数字图像处理第八章

合集下载

数字图像处理_第八章二值图像处理2

数字图像处理_第八章二值图像处理2

图(d) : N (4) (0 0) (0 0) (0 0) (0 0) 0; N (8) (1 0) (1 0) (1 1) (1 0) 3. 图(e) : N (4) (1 0) (1 0) (1 0) (1 0) 4; N (8) (0 0) (0 0) (0 0) (0 0) 0. 图(f ) : N (4) (0 0) (0 0) (0 0) (0 0) 0; N (8) (1 0) (1 0) (1 0) (1 0) 4.
原图
四连接定义下
八连接定义下
在四连接定义下,内部点是“在当前点的八近邻像素点中没有值为0 的点”,而在八连接定义中,内部点是“在当前点的四近邻像素点中 没有值为0的点”。
2013-8-7 4
10.1.3 连接数与交叉数
连接数:是指沿着当前点的近邻(四近邻或者八近邻)像 素所构成的边界轨迹上移动时,通过的像素值为1的点的 个数。 四近邻下的连接数定义:
判断该结构元素所覆盖范围内的像素值是否至少有一个为1如果是则膨胀后的图像的相同位置上的像素值为1如果该覆盖范围内的所有像素值为0则膨胀后图像的相同位置上的像素值0101000110100010000011000000001011111110011010011100001100000000原图像原图像结构元素结构元素膨胀后的图像膨胀后的图像2012627161022膨胀原图图原膨胀一次次膨胀一膨胀二次次膨胀二膨胀三次次膨胀三201262717103开运算与闭运算腐蚀处理目标物的面积减少
LS N e 2 N o
其中,Ne表示边界ຫໍສະໝຸດ 上的方向码为偶数的像 素个数;No为边界线上方向码为奇数的像素 个数。

遥感数字图像处理第8章 图像分割

遥感数字图像处理第8章 图像分割

腐蚀运算
目的:消除目标的边界点,用于消除无意义的小目标
(毛刺,小突起)
方法:
1.原点在集合B(结构元素)中
2.原点不在集合B(结构元素)中
腐蚀运算(erosion)
腐蚀运算(erosion)
A B x | ( B )x A .
对结构元素B作平移x,B全包含在A中时,
原点的集合就是计算结果
(1)直方图方法:直方图的谷底位置
最佳阈值的选择
(2)自适应阈值方法
A.将目标分割成大小固定的块
B.确定每一个块的目标峰值和背景峰值
C.第一次处理:对每一个块进行分割(边界阈值采用目标和背 景峰值的中点) D.计算每一个块的目标灰度和背景灰度平均值 E.第二次处理:对每个块再次分割(边界阈值采用目标和背景灰 度平均值的中值)
四连通 八连通
工作流程
1.确定待分割对象
2.选择敏感波段
3.选择分割方法
4.对分割的结果进行矢量化
分割原理和方法
边界(边缘)方法: 阈值分割技术,微分算子
边缘检测
假设:图像分割结果中的子区域在原来图像中有边缘存在,或
不同子区域间有边界的存在(像素值灰度不连续性)
区域方法:区域增长技术,聚类分割技术
图像分割的目的
图像分割的目标:根据图像中的物体将图像的像素分
类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割的目的
图像分割是把图像分解成构成的部件和对象的过程
把焦点放在增强感兴趣对象:汽车牌照(前景)
排除不相干图像成分:其它区域(背景)
最佳阈值的选择

数字图像处理课件第8章

数字图像处理课件第8章
2021/3/1
4
8.1 引言
(2)把滤波器系数用有限位二进制数表示时 产生的量化效应。就某些滤波器的结构类 型来说,它们的零点和极点位置对于滤波 器系数的变化特别敏感,因而滤波器系数 由于量化误差引起的微小改变有可能对滤 波器的频率特性产生很大的影响。特别是 那些单位圆内且非常靠近单位圆的极点, 如果由于滤波器系数的量化误差,而使这 些极点变到单位圆上或圆外时,滤波器就 失去了稳定性。
2021/3/1
45
8.4 数字滤波器运算中的有限字长效应
2021/3/1
34
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
传统机械按键结构层图:
按键
PCBA
开关键
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公 差,以防按键手感不良。
数字信号处理
绪论 第1章 离散时间信号和系统的时域分析 第2章 离散时间信号和系统的频域、复频域分析 第3章 离散傅里叶变换 第4章 快速傅里叶变换 第5章 数字滤波器的结构 第6章 无限长脉冲响应数字滤波器设计 第7章 有限长脉冲响应数字滤波器设计 第8章 有限字长效应
2021/3/1
1
第8章 有限字长效应
2021/3/1
41
8.4 数字滤波器运算中的有限字长效应
考虑一阶IIR系统,其差分方程为
设输入信号x(n)=0.875δ(n),a=0.5,并设系统
的初始状态为零,即y(-1)=0,不难求出输 出y(n)=0.875an,n≥0,这是一个衰减序列。 假定系统的寄存器字长为4位,第一位为符号 位,将x和a写成二进制,即 2021/3/1 x(n)=0.111,a=0.100。

数字图像处理第八章课件

数字图像处理第八章课件
消除心理视觉冗余会导致数量信息的损失,又称量化。
Chapter 8 Image Compression
量化,不可逆,信息损失
IGS, Improved Gray-Scale quantization
IGS意识到眼睛对边缘特有的敏感性,通过加入伪随机数 来破坏边缘:
伪随机数从邻近像元的低4位获得,加入当前像元灰度值后 才量化。(图像的低bit面很象随机数,见p.89) 低4位的初值为0000,对高4位为1111的像素不加随机数。
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 ImaCompression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
8.1 基础
数据压缩——表示定量信息所需数据量的减少过程
数据、信息、知识。
比如,不同人讲相同的事件。
数据冗余:是数字图像压缩的中心问题。
这不是抽象的概念,而是可以用数学式子度量的实体:
如果表示相同信息的两组数据所用的信息载体单元数量
分别为n1和n2, 则第一组数据的相对(第二组数据的)
a

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

数字图像处理及应用MATLAB第8章.ppt

数字图像处理及应用MATLAB第8章.ppt
功能:图像文件的写入(保存),把图像写入图形文件中 格式:imwrite(A,filename,fmt) ;A,filename,fmt意义同上 所述。
(3)imshow 功能:显示图像
格式:imshow(I,n) ;imshow(I,[low high]) ;imshow(BW) %显示黑白图像
imshow(X,map) %显示索引色图像;imshow(RGB) %显示真彩色图像
imshow filename (4)figure
功能:创建图形窗口 (5)subplot
功能:将多个图画到一个平面上的工具。 格式:subplot(m,n,p)或者subplot(mnp) 说明:其中,m表示是图排成m行,n表示图排成n列,也就 是整个figure中有n个图是排成一行的,一共m行。
(a)原始图像 实验结果图
(b) 处理后图像
(4)实现真彩色图像与索引图像的互相转换。
clear,clc close all RGB1 = imread('peppers.png');%读入真彩色图像 [X1,map1] = rgb2ind(RGB1,128);%真彩色图像转化为索引图 imshow(X1,map1) %显示索引图像 load clown;%载入图像 rgb2=ind2rgb(X,map);%将索引图像转化为真彩色图像 figure,imshow(rgb2)
2、实验中所用部分函数介绍
(1)imread 功能:图像文件的读取 格式: A=imread(filename,fmt) 将文件命为filename表示的扩展名为fmt的图像文件读Байду номын сангаас到矩
阵A中。MATLAB支持的图像格式有bmp、jpg或jpeg、tif或tiff、 gif、pcx、png、xwd。 (2)imwrite

数字图像处理第8章-image understanding.ppt

数字图像处理第8章-image understanding.ppt

Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
(1) 边界用隙码表示时,周长为24; (2) 边界用链码表示时,周长为10+5 2 ; (3) 边界用面积表示时,周长为15。
Designed by Ruif科学与技术系
表示为
p Ne
2N
式中,Ne和No分别是边界链码(8方向)中走偶步与走奇步
的数目。
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
3. 周长 区域的周长即区域的边界长度。常用的简便方法如下:
(3) 计算边界点数之和求周长:周长用边界所占面积表示, 也即边界点数之和, 每个点占面积为1的一个小方块。
(3) 用边界坐标计算面积
Green(格林)定理表明,在x-y平面中的一个封闭曲线包 围的面积由其轮廓积分给定,即
A12(xdyyd)x
其中,积分沿着该闭合曲线进行。将其离散化变为
1 Nb
A 2 i1 [xi(yi1 yi ) yi(xi1 xi )]
1 2
Nb i1
[xi
yi1
xi1yi
特征提取:将由图像分割得到区域的特征提取出来,用 于 图像识别与理解。
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
1. 特征表示与描述:把图像分割后,为了进一步的处理,分割 后的图像一般要进行形式化的表达和描述。
2. 解决形式化表达问题一般有两种选择:
1)根据区域的外部特征来进行形式化表示
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
物体方向可由最小二阶矩轴定义

数字图像处理(许录平着)课后答案(全)

数字图像处理(许录平着)课后答案(全)
−a
+a
+b
−b +a −a
h ( x, y )e − jux e − jvy dxdy e − jux dx ∫ e − jvy dy
−b
jua
+b
− e e − jvb − e jvb − ju − jv sin ua sin vb = 4E uv =E e
(3) H (u, v ) =
− jua
图像通信
图像输入
处理和分析
图像输出
图像存储
各个模块的作用分别为: 图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数 码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计 算机处理的数字图像。 图像存储模块:主要用来存储图像信息。 图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。 图像通信模块:对图像信息进行传输或通信。 图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图 像信息处理的所有功能。
《数字图像处理》各章要求及必做题参考答案
第一章要求 了解图像及图像处理的概念、图像的表达方法、图像处理系统的构成及数字图像处理技术的应用。 必做题及参考答案 1.4 请说明图像数学表达式 像? 解答:
I = f (x, y, z, λ , t,) 图像数学表达式 中, (x,y,z)是空间坐标,λ是波长,t 是时间,I 是光点(x,y,z) 的强度(幅度) 。 上式表示一幅运动 (t) 的、彩色/多光谱 (λ) 的、立体(x,y,z)图像。
⎡10 ⎢0 则 F1 = H 4 f1 H 4 = ⎢ ⎢0 ⎢ ⎣0 ⎡16 ⎢0 F3 = H 4 f 3 H 4 = ⎢ ⎢0 ⎢ ⎣0

第8章 图象分割(08) 数字图像处理课件

第8章 图象分割(08) 数字图像处理课件

第8章 图像分割
Log算子边缘检测
第8章 图像分割
8.2.3 算法的特点 • Roberts算子采用对角线方向相邻像素之差近似 检测边缘,定位精度高,在水平和垂直方向效果较 好,但对噪声敏感。 • Sobel算子利用像素的上、下、左、右邻域的灰 度加权算法进行边缘检测。该方法提供较为精确的 边缘方向信息,而且对噪声具有平滑作用,能产生 较好的检测效果。但是增加了计算量,而且也会检 测伪边缘。
所以分割算法可据此分为2大类: 利用区域间灰度不连续性的基于边界的算法; 利用区域内灰度相似性的基于区域的算法。
第8章 图像分割
图像分割方法的分类: 现今,对一些经典方法和新出现的方法进行总
结,可将图像分割方法分为四类: 边缘检测方法 阈值分割方法 区域提取方法 结合特定理论工具的分割方法。
第8章 图像分割
(1)基于边缘的分割方法: 图像最基本的特征是边缘,它是图像局部特性不
连续(或突变)的结果。例如,灰度值的突变、颜色的 突变、纹理的突变等。
边缘检测方法是利用图像一阶导数的极值或二 阶导数的过零点信息来提供判断边缘点的基本依据, 经典的边缘检测方法是构造对图像灰度阶跃变化敏感 的差分算子来进行图像分割,如Robert算子、Sobel算 子、Prewitt算子、Laplacian算子等。
另外,还没有制定出选择适用分割算法的标准。
第8章 图像分割
8.2 边 缘 检 测 的 分 割 方 法
8.2.1 原理及算法
目的:检测出局部特性的不连续性,再将它们连成 边界,这些边界把图像分成不同的区域。
图像边缘对图像识别和计算机分析十分有用,边缘 能勾画出目标物体,使观察者一目了然;边缘蕴含了 丰富的内在信息(如方向、阶跃性质、形状等),是 图像识别中重要的图像特征之一。

第八章数字图像处理系统

第八章数字图像处理系统

连接电视机的视频接口 连接打印机的接口
数字图像处理及应用
8.2.4 摄像机(摄像头) 摄像机(摄像头)
“电视制式摄像头” 把景物光像转变为电信号的装置。其结 构大致可分为三部分:
光学系统(主要指镜头) 光电转换系统(主要指摄像管或固体摄像器 件) 电路系统(主要指视频处理电路)
光学系统的主要部件是光学镜头,它由 透镜系统组合而成 。
显示功能: 显示功能
显示颜色的类型,黑白/伪彩色/真彩色显示 清晰度:每个象素显示的bit数。 伪彩色:查找表(LUT,look -up table) 特殊显示:重叠显示、动态显示等。
数字图像处理及应用
指标3
帧存容量:图像硬件系统内部,图像存储体容 帧存容量 量的大小。
三部分:帧存的数目/单位帧存的点阵数(指图像系 统用来存储一幅图像必需的帧存,其容量大于等于 一幅数字图像的点阵数,小于两幅图像的点阵数, 通常取512×512或1024×1024)/每个象素的字长 (用bit数表示,黑白或伪彩色系统为8bit,真彩色 系统通常为8×3bit/8×4bit),新增的通道用于图像 叠加处理。 如帧存容量为24×512×512×8bit,则表示单位帧存 的点阵数为512×512,灰度分辨率8bit,共有24个 单位帧存
数字图像处理及应用
指标4
数据传输速度:主要指图像硬件系统和 数据传输速度: 计算机之间数据传输速度,单位 µs/pixel。
不给出具体的数值,而是指出所采用的计 算机总线类型,如PCI或ISA。 影响的因素有微机的速度、软件的编排、 硬件采用的等待时间等等。
数字图像处理及应用
指标5
硬件指标:处理功能 硬件指标
数字图像处理及应用
型号Model 影像传感器Pick up Element 影像图素Number of pixels 清晰度Resolution 最低照度 Min.Illumination 信噪比S/N Ratio 电子快门Electronic Shutter 背光补偿Backlight Compensations Backlight 电源Power Supply 工作温度Operation Temp 白平衡White Balance 同步系统Sync System 重量Weigh 尺寸Dimensions(mm)

数字图像处理ch8imagesegmentation

数字图像处理ch8imagesegmentation

4
Characteristic
图像分割是指将一幅图像分解为若干互不交叠的、有意 义的、具有相同性质的区域。
分割出来的各区域对某种性质例如灰度,纹
理而言具有相似性,区域内部是连通的且没有 过多小孔; 区域边界是明确的; 相邻区域对分割所依据的性质有明显的差异。
5
Introduction
图8.10 高斯-拉普拉斯算子(LoG)
20
图8.10还显示了一个对该算子近似的55模板。这种近似 不是唯一的,其目的是得到该算子本质的形状,即一个正的中 心项,周围被一个相邻的负值区域围绕,并被一个零值的外部 区域所包围。模板的系数的总和为零,这使得在灰度级不变的 区域中模板的响应为零。这个小的模板仅对基本上无噪声的图 像有用。
拉普拉斯算子一般不以其原始形式用于边缘检测。 这是因为: (1)作为一个二阶导数,拉普拉斯算子对噪声具有无法接 受的敏感性; (2)拉普拉斯算子的幅值产生双边缘,这是复杂的分割不 希望有的结果; (3)拉普拉斯算子不能检测边缘的方向. 一种改进方式是先对图像进行平滑处理,然后再应用二 阶导数的边缘检测算子.
得更佳的效果,对于不同图像应选择不同参数。
24
8.2.2 边缘连接(Edge Connection)
利用前面的方法检测出边缘点,但由于噪声、光照不 均等因素的影响,获得边缘点有可能是不连续的,必须 使用连接过程将边缘像素组合成有意义的边缘信息,以 备后续处理。 填充小的间隙可以简单地实现,通过搜索一个以某 端点为中心的5×5或更大的邻域,在邻域中找出其它端 点并填充上必要的边界像素,从而将它们连接起来。 对具有许多边缘点的复杂场景,这种方法可能会对 图像过度分割。 为了避免过度的分割,可以规定:两个端点只有在 边缘强度和走向相近的情况下才能连接。

数字图像处理第8章

数字图像处理第8章

由以上两式所绘出的曲线都是离散波形曲线。这样就把二维图像的形
状分析转化为对一维离散曲线的波形分析。
固定i0,得到图像f(i,j)的过i0而平行于轴的截口 f(i0 ,j) j 1 ,2 , ,n 。固定
j0 ,得到图像f(i,j)的过j0而平行于i轴的截口 f(i,j0) j 1 ,2 , ,n。二值图
这里,max=255。 彩色图像变换成灰度图像的公式为:
其中R,G,B为彩色图像的三个分量,g为转换后的灰度 值。
8.2.3 颜色集
颜色直方图和颜色矩只是考虑了图像颜色的整体分布, 不涉及位置信息。
颜色集表示则同时考虑了颜色空间的选择和颜色空间 的划分
使用颜色集表示颜色信息时,通常采用颜色空间HSL
✓ 用于描述曲线的方向链码法是由Freeman提出的,该方法采用曲 线起始点的坐标和斜率(方向)来表示曲线。对于离散的数字图像 而言,区域的边界轮廓可理解为相邻边界像素之间的单元连线逐 段相连而成。对于图像某像素的8-邻域,把该像素和其8-邻域的 各像素连线方向按八链码原理图所示进行编码,用0,1,2,3, 4, 5,6,7表示8个方向,这种代码称为方向码。
像素的连接
连接成分
在图像中,把互相连接的像素的集合汇集为一组,于是具有若干个 0值的像素和具有若干个l值的像素的组就产生了。把这些组叫做连 接成分,也称作连通成分。 在研究一个图像连接成分的场合,若1像素的连接成分用4-连接或8连接,而0像素连接成分不用相反的8-连接或4-连接就会产生矛盾。 假设各个1像素用8-连接,则其中的0像素就被包围起来。如果对0像 素也用8-连接,这就会与左下的0像素连接起来,从而产生矛盾。因 此0像素和1像素应采用互反的连接形式,即如果1像素采用8-连接, 则0像素必须采用4-连接。

《数字图像处理入门》第8章(无水印)

《数字图像处理入门》第8章(无水印)

第8章 图象的检测及模板匹配图象的分割与检测(识别)实际上是一项非常困难的工作。

很难说清楚为什么图象应该分割成这样而不是那样。

人类的视觉系统是非常优越的,它不仅包含了双眼,还包括了大脑,可以从很复杂的景物中分开并识别每个物体,甚至可以毫不费力地跟上每秒好几十帧变化的图象。

举两个例子来说明一下人类视觉系统的优越性。

图8.1 单词THE图8.2 看不见的三角 图8.1是单词THE ,这一点很容易看出来,但仔细观察一下,就会发现,图中少了很多线条。

在我们人类看来很简单的一件事,让计算机来做就很困难了。

图8.2中尽管没有任何线条,但我们还是可以很容易的看出中间存在着一个白色三角形。

计算机却很难发现。

由于人类在观察图象时适用了大量的知识,所以没有任何一台计算机在分割和检测真实图象时,能达到人类视觉系统的水平。

正因为如此,对于大部分图象应用来说,自动分割与检测还是一个将来时。

目前只有少数的几个领域(如印刷体识别OCR)自动识别达到了实用的水平。

也许算是题外话,我们可以憧憬这样一种应用:基于内容的搜索。

在一场足球比赛的录象中,用户可以输入命令,由计算机自动搜索出所有射门的镜头并显示在屏幕上。

目前,我们能从一幅图象中获得的信息只是每个象素的颜色或灰度值,除此以外别无其它,完成上述功能实在是太困难了。

所以说解决图象分割和检测最根本的方法是在编码(成象)时就给予考虑。

这也正是MPEG4及未来的视频压缩编码标准的主要工作。

正因为有上述的困难,所以我们今天要介绍的只是一些最基本,最简单的算法和思想,针对也只能是一些具体(而不是通用)的应用。

算法共有三个:投影法、差影法和模板匹配。

8.1 投影法在介绍投影法之前,我先出一道题目,下面的这幅照片是著名的华盛顿纪念碑(我记得在“阿甘正传”中曾经看到过它),怎样从图中自动检测到水平方向上纪念碑的位置。

仔细观察,不难发现,纪念碑上象素的灰度都差不多而且与众不同,如果我们选取合适的阈值,做削波处理(这里选175到220),将该图二值化,如图8.3所示:图8.3 华盛顿纪念碑图8.4 削波处理,将图8.3二值化 由于纪念碑所在的那几列的白色点比起其他列多很多,如果把该图在垂直方向做投影,如图8.5所示。

数字图像处理 第八章课件.ppt

数字图像处理 第八章课件.ppt
2019/12/31
图像编码技术的进展已使这些制约因素不再 成为瓶颈,从而推动了各类图像通信系统的推广 和应用。
图像编码是各类图像信息传输、存贮产品的 一项核心技术。
2019/12/31
8.1.2 图像压缩编码的目的 图像编码是一种信源编码,其信源是
各种类型的图像信息。图像压缩编码的目 的是以尽量少的比特数表征图像,同时保 持复原图像的质量,使它符合预定应用场 合的要求。
2019/12/31
在实际应用中,映射变换的方法种类 繁多,还可以更复杂。如在变换编码中, 先将图像分成若干个n×n大小的子块,然 后进行映射变换。在这种情况下的映射变 换是对各子块进行某种正交变换。而量化 和编码是对变换后所得系数进行的。
2019/12/31
2) 量化器
在限失真编码中要对映射后的数据进行量化。 若量化是对映射后的数据逐个地进行的,则称标 量量化;若量化是成组地进行的,则称为矢量量 化。
2019/12/31
4) 上述三个步骤之间是相互联系相互制约的
对有些编码方法,如预测编码或变换编码, 映射变换后数据量并没有减少,甚至因动态范 围的加大而使数据量略有增加。但它为后两步 作了准备,使它们能有效发挥作用。而在模型 编码中,经映射变换后得到的模型参数,其数 据量已大大小于原始图像,即第一步已经实现 了很大的压缩。后面的量化编码则是作进一步 的压缩。其情况和变换编码有很大的不同。
图像编码技术就是要把种种压缩的可能性 变为现实。
2019/12/31
8.1.4 图像压缩编码一般框图
图像编码的过程可以概括成图1所示的 三个步骤,原始图像经映射变换后的数据,经 量化器和熵编码器成为码流输出。
原始图像 f(m,n)
映射变换 映射后数据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
图8. 1 图像细节的灰度分布特性
8.1 图像细节的基本特征
如图所示是一幅包含典型细节的简单图像。 ( b)是 (a)扫描线上的灰度值分布曲线。可以看到: 当画面渐渐由亮变暗时,其灰度值的变化是斜坡变 化的;
当出现孤立点,即大多情况是噪声点时,其灰度值 的变化是一个突起的尖峰;
进入平缓变化的区域,则其灰度变化为一个平坦段 ;
8.2.3 Sobel锐化算法
原图像
利用Sobel算子进行边缘提取的结果
8.2 一阶微分算子
8.2.4 Priwitt锐化算法
Priwitt微分算子的思路与Sobel微分算子的思路类似,是在 一个奇数大小的模板中定义其微分运算。
Priwitt微分算子定义如下:
8.2 一阶微分算子
8.2.4 Priwitt锐化算法
Priwitt微分算子的模版如下:
1 0 1 dx 1 0 1
1 0 1
1 1 1
d
y
0
0
0
1 1 1
肉眼几乎无法区别与Sobel微分算子处理效果的差异。但 是从其模板系数可以看到,其运算较Sobel算子略简单
Prewitt锐化效果图例
返回
8.2 一阶微分算子
8.2.4 Priwitt锐化算法
13
8.2 一阶微分算子
3. 方向模板 例如,用上,下
两种方向模板可 以抽取出下图所 示水平轮廓。而 斜向轮廓则分别 需要上述左上和 右上两种方向模 板来进行处理。
14
8.2 一阶微分算子
差分运算是有方向性的。 由于边缘、轮廓在一幅图像中常常具有任意的方向
。所以锐化算法应对任意方向的边缘、轮廓都有相 同的检测能力,即具有各向同性。 具有这种性质的锐化算子有:
6
图8. 3 典型的灰度变化模式与其微分变化模式
8.2 一阶微分算子
数字图像,数据是离散的,幅值是有限的,其发生的最短距 离是在两相邻像素之间。因此通常采用一阶差分来定义微分 算子。即这里没有区别差分和微分。对于一元函数f(t), 一阶微分算子可以定义如下:
对于二元图像(函数)f (x,y),一阶微分的定义是通过梯 度实现的。图像f(x, y)在其坐标(x, y)上的梯度是通过 一个二维列向量来定义的,即:
原图像
利用Prewitt算子进行边缘提 取的结果
8.3 二阶微分算子
从前述图8. 3也可以看到,二阶微分有着比 一阶微分更加敏感的特性,尤其是对斜坡渐 变的细节。(参见教材的71页) 本节介绍各向同性的二阶微分算子:
Laplacian微分算子 Wallis算子
8.3 二阶微分算子
8.3.1 Laplacian微分算子
Roberts梯度锐化效果图例
返回
8.2 一阶微分算子
8.2.2 交叉微分算法(Roberts算子)
原图像
利用Roberts算子进行 边缘提取的结果
8.2 一阶微分算子
8.2.3 Sobel锐化算法
交叉微分算子可以获得景物细节的轮廓。其作用模板小,相 对计算量也小。但由于模板的尺寸是偶数,故待处理像素不 能放在模板中心位置,处理的结果就会有半个像素的错位。
如果出现一条细线,则其灰度变化是一个比孤立点 略显平缓的尖峰;
当画面由黑突变到亮时,其灰度变化是一个阶跃。
这些类型的灰度变化规律可以用来对图像的噪声点、 细线与边缘模型化。
4
8.1 图像细节的基本特征
从以上分析可知,图像中的细节是指画面中的灰度变化情况 。反映数据变化的数学手段可以采用微分算子。
Sobel微分算子是一种奇数3x3的模板下的全方向微分算子。
Sobel微分算子定义如下:
8.2 一阶微分算子
8.2.3 Sobel锐化算法
Sobel微分算子的模版如下:
1 0 1 dx 2 0 2
1 0 1
1 2 1
dy
0
0
0
1 2 1
Sobel锐化效果图
返回
8.2 一阶微分算子
7
8.2 一阶微分算子
8.2.1 单方向的一阶梯度算法(浮雕效果) 1. 水平方向的锐化
1 2 1
H
0
0
0
1 2 1
8.2 一阶微分算子
8.2.1 单3-3-2*0-8=-3
12321 21262 30876 12786 23269
00 0 0 0 0 -3 -13 -20 0 0 -6 -13 -13 0 0 1 12 5 0 00 0 0 0
第八章
图象的锐化处理
1
第八章 图象的锐化处理
图象锐化的目的是加强图象中景物的边缘和轮廓。 锐化的作用是要使灰度反差增强。因为边缘和轮廓 都位于灰度突变的地方。
许多情况下,图像的锐化被用于景物边界的检测与 提取。
锐化处理可以用空间微分来完成。本章介绍数字微 分锐化的各种定义及其实现算子。
2
8.1 图像细节的基本特征
一阶水平方向锐化效果
返回
8.2 一阶微分算子
8.2.1 单方向的一阶梯度算法(浮雕效果) 2. 垂直方向的锐化
1 0 1 H 2 0 2
1 0 1
单方向一阶锐化效果图例
返回
8.2 一阶微分算子
3. 方向模板 有时需要在图
象中抽出某一 特定方向的轮 廓线,这时可 以使用方向模 板来达到这一 目的。根据所 需的方向,可 从下列8种模 板中先取合适 的模板。
从数学的微分含义来看,“一阶微分”是描述“数据的变化 率”,“二阶微分”是描述“数据变化率的变化率”。
图8. 2所示是图8. 1所示灰度变化细节下的一阶、二阶微分的 变化情况。
图8. 2 图像细节的微分特性
5
8.1 图像细节的基本特征
图8.3给出几种典型灰度变化模式及其相应的微分变化模式。
可见无论那种形式,通过一阶微分或者是二阶微分都可以进 行图像细节的增强与检测。
最简单的二阶各向同性微分算子是拉普拉斯微分算 子,二维图像f(x,y)的拉普拉斯微分算子定义为:
2 f
2 f x2
2 yf2
2f x2
[fx(i,j)fx(i1,j)]
[ f ( i , j ) f ( i 1 , j ) [ ] f ( i 1 , j ) f ( i , j )]
梯度算子:
Roberts; Sobel; Priwitt等。
拉普拉斯和其它一些相关算子。
15
8.2 一阶微分算子
f(x.y)
8.2.2 交叉微分算法(Roberts算子)
Roberts算子模板是一个2x2的模板,左
上角的是当前待处理像素f(x.y),则交叉 微分算子定义如下:
其模板可以表示为:
相关文档
最新文档