 5π≤m ≤5π .12 6所以m 的最大值为5π. 6(20)(本小题共14 分)解:由 f (x) =ax3- 3ax2+ 2 + 4a 可得: f '(x) = 3ax2- 6ax = 3ax(x - 2) .(Ⅰ)当a =-1 时,f (3) =-2 , f '(3) =-9 .所以曲线y =f (x) 在点(3, f (3)) 处的切线方程为y =-9x + 25 .(Ⅱ)①当a = 0 时,f (x) = 2 在R 上不具有单调性.②当a > 0 时,令 f '(x) = 0 得 x1= 0, x2= 2 .f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)+ 0- 0+f (x)极大值极小值所以 a ≥ 2 .③当a < 0 时,f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)- 0+ 0-f (x)极小值极大值所以 a + 3 ≤ 0 ,即a ≤-3 .综上所述,a 的取值范围是(-∞, -3] [2, +∞) .(Ⅲ)先证明: f (x1) +f (x2 ) ≥ 4 .由(Ⅱ)知,当a > 0 时,f (x) 的递增区间是(-∞,0) ,(2, +∞) ,递减区间是(0, 2) .因为 x1+x2> 2 ,不妨设 x1≤x2,则 x2> 1.数学答案第 5 页(共10 页)m - 4 a< a n 0 2 2 2 ①若 x 1 ≤ 0 ,则 x 2 > 2 - x 1 ≥ 2 .所以 f (x 1) + f (x 2) > f (x 1) + f (2 - x 1) = 4 + 4a > 4 .②若 x 1 > 0 ,因为 x 2 > 1,所以 f (x 1) + f (x 2 ) ≥ f (2) + f (2) = 4 ,当且仅当 x 1 = x 2 = 2 时取等号. 综上所述,f (x 1) + f (x 2 ) ≥ 4 .再证明: f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .假设存在常数 m ( m ≥ 4 ),使得对任意 x 1 + x 2 > 2 , f (x 1) + f (x 2) ≤ m .取 x = 2 ,且 x > 2 + ,则1 2f (2) + f (x ) = 2 + ax 3 - 3ax 2 + 2 + 4a= 2 + ax (x - 2)2 + a (x - 2)2 + 2 > a (x - 2)2 + 4 > m ,2 222与 f (x 1) + f (x 2) ≤ m 矛盾.所以 f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .(21)(本小题共 15 分)解:(Ⅰ)取i =1, j = 2 ,则存在a k ( 2 < k < 4 ),使得 a k = 2a 2 - a 1 ,即 a 3 = 2a 2 - a 1 .因为 a 1 = a = 3 , a 2 = b = 5 ,所以 a 3 = 2a 2 - a 1 = 7 .(Ⅱ)假设{a n } 中仅有有限项为0 ,不妨设 a m = 0 ,且当 n > m 时,a n 均不为0 ,则m ≥ 2 .取i = 1, j = m ,则存在a k ( m < k < 2m ),使得a k = 2a m - a 1 = 0 ,与 a k ≠ 0 矛盾.(Ⅲ)①当a < b 时,首先证明数列{a n } 是递增数列,即证∀n ∈ N * , a n < a n +1恒成立.若不然,则存在最小的正整数 n 0 ,使得a n ≥ a n +1 ,且 a 1 < a 2 <.显然 n 0 ≥ 2 .取 j = n 0 ,i = 1, 2, , n 0 -1,则存在a k ( n 0 < k < 2n 0 ),使得数学答案 第 6 页(共 10 页)。
北京市第十四中学2021届高三上学期期中考试数学试题 Word版含解析
北京十四中2020-2021学年度第一学期期中检测高三数学测试卷注意事项:1.本试卷共4页,共21道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.一、选择题(本题共40分,每小题4分,每个题目只有一个选项正确)1. 已知全集U 是实数集R ,右边的韦恩图表示集合{}2M x x =与{}|13N x x =<<的关系,那么阴影部分所表示的集合可能为( )A. {}|2x x <B. {}|12x x <<C. {}|3x x >D. {}|1x x ≤【答案】D 【解析】阴影部分表示的集合为()UMN ,由题{}|1M N x x ⋃=>,所以(){}|1UM N x x ⋃=≤,故选择D.2. 已知向量()()()12,02,1,a b c λ==-=-,,,若()2//a b c -,则实数λ=( ) A. -3 B.13C. 1D. 3【答案】A 【解析】【详解】向量()()12,02a b ==-,,,则()22,6a b -=,若()2//a b c -,则有26λ=-,所以3λ=-.故选:A.3. 函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A14B.2π C.4π D.12【答案】B 【解析】 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象,可得2114T=-=,所以4T =, 又由24w π=,解得2w π=. 故选:B.4. 已知函数()log a f x x =,()x g x b =,的图像都经过点1(,2)4,则ab 的值为 A. 1 B. 2C. 4D. 8【答案】D 【解析】 【分析】函数f (x )=log a x ,g (x )=b x ,的图象都经过点124⎛⎫ ⎪⎝⎭,,可得14a log =2,14b =2,解得a ,b即可得出.【详解】函数f (x )=log a x ,g (x )=b x,的图象都经过点124⎛⎫⎪⎝⎭,,∴14alog =2,14b =2,解得a=12,b=16.则ab=8. 故选D .【点睛】本题考查了函数的性质、方程的解法,考查了推理能力与计算能力,属于基础题. 5. 下列函数中,既是偶函数又在(0,)+∞上单调递增的是( ) A. 3y x =-B. 12y x =C. ||2x y =D.3log ()y x =-【答案】C 【解析】 【分析】对每一个选项中的函数,先求定义域,若定义域关于原点对称,再观察是否满足()()f x f x =-,再根据初等函数的单调性判断在(0,)+∞上是否单调递增,可得出选项.【详解】A 项,对于函数3y x =-,定义域为R ,关于原点对称,()33()()f x x x f x -=--==-,所以函数3y x =-是奇函数,故A 项错误;B 项,对于函数12y x =,定义域为(0,)+∞,定义域不关于原点对称,所以函数12y x =为非奇非偶函数,故B 项错误;C 项,对于函数||2x y =,定义域为R ,关于原点对称,2()()2x x g x g x --===,所以函数2x y =为偶函数,当0x >时,22x x y ==,利用指数函数知,函数2xy =在区间(0,)+∞上为增函数,故C 正确;D 项,对于函数3log ()y x =-,定义域为(,0)-∞,定义域不关于原点对称,所以函数3log ()y x =-是非奇非偶函数,故D 项错误;故选:C .6. 已知数列{}n a 的前n 项和为n S ,且110a =-,13(*)n n a a n +=+∈N ,则n S 取最小值时,n 的值是( ).A. 3B. 4C. 5D. 6【答案】B 【解析】分析:求出等差数列{}n a 的通项公式,()()111031313n a a n d n n =+-=-+-=-,利用3130n -≥,从而可得当4n =时,n S 取最小值.详解:在数列{}n a 中,由13n n a a +=+,得()13*n n a a n N +-=∈, ∴数列{}n a 是公差为3的等差数列.又110a =-,∴数列{}n a 是公差为3的递增等差数列. 由()()1110313130n a a n d n n =+-=-+-=-≥,解得133n ≥. ∵*n N ∈,∴数列{}n a 中从第五项开始为正值. ∴当4n =时,n S 取最小值. 故选B .点睛:求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值. 7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A. 2 5 C. 3D. 22【答案】C 【解析】【分析】由三视图知该几何体是一条侧棱与底面垂直的四棱锥,由三视图求出几何元素的长度、判断出位置关系,由直观图求出该四棱锥最长棱【详解】根据三视图可知几何体是一个四棱锥,底面是一个直角梯形,AD ⊥AB 、AD //BC ,AD =AB =2、BC =1, P A ⊥底面ABCD ,且P A =2, ∴该四棱锥最长的棱长为222222213PA AC PC +=++=,故答案为:3.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8. 已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A 【解析】 【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目. 9. 已知数列{}n a 的通项公式为n aa n n=+,则“1a ≤”是“数列{}n a 单调递增”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】由数列{}n a 单调递增,化简得到2a n n <+,再由2t n n =+的单调性求得a 的范围,然后再由充分条件,必要条件的定义判断. 【详解】若数列{}n a 单调递增 则11a a n n n n++>++, 化简得2a n n <+,令221124t n n n ⎛⎫=+=+- ⎪⎝⎭在[1,)+∞上递增, 所以2a <,所以“1a ≤”是“数列{}n a 单调递增”的充分不必要条件, 故选:A10. 《蒙娜丽莎》是意大利文艺复兴时期画家列奥纳多⋅达芬奇创作的油画,现收藏于法国罗浮宫博物馆.该油画规格为:纵77cm ,横53cm .油画挂在墙壁上的最低点处B 离地面237cm (如图所示).有一身高为175cm 的游客从正面观赏它(该游客头顶T 到眼睛C 的距离为15cm ),设该游客离墙距离为xcm ,视角为θ.为使观赏视角θ最大,x 应为( )A 77 B. 80 C. 100D. 772【答案】D 【解析】 【分析】 设ACD α,BCD β,则θαβ=-,利用两角差的正切公式用x 表示出θ,再根据对勾函数的单调性求解.【详解】解:过C 作CD AB ⊥于D ,设ACD α,BCD β,则θαβ=-,则2371751577BD(cm ),7777154AD (cm ),∴154tan AD CD xα,77tan BD CDxβ, ∴tan θ=tan αβtan tan 1tan tan αβαβ15477154771x xx x7711858xx, ∴当且仅当11858x x即772x 时,tan θ有最大值,此时θ也最大,故选:D .【点睛】本题主要考查两角差的正切公式的应用,考查对勾函数的单调性与最值,属于中档题.二、填空题(本题共25分,每小题5分)11. 角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________.【答案】12- 【解析】 【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin θ=1cos 2θ=,所以,1sin cos 622πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-12. 已知AB ,AC 是不共线的两个向量,BE =12AC AB -,则AE AC=______. 【答案】12【解析】 【分析】由已知可知,AE =AB BE +=12AC ,代入即可求解AE AC. 【详解】AB ,AC 是不共线的两个向量,BE =12AC AB -,∴AE =AB BE +=12AC , 则AEAC =12AC AC=12, 故答案为12. 【点睛】本题主要考查了向量的基本运算,属于基础试题. 13. 函数22,0()3,0x x f x x x +<⎧=⎨->⎩,满足()01f x >的0x 的取值范围是____________. 【答案】()()102-+∞,,. 【解析】 【分析】根据分段函数的解析式得出不等式组00+210x x >⎧⎨<⎩或20031>0x x ⎧->⎨⎩,解之可得答案.【详解】因为22,0()3,0x x f x x x +<⎧=⎨->⎩,()01f x >,所以00+210x x >⎧⎨<⎩或20031>0x x ⎧->⎨⎩,解得10x 或0>2x ,所以0x 的取值范围是()()102-+∞,,. 故答案为:()()102-+∞,,. 14. 在ABC ∆中,3,4,AB AC ==若ABC∆的面积为则BC 边的长度为______.【解析】 【分析】利用三角形的面积公式,求得角A ,再利用余弦定理,即可求解BC 边的长度,得到答案. 【详解】由题意,在ABC ∆中,3AB =,4AC=,且面积为所以11sin 34sin 22AB AC A A ⋅=⨯⨯=sin A =,又因为(0,)A π∈,所以3A π=或23A π=, 当3A π=时,1cos 2A =, 由余弦定理,可得222212cos 34234132BC AB AC AB AC A =+-⋅=+-⨯⨯⨯=; 当23A π=时,1cos 2A =-,由余弦定理,可得222212cos 34234()372BC AB AC AB AC A =+-⋅=+-⨯⨯⨯-=,综上,BC 边的长度为13或37.【点睛】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.15. 给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____. 【答案】①③ 【解析】 【分析】A 即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ; 对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题(本题共85分)16. 已知等差数列{}n a 和等比数列{}n b 满足111a b ==,2410a a +=,245b b a =.(1)求{}n a 的通项公式;(2)若12381n a a a a +++⋅⋅⋅+=,求n ; (3)求和:13521n b b b b -+++⋅⋅⋅+.【答案】(1)21n a n =-;(2)9n =;(3)312n -【解析】 【分析】(1)利用11a =,2410a a +=,求得数列{}n a 的公差,从而求得{}n a 的通项公式; (2)利用等差数列求和公式即可求得.(3)利用245b b a =,59a =,求得239b =,由等比数列性质知33b =,即23q =,知数列{}21n b -是首项为1,公比为3的等比数列,利用等比数列求和公式即可求得. 【详解】(1)设等差数列{}n a 的公差为d ,由题可得:24332105a a a a +==⇒=,又11a =,解得112a d =⎧⎨=⎩ ,()1–121n a a n d n ∴=+=-(2)利用等差数列求和可知2123(121)2n n n a a a a n +-+++⋅⋅⋅+==,即281n =,解得:9n =或9n =-(舍去)9n ∴=(3)设等比数列{}n b 的公比为q ,又2243b b b =,59a =,即239b =,又22310b b q q ==>,解得:33b =或33b =-(舍去)即23q =,所以数列{}21n b -是首项为1,公比为3的等比数列135211(13)31132n n n b b b b -⨯--∴+++⋅⋅⋅+==- 17. 已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()f α=,求α的值.【答案】(1)2π;(2)函数()f x ,此时+,162k x k Z ππ=∈;函数()f x 的最小值为2-,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π. 【解析】 【分析】(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)24x π=+,所以()f x )24x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x sin(4)24x π=+,所以当sin(4)14x π+=时,函数()f x 的最大值为2,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x,此时+,162k x k Z ππ=∈;函数()f x的最小值为,此时3+,162k x k Z ππ=-∈; (3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()f α=,所以()sin(4)244f παα=+=,即1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 18. 已知函数()2()(2,)xf x x ax a e a x R =++≤∈. (1)当1a =时,求()f x 的单调区间;(2)是否存在实数a ,使()f x 的极大值为3;若存在,求出a 的值,若不存在,请说明理由.【答案】(1)()f x 在()2-∞-,和()1,-+∞上单调递增,在()21--,上单调递减;(2)存在,243a e =-. 【解析】 【分析】(1)当1a =时,()2()1xf x x x e =++,求导,分析导函数取得正负的区间,从而得出函数()f x 的单调区间;(2)求导,分2a =和2a <两种情况得出导函数的正负,得出函数()f x 的单调性,从而得函数的极大值,建立方程,解之可得答案.【详解】(1)当1a =时,()2()1xf x x x e =++,所以()()()'2()3212x x f x e x x e x x =++=++,令'()0f x =,得1x =-或2-,所以当2x <-或>1x -时,'()>0f x ;当21x -<<-时,'()0f x <,所以()f x 在()2-∞-,和()1,-+∞上单调递增,在()21--,上单调递减;(2)存在,243a e =-,理由如下:()()()'2()2+22x xf x e x a x a e x a x ⎡⎤=++=++⎣⎦,令'()0f x =,得x a =-或2-, 因为2,a ≤所以2,a -≥-所以当2a =时,'()>0f x 恒成立,所以()f x 在R 上单调递增,此时函数()f x 不存在极值,所以2a ≠;当2a <时,>2a --,所以当2x <-或>x a -时,'()>0f x ;当2x a -<<-时,'()0f x <,所以()f x 在()2-∞-,和()a -+∞,上单调递增,在()2a --,上单调递减, 所以函数()f x 在2x =-时,取得极大值,所以()23f -=,即()2(2)243f a a e --=+=-,解得2432a e =-<,所以存在,243a e =-,使()f x 的极大值为3.【点睛】利用导函数研究函数的单调性,极值,最值等问题时,关键在于分析出导函数取得正负的区间,如果有参数,需讨论参数的范围,使之能确定导函数取得正负的区间. 19. 在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,AB AD12CD ,AB AD ⊥,//AB CD ,点M 是PC 的中点.(1)求证://MB 平面P AD ; (2)求二面角P BC D --的余弦值;(3)在线段PB 上是否存在点N ,使得DN ⊥平面PBC ?若存在,请求出PNPB的值;若不存在,请说明理由.【答案】(1)证明见解析;(215(3)在线段PB 上不存在点N ,使得DN ⊥平面PBC . 【解析】【分析】(1)取PD 中点H ,连结MH ,AH ,推导出四边形ABMH 为平行四边形,由此能证明BM ∥平面P AD .(2)取AD 中点O ,连结PO ,以O 为原点,如图建立空间直角坐标系,利用向量法能求出二面角P ﹣BC ﹣D 的余弦值. (3)设点N (x ,y ,z ),且 [],0,1PNPBλλ=∈,利用向量法求出在线段PB 上不存在点N ,使得DN ⊥平面PBC .【详解】(1)取PD 中点H ,连结MH ,AH .因为 M 为PC 中点,所以 1//,2HM CD HM CD =. 因为1//,2AB CD AB CD =,所以AB ∥HM 且AB =HM .所以四边形ABMH 为平行四边形, 所以BM ∥AH .因为 BM ⊄平面P AD ,AH ⊂平面P AD ,所以BM ∥平面P AD . (2)取AD 中点O ,连结PO .因为P A =PD ,所以PO ⊥AD .因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD . 取BC 中点K ,连结OK ,则OK ∥AB .以O 为原点,如图建立空间直角坐标系,设AB =2,则()()()()(1,0,0,1,2,0,1,4,0,1,0,0,A B C D P --,(2,2,0),(1,2,BC PB =-=,则平面BCD的法向量(0,0OP =,设平面PBC 的法向量(,,)n x y z =,由00BC n PB n ⎧⋅=⎨⋅=⎩,得22020.x y x y -+=⎧⎪⎨+=⎪⎩令1x =,则(1,1,3)n =.cos ,||||3OP n OP n OP n ⋅<>===⨯由图可知,二面角P ﹣BC ﹣D 是锐二面角, 所以二面角P ﹣BC ﹣D (3)在线段PB 上是不存在点N ,使得DN ⊥平面PBC .设点(,,)N x y z ,且[],0,1PNPBλλ=∈,则PN PB λ=,所以()(,,3)1,2,3x y z λ-=-.则233.x y z λλλ⎧=⎪=⎨⎪=-⎩,所以(,2,33)N λλλ-,(+1,233)DN λλλ=-,. 若 DN ⊥平面PBC ,则//DN n , 即33123λλλ-+==,此方程无解, 所以在线段PB 上不存在点N ,使得DN ⊥平面PBC .【点睛】在解决线段上是否存在点,使得满足线面平行或线面垂直等条件的问题,常常采用向量的线性表示,运用λ法,设出点的坐标,表示已知条件,求解方程的解,得出结论. 20. 已知函数()(1)(21)x f x axe a x =-+-.(1)若1a =,求函数()f x 的图像在点(0,(0))f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【答案】(Ⅰ)32y x =-+(Ⅱ)11a e ≥-. 【解析】试题分析:(1)求出()'4xxf x xe e =+-,求出()0f 的值可得切点坐标,求出()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()0,0f 处的切线方程;(2)首先根据首先()10f ≥,初步判断101a e ≥>-,再证明()'f x 存在唯一根0x ∈ (]0,1,且函数()f x 在()00,x 上单调递减,在()0x +∞上单调递增,函数()f x 的最小值为()()()0000121x f x ax e a x =-+-,只需()00f x ≥即可,又0x 满足()00221xa e a x +=+,代入上式即可证明.试题解析:(Ⅰ)若1a =,则()()221xf x xe x =--,当0x =时,()2f x =,()'4xxf x xe e =+-,当0x =时,()'3f x =-, 所以所求切线方程为32y x =-+ (Ⅱ)由条件可得,首先()10f ≥,得101a e ≥>-, 而()()()'121xf x a x e a =+-+,令其为()h x ,()()'2xh x a x e =+恒为正数,所以()h x 即()'f x 单调递增,而()'020f a =--<,()'12220f ea a =--≥,所以()'f x 存在唯一根0x ∈ (]0,1, 且函数()f x 在()00,x 上单调递减,在()0x +∞上单调递增,所以函数()f x 的最小值为()()()0000121xf x ax e a x =-+-,只需()00f x ≥即可,又0x 满足()00221x a e a x +=+,代入上式可得()()()200001211a x x f x x +-++=+(]00,1x ∈ 200210x x ∴-++≥,即:()00f x ≥恒成立,所以11a e ≥-. 21. 已知任意的正整数n 都可唯一表示为1100112222k k k k n a a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,其中01a =,12,,a a ,{0,1}k a ⋅⋅⋅∈,*k N ∈.对于*n N ∈,数列{}n b 满足:当01,,,k a a a ⋅⋅⋅中有偶数个1时,0n b =;否则1n b =,如数5可以唯一表示为2105120212=⨯+⨯+⨯,则50b =. (1)写出数列{}n b 的前8项;(2)求证:数列{}n b 中连续为1的项不超过2项;(3)记数列{}n b 的前n 项和为n S ,求满足1026n S =的所有n 的值.(结论不要求证明)【答案】(1)1,1,0,1,0,0,1,1; (2)证明见解析; (3)2051n =或2052n =.. 【解析】 【分析】(1)由题意,1100112222k k k k n a a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,实际根是将十进制的转化为二进制的数,即可得到答案;(2)设数列{}n b 中某段连续为1的项从m b 开始,则1m b =,由1001222k k k m a a a -=⋅+⋅+⋅⋅⋅+⋅,则12,,,k a a a 中有奇数个1,分01a =且12,,,k a a a 中无0和当01a =且12,,,k a a a 中有0,两种情况,即可证明; (3)由(2),即可求得n 的值.【详解】(1)由1100112222k k k k n a a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,根据数列{}n b 满足:当01,,,ka a a ⋅⋅⋅中有偶数个1时,0nb =;否则1n b =, 所以数列{}n b 的前8项为1,1,0,1,0,0,1,1.(2)设数列{}n b 中某段连续为1的项从m b 开始,则1m b =,由题意,令1100112222k k k k m a a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,则12,,,k a a a 中有奇数个1,当01a =且12,,,k a a a 中无0时,因为1102222k k m -=++⋅⋅⋅++,所以110112020202k k m ++=⨯+⨯+⋅⋅⋅+⨯+⨯,110212020212k k m ++=⨯+⨯+⋅⋅⋅+⨯+⨯,所以121,1,0m m m b b b ++===,此时连续2项为1, 当01a =且12,,,k a a a 中有0时,①若0k a =,则11001122202k k k m a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅, 则11001122212k k k m a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅,因为12,,,k a a a 中有奇数个1,所以10m b +=,此时连续I 项为1.②若1k a =,即1101122202k k sk m a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅+连续s 个乘以2i , 则1101122212k k sk m a a a --=⋅+⋅+⋅⋅⋅+⋅+⋅+连续s 个乘以2i ,11011222202k k sk m a a a --+=⋅+⋅+⋅⋅⋅+⋅+⋅+110020212(1)02s is -⨯++⨯+⨯-连续个乘以(其中i N ∈),如果s 为奇数,那么120,0m m b b ++==,此时连续2项为1, 如果s 为偶数,那么10m b +=,此时仅有1项为1m b =, 综上所述,连续为1的项不超过2项.(3)由(2)可得,满足1026n S =,可得2051n =或2052n =. 【点睛】有关数列新定义问题特点与解题思路:1、新定义数列问题的特点:通过给出一个新的数列的概念,或约定一种新运算,或给出几个新模型来创设新的问题情景,要求再阅读理解的基础上,依据他们提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的;2、新定义问题的解题思路:遇到新定义问题时,认真分析定定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.。
北京市海淀区2021届高三数学上学期期中练习试题 理(含解析)
2021-2021年海淀高三年级第一学期期中考试数学(理)试卷解析【试卷结构与特点】本次次海淀区的期中考试范围与往年大体一致,即:集合、函数、三角函数、平面向量、解三角形和数列。
1.本次考试的试题结构和高考的试题结构一致,即选择题8个,每题5分,填空题6个,每题5分,解答题6个,其中4题13分,另外两题14分(高考中14分的题目为立体几何和解析几何,本次期中并未涉及这两个知识内容)。
2.试卷整体难度与去年类似,可是难易程度的散布与去年期中考试不同,更类似于2021年的高考真题的难度散布,即常规大体问题的难度下降,产生了很多“送分题”;可是中档问题考核方向不变,可是考核方式有所改变,增强了知识方式之间的综合和深切明白得知识后的灵活视同;关于难题而言,从命题和设问的角度能够看出,依旧本着考察数学思想、思维方式的方向,同时鼓舞归纳猜想的特点依旧在其中,想完成问题,需要对概念和方式有明确的熟悉,而不是简单经历。
值得注意的是,第8题和第14题的题目难度有所下降,同时,第20题也与往常不同,并非是以组合数学为核心的问题,而变成了函数和不等式的综合考核,但思维方式类似。
3.由于具有以上特点,本次考试相较之前的考试具有了更好的区分度,靠着关于题目“熟悉”才能入手的考生无法在这次考核中取得较高的分数,加倍强调了知识和概念的明白得,和方式背后隐含的数学思想。
通过以上分析,高三的数学温习,题海战术与高考的要求是相违抗的,是一种低效的温习方式。
应在对基础知识和概念的明白得上多下功夫,试探和总结与做题并重,专门是要注重对重要数学思想和思维方式的训练和体会。
【试卷分析】一、选择题部份1.设集合{}|1A x R x=∈>,{}|12B x R x=∈-≤≤,那么A B=()A.[)1,-+∞ B.()1,+∞ C.(]1,2 D.[)1,1-【分析】此题考查集合的表示与运算,难度不大,把握表示方式、了解运算概念即可解决。
北京四中2021届高三第一学期期中考试数学试题及答案
北京四中2021届高三第一学期期中考试数学试卷(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知全集U =R ,集合{}12<=xx A ,{}20B x x =-<,则()UA B =A . {|2}x x >B . {}02x x ≤<C . {|02}x x <≤D . {|2}x x ≤2.下列命题中的假命题...是A. ,sin R x x ∃∈=B. ,ln R x x ∃∈=C. 2,0R ∀∈≥x xD. ,20R ∀∈>x x3.已知向量()5,m =a ,()2,2=-b ,若a b -与b 共线,则实数m =A. 1-B. 1C. 2D. 5-4.已知()f x 是R 上的奇函数,当0>x 时,()12log =f x x ,则()0>f x 的解集是A .()1,0-B .()0,1C .()(),10,1-∞-D .()()1,00,1-5.将函数()sin(2)6π=-f x x 的图象向左平移3π个单位长度,得到函数()g x 的图象,则()=g xA .sin(2)6x π+B .2sin(2)3x π+C .cos2xD .cos2x -6.若,R ∈a b ,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B .a b +≥C .11a b +>D .2b aa b+≥ 7.已知三角形ABC ,那么“+>-AB AC AB AC ”是“三角形ABC 为锐角三角形”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8.声音的等级()f x (单位:dB )与声音强度x (单位:2/W m )满足12()10lg110-=⨯⨯x f x . 喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 A .105倍B .108倍C. 1010倍D .1012倍9.函数2sin =-y x x ,,22∈⎡⎤-⎢⎥⎣ππ⎦x 的大致图象是10.已知函数1,0,()|ln |,0.⎧+≤⎪=⎨>⎪⎩ax x f x x x 给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞; ② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0≠a ,则b ∃∈R ,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-. 其中,所有正确结论的个数是 A .0 B .1C .2D .3二、填空题(本大题共5小题,每小题5分,共25分) 11.函数=y _________.12.已知2α∈⎛,ππ⎫⎪⎝⎭,且3sin 5α=. 则cos α=_________,tan 4απ⎛⎫- ⎪⎝⎭=_________.13.已知非零向量a ,b 满足||=||-a a b ,则12a b -与b 的夹角等于_________.14.圆2220+-+=x y ax 与直线l 相切于点(3,1)A ,则圆的半径为_________,直线l 的方程为_________. 15.关于x 的方程()()g x t t =∈R 的实根个数记为()f t .若()ln g x x =,则()f t =_________;若2,0,()2,0,≤⎧=⎨-++>⎩x x g x x ax a x ()a ∈R ,存在t 使得(2)()f t f t +>成立,则a 的取值范围是_________. 三、解答题(本大题共6小题,共85分) 16.(本小题满分14分)在ABC 中,=3a ,-=2b c ,cos =-12B .(Ⅰ)求,b c 的值; (Ⅱ)求()sin -B C 的值.已知函数()()32,3-=-=x x g x x x f .(Ⅰ)求曲线)(x f y =在点(1,(1))f 处的切线方程;(Ⅱ)求函数()f x 在[]0,2上的最大值; (Ⅲ)求证:存在唯一的0x ,使得()()00x g x f =.18.(本小题满分14分)已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;(Ⅱ)从①11=ω,22ω=;②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件, 求函数()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上的最小值,并直接写出函数()f x 的一个周期.19.(本小题满分14分)已知:函数()sin cos =-f x x x x . (Ⅰ)求()'πf ;(Ⅱ)求证:当(0,)2π∈x 时,31()3f x x <; (Ⅲ)若()cos f x kx x x >-对(0,)2π∈x 恒成立,求实数k 的最大值.20.(本小题满分14分)已知O 为平面直角坐标系的原点,过点(20)M -,的直线l 与圆221x y +=交于P ,Q 两点. (Ⅰ)若12⋅=-OP OQ ,求直线l 的方程; (Ⅱ)若OMP ∆与OPQ ∆的面积相等,求直线l 的斜率.对于集合M ,定义函数1,,()1,.-∈⎧=⎨∉⎩M x M f x x M 对于两个集合M ,N ,定义集合{()()1}M N M N x f x f x ∆=⋅=-. 已知{2,4,6,8,10}A ,{1,2,4,8,16}B.(Ⅰ)写出(1)A f 和(1)B f 的值,并用列举法写出集合A B ∆;(Ⅱ)用()Card M 表示有限集合M 所含元素的个数,求()()Card X A Card X B ∆+∆的最小值; (Ⅲ)有多少个集合对(),P Q ,满足,P Q A B ⊆,且()()P A Q B A B ∆∆∆=∆?参考答案一、选择题:本大题共10小题,每小题4分,共40分,请将答案填涂在答题卡上三、解答题(本大题共6小题,共85分) 16.解:(Ⅰ)13,2,cos 2=-==-a b c B ,∴由余弦定理2222cos =+-b a c ac B ,∴b =7,∴c =b ﹣2=5; (Ⅱ)在ABC 中,1cos 2=-B ,3sin 2∴=B ,由正弦定理有:sin sin =c bC B,∴53sin 14=C ,∵>b c ,∴>B C ,∴C 为锐角,∴11cos 14=C ,∴()sin -B C =sin cos cos sin -B C B C 7=. 17.解:(Ⅰ)由3()f x x x =-,得13)(2-='x x f , 所以(1)2f '=,又(1)0f =所以曲线()y f x =在点(1,(1))f 处的切线方程为:()120-=-x y , 即:022=--y x . (Ⅱ)令()0='x f ,得33±=x . ()f x 与()f x '在区间[0,2]的情况如下:因为()00,f =()26,f =所以函数)(x f 在区间[]2,0上的最大值为6. (Ⅲ)证明:设()()()x g x f x h -==333+-x x ,则()()1132+-=-='x x x x h 33)(,令()0h x '=,得1x =±.()h x 与()h x '随x 的变化情况如下:则()x h 的增区间为()1,-∞-,()+∞,1,减区间为()1,1-.又()110h =>,()()011>>h h -,所以函数)(x h 在()+∞,1-没有零点, 又()03<=-15-h ,所以函数)(x h 在()1,-∞-上有唯一零点0x .综上,在()+∞∞-,上存在唯一的0x ,使得)()(00x g x f =. 18.解:(Ⅰ)2(0)2cos 0sin 02f =+=.(Ⅱ)选择条件①.()f x 的一个周期为π.2()2cos sin 2f x x x =+(cos21)sin 2x x =++22)1x x =++2)14x π=++(.因为[,]26x ππ∈-,所以372+[,]4412x πππ∈-.所以1sin 2)14x π-≤+≤(.所以1()1f x ≤≤当2=42x ππ+-时,即3π=8x -时,()f x 在[,]26ππ-取得最小值1选择条件②.()f x 的一个周期为2π.2()2cos sin f x x x =+22(1sin )sin x x =-+21172(sin )48x =--+.因为[,]26x ππ∈-,所以1sin [1,]2x ∈-.所以当sin =1x -时,即π=2x -时,()f x 在[,]26ππ-取得最小值1-.19.解:()cos (cos sin )sin f x x x x x x x '=--=(Ⅰ)()0f 'π= (Ⅱ)令31()()3g x f x x =-,则2()sin (sin )g x x x x x x x '=-=-, 当(0)2x π∈,时,设()sin t x x x =-,则()cos 10t x x '=-< 所以()t x 在(0)2x π∈,单调递减,()sin (0)0t x x x t =-<= 即sin x x <,所以()0g x '<所以()g x 在(0)2π,上单调递减,所以()(0)0g x g <=, 所以31()3f x x <. (Ⅲ)原题等价于sin x kx >对(0)2x ∈,π恒成立,即sin x k x <对(0)2x π∈,恒成立, 令sin ()x h x x =,则22cos sin ()()x x x f x h x x x -'==-. 易知()sin 0f x x x '=>,即()f x 在(0)2π,单调递增, 所以()(0)0f x f >=,所以()0h x '<, 故()h x 在(0)2π,单调递减,所以2()2k h π≤=π. 综上所述,k 的最大值为2π.20.解:(Ⅰ)依题意,直线l 的斜率存在,因为直线l 过点(2,0)M -,可设直线l :(2)y k x =+. 因为P Q 、两点在圆221x y +=上,所以1OP OQ ==, 因为12OP OQ ⋅=-,所以1cos 2OP OQ OP OQ POQ ⋅=⋅⋅∠=- 所以120POQ ︒∠=所以O 到直线l 的距离等于12. 12=, 得15k =±, 所以直线l 的方程为20x +=或20x +=.(Ⅱ)(解法一)因为OMP ∆与OPQ ∆的面积相等,所以2MQ MP =, 设11(,)P x y ,22(,)Q x y ,所以22(2,)MQ x y =+,11(2,)MP x y =+.所以212122(2)2x x y y +=+⎧⎨=⎩即21212(1)2x x y y =+⎧⎨=⎩ (*);因为 P ,Q 两点在圆上,所以2211222211x y x y ⎧+=⎪⎨+=⎪⎩把(*)代入,得2211221114(1)41x y x y ⎧+=⎪⎨++=⎪⎩,所以11788x y ⎧=-⎪⎪⎨⎪=±⎪⎩,所以直线l的斜率9MP k k ==±,即9k =±. (解法二)因为OMP ∆与OPQ ∆的面积相等,所以2MQ MP =, 设11(,)P x y ,22(,)Q x y ,所以22(2,)MQ x y =+,11(2,)MP x y =+. 所以2122(2)x x +=+,即1222x x -=- ①;联立22(2)1y k x x y =+⎧⎨+=⎩ 消去y 得2222(1)4(41)0k x k x k +++-=. 由韦达定理知21224,1k x x k +=-+ ②2122411k x x k -⋅=+ ③由①②可知,212623(1)k x k +=-+,222623(1)k x k -=-+,带入③得42222364419(1)1k k k k --=++,所以k =.21.解:(Ⅰ)(1)=1A f ,(1)=1B f -,{1,6,10,16}A B ∆=.(Ⅱ)根据题意可知:对于集合,C X ,①若a C 且a X ,则(({}))()1Card C X a Card C X ∆=∆-;②若aC 且a X ,则(({}))()1Card C X a Card C X ∆=∆+.所以要使()()Card X A Card X B ∆+∆的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响()()Card X A Card X B ∆+∆的值;集合X 不能含有A B 之外的元素.所以当X 为{1,6,10,16}的子集与{2,4,8}的并集时,()()Card X A Card X B ∆+∆取到最小值4.…8分 (Ⅲ)因为{()()1}A B A B x f x f x ∆=⋅=-, 所以A B B A ∆=∆.由定义可知:()()()A B A B f x f x f x ∆=⋅.所以对任意元素x ,()()()()()()()A B C A B C A B C f x f x f x f x f x f x ∆∆∆=⋅=⋅⋅,()()()()()()()A B C A B C A B C f x f x f x f x f x f x ∆∆∆=⋅=⋅⋅.所以()()()()A B C A B C f x f x ∆∆∆∆=. 所以()()A B C A B C ∆∆=∆∆.由()()P A Q B A B ∆∆∆=∆知:()()P Q A B A B ∆∆∆=∆. 所以()()()()()P Q A B A B A B A B ∆∆∆∆∆=∆∆∆. 所以P Q ∆∆∅=∅.∆=∅,即P Q.所以P Q⊆,因为,P Q A B=. 所以满足题意的集合对(P,Q)的个数为72128。
【全国区级联考】北京市海淀区2021届高三上学期期中考试数学(文)试题
【全国区级联考】北京市海淀区2018届高三上学期期中考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若集合{}20A x x =-<,集合{}21xB x =>, 则A B =A .RB .(),2-∞C .()0,2D .()2,+∞2.命题“0,sin 1x x ∀≥≤”的否定是( ) A .0,sin 1x x ∀<> B .0,sin 1x x ∀≤> C .0,sin 1x x ∃<>D .0,sin 1x x ∃≥>3.下列函数中,既是偶函数又在()0,∞+上单调递增的是 A .2()f x x =- B .()3x f x -= C .()ln f x x=D .()sin f x x x =+4.已知数列{}n a 满足1222(1,2,3,...)n a a a a n ++⋅⋅⋅+==,则 ( ) A .10a < B .10a > C .12a a ≠D .20a =5.在平面直角坐标系xOy 中,点A 的纵坐标为2,点C 在x 轴的正半轴上. 在△AOC中,若cos 3AOC ∠=-,则点A 的横坐标为A .BC .3-D .36.已知向量a b ,是两个单位向量,则“a b =”是“2a b +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件7.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A .2,3π B .2, 3π-C .1,6π D .1, 6π-8.若函数()2,0,02x x xe f x x ax x ≤⎧=⎨>-⎩的值域为1[,)e-+∞,则实数a 的取值范围是A .(0,) eB .(e, )+∞C .(0, e]D .[), e +∞二、填空题9.已知等差数列{}n a 满足12462,a a a a =+=,则公差d =_____.10.已知向量()1,0a =,(,)b m n =,若b a -与a 平行,则n 的值为______. 11.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时, 1()f x x=,则5()(0)_______2f f -+=.12.能够说明“设x 是实数.若x >1,则x +1x−1>3”是假命题的一个实数x 的值为________.13.已知非空集合,A B 满足以下两个条件: (ⅰ){}1,2,3,4,AB A B ==∅;(ⅱ)集合A 的元素个数不是A 中的元素,集合B 的元素个数不是B 中的元素.那么用列举法表示集合A 为_______ .三、双空题14.如图,弹簧挂着一个小球作上下运动,小球在t 秒时相对于平衡位置的高度h (厘米)由如下关系式确定:,[0, )h t t t =+∈+∞,则小球在开始振动(即0t =)时h 的值为_________,小球振动过程中最大的高度差为__________厘米.四、解答题15.已知函数2()2sin cos 2cos 1f x x x x =+-.(Ⅰ)求()4f π的值;(Ⅱ)求函数()f x 的单调递增区间.16.已知等比数列{}n a 满足1238a a a =,516a =. (1)求{}n a 的通项公式及前n 项和n S ;(2)设21log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .17.如图,△ABD 为正三角形, //AC DB ,4AC =,cos ABC ∠=.(1)求sin ACB ∠的值; (2)求AB ,CD 的长.18.已知函数()()3,23f x x x g x x =-=-.(Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 在[]0,2上的最大值;(Ⅲ)求证:存在唯一的0x ,使得()()00f x g x =.19.已知数列{}n a 满足121a a ==, ()221nn n a a +=+-,( n ∈N *).(Ⅰ)写出56,a a 的值;(Ⅱ)设2n n b a =,求{}n b 的通项公式;(Ⅲ)记数列{}n a 的前n 项和为n S ,求数列{}218n S -的前n 项和n T 的最小值. 20.已知函数()()2ln f x x x x =-.(Ⅰ)求证:1是函数()f x 的极值点;(Ⅱ)设()g x 是函数()f x 的导函数,求证:()1g x >-.参考答案1.C 【解析】{}{}|2,0A x x B x x =<= ,由交集的定义得到:A B ⋂{}|02x x =<<故答案选择C. 2.D 【分析】根据全称命题的否定是特称命题,sin 1x ≤的否定是sin 1x >,即可得到答案. 【详解】因为全称命题的否定是特称命题,sin 1x ≤的否定是sin 1x >, 所以命题“0,sin 1x x ∀≥≤”的否定是0,sin 1x x ∃≥> 故选:D 【点睛】本题主要考查全称命题的否定,属于简单题. 3.C 【解析】A :是偶函数,在()0,+∞上是减函数.故不正确. B:是非奇非偶函数,在()0,+∞上是减函数.故不正确. C :函数是偶函数,在()0,+∞上是增函数,故正确. D :是奇函数,在R 上是增函数.故不正确. 故答案为C: 4.D 【解析】根据条件得到:可设123n n S a a a a =++++:11231n n S a a a a --=++++ ,故两式做差得到:0n a =,故数列的每一项都为0,故D 是正确的.A:B:C ,都是不正确的. 故答案为D: 5.A 【解析】设点C 的坐标为()1,0 ,点A 的坐标为()cos ,sin AC AC θθ ,则cos θ= ,由22sin cos 1θθ+= ,以及sin 2.AC θ=,得到2sin .3θ=3.AC = 故得到cos AC θ=故答案选A: 6.C 【详解】由条件得到2a b +=,即两边平方得到:222()2*112cos 4a b a b a b θ+=++=++= 得到cos 10.θθ=⇒= 即两个向量的夹角是0,又因为长度相等,故a b =;反之也能推得结论. 故答案为C: 7.B 【解析】由条件知道:27,36x x ππ== 均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π ,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ ,故.3πφ=- 如果7433k πφπφπ+=⇒=- ,根据2πφ<,得到.3πφ=-故答案为B:点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法. 8.D 【解析】当0x ≤时,,(1)x xy xe y x e ==+' ,故函数在(,1)-∞- 上单调递减,在()1,0- 上单调递增,且过原点,最小值为1e-;当0x >时,若a<0,则原函数开口向下,值域小到负无穷,故一定有a>0,此时图像是开口向上的二次函数图像,最小值在对称轴处取得,故最小值为11().f a e a e≥-⇒≥ 故答案为D:点睛:这是分段函数的值域问题,先确定没有未知量的一支的图像和单调性,从而得到函数的值域,再解决含参数的一支的值域问题.分段函数的值域一般是两段的值域的并集;二次函数的值域问题和函数的对称轴有密切关系,研究轴处的函数值,就是函数的最值. 9.2. 【解析】由等差数列的通项公式得到:246111245 2.a a a a d a d a d +==+=+⇒== 化为基本量a 和公差d 。
【数学】北京市海淀区2021届高三上学期期中考试考试题(解析版)
北京市海淀区2021届高三上学期期中考试考数学试题第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{|30}A x x =-≤,{0,2,4}B =,则A B =( )A. {0,2}B. {0,2,4}C. {}3x x ≤D. {}03x x ≤≤【答案】A【解析】集合{|30}{|3}A x x x x =-≤=≤,{0,2,4}B =,则A B ={}0,2故选:A.2. 已知向量(,2)a m =,(2,1)b =-. 若//a b ,则m 的值为( ) A. 4 B. 1C. -4D. -1【答案】C【解析】因为//a b ,所以40m --=,解得4m =- 故选:C.3. 命题“0x ∃>,使得21x ≥”的否定为( ) A. 0x ∃>,使得21x < B. 0x ∃≤,使得21x ≥ C. 0x ∀>,都有21x < D. 0x ∀≤,都有21x <【答案】C【解析】命题“0x ∃>,使得21x ≥”的否定为“0x ∀>,都有21x <” 故选:C4. 设a ,b R ∈,且0a b <<,则( )A.11a b< B.b a a b> C.2a b+> D.2b a a b+> 【答案】D 【解析】0a b <<,11a b∴>,故A 错;0a b <<,22a b∴>,即220,0b a ab -<>,可得220b a b a a b ab --=<,b a a b ∴<,故B 错;0a b <<,02a b +∴<0>,则2a b+<,故C 错;0a b <<,0,0b a a b ∴>>,2b a a b +>=,等号取不到,故D 正确;故选:D.5. 下列函数中,是偶函数且在区间(0,)+∞上为增函数的是( ) A. 2ln y x = B. 3||y x =C. 1y x x=-D. cos y x =【答案】B 【解析】对于A ,2ln y x =的定义域为(0,)+∞,故不是偶函数,故A 错误;对于B ,()3f x x =的定义域为R ,关于原点对称,且()()33f x x x f x -=-==,∴3y x =是偶函数,且根据幂函数的性质可得在(0,)+∞上为增函数,故B 正确;对于C ,()1f x x x=-的定义域为{}0x x ≠,关于原点对称,且()()11f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,故1y x x =-是奇函数,故C 错误; 对于D ,cos y x =在(0,)+∞有增有减,故D 错误. 故选:B.6. 已知函数()ln 4f x x x =+-,在下列区间中,包含()f x 零点的区间是( ) A. (0,1) B. (1,2)C. (2,3)D. (3,4) 【答案】C【解析】函数()ln 4f x x x =+-,是增函数且为连续函数, 又f (2)ln2240=+-<,f (3)ln3340=+->,可得()()230f f <所以函数()ln 4f x x x =+-包含零点的区间是(2,3). 故选:C .7. 已知数列{}n a 的前n 项和为n S ,且1(),2,3,n n S a n ==,则2020a =( )A. 0B. 1C. 2020D. 2021【答案】A【解析】当1n =时,11a S =,当2n ≥时,11n n n n n a S S a a --=-=-, 所以10n a -=,即1220200a a a ==⋅⋅⋅==, 故选:A.8. 已知函数sin()y A x ωϕ=+的部分图象如图所示,将该函数的图象向左平移()0t t >个单位长度,得到函数()y f x =的图象若函数()y f x =为奇函数,则t 的最小值是( )A.12πB.6π C.4π D.3π 【答案】B【解析】由图象可得6x π=时,函数sin()y A x ωϕ=+的函数值为0,即()6k k Z ωπϕπ+=∈,()6k k Z ωπϕπ∴=-+∈,sin()6y A x k ωπωπ∴=-+,将此函数向左平移()0t t >个单位得,()sin ()6f x A x t k ωπωπ⎡⎤=+-+⎢⎥⎣⎦,又因为()f x 为奇函数,11()6t k k k Z ωπωππ∴-+=∈,11(,)6k kt k Z k Z ππω-∴=+∈∈,因为0t >min 6t π∴=.故选:B .9. 设x ,y 是实数,则“01x <<,且01y <<”是“22log log 0x y +<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A【解析】】若“01x <<,且01y <<”,则01xy <<,2222log log log log 10x y xy +=<=, 所以“01x <<,且01y <<”是“22log log 0x y +<充分条件;若22log log 0x y +<,则2222log log log log 10x y xy +=<=,可得01xy <<,但得不出“01x <<,且01y <<”,如116x =,2y =可得22log log 0x y +<,所以 22log log 0x y +<得不出“01x <<,且01y <<”,所以“01x <<,且01y <<”是“22log log 0x y +<充分不必要条件; 故选:A.10. 对于函数()f x ﹐若集合()(){}0,x x f x f x >=-中恰有k 个元素,则称函数()f x 是“k 阶准偶函数”.若函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则a 的取值范围是( ) A. (),0-∞ B. [)0,2C. [)0,4D. [)2,4【答案】B【解析】根据题意,函数21,()2,xx af x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则集合()(){}0,x x f x f x >=-中恰有2个元素.当0a <时,函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩有一段部分为2,y x x a =>,注意的函数2y x 本身具有偶函数性质,故集合()(){}0,x x f x f x >=-中不止有两个元素,矛盾,当0a >时,根据“2阶准偶函数”的定义得()f x 的可能取值为2x 或12x⎛⎫ ⎪⎝⎭,()f x -为122-⎛⎫= ⎪⎝⎭xx ,故当122xx ⎛⎫= ⎪⎝⎭,该方程无解,当22x x =,解得2x =或4x =,故要使得集合()(){}0,x x f x f x >=-中恰有2个元素,则需要满足2a <,即02a <<;当0a =时,函数21,0()2,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,()f x 的取值为2x ,()f x -为122-⎛⎫= ⎪⎝⎭xx ,根据题意得22x x =满足恰有两个元素,故0a =满足条件. 综上,实数a 的取值范围是[)0,2. 故选:B.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分. 11. 若复数(1)z i i =+,则||z = _______.【解析】由题意得:2(1)1z i i i i i =+=+=-+,所以z ==12. 已知tan 24πα⎛⎫-= ⎪⎝⎭,则tan α=________. 【答案】-3.【解析】因为tan 24πα⎛⎫-= ⎪⎝⎭,所以tan 12tan 31tan ααα-=⇒=-+.13. 已知等差数列{}n a 的前n 项和为n S .若19a =,公差2d =-,则n S 的最大值为_______. 【答案】25 【解析】19a =,2d =-,912112na n n令0n a ≥,解得112n ≤,又*n N ∈,则15n ≤≤ n S 的最大值为554592252S故答案为:25.14. 在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点. ①若BD xBA yBC =+,则x y +=_______; ②BD BM ⋅= _______.【答案】 (1). 34(2). 1 【解析】①M 是BC 的中点,∴12BMBC , D 是AM 的中点,∴11112224BD BA BM BA BC =+=+, 12x ∴=,14y =,故34x y +=. ②ABC ∆是边长为2的正三角形,M 是BC 的中点,AM BC ∴⊥,且1BM =,∴2cos 1BD BM BD BM DBM BM ⋅=⋅⋅∠==.故答案:34,1.15. 唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的子的半径为3m ,它以1rad/s 的角速度逆时针旋转.轮子外边沿有一点P ,点P 到船底的距离是H (单位:m ),轮子旋转时间为t (单位:s ). 当0t =时,点P 在轮子的最高点处.①当点P 第一次入水时,t =__________;②当t t =0时,函数()H t 的瞬时变化率取得最大值,则0t 的最小值是________. 【答案】 (1).23π (2). 32π【解析】(1)当0t =时,点P 在轮子最高点处,由图可知,轮船距离船底1m ,半径3m ,设为r ,则cos 13cos 4,0H r t r t t =++=+≥,当点P 第一次入水时,水面高 2.5m ,即2.5H =,代入3cos 4H t =+得,1cos 2t =-,第一次入水即在满足1cos 2t =-的情况下满足现实条件0t ≥后可取的最小值,23t π=(2)瞬时变化率取得最大值,即'()H t 最大,'()3sin H t t =-,当3sin 3t -=时,瞬时变化率取得最大值,此时,0t 的最小值为32π 故答案为:①23π;②32π三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程. 16. 在△ABC 中,sin 2sin B C =,3cos 4A =.(1)若△ABC ,求c 的值; (2)求ac的值. 解:(1)由正弦定理得:sin sin b cB C=. 因为sin 2sin B C =,所以2b c =.因为3cos4A=,0Aπ<<,所以27sin1cosA A=-=,因为S=211sin2sin22S bc A c A==⨯⨯=,所以24c=,所以2c=;(2)由(1)知2b c=,因为3cos4A=,所以222222232cos4424a b c bc A c c c c=+-=+-⨯=,所以a=,所以ac=17. 已知等差数列{}n a满足59a=,3922a a+=.(1)求{}n a的通项公式;(2)等比数列{}n b的前n项和为n S,且11b a=,再从条件①、条件②、条件③这三个条件中任选择两个作为已知条件,求满足2020nS<的n的最大值.条件①:312b a a=+;条件②:37S=;条件③:1n nb b+>.解:(1)设等差数列{}n a的公差为d,则()11na a n d+-=,因为59a=,3922a a+=,所以1492102ta da d+=⎧⎨+=⎩,解得:112ad=⎧⎨=⎩所以21na n=-;(2)(I)选择①②设等比数列{}n b的公比为q,因为11b a=,312b a a=+,所以11b=,34b=,因为37S=,所以23132b S b b=--=,所以212b q b ==,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -≤, 所以10n ≤,即n 的最大值为10. (II )选择①③设等比数列{}n b 的公比为q , 因为11b a =,312b a a =+, 所以11b =,34b =,所以2314b q b ==,2q =±, 因为1n n b b +>,所以2q,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -<, 所以10n ≤.即n 的最大值为10. 选择②③设等比数列{}n b 的公比为q 因为37S =,11b =, 所以217q q ++=. 所以2q,或3q =-.因为1n n b b +>,所以2q.所以1(1)211n n n b q S q-==-- 因为2020n S <,所以212020n -< 所以10n ≤.即n 的最大值为10.18. 已知函数2()(23)x f x e x x =-. (1)求不等式()0f x >的解集;(2)求函数()f x 在区间[0,2]上的最大值和最小值. 解:(1)因为0x e >,由()2(0)23xf x e x x =->,得2230x x ->.所以0x <或32x >. 所以不等式()0f x >的解集为{|x 0x <或32x ⎫>⎬⎭; (2)由()223()xf x e x x =-得:2()(23)x f x e x x '=+-()()231xex x =+-.令()0f x '=,得1x =,或32x =-(舍). ()f x 与()f x '在区间[0,2]上的情况如下:所以当1x =时,()f x 取得最小值()1f e =-; 当2x =时,()f x 取得最大值()222f e =.19. 已知函数π()2sin 6f x x ⎛⎫=+⎪⎝⎭. (1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡⎣,求m 的最大值.解:(1)令322262πππk πx k π+≤+≤+,k Z ∈. 所以42233ππk πx k π+≤≤+,()k Z ∈.所以函数()f x 的单调递减区间42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)()()4sin sin 66g x f x f x x x ππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭14cos sin 2x x x ⎫=+⎪⎝⎭22cos sin x x x =+cos2)sin 2x x =-+2sin 23x π⎛⎫=-+ ⎪⎝⎭因为0x m ≤≤, 所以22333x m πππ-≤-≤-.因为()g x 的取值范围为0,2⎡+⎣,所以sin 23x π⎛⎫- ⎪⎝⎭的取值范围为2⎡⎤-⎢⎥⎣⎦所以42233m πππ≤-≤. 解得:55126m ππ≤≤. 所以m 的最大值为56π.20. 已知三次函数32()324f x ax ax a =-++.(1)当1a =-时,求曲线()y f x =在点(3,(3))f 处的切线方程; (2)若函数()f x 在区间(,3)a a +上具有单调性,求a 的取值范围; (3)当0a >时,若122x x +>,求12()()f x f x +的取值范围.解:由()32324f x ax ax a =-++可得:2()363(2)f x ax ax ax x '=-=-(1)当1a =-时,(3)2f =-,(3)9f '=-.所以曲线( )y f x =在点()()3,3f 处的切线方程为925y x =-+.(2)由已知可得0a ≠①当0a >时,令()0f x '=得0x =,22x =.()f x 与()f x '在区间(),-∞+∞_上的情况如下:因为()f x 在(),3a a +上具有单调性,所以2a ≥.②当0a <时,()f x 与()'f x 在区间(),-∞+∞上的情况如下:因为()f x 在(),3a a +上具有单调性, 所以30a +≤,即3a ≤-. 综上所述,a 的取值范围是(][),32,-∞-+∞.(3)先证明:()()12 4f x f x +≥.由(2)知,当0a >时,()f x 的递增区间是(),0-∞,()2,+∞,递减区间是(0,2). 因为122x x +>,不妨设12x x ≤,则21>x . ①若10x ≤,则2122x x >-≥.所以()()()()12112444f x f x f x f x a +>+-=+>. ②若1>0x ,因为21>x ,所以()()12()()224f x f x f f +≥+=,当且仅当122x x ==时取等号.综上所述,12())4(f x f x +≥.再证明:12()()f x f x +的取值范围是[4,)+∞.假设存在常数()4m m ≥,使得对任意122x x +>,()()12f x f x m +≤.取12x =,且22x >+则 ()()3222222324f f x ax ax a+=+-++2222222()()222()224ax x a x a x m =+-+-+>-+>,与()()12f x f x m +≤矛盾.所以12()()f x f x +的取值范围是[4,)+∞.21. 已知{}n a 是无穷数列,1a a =,2a b =且对于{}n a 中任意两项i a ,()j a i j <在{}n a 中都存在一项(2)k a j k j <<,使得2k j i a a a =-. (1)若3a =,5b =求3a ; (2)若0a b ,求证:数列{}n a 中有无穷多项0;(3)若ab ,求数列{}n a 的通项公式.解:(1)取1i =,2j =,则存在24)k a k <<(,使得3212a a a =-,即3212a a a =-. 因为13a a ==,25a b ==,所以32127a a a =-=.(2)假设{}n a 中仅有有限项为0,不妨设0m a =,且当n m >时,n a 均不为0,则2m ≥.取1i =,j m =,则存在2)k a m k m <<(,使得120k m a a a =-=,与0k a ≠矛盾.(3)①当a b <时,首先证明数列{}n a 是递增数列,即证*n N ∀∈,1n n a a +<恒成立. 若不然,则存在最小的正整数0n ,使得001n n a a +≥,且012 n a a a <<<.显然02n ≥.取0j n =,1i =,2,…,01n -,则存在00(2k a n k n <<),使得02k n i a a a =-.因为00000121222n n n n n a a a a a a a -->->>->,所以012n a a -,022n a a -,…,0012n n a a --这01n -个不同数恰为01n a +,02n a +,…,021n a -这01n -项.所以001n n a a +>与001n n a a +≤矛盾. 所以数列{}n a 是递增数列.再证明: (1)()n a a n b a =+--,1,2,3,n= 记,d b a =- 即证(1)n a a n d =+-,1,2,3,n=当1,2n =时,结论成立.假设存在最小的正整数0,m 使得 (1)n a a n d =+-对任意01n m ≤≤恒成立, 但010,m a a m d +≠+则02m ≥. 取0j m =,1,2,i =,01m -,则存在()002k a m k m <<,使得02k m i a a a =-因为数列{}n a 是递增数列, 所以00012121m m m a a a a a +-<<<<<<.所以0600121222m m m m a a a a a a --<<-<-.因为0012m m a a --,…022m a a -,012m a a -这01m -个数恰为01m a +,02m a +,…021m a -这01m -项.所以()()004110002212m m m a a a a m d a m d a m d +-=-=+--+-=+⎡⎤⎡⎤⎣⎦⎣⎦, 与10n m a a m d +≠+矛盾.所以 (1)()n a a n b a =+--,1,2,3,n=②当a b >时,令n n b a =-,1,2,3,n =,则1b a =-,2b b =-,且12<b b .对于{}n b 中任意两项i b ,()j b i j <,的因为对任意i a ,()j a i j <,存在(2),k a j k j <<使得2k j i a a a =-, 所以()2k j i a a a -=---,即存在(2),k b j k j <<使得2k j i b b b =-. 因此数列{}n b 满足题设条件.由① 可知(1)()n b a n a b =-+--,1,2,3,,n =所以(1)()n a a n b a =+--,1,2,3,n =综上所述,(1)()n a a n b a =+--,1,2,3,n =经检验,数列{}n a 满足题设条件.。
北京市海淀区高三年级第一学期期中练习数学理科(有答案)
北京市海淀区⾼三年级第⼀学期期中练习数学理科(有答案)北京市海淀区⾼三年级第⼀学期期中练习数学理科 2013.11本试卷共4页,150分。
考试时长120分钟。
考⽣务必将答案答在答题卡上,在试卷上作答⽆效。
考试结束后,将本试卷和答题卡⼀并交回。
⼀、选择题:本⼤题共8⼩题,每⼩题5分,共40分。
在每⼩题列出的四个选项中,选出符合题⽬要求的⼀项。
1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B = ( A ) A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ?中,若tan 2A =-,则cos A =( B )B.D. 4. 在平⾯直⾓坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC,则实数m 的值为( C ) A. 2-B. 12-C.12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B ) A. 充分⽽不必要条件 B. 必要⽽不充分条件 C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最⼩值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ?∈-?=??++∈+∞?若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:①π是()f x 的⼀个周期;② ()f x 的图象关于直线x 4π=对称;③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个⼆、填空题:本⼤题共6⼩题,每⼩题5分,共30分。
2021届北京市第四中学高三上学期期中考试数学试题(解析版)
北京市第四中学2021届高三上学期期中考试数学试题一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U =R ,集合{}21xA x =<,{}20B x x =-<,则()UA B =( )A. {|2}x x >B.{}02x x ≤<C. {|02}x x <≤D. {|2}x x ≤『答案』B『解析』210x x <⇒<,{}0A x x ∴=<,{}2B x x =<,{}0UA x x =≥,(){}02U AB x x ∴⋂=≤<.故选:B2. 下列命题中的假命题...是( )A.,sin x R x ∃∈=B. ,ln x R x ∃∈=C. 2,0∈≥∀x R xD. ,20x x R ∀∈>『答案』A『解析』对于A .因为1sin 1x -≤≤,错误;对于B .当x =对于C .2,0∈≥∀x R x ,正确;对于 D .,20xx R ∀∈> ,成立,正确;故选:A.3. 已知向量(5,)a m =,(2,2)b =-,若a b -与b 共线,则实数m =( ) A.1- B. 1C.2D. 5-『答案』D『解析』(3,2)a b m -=+,(2,2)b =-,且a b -与b 共线,62(2)0m ∴--+=,解得5m =-.故选:D .4. 已知()f x 是R 上的奇函数,当0x >时,()12log f x x =,则()0f x >的解集是( )A ()1,0-B. ()0,1C. ()(),10,1-∞-⋃D. ()()1,00,1-『答案』C『解析』()f x 是R 上的奇函数,当0x >时,()12log f x x =,令0,0x x -,则有12()log ()()f x x f x -=-=-,则当0x <时,12()log ()f x x =--,所以, 1212log ,0()0,0log (),0x x f x x x x >⎧⎪⎪==⎨⎪--<⎪⎩,所以,当12log 00x x >⎧⎪⎨⎪>⎩或12log ()00x x -->⎧⎪⎨⎪<⎩, 解得()(),10,1x ∈-∞-故选:C.5. 将函数()sin 26f x x π⎛⎫=-⎪⎝⎭的图象向左平移3π个单位长度,得到函数()g x 的图象,则()g x =( )A. sin 26xB. 2sin 23x π⎛⎫+ ⎪⎝⎭C. cos2xD. cos2x -『答案』C『解析』由题意()sin 2sin 2cos 2362g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 故选:C.6. 若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( ) A. 222a b ab +>B. a b +≥C. 11a b +>D.2b aa b+≥ 『答案』D『解析』,所以A 错;,只能说明两实数同号,同为正数,或同为负数,所以当时,B 错;同时C 错;或都是正数,根据基本不等式求最值,,故D 正确.7. 已知三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件『答案』B『解析』三角形ABC 中,“AB AC AB AC +>-”0AB AC ⇒⋅>,可得A 为锐角,此时三角形ABC 不一定为锐角三角形. 三角形ABC 为锐角三角形A ⇒为锐角.∴三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的必要不充分条件. 故选:B.8. 声音的等级()f x (单位:dB )与声音强度x (单位:2W /m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dm ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的( ) A. 105倍B. 108倍C. 1010倍D. 1012倍『答案』B『解析』设喷气式飞机起飞时声音强度和一般说话时声音强度分别为12,x x ,()111210lg140110x f x -=⨯=⨯,2110x =, ()221210lg 60110x f x -=⨯=⨯,6210x -=,所以81210x x =, 因此,喷气式飞机起飞时声音强度约为一般说话时声音强度的810倍.故选:B9. 函数ππ2sin ,,22y x x x ⎡⎤=-∈-⎢⎥⎣⎦的图象大致为 A. B.C. D.『答案』D『解析』∵()2sin ,[,]22f x x x x ππ=-∈-∴()2sin()2sin f x x x x x -=---=-+∴()()f x f x -=-,即()f x 为奇函数,故排除,A B ∵()12cos f x x '=-∴当(,)33x ππ∈-时,()0f x '<,即()f x 在(,)33ππ-上为减函数,故排除C 故选D10. 已知函数 给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-. 其中,所有正确结论的个数是( ) A. 0B. 1C. 2D. 3『答案』C『解析』①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =,则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C二、填空题(本大题共5小题,每小题5分,共25分) 11.函数y =_________.『答案』[)2,+∞『解析』y =202x x -≥⇒≥,所以函数的定义域[)2,+∞. 故答案为:[)2,+∞ 12. 已知,2παπ⎛⎫∈⎪⎝⎭,且3sin 5α=. 则cos α=_________,tan 4πα⎛⎫- ⎪⎝⎭=_________.『答案』 (1). 45-(2). 7- 『解析』因为,2παπ⎛⎫∈⎪⎝⎭,且3sin 5α=,所以4cos 5α==-,所以3sin 35tan 4cos 45ααα===--,所以3tan tan 144tan 7341tan tan 1144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++⨯- ⎪⎝⎭故答案为:45-,7- 13. 已知非零向量a ,b 满足||||a a b =-,则12a b -与b 的夹角等于_________. 『答案』2π 『解析』||||a a b =-,∴2222a a a b b =-+,即212a b b =,211()022a b b a b b -=-=∴12a b -与b 的夹角为2π.故答案为:2π. 14. 圆2220+-+=xy ax 与直线l 相切于点(3,1)A ,则圆的半径为_________,直线l 的方程为_________.『答案』 (1).(2). 40x y +-=『解析』(1)由条件可知点()3,1A 在圆上,即2231320a +-+=,解得:4a =, 圆的方程()222242022x y x x y +-+=⇔-+=,所以圆的半径r =(2)设圆的圆心()2,0C ,10132AC k -==-, 由条件可知直线AC 与直线l 垂直,所以直线l 的斜率1k =-, 所以直线l 的方程()13y x -=--,即40x y +-=.40x y +-=15. 关于x 的方程()()g x t t R =∈的实根个数记为()f t .若()ln g x x =,则()f t =_________;若2,0,()2,0,x x g x x ax a x ≤⎧=⎨-++>⎩()a R ∈,存在t 使得(2)()f t f t +>成立,则a 的取值范围是_________.『答案』 (1). 1 (2). (1,)+∞『解析』(1)函数()ln g x x =,函数的值域为R ,并且函数是单调递增函数,故方程()g x t =,只有一个解,故()1f t =,(2)若2,0,()2,0,x x g x x ax a x ≤⎧=⎨-++>⎩()a R ∈,当0a ≤时,()g x 的图象如下图所示,直线2y t =+在y t =的上方,()()2f t f t +>不成立;当0a >时,()g x 的图象如图所示,当0t a <<,22a t a a <+<+时,若存在t 使得()()2f t f t +>,所以()2min 2a a t +>+,即22a a +>解得:1a >,故a 的取值范围是()1,+∞. 故答案为:1;()1,+∞三、解答题(本大题共6小题,共85分) 16. 在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )值.解:(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯-⎪⎝⎭.解得5c =.所以7b =.(2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin 14c C B b ==.在ABC 中,∠B 是钝角,所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 17. 已知函数()3f x x x =-,()23g x x =-. (1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 在[]0,2上的最大值; (3)求证:存在唯一的0x ,使得()()00f x g x =.解:(1)由3()f x x x =-,得2()31f x x =-',所以(1)2f '=,又(1)0f =所以曲线()y f x =在点(1,(1))f 处的切线方程为:()021y x -=-, 即:220x y --=.(2)令()0f x '=,得x =. ()f x 与()'f x 在区间[0,2]的情况如下:因为()00,f =()26,f =所以函数()f x 在区间[]-23,上的最大值为6. (3)证明:设()()()h x f x g x =-=333x x -+,则()()2()33311h x x x x =-=-+',令()0h x '=,得1x =±.()h x 与()h x '随x 的变化情况如下:则()h x 的增区间为(),1-∞-,()1,+∞,减区间为()1,1-.又()110h =>,()()-110h h >>,所以函数()h x 在()-1,+∞没有零点,又()-3-150h =<,所以函数()h x 在(),1-∞-上有唯一零点0x .综上,在(),-∞+∞上存在唯一的0x ,使得00()()f x g x =. 18. 已知函数212()2cos sin f x x x ωω=+. (I)求f (0)的值;(II)从①121,2ωω==;②121,1ωω==这两个条件中任选一个,作为题目的已知条件,求函数f (x )在[,]26ππ-上的最小值,并直接写出函数f (x )的一个周期. 解:(I)2(0)2cos 0sin 02f =+=; (II)①121,2ωω==,由题意得2()2cos sin 2cos 2sin 21+)+14f x x x x x x π=+=++=,T π∴=,[,]26x ππ∈-,372[,]4412x πππ∴+∈-,故sin 2124x π⎛⎫-≤+≤ ⎪⎝⎭,所以当2x π=-时,()f x 取最小值1-. ②121,1ωω==,22()2cos sin 2sin sin 2f x x x x x =+=-++,[,]26x ππ∈-,令sin x t =,21[1,],()222t f t t t ∴∈-=-++,∴当1t =-时,函数取得最小值为(1)1f -=-.2()2cos sin f x x x =+,22(+2)2cos (+2)sin(+2)2cos sin f x x x x x πππ∴=+=+,2T π∴=19. 已知:函数()sin cos =-f x x x x . (1)求()f π';(2)求证:当(0,)2x π∈时,31()3f x x <;(3)若()cos f x kx x x >-对(0,)2x π∈恒成立,求实数k 的最大值.解:()cos (cos sin )sin f x x x x x x x '=--= (1)()0f π'=;(2)令31()()3g x f x x =-,则2()sin (sin )g x x x x x x x '=-=-,当(0)2x π∈,时,设()sin t x x x =-,则()cos 10t x x '=-< 所以()t x 在(0)2x π∈,单调递减,()sin (0)0t x x x t =-<= 即sin x x <,所以()0g x '<所以()g x 在(0)2π,上单调递减,所以()(0)0g x g <=, 所以31()3f x x <. (3)原题等价于sin x kx >对(0)2x π∈,恒成立,即sin x k x <对(0)2x π∈,恒成立, 令sin ()x h x x =,则22cos sin ()()x x x f x h x x x-'==-. 易知()sin 0f x x x '=>,即()f x 在(0)2π,单调递增,所以()(0)0f x f >=,所以()0h x '<, 故()h x 在(0)2π,单调递减,所以2()2k h π≤=π. 综上所述,k 的最大值为2π. 20. 已知O 为平面直角坐标系的原点,过点M (﹣2,0)的直线l 与圆x 2+y 2=1交于P ,Q 两点.(Ⅰ)若12OP OQ ⋅=-,求直线l 的方程; (Ⅱ)若△OMP 与△OPQ 的面积相等,求直线l 的斜率.解:(Ⅰ)依题意,直线l 的斜率存在,因为直线l 过点M (﹣2,0),可设直线l :y =k (x +2). 因为P 、Q 两点在圆x 2+y 2=1上,所以,1OP OQ ==, 因为12OP OQ ⋅=-,所以,12OP OQ OP OQ cos POQ ⋅=⋅⋅∠=-, 所以,∠POQ =120°,所以,O 到直线l的距离等于12.12=,得15k =±, 所以直线l﹣15y=0,或+15y=0,即x +2=0,或x +2=0.(Ⅱ)因为△OMP 与△OPQ 的面积相等,所以,2MQ MP =,设P (x 1,y 1),Q (x 2,y 2),所以,()222MQ x y =+,,()112MP x y =+,. 所以,()21212222x x y y ⎧+=+⎨=⎩,即()2121212x x y y ⎧=+⎨=⎩(*); 因为P ,Q 两点在圆上,所以,2211222211x y x y ⎧+=⎨+=⎩把(*)代入,得2211221114(1)41x y x y ⎧+=⎨++=⎩,所以,1178x y ⎧=-⎪⎪⎨⎪=⎪⎩所以,直线l 的斜率MP k k == k = 21. 对于集合M ,定义函数()1,1,.x MM f x x M -∈⎧=∉⎨⎩对于两个集合M ,N ,定义集合()(){|1}.M N M N x f x f x =⋅=-已知{2,A =4,6,8,10},{1,B =2,4,8,16}.(Ⅰ)写出()1A f 和()1B f 的值,并用列举法写出集合A B ;(Ⅱ)用()Card M 表示有限集合M 所含元素的个数,求()()Card X A Card X B +的最小值;(Ⅲ)有多少个集合对(),P Q ,满足P ,Q A B ⊆⋃,且()()P A Q B A B =?解:(Ⅰ)()11A f =,()11B f =-,{}Δ1,6,10,16A B =. (Ⅱ)根据题意可知:对于集合,C X ,①a C ∈且a X ∉,则{}()()(Δ1Card C X a Card C X ∆⋃=-; ②若a C ∉且a X ∉,则{}()()(ΔΔ1Card C X a Card C X ⋃=+.所以要使()()ΔΔCard X A Card X B +的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响()()ΔΔCard X A Card X B +的值;集合X 不能含有A B ⋃之外的元素.所以当X 为集合{1,6,10,16}的子集与集合{2,4,8}的并集时,()()ΔΔCard X A Card X B +取到最小值4.(Ⅲ)因为()(){|1}A B A B x f x f x ∆=⋅=-, 所以ΔΔA B B A =.由定义可知:()()()ΔA B A B f x f x f x =⋅.所以对任意元素x ,()()()()()()()ΔΔΔA B C A B C A B C f x f x f x f x f x f x =⋅=⋅⋅,()()()()()()()ΔΔΔA B C A B C A B C f x f x f x f x f x f x =⋅=⋅⋅.所以()()()()ΔΔΔΔA B C A B C f x f x =. 所以()()ΔΔΔΔA B C A B C =.由()()ΔΔΔΔP A Q B A B =知:()()ΔΔΔΔP Q A B A B =. 所以()()()()()ΔΔΔΔΔΔΔΔP Q A B A B A B A B =. 所以ΔΔP Q ∅=∅.所以ΔP Q =∅,即P Q =. 因为,P Q A B ⊆⋃,所以满足题意的集合对(),P Q 的个数为72128=.。
市海淀区届高三上学期期中考试数学理试题WORD版
市海淀区届高三上学期期中考试数学理试题W O R D版Last updated on the afternoon of January 3, 2021海淀区高三年级第二学期期中练习数学(理科)本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合,则集合中元素的个数为A .1B .2C .3D .42.下列函数中为偶函数的是 3.在△ABC 中,的值为 A .1B .-1C .12 D .-124.数列的前n 项和为,则的值为A .1B .3C .5D .6 5.已知函数,下列结论错误的是A .B .函数的图象关于直线x =0对称 C .的最小正周期为π D .的值域为6.“x >0”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.如图,点O 为坐标原点,点A (1,1).若函数且)的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足8.已知函数函数.若函数恰好有2个不同零点,则实数a 的取值范围是二、填空题(共6小题,每小题5分,共30分) 9.10.在△AB C 中,角A ,B ,C 的对边分别为a ,b ,c .若c =4,则11.已知等差数列的公差,且39108a a a a +=-.若n a =0,则n =12.已知向量,点A (3,0),点B 为直线y =2x 上的一个动点.若AB a ,则点B 的坐标为.13.已知函数,若的图象向左平移个单位所得的图象与的图象向右平移个单位所得的图象重合,则的最小值为14.对于数列,都有为常数)成立,则称数列具有性质.⑴若数列的通项公式为,且具有性质,则t的最大值为;⑵若数列的通项公式为,且具有性质,则实数a的取值范围是三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13分)已知等比数列的公比,其n前项和为(Ⅰ)求公比q和a5的值;(Ⅱ)求证:16.(本小题满分13分)已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期和单调递增区间.17.(本小题满分13分)如图,在四边形ABCD中,AB=8,BC=3,CD=5,(Ⅰ)求BD的长;(Ⅱ)求证:18.(本小题满分13分)已知函数,曲线在点(0,1)处的切线为l(Ⅰ)若直线l的斜率为-3,求函数的单调区间;(Ⅱ)若函数是区间[-2,a]上的单调函数,求a的取值范围.19.(本小题满分14分)已知由整数组成的数列各项均不为0,其前n项和为,且(Ⅰ)求的值; (Ⅱ)求的通项公式;(Ⅲ)若=15时,Sn 取得最小值,求a 的值. 20.(本小题满分14分)已知x 为实数,用表示不超过x 的最大整数,例如对于函数f(x),若存在,使得,则称函数函数.(Ⅰ)判断函数是否是函数;(只需写出结论)(Ⅱ)设函数f(x)是定义R 在上的周期函数,其最小正周期为T ,若f(x)不是函数,求T 的最小值.(Ⅲ)若函数是函数,求a 的取值范围.海淀区高三年级第二学期期中练习参考答案数学(理科)阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2021-2022学年海淀区2022届高三第一学期期中数学试题(含答案)
海淀区2021~2022学年第一学期期中练习高三数学参考答案 2021.11一、选择题共10小题,每小题4分,共40分。
二、填空题共5小题,每小题5分,共25分。
说明:13题两空前3后2;15题全选对5分,漏选3分,其他情况0分。
三、解答题共6小题,共85分。
(16)(本小题共14分)解:(Ⅰ)因为142n n a a n ++=+,所以当1n =时,216a a +=. ①当2n =时,3210a a +=, ②②—①得314a a -=.因为{}n a 为等差数列,设公差为d ,所以3124d a a =-=,则2d =,由①可得126a d +=,所以12a =,所以1(1)2(1,2,)n a a n d n n =+-==L .(Ⅱ)因为{}n n b a - 是公比为3的等比数列,又知13b =,所以11111()3=(32)3=3n n n n n b a b a ----=-⨯-⨯, 所以11332n n n n b a n --=+=+,所以0121(3333)+2(123)n n S n -=++++++++L L132(1)132n n n -+=+-1(31)(1)2n n n =-++. (17)(本小题共14分)解:(Ⅰ)因为ππ()2cos()cos()44f x x x =-+πππ2cos[()]cos()424x x =+-+ ππ2sin()cos()44x x =++ πsin(2)2x =+ cos2x =或者ππ()2cos()cos()44f x x x =-+ ππππ2(cos cos sin sin )(cos cos sin sin )4444x x x x =+- 22112(cos sin )22x x =- cos2x = 所以()f x 的最小周期2π2ππ||2T ω===. (Ⅱ)因为()()cos g x f x x =-,所以()cos2cos g x x x =-22cos cos 1x x =--2192(cos )48x =-- 因为cos [1,1]x ∈-, 所以依据二次函数的性质可得()g x 的值域为9[,2]8-.(18)(本小题共14分)解:(Ⅰ)公共点(e,1). 因为1'()f x x=, 所以1'(e)e f =, 所以切线的方程为11(e)e y x -=-,即e x y =. (Ⅱ)11e ()|||ln |22S a a AB a a a=⋅=-,(0,e)a ∈. 因为(0,e)a ∈时,e 1,ln 1a a ><,所以e ln a a>, 所以e 1()ln 22S a a a =-,(0,e)a ∈,1'()(1ln )2S a a =-+, 令'()0S a =,得1ea =, 所以'(),()S a S a 的情况如下:因此,()S a 的极大值,也是最大值为()e 22e S =+.(19)(本小题共14分)解:(Ⅰ)由正弦定理sin sin a b A B=及sin cos a B A =得 sin sin cos AB B A ,因为()0,πB ∈,所以sin 0B ≠所以sin A A =,所以tan A因为()0,πA ∈,所以π3A =. (Ⅱ)选②:因为1cos 3C =,()0,πC ∈, 所以sin C==.由正弦定理sin sin a c A C =得sin sin c A a C ===由πA B C ++=得()11sin sin sin cos cos sin 32B A C A C A C =+=+=+=.所以11sin22ABCS ac B∆==⨯=选③:因为π3A=,AB边上的高h=所以2sinhbA===.由余弦定理2222cosa b c bc A=+-得2942c c=+-,即2250c c--=,解得1c=所以1c=所以(11122ABCS ch==⨯=V(20)(本小题共14分)解:(Ⅰ)当9a=-时,2()(39)f x x x x=--,2()3693(1)(3)f x x x x x'=--=+-,'(),()f x f x的情况如下:所以,函数()f x的增区间为(,1]-∞-和[3,)+∞﹒(Ⅱ)由2()(3)f x x x x a=-+得2()36f x x x a'=-+,因为()f x在区间(1,2)上为减函数,所以()0f x'≤在(1,2)内恒成立,因为22()363(1)3f x x x a x a'=-+=-+-,所以(1,2)x∈时,'()(3,)f x a a∈-,所以(,0]a∈-∞.(Ⅲ)所以a的取值范围为9(0,)4﹒(21)(本小题共15分)解:(Ⅰ)1B 是完美集;设112233(0 0 0)λλλ++=,,a a a , 即1230λλλ===. 所以1B 是完美集.2B 不是完美集.设112233(0 0 0)λλλ++=,,a a a , 即12312312324023503460λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩.,,令3=1λ,则12=2=3λλ-,.所以2B 不是完美集.(Ⅱ)因为B 不是完美集,所以存在123()(0 0 0)λλλ≠,,,,,使得112233(0 0 0)λλλ++=,,a a a , 即123123123202(1)0(1)(1)20m m m m m m m m m λλλλλλλλλ++=⎧⎪++-=⎨⎪-+-+=⎩,,.因为{}(21) ( 21) (1 2)B m m m m m m m m m =---,,,,,,,,,由集合的互异性得,0m ≠且1m ≠-.所以12320λλλ++=,3122λλλ=--,12()(0 0)λλ≠,,. 所以1212(2)(1)0(31)(1)0m m m m λλλλ-+++=⎧⎨--+--=⎩., 所以1(41)0m λ-+=. 所以14m =或10λ=. 检验: 当14m =时,存在1235,7,3λλλ==-=-使得112233(0 0 0)λλλ++=,,a a a . 当10λ=时,因为1m ≠-,所以230,0λλ==,舍. 所以14m =. (Ⅲ)B 一定是完美集.假设存在不全为0的实数123,,λλλ满足112233(0 0 0)λλλ++=⋅⋅⋅,,,a a a , 不妨设123λλλ≥≥,则10λ≠(否则与假设矛盾).由1112213310x x x λλλ++=,得3211213111x x x λλλλ=--. 所以32112131213111x x x x x λλλλ≤+≤+.与111121312x x x x >++,即112131x x x >+矛盾.所以假设不成立.所以10λ=.所以230λλ==.所以B 一定是完美集.明同学在物理实验室发现一个电学元件,是由一个标有“2,2 W ”的小灯泡和一个定值电阻R 旋接而成。
2021北京海淀区高三数学上学期期中测试及答案
二、填空题共 5 小题,每小题 5 分,共 25 分。
(11)已知 是数列{ }的前项和. 若 = 2,则2 =_________.
( + 1) , < 1,
(12)已知函数() = { 2
则函数()的零点个数为________.
第③组条件: AB 边上的高ℎ = √3 , = 3.
注:如果选择的条件不符合要求,第(Ⅱ)问得 0 分;如果选择多个符合要求的条件分
别解答,按第一个解答计分.
(20)
(本小题共 14 分)
设函数() = ( 2 − 3 + ), ∈ R.
(Ⅰ)当 = −9时,求函数()的单调增区间;
动,则当滚动的水平距离为 2.2m 时,下列选
项中,关于点的描述正确的是
(参考数据:7 ≈ 21.991)
A. 点在轮子的左下位置,距离地面约为 0.15m
B. 点在轮子的右下位置,距离地面约为 0.15m
C. 点在轮子的左下位置,距离地面约为 0.26m
D. 点在轮子的右下位置,距离地面约为 0.04m
要求的一项。
(1)在复平面内,复数 = (2 + )对应的点的坐标为
A. (1,2)
B.(−1,2)
C. (2,1)
D.(2, −1)
(2)已知向量a = (, 2), b = (−1,1). 若a//b,则 =
A. 1
B.−1
C. 2
D.−2
(3)已知全集 = {1,2,3,4},集合 = {1}, ( ∪ ) = {3}.则集合可能是
(5)下列函数中,是奇函数且在其定义域上为增函数的是
A. =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区2020-2021学年第一学期期中练习高三数学本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{|30}A x x =-≤,{0,2,4}B =,则A B =( )A. {0,2}B. {0,2,4}C. {}3x x ≤D.{}03x x ≤≤【答案】A 【解析】 【分析】利用交集的定义运算求解即可.【详解】集合{|30}{|3}A x x x x =-≤=≤,{0,2,4}B =,则A B ={}0,2故选:A2. 已知向量(,2)a m =,(2,1)b =-. 若//a b ,则m 的值为( ) A. 4 B. 1 C. -4 D. -1【答案】C 【解析】 【分析】利用向量平行的坐标运算公式即可得到答案. 【详解】因为//a b ,所以40m --=,解得4m =- 故选:C3. 命题“0x ∃>,使得21x ≥”的否定为( ) A. 0x ∃>,使得21x < B. 0x ∃≤,使得21x ≥ C. 0x ∀>,都有21x <D. 0x ∀≤,都有21x <【解析】 【分析】利用含有一个量词的命题的否定定义得出选项.【详解】命题“0x ∃>,使得21x ≥”的否定为“0x ∀>,都有21x <” 故选:C4. 设a ,b R ∈,且0a b <<,则( )A.11a b< B.b a a b> C.2a b+> D.2b a a b+> 【答案】D 【解析】 【分析】由0a b <<,可得11a b >,A 错;利用作差法判断B 错;由02a b +<0>,可得C 错;利用基本不等式可得D 正确. 【详解】0a b <<,11a b∴>,故A 错;0a b <<,22a b ∴>,即220,0b a ab -<>,可得220b a b a a b ab --=<,b a a b∴<,故B 错;0a b <<,02a b +∴<0>,则2a b+<,故C 错;0a b <<,0,0b a a b ∴>>,2b a a b +>=,等号取不到,故D 正确;故选:D5. 下列函数中,是偶函数且在区间(0,)+∞上为增函数的是( ) A. 2ln y x =B. 3||y x =C. 1y x x=-D.cos y x =【解析】 【分析】根据奇偶性和单调性的定义逐个判断即可. 【详解】对于A ,2ln y x =的定义域为(0,)+∞,故不是偶函数,故A 错误;对于B ,()3f x x =的定义域为R ,关于原点对称,且()()33f x x x f x -=-==,∴3y x =是偶函数,且根据幂函数的性质可得在(0,)+∞上为增函数,故B 正确;对于C ,()1f x x x=-的定义域为{}0x x ≠,关于原点对称,且()()11f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,故1y x x =-是奇函数,故C 错误; 对于D ,cos y x =在(0,)+∞有增有减,故D 错误. 故选:B.6. 已知函数()ln 4f x x x =+-,在下列区间中,包含()f x 零点的区间是( ) A. (0,1) B. (1,2)C. (2,3)D. (3,4)【答案】C 【解析】 【分析】判断函数的单调性,以及f (2),f (3)函数值的符号,利用零点存在性定理判断即可. 【详解】函数()ln 4f x x x =+-,是增函数且为连续函数, 又f (2)ln2240=+-<,f (3)ln3340=+->,可得()()230f f <所以函数()ln 4f x x x =+-包含零点的区间是(2,3). 故选:C .【点睛】本题主要考查零点存在定理的应用,应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.7. 已知数列{}n a 的前n 项和为n S ,且1(),2,3,n n S a n ==,则2020a =( )A. 0B. 1C. 2020D. 2021【答案】A 【解析】 【分析】当1n =时,11a S =,当2n ≥时,利用1n n n a S S -=-,结合题干条件,即可求得答案. 【详解】当1n =时,11a S =,当2n ≥时,11n n n n n a S S a a --=-=-, 所以10n a -=,即1220200a a a ==⋅⋅⋅==, 故选:A8. 已知函数sin()y A x ωϕ=+的部分图象如图所示,将该函数的图象向左平移()0t t >个单位长度,得到函数()y f x =的图象若函数()y f x =为奇函数,则t 的最小值是( )A.12πB.6πC.4π D.3π 【答案】B 【解析】 【分析】 由图象可得6x π=时,函数sin()y A x ωϕ=+的函数值为0,可以解出ϕ的表达式,再利用平移的知识可以得出t 的最小值. 【详解】解:由图象可得6x π=时,函数sin()y A x ωϕ=+的函数值为0,即()6k k Z ωπϕπ+=∈,()6k k Z ωπϕπ∴=-+∈,sin()6y A x k ωπωπ∴=-+,将此函数向左平移()0t t >个单位得,()sin ()6f x A x t k ωπωπ⎡⎤=+-+⎢⎥⎣⎦,又因为()f x 为奇函数,11()6t k k k Z ωπωππ∴-+=∈,11(,)6k kt k Z k Z ππω-∴=+∈∈,因为0t > min 6t π∴=.故选:B .【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 9. 设x ,y 是实数,则“01x <<,且01y <<”是“22log log 0x y +<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先判断“01x <<,且01y <<”能否推出 “22log log 0x y +<;再判断22log log 0x y +<能否推出“01x <<,且01y <<”,利用充分条件和必要条件的定义即可判断.【详解】若“01x <<,且01y <<”,则01xy <<,2222log log log log 10x y xy +=<=, 所以“01x <<,且01y <<”是“22log log 0x y +<充分条件;若22log log 0x y +<,则2222log log log log 10x y xy +=<=,可得01xy <<,但得不出“01x <<,且01y <<”,如116x =,2y =可得22log log 0x y +<,所以 22log log 0x y +<得不出“01x <<,且01y <<”,所以“01x <<,且01y <<”是“22log log 0x y +<充分不必要条件; 故选:A【点睛】关键点点睛:本题的关键是要熟悉充分条件和必要条件的定义,能正确判断条件能否推出结论,结论能否推出条件.10. 对于函数()f x ﹐若集合()(){}0,x x f x f x >=-中恰有k 个元素,则称函数()f x 是“k 阶准偶函数”.若函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则a 的取值范围是( ) A. (),0-∞ B. [)0,2C. [)0,4D. [)2,4【答案】B 【解析】 【分析】根据“2阶准偶函数”定义,分0a <,0a >,0a =三种情况分析即可得答案.【详解】解:根据题意,函数21,()2,xx af x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则集合()(){}0,x x f x f x >=-中恰有2个元素.当0a <时,函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩有一段部分为2,y x x a =>,注意的函数2yx 本身具有偶函数性质,故集合()(){}0,x x f x f x >=-中不止有两个元素,矛盾,当0a >时,根据“2阶准偶函数”的定义得()f x 的可能取值为2x 或12x⎛⎫ ⎪⎝⎭,()f x -为122-⎛⎫= ⎪⎝⎭xx ,故当122xx ⎛⎫= ⎪⎝⎭,该方程无解,当22x x =,解得2x =或4x =,故要使得集合()(){}0,x x f x f x >=-中恰有2个元素,则需要满足2a <,即02a <<;当0a =时,函数21,0()2,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,()f x 的取值为2x ,()f x -为122-⎛⎫= ⎪⎝⎭xx ,根据题意得22x x =满足恰有两个元素,故0a =满足条件. 综上,实数a 的取值范围是[)0,2. 故选:B【点睛】本题解题的关键是根据新定义的“2阶准偶函数”,将问题转化为研究函数()f x ,()f x -可能取何值,进而根据22x x =方程有两个解2x =或4x =求解.考查运算求解能力与综合分析能力,是中档题.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 若复数(1)z i i =+,则||z = _______.【解析】 【分析】化简可得1z i =-+,利用求模公式,即可求得答案. 【详解】由题意得:2(1)1z i i i i i =+=+=-+,所以z ==12. 已知tan 24πα⎛⎫-= ⎪⎝⎭,则tan α=________. 【答案】-3. 【解析】 【分析】由两角差的正切公式展开,解关于tan α的方程.【详解】因为tan 24πα⎛⎫-= ⎪⎝⎭,所以tan 12tan 31tan ααα-=⇒=-+. 【点睛】本题考查两角差正切公式的简单应用,注意公式的特点:分子是减号,分母是加号. 13. 已知等差数列{}n a 的前n 项和为n S .若19a =,公差2d =-,则n S 的最大值为_______. 【答案】25 【解析】 【分析】由已知求出等差数列{}n a 的通项公式,求出满足0n a ≥的最大n 值,代入可得n S 的最大值. 【详解】19a =,2d =-,912112na n n令0n a ≥,解得112n ≤,又*n N ∈,则15n ≤≤ n S 的最大值为554592252S故答案为:2514. 在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点. ①若BD xBA yBC =+,则x y +=_______; ②BD BM ⋅= _______.【答案】 (1). 34(2). 1 【解析】 【分析】①用,BA BC 表示出BD ,得出x ,y 的值即可求出x y +; ②结合正三角形的性质,根据平面向量数量积的定义计算. 【详解】①M 是BC 的中点,∴12BMBC , D 是AM 的中点,∴11112224BD BA BM BA BC =+=+, 12x ∴=,14y =,故34x y +=.②ABC ∆是边长为2的正三角形,M 是BC 的中点,AM BC ∴⊥,且1BM =,∴2cos 1BD BM BD BM DBM BM ⋅=⋅⋅∠==.故答案:34,1.【点睛】本题主要考查向量的运算及平面向量数量积公式,平面向量数量积公式有两种形式,一是cos a ba b ,二是1212a b x x y y ⋅=+.15. 唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的子的半径为3m ,它以1rad/s 的角速度逆时针旋转.轮子外边沿有一点P , 点P 到船底的距离是H (单位:m ),轮子旋转时间为t (单位:s ). 当0t =时,点P 在轮子的最高点处.①当点P 第一次入水时,t =__________;②当t t =0时,函数()H t 的瞬时变化率取得最大值,则0t 的最小值是________. 【答案】 (1). 23π (2). 32π【解析】 【分析】(1)根据题意,列出方程cos 13cos 4,0H r t r t t =++=+≥,分类讨论即可求解; (2)求出导数得,'()3sin H t t =-,当3sin 3t -=时,瞬时变化率取得最大值,进而求解 【详解】(1)当0t =时,点P 在轮子最高点处,由图可知,轮船距离船底1m ,半径3m ,设为r ,则cos 13cos 4,0H r t r t t =++=+≥,当点P 第一次入水时,水面高2.5m ,即 2.5H =,代入3cos 4H t =+得,1cos 2t =-,第一次入水即在满足1cos 2t =-的情况下满足现实条件0t ≥后可取的最小值,23t π=(2)瞬时变化率取得最大值,即'()H t 最大,'()3sin H t t =-,当3sin 3t -=时,瞬时变化率取得最大值,此时,0t 的最小值为32π 故答案为:①23π;②32π【点睛】关键点睛:解题的关键在于求出cos 13cos 4,0H r t r t t =++=+≥和'()3sin H t t =-,根据题目的实际情况求解,难度属于中档题三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 在△ABC 中,sin 2sin B C =,3cos 4A =. (1)若△ABC 的面积为7,求c 的值; (2)求ac的值. 【答案】(1)2;(2)2. 【解析】 【分析】(1)由正弦定理可得2b c =,根据3cos 4A =可求得7sin 4A =,利用面积公式即可求出c ; (2)由余弦定理即可求出. 【详解】解:(1)由正弦定理得:sin sin b c B C=. 因为sin 2sin B C =,所以2b c =. 因为3cos 4A =,0A π<<, 所以27sin 1cos A A =-=,因为S =211sin 2sin 22S bc A c A ==⨯⨯= 所以24c =,所以2c =; (2)由(1)知2b c =, 因为3cos 4A =, 所以222222232cos 4424a b c bc A c c c c =+-=+-⨯=,所以a =,所以ac=17. 已知等差数列{}n a 满足59a =,3922a a +=. (1)求{}n a 的通项公式;(2)等比数列{}n b 的前n 项和为n S ,且11b a =,再从条件①、条件②、条件③这三个条件中任选择两个作为已知条件,求满足2020n S <的n 的最大值. 条件①:312b a a =+;条件②:37S =;条件③:1n n b b +>.【答案】(1)21n a n =-;(2)选择①②:10;选择①③:10;选择②③:10. 【解析】 【分析】(1)利用等差数列的通项公式将已知条件转化为关于1a 和d 的方程,即可求解;(2)选择①②时,根据条件①②可以求出11b =,34b =.,再利用37S =可以求出22b =,即可求出{}n b 的公比,利用等比数列前n 项和公式计算出n S ,解不等式即可;选择①③时,首先利用312b a a =+和11b a =求出11b =,34b =,再利用1n n b b +>可得2q,利用等比数列前n 项和公式计算出n S ,解不等式即可;选择②③时,37S =,11b =,可得217q q ++=结合1n n b b +>,可得公比2q,利用等比数列前n 项和公式计算出n S ,解不等式即可.【详解】(1)设等差数列{}n a 的公差为d ,则()11n a a n d +-=, 因为59a =,3922a a +=,所以1492102ta d a d +=⎧⎨+=⎩,解得:112a d =⎧⎨=⎩所以21n a n =-; (2)(I )选择①②设等比数列{}n b 的公比为q , 因为11b a =,312b a a =+, 所以11b =,34b =,因为37S =,所以23132b S b b =--=,所以212b q b ==,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -≤, 所以10n ≤,即n 的最大值为10. (II )选择①③设等比数列{}n b 的公比为q , 因为11b a =,312b a a =+, 所以11b =,34b =, 所以2314b q b ==,2q =±, 因为1n n b b +>,所以2q,所以1(1)211n n n b q S q-==--, 因为2020n S <,所以212020n -<, 所以10n ≤.即n 的最大值为10. 选择②③设等比数列{}n b 的公比为q因为37S =,11b =, 所以217q q ++=. 所以2q,或3q =-.因为1n n b b +>,所以2q.所以1(1)211n n n b q S q-==-- 因为2020n S <,所以212020n -< 所以10n ≤.即n 的最大值为10.【点睛】关键点点睛:本题的关键是熟记等差和等比数列的通项公式,等比数列的前n 项和公式,关键是利用1n n b b +>得出2q .18. 已知函数2()(23)x f x e x x =-. (1)求不等式()0f x >的解集;(2)求函数()f x 在区间[0,2]上的最大值和最小值. 【答案】(1){|x 0x <或32x ⎫>⎬⎭;(2)最小值e -,最大值22e . 【解析】 【分析】(1)直接解不等式可得不等式的解集;(2)对函数求导,令()0f x '=,求出方程根,得出单调性可得函数的最值. 【详解】(1)因为0x e >,由()2(0)23xf x e x x =->,得2230x x ->.所以0x <或32x >. 所以不等式()0f x >的解集为{|x 0x <或32x ⎫>⎬⎭; (2)由()223()xf x e x x =-得:2()(23)x f x e x x '=+-()()231xex x =+-.令()0f x '=,得1x =,或32x =-(舍). ()f x 与()f x '在区间[0,2]上的情况如下:所以当1x =时,()f x 取得最小值()1f e =-; 当2x =时,()f x 取得最大值()222f e =.19. 已知函数π()2sin 6f x x ⎛⎫=+⎪⎝⎭. (1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡+⎣,求m 的最大值.【答案】(1)42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)56π. 【解析】 【分析】 (1)令322262πππk πx k π+≤+≤+,()k Z ∈,解不等式即可求解;(2)先求出并化简()2sin 23g x x π⎛⎫=-⎪⎝⎭()g x 的值域可得出sin 2,132π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦x ,结合正弦函数的图象可知42233m πππ≤-≤,即可求出m 的最大值.【详解】(1)令322262πππk πx k π+≤+≤+,k Z ∈. 所以42233ππk πx k π+≤≤+,()k Z ∈.所以函数()f x 的单调递减区间42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)()()4sin sin 66g x f x f x x x ππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭14cos sin 2x x x ⎫=+⎪⎝⎭22cos sin x x x =+cos2)sin 2x x =-+2sin 23x π⎛⎫=- ⎪⎝⎭因为0x m ≤≤, 所以22333x m πππ-≤-≤-.因为()g x 的取值范围为0,2⎡⎣,所以sin 23x π⎛⎫- ⎪⎝⎭的取值范围为,12⎡⎤-⎢⎥⎣⎦所以42233m πππ≤-≤. 解得:55126m ππ≤≤. 所以m 的最大值为56π.【点睛】关键点点睛:本题的关键点是要熟记正弦函数的图象,灵活运用三角恒等变换将()g x 化为一名一角,能结合正弦函数的图象得出42233m πππ≤-≤. 20. 已知三次函数32()324f x ax ax a =-++.(1)当1a =-时,求曲线()y f x =在点(3,(3))f 处的切线方程; (2)若函数()f x 在区间(,3)a a +上具有单调性,求a 的取值范围; (3)当0a >时,若122x x +>,求12()()f x f x +的取值范围. 【答案】(1)925y x =-+;(2)(][),32,-∞-+∞;(3)[4,)+∞.【解析】 【分析】(1)对函数求导,当1a =-时,(3)2f =-,(3)9f '=-,进而可得切线方程;(2)当0a =时,()2f x =在R 上不具有单调性;对函数求导,令()0f x '=,按0a >和0a <分别判断单调性,列不等式可求得a 的取值范围;(3)先证明:()()12 4f x f x +≥,由(2)知,当0a >时,()f x 的递增区间是(),0-∞,()2,+∞,递减区间是(0,2),因为122x x +>,不妨设12x x ≤,则21>x , 按10x ≤和1>0x 分别证明不等式成立,再证明对任意122x x +>,()()12f x f x m +≤(4)m ≥不成立即可.【详解】由()32324f x ax ax a =-++可得:2()363(2)f x ax ax ax x '=-=-(1)当1a =-时,(3)2f =-,(3)9f '=-.所以曲线( )y f x =在点()()3,3f 处的切线方程为925y x =-+. (2)由已知可得0a ≠①当0a >时,令()0f x '=得0x =,22x =.()f x 与()f x '在区间(),-∞+∞_上的情况如下:因为()f x 在(),3a a +上具有单调性,所以2a ≥.②当0a <时,()f x 与()'f x 在区间(),-∞+∞上的情况如下:因为()f x 在(),3a a +上具有单调性, 所以30a +≤,即3a ≤-. 综上所述,a 的取值范围是(][),32,-∞-+∞.(3)先证明:()()12 4f x f x +≥.由(2)知,当0a >时,()f x 的递增区间是(),0-∞,()2,+∞,递减区间是(0,2). 因为122x x +>,不妨设12x x ≤,则21>x . ①若10x ≤,则2122x x >-≥.所以()()()()12112444f x f x f x f x a +>+-=+>. ②若1>0x ,因为21>x ,所以()()12()()224f x f x f f +≥+=,当且仅当122x x ==时取等号. 综上所述,12())4(f x f x +≥.再证明:12()()f x f x +的取值范围是[4,)+∞.假设存在常数()4m m ≥,使得对任意122x x +>,()()12f x f x m +≤.取12x =,且22x >+则 ()()3222222324f f x ax ax a+=+-++2222222()()222()224ax x a x a x m =+-+-+>-+>,与()()12f x f x m +≤矛盾.所以12()()f x f x +的取值范围是[4,)+∞.【点睛】关键点点睛:本题考查导数的几何意义,考查导数研究函数的单调性,考查导数证明不等式,本题解题的关键为利用第(2)问的单调性,由122x x +>和12x x ≤,确定出21>x ,再按10x ≤和1>0x 分类讨论,利用放缩法证明()()12 4f x f x +≥,以及利用反证法证得()()12f x f x m +≤(4)m ≥不成立,考查了学生分类讨论思想和逻辑思维能力,属于中档题.21. 已知{}n a 是无穷数列,1a a =,2a b =且对于{}n a 中任意两项i a ,()j a i j <在{}n a 中都存在一项(2)k a j k j <<,使得2k j i a a a =-. (1)若3a =,5b =求3a ; (2)若0a b ,求证:数列{}n a 中有无穷多项0;(3)若ab ,求数列{}n a 的通项公式.【答案】(1)7;(2)证明见解析;(3)(1)()n a a n b a =+--,1,2,3,n =.【解析】 【分析】(1)依题意代入计算可得; (2)利用反证法证明即可;(3)分a b <与a b >两种情况讨论,①当a b <时,首先证明数列{}n a 是递增数列,再证明:(1)()n a a n b a =+--,1,2,3,n =即可;②当a b >时,令n n b a =-,1,2,3,n =,结合①的结论即可得解;【详解】解:(1)取1i =,2j =,则存在24)k a k <<(,使得3212a a a =-,即3212a a a =-. 因为13a a ==,25a b ==,所以32127a a a =-=.(2)假设{}n a 中仅有有限项为0,不妨设0m a =,且当n m >时,n a 均不为0,则2m ≥. 取1i =,j m =,则存在2)k a m k m <<(,使得120k m a a a =-=,与0k a ≠矛盾.(3)①当a b <时,首先证明数列{}n a 是递增数列,即证*n N ∀∈,1n n a a +<恒成立. 若不然,则存在最小的正整数0n ,使得001n n a a +≥,且012 n a a a <<<.显然02n ≥.取0j n =,1i =,2,…,01n -,则存在00(2k a n k n <<),使得02k n i a a a =-.因为00000121222n n n n n a a a a a a a -->->>->,所以012n a a -,022n a a -,…,0012n n a a --这01n -个不同的数恰为01n a +,02n a +,…,021n a -这01n -项.所以001n n a a +>与001n n a a +≤矛盾. 所以数列{}n a 是递增数列.再证明: (1)()n a a n b a =+--,1,2,3,n= 记,d b a =- 即证(1)n a a n d =+-,1,2,3,n=当1,2n =时,结论成立.假设存在最小的正整数0,m 使得 (1)n a a n d =+-对任意01n m ≤≤恒成立, 但010,m a a m d +≠+则02m ≥. 取0j m =,1,2,i =,01m -,则存在()002k a m k m <<,使得02k m i a a a =-因为数列{}n a 是递增数列, 所以00012121m m m a a a a a +-<<<<<<.所以0600121222m m m m a a a a a a --<<-<-.因为0012m m a a --,…022m a a -,012m a a -这01m -个数恰为01m a +,02m a +,…021m a -这01m -项.所以()()004110002212m m m a a a a m d a m d a m d +-=-=+--+-=+⎡⎤⎡⎤⎣⎦⎣⎦, 与10n m a a m d +≠+矛盾.所以 (1)()n a a n b a =+--,1,2,3,n=②当a b >时,令n n b a =-,1,2,3,n =,则1b a =-,2b b =-,且12<b b .对于{}n b 中任意两项i b ,()j b i j <,因为对任意i a ,()j a i j <,存在(2),k a j k j <<使得2k j i a a a =-,所以()2k j i a a a -=---,即存在(2),k b j k j <<使得2k j i b b b =-. 因此数列{}n b 满足题设条件.由① 可知(1)()n b a n a b =-+--,1,2,3,,n =所以(1)()n a a n b a =+--,1,2,3,n =综上所述,(1)()n a a n b a =+--,1,2,3,n =经检验,数列{}n a 满足题设条件.【点睛】本题属于数列新定义问题,考查反证法的应用,以及数学归纳法的证明数列的单调性;。