2021年上海市杨浦区中考数学一模试题
∥3套精选试卷∥上海市杨浦区2020-2021中考数学毕业升学考试一模试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是( )A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =【答案】C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .2.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线B .它的图象在第一、三象限C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上【答案】C 【解析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答. 【详解】A .反比例函数2y x =的图像是双曲线,正确; B .k=2>0,图象位于一、三象限,正确;C .在每一象限内,y 的值随x 的增大而减小,错误;D .∵ab=ba ,∴若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上,故正确.故选C .【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.3.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.22B.4 C.32D.42【答案】B【解析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A .B .C .D .【答案】B【解析】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式,可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 6.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°【答案】C 【解析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC 绕点C 顺时针旋转90°得到△EDC .∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE ,∴∠ACD=90°-20°=70°,∵点A ,D ,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C .【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b 组成的有序数对(,)a b 共有()A .3个B .4个C .5个D .6个 【答案】D【解析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案.【详解】解不等式2x−a≥0,得:x≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4, 解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.8.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A.6.5B.9C.13D.15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.9.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为()A.13B.2C.2D.3【答案】B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=229x x-=22x.即tanA=22x =24.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.10.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A3B.2 C.23D.(123+【答案】C【解析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm , 在Rt △AOC 中,根据勾股定理得:AC 2+OC 2=OA 2,即AC 2+1=4,解得:AC=3cm ,则AB=2AC=23cm .故选C .【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.二、填空题(本题包括8个小题)11.如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .【答案】36或5【解析】(3)当B′D=B′C 时,过B′点作GH ∥AD ,则∠B′GE=90°,当B′C=B′D 时,AG=DH=12DC=8,由AE=3,AB=36,得BE=3. 由翻折的性质,得B′E=BE=3,∴EG=AG ﹣AE=8﹣3=5,∴22'B E EG -22135-,∴B′H=GH ﹣B′G=36﹣33=4,∴22'B H DH +2248+5(3)当DB′=CD 时,则DB′=36(易知点F 在BC 上且不与点C 、B 重合);(3)当CB′=CD 时,∵EB=EB′,CB=CB′,∴点E 、C 在BB′的垂直平分线上,∴EC 垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去.综上所述,DB′的长为36或45.故答案为36或45.考点:3.翻折变换(折叠问题);3.分类讨论.12.规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =__.【答案】1或-1【解析】根据a ⊗b=(a+b )b ,列出关于x 的方程(2+x )x=1,解方程即可. 【详解】依题意得:(2+x )x=1,整理,得 x 2+2x=1,所以 (x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【点睛】用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.14.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,则m的取值范围是____.【答案】m>-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得1x+1y=1m+4,则x+y=m+1,根据题意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.【答案】40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___.【答案】x 2+7x-4 【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得 22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;17.如图,C 为半圆内一点,O 为圆心,直径AB 长为1 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 1.【答案】4π 【解析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1则边BC扫过区域的面积为:2 2112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭-故答案为4π.【点睛】考核知识点:扇形面积计算.熟记公式是关键.18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.【答案】3【解析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:194xx=+,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,∴194xx=+,解得:3x=,经检验:3x=是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.三、解答题(本题包括8个小题)19.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB =DC ;试判断△OEF 的形状,并说明理由.【答案】(1)证明略(2)等腰三角形,理由略【解析】证明:(1)∵BE =CF ,∴BE +EF =CF +EF , 即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.20.如图,在平面直角坐标系中,反比例函数(0)k y x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数k y x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积【答案】(1)18y x=,N(3,6);(2)y =-x +2,S △OMN =3. 【解析】(1)求出点M 坐标,利用待定系数法即可求得反比例函数的解析式,把N 点的纵坐标代入解析式即可求得横坐标;(2)根据M 点的坐标与反比例函数的解析式,求得N 点的坐标,利用待定系数法求得直线MN 的解析式,根据△OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN 即可得到答案.【详解】解:(1)∵点M 是AB 边的中点,∴M(6,3).∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩, 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k 的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M 、N 点的坐标是解题的关键.21.如图,△ABC 和△ADE 分别是以BC ,DE 为底边且顶角相等的等腰三角形,点D 在线段BC 上,AF 平分DE 交BC 于点F ,连接BE ,EF .CD 与BE 相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF 1+CD 1=FD 1.【答案】(1)CD=BE ,理由见解析;(1)证明见解析.【解析】(1)由两个三角形为等腰三角形可得AB =AC ,AE =AD ,由∠BAC =∠EAD 可得∠EAB =∠CAD ,根据“SAS”可证得△EAB ≌△CAD ,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF =90°,在Rt △EBF 中由勾股定理得出BF 1+BE 1=EF 1,然后证得EF =FD ,BE =CD ,等量代换即可得出结论.【详解】解:(1)CD =BE ,理由如下:∵△ABC 和△ADE 为等腰三角形,∴AB =AC ,AD =AE ,∵∠EAD =∠BAC ,∴∠EAD ﹣∠BAD =∠BAC ﹣∠BAD ,即∠EAB =∠CAD ,在△EAB 与△CAD 中AE AD EAB CAD AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△EAB ≌△CAD ,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.22.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.【答案】(1)300米/分;(2)y=﹣300x+3000;(3)7811分.【解析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可. (3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩ ∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间: 24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.23.先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1.【答案】 (x ﹣y)2;2.【解析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x 2﹣4y 2+4xy(5y 2-2xy)÷4xy=x 2﹣4y 2+5y 2﹣2xy=x 2﹣2xy+y 2,=(x ﹣y)2,当x =2028,y =2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.24.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?【答案】(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.解方程:.【答案】【解析】两边同时乘以(x-3),得到整式方程,解整式方程后进行检验即可得.【详解】两边同时乘以(x-3),得2-x-1=x-3,解得:x=2检验:当x=2时,x-3≠0,所以x=2是原方程的根,所以原方程的根是x=2.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.26.计算:|2|82﹣π)0+2cos45°.解方程:33xx-=1﹣13x-【答案】(1)﹣1;(2)x=﹣1是原方程的根.【解析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【详解】(1)原式2﹣2﹣2=2﹣2=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( ) A .5B .4C .3D .2 【答案】C【解析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x <3,得:x >-1,解不等式12x +≤2,得:x≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集. 2.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG GF的值是( )A .43B .54C .65D .76【答案】C【解析】如图作,FN ∥AD ,交AB 于N ,交BE 于M .设DE=a ,则AE=3a ,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN ∥AD ,交AB 于N ,交BE 于M .∵四边形ABCD 是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.3.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-【答案】B【解析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【详解】设乙每天完成x个零件,则甲每天完成(x+8)个.即得,2402008x x+=,故选B.【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.4.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【答案】C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.5.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B. C.D.【答案】BA C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去【解析】试题解析:选项,,的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.6.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.7.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.【答案】A【解析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB ⊥BD ,CD ⊥BD ,EF ⊥BD ,∴AB ∥CD ∥EF∴△ABE ∽△DCE , ∴,故选项B 正确,∵EF ∥AB , ∴, ∴,故选项C ,D 正确,故选:A .【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0【答案】A【解析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了. 【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.9.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小10.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9【答案】D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.二、填空题(本题包括8个小题)11.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.【答案】2n+1.【解析】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.12.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为____.【答案】3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.13.正五边形的内角和等于______度.【答案】540【解析】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3 180=540°14.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.【答案】10【解析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP =CD PD,∵AB=2米,BP=3米,PD=15米,∴23=15 CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.【答案】40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.16.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 【答案】1【解析】首先设黄球的个数为x 个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x 个, 根据题意得:88x+=2/3解得:x=1. ∴黄球的个数为1.17.不等式组32132x x x ->⎧⎪⎨≤⎪⎩的解是____. 【答案】16x <≤【解析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】32132x x x >①②-⎧⎪⎨≤⎪⎩ 解不等式①,得x >1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________. 【答案】23+【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将3【详解】设方程的另一根为x 1,又∵3x 13,解得x 13. 故答案为:23【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.三、解答题(本题包括8个小题)19.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)【答案】(1)2;(2)宣传牌CD高(20﹣3m.【解析】试题分析:(1)在Rt△ABH中,由tan∠BAH=BHAH333.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×12=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°3在Rt△ADE中,tan∠DAE=DEAE,即tan60°=15DE,得到3,如图,过点B作BF⊥CE,垂足为F,求出3,于是得到DF=DE﹣EF=DE ﹣32.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出3+12,即可求得结果.试题解析:解:(1)在Rt△ABH中,∵tan∠BAH=BHAH33∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×12=2.答:点B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°3在Rt△ADE中,tan∠DAE=DEAE,即tan60°=15DE,∴3,如图,过点B作BF⊥CE,垂足为F,∴3+12,DF=DE﹣EF=DE﹣32.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴3,∴CD=CF﹣3+12﹣(32)=20﹣3.答:广告牌CD的高度约为(20﹣320.如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )【答案】通信塔CD 的高度约为15.9cm .【解析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°, 所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm ,。
上海市杨浦区2021-2022学年九年级(上)期末数学试卷(一模)及答案解析
2021-2022学年上海市杨浦区九年级(上)期末数学试卷(一模)一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)将函数y=ax2+bx+c(a≠0)的图象向下平移2个单位,下列结论中,正确的是()A.开口方向不变B.顶点不变C.与x轴的交点不变D.与y轴的交点不变2.(4分)在Rt△ABC中,∠C=90°,如果∠A=α,AC=1,那么AB等于()A.sinαB.cosαC.D.3.(4分)已知和都是单位向量,下列结论中,正确的是()A.=B.﹣=C.||+||=2D.+=2 4.(4分)已知点P是线段AB上的一点,线段AP是PB和AB的比例中项,下列结论中,正确的是()A.B.C.D.5.(4分)如图,在梯形ABCD中,AD∥BC,过对角线交点O的直线与两底分别交于点E、F,下列结论中,错误的是()A.B.C.D.6.(4分)如图,点F是△ABC的角平分线AG的中点,点D、E分别在AB、AC边上,线段DE过点F,且∠ADE=∠C,下列结论中,错误的是()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知=,那么=.8.(4分)计算:cos245°﹣tan30°sin60°=.9.(4分)抛物线y=x2+3与y轴的交点坐标为.10.(4分)二次函数y=x2﹣4x图象上的最低点的纵坐标为.11.(4分)已知的长度为2,的长度为4,且和方向相反,用向量表示向量=.12.(4分)如果两个相似三角形对应边之比是4:9,那么它们的周长之比等于.13.(4分)已知在△ABC中,AB=10,BC=16,∠B=60°,那么AC=.14.(4分)已知在△ABC中,∠C=90°,AC=8,BC=6,点G是△ABC的重心,那么点G到斜边AB的距离是.15.(4分)在某一时刻,直立地面的一根竹竿的影长为3米,一根旗杆的影长为25米,已知这根竹竿的长度为1.8米,那么这根旗杆的高度为米.16.(4分)如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.17.(4分)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.18.(4分)如图,已知在Rt△ABC中,∠C=90°,tan A=,将△ABC绕点A逆时针旋转90°后得△ADE,点B落在点D处,点C落在点E处,联结BE、CD,作∠CAD的平分线AN,交线段BE于点M,交线段CD于点N,那么的值为.三、解答题:(本大题共7题,满分78分)19.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,试用、的线性组合表示向量.20.(10分)已知二次函数y=2x2﹣4x+5.(1)用配方法把二次函数y=2x2﹣4x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标;(2)如果将该函数图象沿y轴向下平移5个单位,所得新抛物线与x轴正半轴交于点A,与y轴交于点B,顶点为C,求△ABC的面积.21.(10分)如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan∠B=,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正弦值.22.(10分)如图,为了测量建筑物AB的高度,先从与建筑物AB的底部B点水平相距100米的点C处出发,沿斜坡CD行走至坡顶D处,斜坡CD的坡度i=1:3,坡顶D到BC 的距离DE=20米,在点D处测得建筑物顶端A点的仰角为50°,点A、B、C、D、E 在同一平面内,根据测量数据,请计算建筑物AB的高度(结果精确到1米)(参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19)23.(12分)已知,如图,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,AE∥CD,DE∥AB,过点C作CF∥AD,交线段AE于点F,联结BF.(1)求证:△ABF≌△EAD;(2)如果射线BF经过点D,求证:BE2=EC•BC.24.(12分)已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),点P是该抛物线在第一象限内一点,联结AP、BC,AP与线段BC相交于点F.(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC交于点E,如果点F与点E重合,求点P的坐标;(3)过点P作PG⊥x轴,垂足为点G,PG与线段BC交于点H,如果PF=PH,求线段PH的长度.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;=12,求S△ABE的值.(2)联结CE、BE,如果S△ACE2021-2022学年上海市杨浦区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【分析】由于抛物线平移后的形状不变,对称轴不变,a不变,抛物线的增减性不变.【解答】解:A、将函数y=ax2+bx+c(a≠0)的图象向下平移2个单位,a不变,开口方向不变,故正确.B、将函数y=ax2+bx+c(a≠0)的图象向下平移2个单位,顶点的横坐标不变,纵坐标改变,故错误;C、将函数y=ax2+bx+c(a≠0)的图象向下平移2个单位,形状不变,顶点改变,与x轴的交点改变,故错误.D、将函数y=ax2+bx+c(a≠0)的图象向下平移2个单位,与y轴的交点也向下平移两个单位,故错误.故选:A.【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质,注意:抛物线平移后的形状不变,开口方向不变,顶点坐标改变.2.【分析】在Rt△ABC中,根据∠A的余弦即可解答.【解答】解:在Rt△ABC中,∠C=90°,如果∠A=α,AC=1,那么:cos A==,∴AB=,故选:D.【点评】本题考查了锐角三角函数的定义,熟练掌握正弦,余弦和正切的区别是解题的关键.3.【分析】根据单位向量的定义逐一判断即可.【解答】解:根据单位向量的定义可知:和都是单位向量,但是这两个向量并没有明确方向,∴A,B,D错误,C正确,故选:C.【点评】本题考查了平面向量中的单位向量知识,熟练掌握单位向量的定义是解题的关键.4.【分析】根据黄金分割的定义判断即可.【解答】解:∵点P是线段AB上的一点,线段AP是PB和AB的比例中项,∴AP2=PB•AB,∴点P是AB的黄金分割点,∴=,故选:C.【点评】本题考查了黄金分割,熟练掌握黄金分割的定义,找出黄金分割中成比例的对应线段是解题的关键.5.【分析】根据相似三角形的判定得出△AOE∽△COF,△DEO∽△BFO,△AOD∽△COB,再根据相似三角形的性质得出比例式,最后根据比例的性质得出即可.【解答】解:A.∵AD∥BC,∴△AOE∽△COF,∴=,故本选项不符合题意;B.∵AD∥BC,∴△AOE∽△COF,△DEO∽△BFO,∴=,=,∴=,∴=,故本选项符合题意;C.∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,∴=,=,∴=,故本选项不符合题意;D.∵AD∥BC,∴△DEO∽△BFO,△AOD∽△COB,∴=,=,∴=,∴=,故本选项不符合题意;故选:B.【点评】本题考查了相似三角形的性质和判定,平行线分线段成比例定理和比例的性质等知识点,能熟记相似三角形的性质定理和判定定理是解此题的关键.6.【分析】通过证明△EAF∽△BAG,可得=,通过证明△ADF∽△ACG,可得,即可求解.【解答】解:∵AG平分∠BAC,∴∠BAG=∠CAG,∵点F是AG的中点,∴AF=FG=,∵∠ADE=∠C,∠DAE=∠BAC,∴△DAE∽△CAB,∴∠AEB=∠B,又∵∠BAG=∠CAG,∴△EAF∽△BAG,∴=,∵∠ADE=∠C,∠BAG=∠CAG,∴△ADF∽△ACG,∴,故选:D.【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.【分析】利用设k法解答即可.【解答】解:∵=,∴设x=4k,y=3k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握设k法是解题的关键.8.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:cos245°﹣tan30°sin60°=﹣×=﹣=0,故答案为:0.【点评】此题考查了特殊角的三角函数值,实数的运算,熟练掌握运算法则是解本题的关键.9.【分析】把x=0代入解析式求出y,根据y轴上点的坐标特征解答即可.【解答】解:当x=0时,y=3,则抛物线y=x2+3与y轴交点的坐标为(0,3),故答案为:(0,3)【点评】本题考查的是二次函数图象上点的坐标特征,掌握y轴上点的横坐标为0是解题的关键.10.【分析】将二次函数解析式化为顶点式求解.【解答】解:∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线最低点坐标为﹣4.故答案为﹣4.【点评】本题考查二次函数的性质,解题关键是熟练掌握二次函数一般式与顶点式的转化.11.【分析】根据与的长度与方向即可得出结果.【解答】解:∵的长度为2,的长度为4,且和方向相反,∴,故答案为:﹣2【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的定义和性质是解题的关键.12.【分析】根据相似三角形的性质得出即可.【解答】解:∵两个相似三角形对应边之比是4:9,∴它们的周长之比等于4:9,故答案为:4:9.【点评】本题考查了相似三角形的性质,能熟记相似三角形的周长之比等于相似比是解此题的关键.13.【分析】过A作AD⊥BC于D,解直角三角形求出BD和AD,求出CD,再根据勾股定理求出AC即可.【解答】解:过A作AD⊥BC于D,则∠ADB=∠ADC=90°,∵∠B=60°,∴sin60°=,cos60°=,∵AB=10,∴=,=,∴BD=5,AD=5,∵BC=16,BD=5,∴CD=BC﹣BD=11,由勾股定理得:AC===14,故答案为:14.【点评】本题考查了解直角三角形和勾股定理,能熟记锐角三角形函数的定义和勾股定理解此题的关键.14.【分析】过C点作CE⊥AB于E,过G点作GH⊥AB于H,如图,先利用勾股定理计算出AB,再利用面积法求出CE=,根据G是△ABC的重心得到DG=CD,然后证明△DHG∽△DEC,利用相似比可求出GH的长度.【解答】解:过C点作CE⊥AB于E,过G点作GH⊥AB于H,如图.在Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB===10,∵CE•AB=AC•BC,∴CE==,∵G是△ABC的重心,∴DG=CG,∴DG=CD,∵CE⊥AB,GH⊥AB,∴GH∥CE,∴△DHG∽△DEC,∴==,∴GH=CE=×=.故答案为:.【点评】此题考查了三角形重心的性质:三角形的重心到顶点的距离是它到对边中点的距离的2倍,也考查了勾股定理,三角形的面积,相似三角形的判定与性质.15.【分析】根据同一时刻,物高与影长成正比即可列出等式.【解答】解:根据同一时刻,物高与影长成正比得,旗杆的高度:1.8=25:3,∴旗杆的高度为15米,故答案为:15.【点评】本题主要考查了相似三角形的应用,熟练掌握平行投影的基本特征:物高与影长成正比是解题的关键.16.【分析】过点A作AE⊥BC交BC的延长线于点E,由三角形的外角性质得∠BAC=∠ABC,再由等腰三角形的判定得AC=BC,锐角由锐角三角函数定义求出AE的长即可.【解答】解:过点A作AE⊥BC交BC的延长线于点E,由题意得:BC=12海里,∠ABC=90°﹣60°=30°,∠ACE=90°﹣30°=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12海里,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=12×=6(海里),即小岛A到航线BC的距离是6海里,故答案为:6.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念,正确作出辅助线构造直角三角形是解题的关键.17.【分析】过B作BE⊥直线a于E,延长EB交直线c于F,过C作CD⊥直线a于D,根据全等三角形的判定得出△CDA≌△AEB,根据全等三角形的性质得出AE=CD=2d,AD=BE=d,求出CF=DE=AE+AD=3d,再解直角三角形求出答案即可.【解答】解:过B作BE⊥直线a于E,延长EB交直线c于F,过C作CD⊥直线a于D,则∠CDA=∠AEB=90°,∵直线a∥直线b∥直线c,相邻两条平行线间的距离相等(设为d),∴BF⊥直线c,CD=2d,∴BE=BF=d,∵∠CAB=90°,∠CDA=90°,∴∠DCA+∠DAC=90°,∠EAB+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,,∴△CDA≌△AEB(AAS),∴AE=CD=2d,AD=BE=d,∴CF=DE=AE+AD=2d+d=3d,∵BF=d,∴cotα===3,故答案为:3.【点评】本题考查了解直角三角形,等腰直角三角形的性质,全等三角形的性质和判定,平行线间的距离等知识点,能正确作出辅助线是解此题的关键.18.【分析】先根据题目条件作出图象,由∠C=90°和tan A=设BC=5k,AC=12k,然后由旋转的性质得到AE=AC=12k,ED=BC=5k,AB=AD=13k,以点C为原点、BC 和AC所在直线分别为x轴和y轴建立平面直角坐标系,则A(0,12k),B(﹣5k,0),E(12k,12k),D(12k,7k),过点N作NF⊥AC于点F,交BE于点P,NH⊥AD于点H,得到NF=NH,得到==,然后由高相等的两个三角形的面积之比为底边长之比得到的值,进而用含有k的式子表示点N的坐标,再求得直线BE的解析式,然后求得点P的坐标得到NP的长,最后通过△MAE∽△MNP得到的值,即可得到的值.【解答】解:由∠C=90°和tan A=可设BC=5k,AC=12k,∴AB=13k,由旋转得,AE=AC=12k,ED=BC=5k,AB=AD=13k,如图,以点C为原点,BC和AC所在直线分别为x轴和y轴,建立平面直角坐标系,则A(0,12k),B(﹣5k,0),∵旋转角为90°,∴E(12k,12k),D(12k,7k),过点N作NF⊥AC于点F,NH⊥AD于点H,∵AN平分∠CAD,∴NF=NH,∴==,又∵△ANC在边CN上的高和△AND在边DN上的高相等,∴==,∴点N的坐标为(,),设直线BE的解析式为y=mx+n,则,解得:,∴直线BE的解析式为y=x+,当y=时,x+=,解得:x=﹣,∴P(﹣,),∴NP=﹣(﹣)=6k,∵NF⊥AC,∠EAC=90°,∴AE∥NP,∴△MAF∽△MNP,∴=2,∴=,故答案为:.【点评】本题考查了旋转的性质、勾股定理、相似三角形的判定与性质、角平分线的性质定理、三角形的面积,解题的关键是通过旋转的性质建立平面直角坐标系.三、解答题:(本大题共7题,满分78分)19.【分析】(1)根据相似三角形的性质得出等式求解即可;(2)根据平面向量的加减运算法则即可求解.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∵DE=,∴AE=4;(2)由(1)知,,∴DE=,∵,∴=.【点评】本题考查了平面向量,相似三角形的性质等知识,熟练掌握平面向量的加减运算法则是解题的关键.20.【分析】(1)利用配方法把一般式化为顶点式,根据二次函数的性质解答.(2)首先求得抛物线y=2x2﹣4x+5沿y轴向下平移5个单位后解析式,利用配方法求得C的坐标,令y=0求得A、B的坐标,然后根据三角形面积公式求解即可.【解答】解:(1)y=2x2﹣4x+5=2(x2﹣2x)+5=2(x2﹣2x+1﹣1)+5=2(x﹣1)2+3,∴开口向上,对称轴为直线x=1,顶点(1,3).(2)抛物线y=2x2﹣4x+5沿y轴向下平移5个单位后解析式是y=2x2﹣4x+5﹣5,即y =2x2﹣4x.∵y=2x2﹣4x=2(x﹣1)2﹣2,∴顶点C的坐标是(1,﹣2).在y=2x2﹣4x中令y=0,则2x2﹣4x=0,解得x=0或2,∴A(2,0),B(0,0),∴△ABC的面积为:=2.【点评】本题考查的是二次函数三种形式的转化,抛物线与x轴的交点,二次函数的图象与几何变换,三角形的面积,掌握配方法、平移的规律是解题的关键.21.【分析】(1)利用∠B的正切值先求出CD,再利用勾股定理求出AC;(2)过点E作EF⊥AB,垂足为F.先判断EF是三角形的中位线,再求出EF、DF、AF及AE,最后求出∠EAB的正弦值.【解答】解:(1)∵CD⊥AB,∴△ACD、△BCD均为直角三角形.在Rt△CDB中,∵BD=6,tan∠B==,∴CD=4.在Rt△CDA中,AC===2.(2)过点E作EF⊥AB,垂足为F.∵CD⊥AB,EF⊥AB,∴CD∥EF.又∵点E是边BC的中点,∴EF是△BCD的中位线.∴DF=BF=3,EF=CD=2.∴AF=AD+DF=5.在Rt△AEF中,AE===.∴sin∠EAB===.【点评】本题主要考查了解直角三角形和勾股定理,掌握直角三角形的边角间关系以及三角形的中位线定理是解决本题的关键.22.【分析】过D作DF⊥AB于F,由坡度的定义求出CE=3DE=60(米),则DF=EB=40(米),再解直角三角形求出AF的长,即可得出答案【解答】解:过D作DF⊥AB于F,则DF=EB,FB=DE=20米,∵斜坡CD的坡度i=1:3=DE:CE,坡顶D到BC的距离DE=20米,∴CE=3DE=60(米),∴DF=EB=BC﹣CE=100﹣60=40(米),在Rt△ADF中,∠ADF=50°,∵tan∠ADF==tan50°≈1.19,∴AF≈1.19DF=1.19×40=47.6(米),∴AB=AF+BF≈47.6+20≈68(米),即建筑物AB的高度约为68米.【点评】本题考查了解直角三角形的应用—仰角俯角问题、坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.【分析】(1)先证AB=AE,DE=DC,再证四边形ADCF是平行四边形,得出AF=CD,进而得出AF=DE,再由平行线性质得∠AED=∠BAF,进而证得结论;(2)通过证明△BEF∽△BCD,△DEF∽△BAF,可得,即可得结论.【解答】证明:(1)∵AE∥CD,∴∠AEB=∠BCD,∵∠ABC=∠BCD,∴∠ABC=∠AEB,∴AB=AE,∵DE∥AB,∴∠DEC=∠ABC,∠AED=∠BAF,∵∠ABC=∠BCD,∴∠DEC=∠BCD,∴DE=DC,∵CF∥AD,AE∥CD,∴四边形ADCF是平行四边形,∴AF=CD,∴AF=DE,在△ABF和△EAD中,,∴△ABF≌△EAD(SAS);(2)如图,连接FD,∵射线BF经过点D,∴点B,点F,点D三点共线,∵AE∥DC,∴△BEF∽△BCD,∴,,∵DE∥AB,∴△DEF∽△BAF,∴,∴,∵CD=AF,∴,∴BE2=EC•BC.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,利用相似三角形的性质得到线段的关系是解题的关键.24.【分析】(1)将点A(﹣1,0)和点C(0,2)代入y=﹣x2+bx+c,即可求解;(2)分别求出B(4,0)和直线BC的解析式为y=﹣x+2,可得E(,),再求直线AE的解析式为y=x+,联立,即可求点P(3,2);(3)设P(t,﹣t2+t+2),则H(t,﹣t+2),则PH=﹣t2+2t,用待定系数法求出直线AP的解析式为y=x+,联立,可求出F(,),直线AP与y轴交点E(0,),则CE=,再由PF=PH,可得CE=EF,则有方程()2=()2+(﹣)2,求出t=,即可求PH=﹣t2+2t=.【解答】解:(1)将点A(﹣1,0)和点C(0,2)代入y=﹣x2+bx+c,∴,∴,∴y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴对称轴为直线x=,令y=0,则﹣x2+x+2=0,解得x=﹣1或x=4,∴B(4,0),设直线BC的解析式为y=kx+m,∴,∴,∴y=﹣x+2,∴E(,),设直线AE的解析式为y=k'x+n,∴,∴,∴y=x+,联立,∴x=3或x=﹣1(舍),∴P(3,2);(3)设P(t,﹣t2+t+2),则H(t,﹣t+2),∴PH=﹣t2+2t,设直线AP的解析式为y=k1x+b1,∴,∴,∴y=x+,联立,∴x=,∴F(,),直线AP与y轴交点E(0,),∴CE=2﹣=,∵PF=PH,∴∠PFH=∠PHF,∵PG∥y轴,∴∠ECF=∠PHF,∵∠CFE=∠PFH,∴∠CEF=∠CFE,∴CE=EF,∴()2=()2+(﹣)2,∴(4﹣t)2+4=(5﹣t)2,∴t=,∴PH=﹣t2+2t=.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,会求函数的交点坐标,本题计算量较大,准确的计算是解题的关键.25.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH =BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,=AE•CM=12,∵S△ACE∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,=AE•BF=×6×1=3;∴S△ABEⅡ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣x)2+x2=50,解得:x=1或x=7(舍去),∴BF=1,=AE•BF=×8×1=4;∴S△ABE的值为3或4.综上,S△ABE【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。
2021年上海市16区中考数学一模考点分类汇编专题04 四边形(逐题详解版)
2021年上海市16区中考数学一模汇编专题04 四边形一、单选题1.(2021·上海宝山区·九年级一模)如图,//AB DE ,//BC DF ,已知::AF FB m n =,BC a =,那么CE 等于( ).A .amnB .an mC .amm n+ D .anm n+ 2.(2021·上海九年级一模)如图,在ABC 中,点D 在边AB 上,DE BC //,DF AC //,联结BE ,BE 与DF 相交于点G ,则下列结论一定正确的是( )A .AD DEDB BC= B .AE BFAC BC= C .BD BFAD DE= D .DG BFGF FC= 3.(2021·上海奉贤区·九年级一模)如图,在梯形ABCD 中,//,3AD BC BC AD =,对角线AC BD 、交于点,O EF 是梯形ABCD 的中位线,EF 与BD AC 、分别交于点G H 、,如果OGH ∆的面积为1,那么梯形ABCD 的面积为( )A .12B .14C .16D .18二、填空题4.(2021·上海杨浦区·九年级一模)如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.5.(2021·上海黄浦区·九年级一模)已知一个直角三角形的两条直角边长分别为3和6.则该三角形的重心到其直角顶点的距离是________.6.(2021·上海浦东新区·九年级一模)如图,矩形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知ABC 的边BC 长60厘米,高AH 为40厘米,如果DE=2DG ,那么DG=______厘米.7.(2021·上海嘉定区·九年级一模)正方形的边长与其对角线长的比为________.8.(2021·上海徐汇区·九年级一模)如图,已知ABC 是边长为2的等边三角形,正方形DEFG 的顶点,D E 分别在边,AC AB 上,点,F G 在边BC 上,那么AD 的长是_____.9.(2021·上海长宁区·九年级一模)如图,矩形ABCD 沿对角线BD 翻折后,点C 落在点E 处.联结CE 交边AD 于点F .如果DF =1,BC =4,那么AE 的长等于_________.10.(2021·上海九年级一模)如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图1,在四边形ABCD 中,点Q 在边AD 上,如果QAB 、QBC 和QDC 都相似,那么点Q 就是四边形ABCD 的“强相似点”;如图2,在四边形ABCD 中,AD BC //,2AB DC ==,8BC =,60B ∠=︒,如果点Q 是边AD 上的“强相似点”,那么AQ =___.11.(2021·上海九年级一模)直角三角形的重心到斜边中点的距离为2,那么该直角三角形的斜边长为____________.12.(2021·上海杨浦区·九年级一模)如图,已知在平行四边形ABCD 中,点E 在边AB 上,12AE EB =,联结DE 交对角线AC 于点O ,那么AOOC的值为_____.13.(2021·上海静安区·九年级一模)在△ABC 中,点G 是重心,△BGC =90°,BC =8,那么AG 的长为____. 14.(2021·上海宝山区·九年级一模)在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt ABC △,90C ∠=︒,要截得的正方形EFGD 的边FG 在AB 上,顶点E 、D 分别在边CA 、CB 上,如果4AF =,9GB =,那么正方形铁皮的边长为______.15.(2021·上海宝山区·九年级一模)已知等腰梯形上底为5,高为4,底角的余弦值为35,那么其周长为______.三、解答题16.(2021·上海青浦区·九年级一模)如图,在平行四边形ABCD 中,8BC =,点E 、F 是对角线BD 上的两点,且BE EF FD ==,AE 的延长线交BC 于点G ,GF 的延长线交AD 于点H .(1)求HD 的长;(2)设BGE △的面积为a ,求四边形AEFH 的面积.(用含a 的代数式表示) 2021年上海市16区中考数学一模汇编专题04 四边形一、单选题1.(2021·上海宝山区·九年级一模)如图,//AB DE ,//BC DF ,已知::AF FB m n =,BC a =,那么CE 等于( ).A .amnB .an mC .amm n+ D .anm n+ 【答案】D【分析】先证明:四边形DEBF 是平行四边形,可得DF BE =,利用::AF FB m n =,再求解AF mAB m n=+,再证明ADF ACB ∽,利用相似三角形的性质求解BE ,再利用线段的和差可得答案. 【详解】解://AB DE ,//BC DF ,∴ 四边形DEBF 是平行四边形,DF BE ∴=,::AF FB m n =,AF mAB m n∴=+,//DF BC ,ADF ACB ∴∽ ,AF DF ADAB BC AC ∴==, //AB DE ,BE AD mBC AC m n ∴==+,BC a =,ma BE m n ∴=+,.ma na CE a m n m n∴=-=++ 故选:.D【点睛】本题考查的是平行四边形的判定与性质,比例的基本性质,相似三角形的判定与性质,掌握以上知识是解题的关键.2.(2021·上海九年级一模)如图,在ABC 中,点D 在边AB 上,DE BC //,DF AC //,联结BE ,BE 与DF 相交于点G ,则下列结论一定正确的是( )A .AD DEDB BC= B .AE BFAC BC= C .BD BFAD DE= D .DG BFGF FC= 【答案】C【分析】根据相似三角形的判定和平行线分线段成比例进行判断即可. 【详解】解:△DE△BC ,DF△AC ,△四边形DFCE 是平行四边形,△DE=CF ,DF=CE ,△DE△BC ,DF△AC ,△△ADE△△ABC ,△BFD△△BAC ,△AD DEAB BC=,故A 错误; AE AD AC AB BC CF==,即AE CF AC BC=,故B 错误; △DF△AC ,△BD BF BFAD CF DE==,故C 正确; △DE△BC ,△DG DE CFGF BF BF==,故D 错误,故选:C . 【点睛】本题考查了相似三角形的判定与性质、平行线分线段成比例、平行四边形的判定与性质,熟练掌握相似三角形的性质和平行线分线段成比例是解答的关键.3.(2021·上海奉贤区·九年级一模)如图,在梯形ABCD 中,//,3AD BC BC AD =,对角线AC BD 、交于点,O EF 是梯形ABCD 的中位线,EF 与BD AC 、分别交于点G H 、,如果OGH ∆的面积为1,那么梯形ABCD 的面积为( )A .12B .14C .16D .18【答案】C【分析】设AD=2x ,BC=6x ,根据EF 是梯形ABCD 的中位线,求得EG=FH=12AD =x ,GF=12BC =3x ,证得GH=AD ,由此得到1OGH AOD S S ∆∆==,39BOC OGH S S ∆∆==,033A B DOC AOD S S S ∆∆∆===,即可求出答案. 【详解】设AD=2x ,BC=6x ,△EF 是梯形ABCD 的中位线, △点E 、F 、G 、H 分别为AB 、CD 、BD 、AC 的中点,EF△AD△BC ,△EF=1()24AD BC +=x , △EG=FH=12AD =x ,GF=12BC =3x ,△GH=2x ,△GH=AD , △GH△AD,△△OAD△△OHG,△1OD ADOG GH==,△OG=OD ,1OGH AOD S S ∆∆==, △GH△BC,△△OGH△△OBC ,△2163GH x BC x ==,△99BOC OGH S S ∆∆==, △O 是DG 的中点,G 是BD 的中点,△033A B DOC AOD S S S ∆∆∆===,133916ABCD S ∴=+++=, 故选:C ..【点睛】此题考查梯形中位线的性质定理,三角形中位线的性质定理,同底或同高三角形面积的关系,相似三角形的性质,这是一道与中位线相关的综合题. 二、填空题4.(2021·上海杨浦区·九年级一模)如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.【答案】207【分析】作CM△AB 于M ,交GF 于N ,由勾股定理可得出AB ,由面积法求出CM ,证明△CGF△△CAB ,再根据对应边成比例,即可得出答案.【详解】作CM△AB 于M ,交GF 于N ,如图所示: △Rt△ABC 中,△C =90°,AB =10,1cot B 2=,△设BC =k ,则AC =2k ,AB 2=AC 2+BC 2,即:102=(2k )2+k 2,解得:k =△BC =AC =△CM =AC BC AB ⋅=10=4,△正方形DEFG 内接于△ABC ,△GF =EF =MN ,GF△AB ,△△CGF△△CAB , △CN GF =CM AB ,即4EF EF 410-=,解得:EF =207;故答案为:207.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.5.(2021·上海黄浦区·九年级一模)已知一个直角三角形的两条直角边长分别为3和6.则该三角形的重心到其直角顶点的距离是________.【分析】根据题意,画出图形,如解图所示,连接CO 并延长交AB 于点D ,利用勾股定理求出AB ,根据直角三角形斜边上的中线等于斜边的一半即可求出CD ,再利用三角形重心的性质即可求出结论.【详解】解:Rt△ABC 中,△ACB=90°,AC=6,BC=3,点O 为三角形的重心,连接CO 并延长交AB 于点D ,,CD 为△ABC 的中线,△CD=12AB =2△O 为△ABC 的重心,△该三角形的重心到其直角顶点的距离CO=23【点睛】此题考查的是直角三角形的性质和重心的定义及性质,掌握勾股定理、直角三角形斜边上的中线等于斜边的一半和重心的定义及性质是解题关键.6.(2021·上海浦东新区·九年级一模)如图,矩形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知ABC 的边BC 长60厘米,高AH 为40厘米,如果DE=2DG ,那么DG=______厘米.【答案】15【分析】如图,记,AH DG 的交点为M , 设,DG x = 2,402,DE x AM x ==-再证明:,ADG ABC ∽利用相似三角形的性质可得:,DG AMBC AH=再列方程,解方程可得答案. 【详解】解:如图,记,AH DG 的交点为M ,设,DG x = 2DE DG =, 2,DE x ∴= ,AH BC ⊥ 四边形DEFG 为矩形,40AH =,2,402,MH DE x AM x ∴===- ,AH DG ⊥ //,DG EF ,ADG ABC ∴∽ ,DG AMBC AH∴= 60BC =,402,6040x x -∴= 402400120,x x ∴=- 1602400,x ∴= 15,x ∴= 15.DG ∴=故答案为:15.【点睛】本题考查的是矩形的性质,相似三角形的判定与性质,掌握以上知识是解题的关键.7.(2021·上海嘉定区·九年级一模)正方形的边长与其对角线长的比为________.【答案】1【分析】设正方形的边长为1,计算即得结果.【详解】解:设正方形的边长为1,所以正方形的边长与其对角线长的比为1【点睛】此题主要考查对正方形的性质和线段比的定义的理解及运用.难度不大,属于基础题型. 8.(2021·上海徐汇区·九年级一模)如图,已知ABC 是边长为2的等边三角形,正方形DEFG 的顶点,D E 分别在边,AC AB 上,点,F G 在边BC 上,那么AD 的长是_____.【答案】6【分析】根据等边三角形以及正方形的性质,在Rt△CDG 中运用正弦的定义建立方程求解即可.【详解】根据题可知,△ADE 为等边三角形,即:AD=DE ,根据正方形的性质可知DE=DG ,DG△BC ,△C=60°, 设AD=x ,则DG=x ,DC=AC -AD=2-x ,△在Rt△CDG 中,DG sinC CD=,即:602DG x sinC sin CD x =︒===-6=x ,经检验6=x 是上述分式方程的解,故答案为:6.【点睛】本题考查正方形和等边三角形的性质,以及利用锐角三角函数解直角三角形,灵活根据题意找准合适的直角三角形是解题关键.9.(2021·上海长宁区·九年级一模)如图,矩形ABCD 沿对角线BD 翻折后,点C 落在点E 处.联结CE 交边AD 于点F .如果DF =1,BC =4,那么AE 的长等于_________.【分析】由折叠的性质可得Rt BCD Rt BED ∆≅∆,由矩形的性质可证明Rt DAB Rt BCD ∆≅∆,故可得Rt DAB Rt BED ∆=∆,再证明Rt BCD Rt CDF ∆∆求得CD=2,在Rt AEF ∆中由勾股定理可得解.【详解】解:△四边形ABCD 是矩形,△BED 是由△BCD 翻折得到,△Rt BCD Rt BED ∆≅∆,CE BD ⊥,△4AD BC ==,AB CD ED ==,△四边形ABCD 是矩形,△AD=BC ,AB=CD ,又BD=DB△Rt DAB Rt BCD ∆≅∆△Rt DAB Rt BED ∆≅∆△AB ED =,ABD EDB ∠=∠△四边形ABDE 是等腰梯形,△CE BD ⊥,//AE BD △CE AE ⊥,△EAD ADB DBC =∠=∠△△90,90DBC FCB FBC FCD ︒︒+∠=∠+∠=△△DBC FCD =∠△Rt BCD Rt CDF ∆∆△FD CD CD BC =,即14CD CD =△2CD =或-2(舍去) 在Rt DCB ∆中,21tan 42CD DBC BC ∠===,△△EAD DBC =∠△1tan 2EAD ∠= 在Rt AEF ∆中,12EF AE =由勾股定理得,222AE AF EF =- 即2221()()2AE AD FD AE =--△2221(41)4AE AE =--解得:AE =.故答案为:5.【点睛】本题考查了矩形的性质、解直角三角形,勾股定理的运用以及折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.(2021·上海九年级一模)如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图1,在四边形ABCD 中,点Q 在边AD 上,如果QAB 、QBC 和QDC 都相似,那么点Q 就是四边形ABCD 的“强相似点”;如图2,在四边形ABCD 中,AD BC //,2AB DC ==,8BC =,60B ∠=︒,如果点Q 是边AD 上的“强相似点”,那么AQ =___.【答案】3+3【分析】过点A 作AE△CD ,交BC 于点E ,可证四边形ADCE 是平行四边形,由平行四边形的性质可得AD 的长,利用“强相似点”的定义可得△ABQ△△DQC ,则由相似三角形的性质可得AQ DC AB DQ=,再根据线段之间的数量关系建立关于AQ 的方程,求解后即可求出AQ 的长.【详解】解:如图,过点A 作AE△CD ,交BC 于点E ,△在四边形ABCD 中,AD BC //,2AB DC ==,△四边形ADCE 是平行四边形,△AE =CD =AB =2,AD =CE .△60B ∠=︒,△△ABE 是等边三角形.△BE=AE=AB=2.△AD=BC-BE=6.△点Q是边AD上的“强相似点”,△△ABQ△△DQC.△AQ DC AB DQ=.设AQ=x,则DQ=6-x,即226xx=-.解得135x,235x.故答案为:3+3【点睛】本题考查了相似三角形的性质、平行四边形的判定与性质等知识,掌握平行四边形的判定与性质及相似三角形的性质并能灵活应用所学知识是解题的关键.11.(2021·上海九年级一模)直角三角形的重心到斜边中点的距离为2,那么该直角三角形的斜边长为____________.【答案】12【分析】先根据三角形重心的性质求出斜边中线的长,再根据三角形斜边上的中线等于斜边的一半即可求得斜边的长.【详解】解:由题意得,GD=2,△点G是△ABC的重心,△CD=3GD=6,CD是△ABC的中线,在Rt△ACB中,△ACB=90°,CD是△ABC的中线,△AB=2CD=12,故答案为:12.【点睛】本题考查了直角三角形斜边上的中线的性质和重心的性质,熟练掌握在直角三角形中,斜边上的中线等于斜边的一半以及重心到顶点的距离与重心到对边中点的距离之比为2:1是解决问题的关键.12.(2021·上海杨浦区·九年级一模)如图,已知在平行四边形ABCD中,点E在边AB上,12AEEB=,联结DE交对角线AC于点O,那么AOOC的值为_____.【答案】1 3【分析】由题意可以得到△AOE△△COD,再根据三角形相似的性质和已知条件可以求得AO:OC的值.【详解】解:△四边形ABCD是平行四边形,△△OAE=△DCO,△OEA=△ODC,△△AOE△△COD,△AO AE AEOC CD AB==,△122AEEB AEEB=∴=,,△133AE AE AEAB AE EB AE===+,△13AOOC=,故答案为13.【点睛】本题考查平行四边形与相似三角形的综合运用,熟练掌握平行四边形的性质、三角形相似的判定和性质是解题关键.13.(2021·上海静安区·九年级一模)在△ABC中,点G是重心,△BGC=90°,BC=8,那么AG的长为____.【答案】8【分析】延长AG交BC于D,根据重心的定义,点D为BC的中点,先由直角三角形斜边上的中线等于斜边的一半求得DG的长,再由重心的性质:三角形的重心到一顶点的距离等于到对边中点距离的2倍进行求解即可.【详解】解:延长AG交BC于D,△点G是重心,△点D为BC的中点,且AG=2DG,△△BGC=90°,BC=8,△DG=12BC=4,△AG=2DG=8,故答案为:8.【点睛】本题考查了三角形的重心、直角三角形斜边上的中线性质,熟练掌握三角形的重心定义和性质是解答的关键.14.(2021·上海宝山区·九年级一模)在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt ABC △,90C ∠=︒,要截得的正方形EFGD 的边FG 在AB 上,顶点E 、D 分别在边CA 、CB 上,如果4AF =,9GB =,那么正方形铁皮的边长为______.【答案】6【分析】设正方形铁皮的边长为x ,证明△AEF△△DBG ,得到EF AF BG DG =,49x x=,求解即可. 【详解】设正方形铁皮的边长为x ,△90C ∠=︒,△△A+△B=90︒,在正方形EFGD 中,EF=DG=FG=x ,△EFG=△DGF=90︒,△△AFE=△BGD=90︒,△△A+△AEF=90︒,△△AEF=△B ,△△AEF△△DBG ,△EF AF BG DG =,△49x x =,解得x=6(负值舍去), 故答案为:6.【点睛】此题考查正方形的性质,相似三角形的判定及性质,根据已知条件证明△AEF△△DBG 是解题的关键. 15.(2021·上海宝山区·九年级一模)已知等腰梯形上底为5,高为4,底角的余弦值为35,那么其周长为______. 【答案】26【分析】作DF△BC 于F ,AE△BC 于E ,根据等腰梯形的性质就可以得出△AEB△△DFC 就可以求出FC=BE ,然后根据底角的余弦值为35,求得BE ,AB ,从而求出周长. 【详解】解:如图示,作DF△BC 于F ,AE△BC 于E ,△四边形ABCD 是等腰梯形,△△B=△C ,AB=CD ,AD△BC ,△△ADF=△DFC=90°,△△AEF=△DFE=△ADF=90°,△四边形AEFD 是矩形,5EF AD ,在△AEB 和△DFC 中,△△AEB△△DFC (AAS ),△BE=CF ;△35cos E ABB B , 设3BE x =,则5AB x =,根据勾股定理,有:2222534AEAB BE x x , 解之得:1x =(取正值),△3BE =,5AB =,△3FCBE ,5DC AB ==,△周长AB BE EF FC CD AD 53535526,故答案是:26.【点睛】本题考查了等腰梯形的性质的运用,三角函数,矩形的判定及性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,能熟练应用相关性质是解题的关键.三、解答题16.(2021·上海青浦区·九年级一模)如图,在平行四边形ABCD 中,8BC =,点E 、F 是对角线BD 上的两点,且BE EF FD ==,AE 的延长线交BC 于点G ,GF 的延长线交AD 于点H .(1)求HD 的长;(2)设BGE △的面积为a ,求四边形AEFH 的面积.(用含a 的代数式表示)【答案】(1)2HD =;(2)7=2四边形AEFH a S 【分析】(1)由△ADE△△GBE ,可求出BG 的长,再由△HDF△△GBF ,即可求出HD 的长;(2)由△ADE△△GBE ,可求出S △ADE =4S △BGE =4a ,再由△HDF△△GBF ,即可求出S △DHF =14S △BGF ,由三角形的面积公式可求出S △DHF =14S △BGF ,进而可求四边形AEFH 的面积. 【详解】解:(1)△四边形ABCD 是平行四边形,△AD//BC ,AD=BC=8,△△ADE△△GBE ,△AD DE BG BE =. △BE EF FD ==,△BG=12AD=4.△AD//BC ,△△HDF△△GBF ,△HD DF BG BF=. △BE EF FD ==,△HD=12BG=2; (2)△△ADE△△GBE , BE EF FD ==,△S △ADE =4S △BGE =4a .△△HDF△△GBF ,△S △DHF =14S △BGF .△BE EF =,△S △BGF =2S △BGE , △S △DHF =12S △BGE =12a ,△17=4-=22AEFH a S a a 四边形. 【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.。
2020-2021学年上海市浦东新区九年级中考一模数学试卷(含解析)
2020-2021学年上海市浦东新区九年级一模数学试卷一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:12.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C二、填空题(共12小题).7.如果线段a、b满足=,那么的值等于.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是.9.计算:2sin30°﹣tan45°=.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是度.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向.(填“向上”或“向下”)14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1y2.(填“>”或“<”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=厘米.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.三、解答题(共7小题).19.已知向量关系式()=,试用向量、表示向量.20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.参考答案一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:1解:取米作为共同的长度单位,那么AB=250米,A'B'=5厘米=0.05米,所以==,所以地图上的距离与实际距离的比为1:5000.故选:B.2.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα解:∵sin B=sinα=,AC=2,∴AB==,故选:A.3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x解:A、当k=1时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、化简后y=﹣x﹣2,不是二次函数,故此选项不合题意;D、是二次函数,故此选项符合题意;故选:D.4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=解:A、||=计算正确,故本选项符合题意.B、||与的模相等,方向不一定相同,故本选项不符合题意.C、与的模相等,方向不一定相同,故本选项不符合题意.D、与的模相等,方向不一定相同,故错误.故选:A.5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 解:∵DE∥BC,EF∥CD,∴∠AEF=∠ACD,∠ADE=∠B,又∵∠ACD=∠B,∴∠AEF=∠ADE,∴△AEF∽△ADE,∴,∴AE2=AF•AD,故选项A不合题意;∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴,∴AC2=AB•AD,故选项B不合题意;∵DE∥BC,EF∥CD,∴,,∴,∴AD2=AB•AF,故选项D不合题意;由题意无法证明AF2=AE•AC,故选项C符合题意,故选:C.6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C解:∵B、C两点的横坐标相同,∴抛物线y=ax2+bx+1只能经过A,C两点或A、B两点,把A(1,2),C(2,1),代入y=ax2+bx+1得.解得,;把A(1,2),B(2,3),代入y=ax2+bx+1得.解得,(不合题意);∴抛物线y=ax2+bx+1可以经过的A,C两点,故选:C.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.如果线段a、b满足=,那么的值等于.解:∵=,∴可设a=5k,则b=2k,∴==.故答案为:.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是2﹣2.解:∵线段MN的长为4,点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×4=2﹣2,故答案为:2﹣2.9.计算:2sin30°﹣tan45°=0.解:原式=2×﹣1=0.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是36度.解:如图所示:∵甲处看乙处为俯角36°,∴乙处看甲处为:仰角为36°,故答案为:36.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=2.解:连接DE,∵AD、BE是△ABC的中线,∴DE是△ABC的中位线,∴DE=AB,DE∥AB,∴△AFB∽△DFE,∴==2,∴AF=2FD,∵AD=3,∴AF=2,故答案为:2.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为﹣.解:如图所示,=,=,则=﹣=﹣.故答案是:﹣.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向向上.(填“向上”或“向下”)解:∵抛物线y=(m+4)x2+m经过原点,∴m=0,∴a=4>0,∴该抛物线的开口方向向上.故答案为:向上.14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1<y2.(填“>”或“<”)解:∵y=(x+1)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,∴y1<y2.故答案为<.15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=15厘米.解:∵四边形DEFG是矩形,∴DG∥BC,AH⊥BC,DG=EF,∴AP⊥DG.设DG=EF=x,则GF=DE=2x,∵DG∥BC,∴△ADG∽△ABC,∴=,∵AH=40厘米,BC=60厘米,∴=,解得x=15.∴DG=15厘米,故答案为:15.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.解:如图,作CH⊥AB,BG⊥DE于点H,G,∵DE∥AB,∴BG⊥AB,∵AD⊥AB,∴∠DAB=∠ABG=∠BGD=90°,∴四边形ADGB是矩形,∴BG=AD=0.4,在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵S△ABC=BC•AC=AB•CH,∴CH===,∵DE∥AB,∴∠E=∠ABC,∵∠FBE=∠ACB=90°,∴△FBE∽△ACB,∵CH⊥AB,BG⊥DE,∴=,∴=,∴BF=.故答案为:.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.解:设将抛物线C1:y=(x﹣1)2﹣1向右平移m个单位,则平移后的抛物线解析式是y =(x﹣1﹣m)2﹣1,将(3,3)代入,得(3﹣1﹣m)2﹣1=3.整理,得4﹣m=±2解得m1=2,m2=6.故新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.故答案是:y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为2.解:如图,∵点D是BC的中点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH∥AC交CD于H,∴△DHM∽△DAC,∴==,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴==,∴MH=4,DH=2,过点M作MG∥AB交BD于G,同理得,BG=DE=4,∵AB=10,BC=12,AC=8,∴△ABC的周长为10+12+8=30,∵过AD中点M的直线将△ABC分成周长相等的两部分,∴CE+CF=15,设BE=x,则CE=12﹣x,∴CF=15﹣(12﹣x)=3+x,EH=CE﹣CH=CE﹣(CD﹣DH)=12﹣x﹣2=10﹣x,∵MH∥AC,∴△EHM∽△ECF,∴,∴,∴x=2或x=9,当x=9时,CF=12>AC,点F不在边AC上,此种情况不符合题意,即BD=x=2,故答案为:2.三、解答题:(本大题共7题,满分78分)19.已知向量关系式()=,试用向量、表示向量.解:由()=,得=2,所以7=﹣2.所以=(﹣2).20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.解:∵y=x2+2x+m﹣3=(x+1)2+m﹣4,∴抛物线的顶点坐标为(﹣1,m﹣4),∵抛物线y=x2+2x+m﹣3顶点在第二象限,∴m﹣4>0,∴m>4.故m的取值范围为m>4.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.解:(1)∵AD∥BE∥CF,∴===;(2)过D点作DM∥AC交CF于M,交BE于N,如图,∵AD∥BN∥CM,AC∥DM,∴四边形ABND和四边形ACMD都是平行四边形,∴BN=AD=5,CM=AD=5,∴MF=CF﹣CM=19﹣5=14,∵NF∥MF,∴==,∴NE=MF=×14=6,∴BE=BN+NE=5+6=11.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)解:如图,过点B作BG⊥DE于G,过点C作CH⊥AD于H.∵四边形ABCD是等腰梯形,∴AB=DC,∠BAD=∠CDA,∴∠BAG=∠CDH,∵∠BGA=∠CHD=90°,∴△BGA≌△CHD(AAS),∴AG=DH,设AG=DH=x毫米,CH=y毫米,则有,解得,∴BC=GH=AG+AD+DH=100+180+100=380(毫米).23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.【解答】证明:(1)∵DE⊥AB,∴∠EDB=∠ACB=90°,∴∠A+∠B=90°=∠B+∠DEB,∴∠A=∠DEB,∵CA=CD,∴∠A=∠CDA,∴∠CDA=∠DEB,∴∠CDB=∠CED,又∵∠DCE=∠DCB,∴△DCE∽△BCD,∴=,∴CD2=CE•CB,∴CA2=CE•CB;(2)如图,∵∠ACE是直角三角形,点M是AE中点,∴AM=ME=CM,∴∠MCE=∠MEC,∵∠ACB=∠ADE=90°,∴点A,点C,点E,点D四点共圆,∴∠AEC=∠ADC,∴∠AEC=∠MCE=∠ADC=∠CAD,又∵∠MCE+∠ACH=90°,∴∠CAD+∠ACH=90°,∴CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.解:(1)二次函数y=ax2+bx+c(a≠0)的图象经过点B(5,0)和O(0,0),∴设二次函数的解析式为y=ax(x﹣5),将点A(2,4)代入y=ax(x﹣5)中,得4=a×2(2﹣5),∴a=﹣,∴二次函数的解析式为y=﹣x(x﹣5)=﹣x2+x;(2)如图1,连接OP,过点P作PD⊥x轴于D,∴∠ODP=90°,∵A(2,4)、B(5,0)和O(0,0),∴OB=5,AB==5,∴OB=AB,∵BC⊥OA,∴AC=OC,∠OBC=∠ABC,∵BP=BP,∴△OBP≌△ABP(SAS),∴∠BOP=∠BAP,∵AC=OC,A(2,4),∴点C(1,2),∴直线BC的解析式为y=﹣x+①,由(1)知,二次函数的解析式为y=﹣x2+x②,联立①②解得,或,∴P(,),∴OD=,PD=,∴cot∠BAP=cot∠BOP===;(3)设M(2,m),∵A(2,4),B(5,0),P(,),∴AM=|m﹣4|.OA=2,AB=5,BP==,∵BC⊥OA,∴∠ACP=∠BCP=90°,∴∠ABP<90°,∠APC<90°,∵∠BOP<90°,∴∠BAP<90°,∴△ABP是锐角三角形,∵△AMO与△ABP相似,∴△AMO为锐角三角形,∴点M在点A的下方,∴AM=4﹣m,如图2,AM与x轴的交点记作点E,与BC的交点记作点F,∵AM⊥x轴,∴∠AEB=90°,∴∠OBP+∠BFE=90°,∵∠AFP=∠BFE,∴∠OBP+∠AFP=90°,∵BC⊥OA,∴∠AFP+∠OAE=90°,∴∠OAE=∠OBP,由(2)知,∠OBP=∠ABP,∴∠OAE=∠ABP,∵△AMO与△ABP相似,∴①当△OAM∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),②当△MAO∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),即满足条件的点M的坐标为(2,﹣)或(2,﹣).25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.解:(1)∵四边形ABCD是菱形,∠B=90°,∴四边形ABCD是正方形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEB+∠CEF=∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE≌△CEF,∴,∵EC=3CF,设CF=x,AB=a,则EC=3x,BE=a﹣3x,∴,解得,a=4.5x,∴;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图2,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,设CF=x,则CE=3x,∵E是BC的中点,∴BE=CE=3x,AB=BC=2CE=6x,∴BM=AB•cos B=6x cos B,AM=AB•sin B=6x sin B,CN=CF•cos∠FCN=x cos B,FN=CF•sin∠FCN=x sin B,∴ME=BE﹣BM=3x﹣6x cos B,EN=EC+CN=3x+x cos B,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴,即,即,整理得,2sin2B=3﹣5cos B﹣2cos2B,∴2=3﹣5cos B,∴cos B=;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图3,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴=,∵∠AFE=∠B,tan B=,tan∠AFE=,∴,∴,∴BM=EN,设菱形ABCD的边长为a,则AB=BC=a,∴BM=a cos B,CN=CF•cos∠FCN=CF•cos B,∴a cos B=EC+CF•cos B,∵CF=2,EC=3CF,∴EC=6,∴a cos B=6+2cos B,∴cos B=,∵,AM=AB•sin B=a sin B,EN=6+2cos B,ME=a﹣a cos B﹣6,NF=CF•sin∠FCN=2sin B,∴,化简得,2a(sin2B+cos2B)=6a﹣4a cos B﹣12cos B﹣36,2a=6a﹣4a cos B﹣12cos B﹣36,a﹣a cos B﹣3cos B﹣9=0,∵cos B=,∴a﹣﹣﹣9=0,解得,a=17,或a=0(舍),∴菱形的边长为17.。
2020-2021学年最新上海市中考数学一模试卷及答案
中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列函数中,y关于x的二次函数是() A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x2【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、当 a=0 时,y=bx+c 不是二次函数;B、y=x(x﹣1)=x2﹣x 是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1 为一次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.在Rt△ABC中,∠C=90°,AC=2,下列结论中,正确的是()A.AB=2sinA B.AB=2cosA C.BC=2tanA D.BC=2cotA【分析】直接利用锐角三角函数关系分别计算得出答案.【解答】解:∵∠C=90°,AC=2,∴cosA==,故AB=,故选项 A,B 错误;tanA= = ,则 BC=2tanA,故选项 C 正确;则选项 D 错误.故选:C.【点评】此题主要考查了锐角三角函数关系,正确将记忆锐角三角函数关系是解题关键.3.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判断ED∥BC的是()B.C.D.【分析】根据平行线分线段成比例定理,对各选项进行逐一判断即可.【解答】解:A.当时,能判断ED∥BC;B.当时,能判断ED∥BC;C.当时,不能判断ED∥BC;D.当时,能判断ED∥BC;故选:C.【点评】本题考查的是平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.已知,下列说法中,不正确的是()A.B.与方向相同C.D.【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、错误.应该是﹣5=;B、正确.因为,所以与的方向相同;C、正确.因为,所以∥;D、正确.因为,所以||=5||;故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A.B.C.D.【分析】根据相似三角形的性质进行解答即可.【解答】解:∵在平行四边形 ABCD 中,∴AE∥CD,∴△EAF∽△CDF,∵,∴,∴,∵AF∥BC,∴△EAF∽△EBC,∴=,故选:D.【点评】此题考查相似三角形的判定和性质,综合运用了平行四边形的性质和相似三角形的性质是解题关键.6.如图,已知AB和CD是⊙O的两条等弦.OM ⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.4【分析】如图连接 OB、OD,只要证明 Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN 即可解决问题.【解答】解:如图连接 OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选:D.【点评】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.二.填空题(本大题共 12 题,每题 4 分,满分 48 分)7.如果 =,那么= .【分析】利用比例的性质由=得到=,则可设a=2t,b=3t,然后把a=2t,b=3t代入中进行分式的运算即可.【解答】解:∵=,∴=,设 a=2t,b=3t,∴==.故答案为.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.8.已知线段a=4厘米,b=9厘米,线段c是线段a和线段b的比例中项,线段c的长度等于6厘米.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),∴c=6cm,故答案为:6.【点评】本题考查比例线段、比例中项等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.9.化简:=﹣4+7 .【分析】根据屏幕绚丽的加法法则计算即可【解答】解::=﹣4+6=﹣4+7,故答案为;【点评】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.10.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是下降的(填“上升”或“下降”)【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案.【解答】解:∵在 y=3x2+2x 中,a=3>0,∴抛物线开口向上,∴在对称轴左侧部分 y 随 x 的增大而减小,即图象是下降的,故答案为:下降.【点评】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键.11.二次函数y=(x﹣1)2﹣3的图象与y轴的交点坐标是(0,﹣2).【分析】求自变量为0时的函数值即可得到二次函数的图象与y轴的交点坐标.【解答】解:把x=0代入y=(x﹣1)2﹣3得y=1﹣3=﹣2,所以该二次函数的图象与y轴的交点坐标为(0,﹣2),故答案为(0,﹣2).【点评】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为0.12.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是y=2(x+3)2+1 .【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【解答】解:抛物线 y=2x2 平移,使顶点移到点 P(﹣3,1)的位置,所得新抛物线的表达式为 y=2(x+3)2+1.故答案为:y=2(x+3)2+1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是.【分析】利用锐角三角函数的定义、坐标与图形性质以及勾股定理的知识求解.【解答】解:∵在直角坐标平面内有一点A(3,4),∴OA==5,∴cosα= .故答案为:.【点评】本题考查了解直角三角形、锐角三角函数的定义、坐标与图形性质以及勾股定理的知识,此题比较简单,易于掌握.14.如图,在△ABC中,AB=AC,点D、E分别在边BC、AB上,且∠ADE=∠B,如果DE:AD=2:5,BD=3,那么AC= ,.【分析】根据∠ADE=∠B,∠EAD=∠DAB,得出△AED∽△ABD,利用相似三角形的性质解答即可.【解答】解:∵∠ADE=∠B,∵∠EAD=∠DAB,∴△AED∽△ABD,∴,即,∴AB=,∵AB=AC,∴AC=,故答案为:,【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.15.如图,某水库大坝的横断面是梯形ABCD,坝顶宽AD=6米,坝高是20 米,背水坡AB的坡角为30°,迎水坡CD的坡度为1:2,那么坝底BC 的长度等于(46+20)米(结果保留根号)【分析】过梯形上底的两个顶点向下底引垂线AE、DF,得到两个直角三角形和一个矩形,分别解 Rt△ABE、Rt△DCF求得线段BE、CF的长,然后与EF 相加即可求得 BC 的长.【解答】解:如图,作AE⊥BC,DF⊥BC,垂足分别为点E,F,则四边形ADFE 是矩形.由题意得,EF=AD=6 米,AE=DF=20 米,∠B=30°,斜坡 CD 的坡度为 1: 2,在 Rt△ABE 中,∵∠B=30°,∴BE=AE=20米.在Rt△CFD中,∵=,∴CF=2DF=40 米,∴BC=BE+EF+FC=20+6+40=46+20(米).所以坝底BC的长度等于(46+20)米.故答案为(46+20).【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.16.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是.【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==4.∵CD⊥AB,∴CD=.∵AD•BD=CD2,设AD=x,BD=4﹣x.解得x=∴点 A 在圆外,点 B 在圆内,r的范围是,故答案为:.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.17.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC 的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于4 .【分析】连接AE并延长交BD于 G,连接AF并延长交CD于 H,根据三角形的重心的概念、相似三角形的性质解答.【解答】解:如图,连接 AE 并延长交 BD 于 G,连接 AF 并延长交 CD 于 H,∵点 E、F 分别是△ABD 和△ACD 的重心,∴DG=BD,DH=CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH= (BD+CD)= BC= ×12=6,∵AE=2GE,AF=2HF,∠EAF=∠GAH,∴△EAF∽△GAH,∴==,∴EF=4,故答案为:4.【点评】本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.18.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC 上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE= .【分析】设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得=,即=,进而得到BE=.【解答】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设 BE=x,则 AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴=,即=,解得x=,∴BE=,故答案为:.【点评】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共 7 题,满分 78 分)19.(10分)计算:45°.【分析】直接利用特殊角的三角函数值进而代入化简得出答案.【解答】解:原式=﹣×= ﹣= .【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.【分析】设一般式y=ax2+bx+c,把A、B、D点的坐标代入得,然后解法组即可得到抛物线的解析式,再把 C(m,2m+3)代入解析式得到关于 m 的方程,解关于 m 的方程可确定 C 点坐标.【解答】解:设抛物线的解析式为 y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为 y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与 x 轴有两个交点时,可选择设其解析式为交点式来求解.21.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.【分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题;【解答】解:如图,连接 OA.交 BC 于 H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵sinC==,AC=9,∴AH=3,设⊙O 的半径为 r,在 Rt△BOH 中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点评】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使a:b=c:x他的作法如下:(1)、以点O为端点画射线OM,ON.(2)、在OM上依次截取OA=a,AB=b.(3)、在ON上截取OC=c.(4)、联结AC,过点B作BD∥AC,交ON于点D.所以:线段CD就是所求的线段x.①试将结论补完整②这位同学作图的依据是平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例③如果OA=4,AB=5,,试用向量表示向量.【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证△OAC∽△OBD得= ,即BD= AC,从而知= =﹣=﹣.【解答】解:①根据作图知,线段 CD 就是所求的线段 x,故答案为:CD;②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵OA=4、AB=5,且 BD∥AC,∴△OAC∽△OBD,∴=,即=,∴BD=AC,∴= =﹣=﹣.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23.(12分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【解答】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴= ,∴AB•BC=BD•BE.【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.24.(12分)如图,已知在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.【分析】(1)先求得抛物线的对称轴方程,然后再求得点 C 的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(﹣3,0)代入求得a的值即可;(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO= ∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=3t,P(﹣3t,3+t),将P(﹣3t,3+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【解答】解:(1)抛物线的对称轴为x=﹣=﹣1.∵a<0,∴抛物线开口向下.又∵抛物线与 x 轴有交点,∴C 在 x 轴的上方,∴抛物线的顶点坐标为(﹣1,4).设抛物线的解析式为 y=a(x+1)2+4,将点(﹣3,0)代入得:4a+4=0,解得:a=﹣1,∴抛物线的解析式为 y=﹣x2﹣2x+3.(2)将x=0代入抛物线的解析式得:y=3,∴B(0,3).∵C(﹣1,4)、B(0,3)、A(﹣3,0),∴BC=,AB=3,AC=2,∴BC2+AB2=AC2,∴∠ABC=90°.∴tan∠CAB= =.(3)如图1所示:记抛物线与x轴的另一个交点为D.∵点 D 与点 A 关于 x=﹣1 对称,∴D(1,0).∴tan∠DBO=.又∵由(2)可知:tan∠CAB=.∴∠DBO=∠CAB.又∵OB=OA=3,∴∠BAO=∠ABO.∴∠CAO=∠ABD.∴当点 P 与点 D 重合时,∠ABP=∠CAO,∴P(1,0).如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.∵BF∥AO,∴∠BAO=∠FBA.又∵∠CAO=∠ABP,∴∠PBF=∠CAB.又∵PE∥BF,∴∠EPB=∠PBF,∴∠EPB=∠CAB.∴tan∠EPB=.设BE=t,则PE=3t,P(﹣3t,3+t).将P(﹣3t,3+t)代入抛物线的解析式得:y=﹣x2﹣2x+3得:﹣9t2+6t+3=3+t,解得t=0(舍去)或t=.∴P(﹣,).综上所述,点P的坐标为P(1,0)或P(﹣,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含 t 的式子表示点 P 的坐标是解题的关键.25.(14分)如图1,∠BAC的余切值为2,AB=2,点D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E的右侧,联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,④⑤是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.【分析】(1)作BM⊥AC于M,交DG于N,如图,利用三角函数的定义得到=2,设BM=t,则AM=2t,利用勾股定理得(2t)2+t2=(2)2,解得t=2,即BM=2,AM=4,设正方形的边长为x,则AE=2x,AF=3x,由于tan∠GAF==,则可判断∠GAF为定值;再利用DG∥AP得到∠BDG=∠BAC,则可判断∠BDG为定值;在Rt△BMP中,利用勾股定理和三角函数可判断PB在变化,∠BPM在变化,PF在变化;(2)易得四边形DEMN为矩形,则NM=DE=x,证明△BDG∽△BAP,利用相似比可得到y与x的关系式;(3)由于∠AFG=∠PFG=90°,△PFG与△AFG相似,且面积不相等,利用相似比得到PF=x,讨论:当点P在点F点右侧时,则AP=x,所以=x,当点P在点F点左侧时,则AP= x,所以=x,然后分别解方程即可得到正方形的边长.【解答】解:(1)作BM⊥AC于M,交DG于N,如图,在Rt△ABM中,∵cot∠BAC==2,设 BM=t,则 AM=2t,∵AM2+BM2=AB2,∴(2t)2+t2=(2)2,解得t=2,∴BM=2,AM=4,设正方形的边长为 x,在Rt△ADE中,∵cot∠DAE==2,∴AE=2x,∴AF=3x,在Rt△GAF中,tan∠GAF===,∴∠GAF 为定值;∵DG∥AP,∴∠BDG=∠BAC,∴∠BDG 为定值;在Rt△BMP中,PB=,而PM在变化,∴PB 在变化,∠BPM 在变化,∴PF 在变化,所以∠BDG 和∠GAC 是始终保持不变的量;故答案为④⑤;(2)易得四边形DEMN为矩形,则NM=DE=x,∵DG∥AP,∴△BDG∽△BAP,∴=,即=,∴y= (1≤x<2)(3)∵∠AFG=∠PFG=90°,△PFG与△AFG相似,且面积不相等,∴=,即=,∴PF=x,当点P在点F点右侧时,AP=x,∴=x,解得x=,当点P在点F点左侧时,AP=AF﹣PF=3x﹣x=x,∴=x,解得x=,综上所述,正方形的边长为或.【点评】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.。
2021年中考数学一模试题(含解析)
2021年中考数学一模试题(含解析)2021年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,一定是二次函数的是() A.y=2x B.y=2x ﹣2 C.y=ax D.2.如果向量、、满足+=(﹣A.B.C.22),那么用、表示正确的是()D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于() A. B.2sinα C.D.2cosα4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是() A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=156.如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x﹣2x+2,那么抛物线B的表达式为() A.y=x+2二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于 cm. 8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= . 9.已知||=2,||=4,且和反向,用向量表示向量= . 10.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= . 11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.22B.y=x﹣2x﹣1 C.y=x﹣2x D.y=x﹣2x+122212.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= . 14.二次函数y=(x﹣1)的图象上有两个点(3,y1)、(,y2),那么y1 y2(填“>”、“=”或“<”)15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 米.216.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:2cos30°﹣sin30°+2.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求(2)如果的值; =,=,求向量;(用向量、表示)21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度最大高度(米) 1:20 1.50 1:16 1.00 1:12 0.75 (1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC?CF.24.已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2021年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,一定是二次函数的是() A.y=2x2 B.y=2x ﹣2 C.y=ax2 D.【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax+bx+c (a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意; B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax+bx+c (a≠0)是二次函数. 2.如果向量、、满足+=(﹣A.B.C.),那么用、表示正确的是()22D.【考点】*平面向量.【分析】利用一元一次方程的求解方法,求解此题即可求得答案.【解答】解:∵ +=(﹣∴2(+)=3(﹣∴2+2=3﹣2,∴2=﹣2,解得: =故选D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键.﹣.),),3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于() A. B.2sinα C.D.2cosα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=∴AB=故选A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=4.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是() A.B.C.D.,cosA=,tanA=., =,【考点】平行线分线段成比例;平行线的判定;相似三角形的判定与性质.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4,∴==,=,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=15【考点】三角形的重心.【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到AG=AD=6,CG=CE=8,EG=CE=4,根据勾股定理求出AC、AE,判断即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC=AE=∴AB=2AE=4=2=10,A正确;,,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确; BF=15,D正确,故选:B.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.6.如果抛物线A:y=x﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x﹣2x+2,那么抛物线B的表达式为() A.y=x2+2B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+122【考点】二次函数图象与几何变换.【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【解答】解:抛物线A:y=x﹣1的顶点坐标是(0,﹣1),抛物线C:y=x﹣2x+2=(x﹣1)222+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.【点评】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于 2【考点】比例线段.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项=故答案为:2.=2cm.cm.【点评】本题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= 【考点】黄金分割.﹣1 .【分析】根据黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=解得,AB= AB, +1, +1﹣2=﹣1.﹣1,∴PA=AB﹣PB=故答案为:【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC 和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割. 9.已知||=2,||=4,且和反向,用向量表示向量= ﹣2 .【考点】*平面向量.【分析】根据向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得: =﹣2.故答案为:﹣2.【点评】本题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.如果抛物线y=mx+(m﹣3)x﹣m+2经过原点,那么m= 2 .【考点】二次函数图象上点的坐标特征.【分析】根据图象上的点满足函数解析式,可得答案.【解答】解:由抛物线y=mx+(m﹣3)x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】本题考查了二次函数图象上点的坐标特征,把原点代入函数解析式是解题关键.11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是 a>3 .【考点】二次函数的最值.【分析】由于原点是抛物线y=(a+3)x2的最低点,这要求抛物线必须开口向上,由此可以22确定a的范围.【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】本题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,本题比较基础.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是 y=﹣x2+4(0<x<2).【考点】函数关系式.【分析】根据剩下部分的面积=大正方形的面积﹣小正方形的面积得出y与x 的函数关系式即可.【解答】解:设剩下部分的面积为y,则: y=﹣x+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).【点评】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.如果抛物线y=ax﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= 3 .【考点】二次函数图象上点的坐标特征.【分析】首先求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(﹣1,7)、B(x,7),∴∴x=3,故答案为3.【点评】本题主要考查了二次函数图象上点的坐标特征,解题的关键是求出抛物线的对称轴,=1,222此题难度不大.14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1 < y2(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】把两点的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.,【考点】相似三角形的应用.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴ =,即=,=,解得:AB=4,故答案为:4.【点评】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= 4 .【考点】梯形中位线定理.【分析】根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG是△ABD 的中位线,即可求得EG的长,则FG即可求得.【解答】解:∵EF是梯形ABCD 的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是 1:4 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()=()=1:4,22故答案为:1:4.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=.【考点】旋转的性质.【分析】根据直角三角形的性质得到BC=AB,根据旋转的性质和平行线的判定得到AB∥B′C′,根据平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴∴==,==,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】本题考查的是旋转变换的性质,掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19.计算:2cos230°﹣sin30°+【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=2×(=1+ +.)﹣+2.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求(2)如果的值; =,=,求向量;(用向量、表示)【考点】相似三角形的判定与性质;平行四边形的性质;*平面向量.【分析】(1)根据平行四边形的性质得出AB=5、AB∥EC,证△FEC∽△FAB得=;(2)由△FEC∽△FAB得质及向量可得===,==,从而知FC=BC,EC=AB,再由平行四边形性,最后根据向量的运算得出答案.【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴(2)∵△FEC∽△FAB,∴=,==;∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴∴则===+=, ==,=.=,【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练掌握相似三角形的判定与性质是解题的关键.21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;,求出AD的长,根据AE⊥BC得DE=CD=1,由勾股定理(2)由△ADC∽△BAC得求得AE的长,最后根据正弦函数的定义可得.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则∴=,,,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE=∴sinB===.,【点评】本题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:坡度最大高度(米) 1:20 1.50 1:16 1.00 1:12 0.75 (1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)计算最大高度为:0.15×10=1.5(米),由表格查对应的坡度为:1:20;(2)作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD 的长.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B 作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵∴==,,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】本题考查了坡度坡角问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,利用三角函数的定义列等式即可.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD=AC?CF.2【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】(1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得根据AB=AC即可得证;(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠5、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD=AC?CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,2=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC?CF.【点评】本题主要考查相似三角形的判定与性质,熟练掌握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)设抛物线的解析式为y=a(x﹣2)﹣1,把(0,3)代入可得a=1,即可解决问题.(2)首先证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB ∽△ADP,推出PD2=BD?AD=3=6,由此即可解决问题.2【解答】解:(1)∵顶点为A(2,﹣1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x﹣4x+3.(2)令y=0,x﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,22∴S△ABD=?BD?AD=3.(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD?AD=3∴PD=∴OP=3+∴点P(3+,,,0).=6,【点评】本题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【考点】相似形综合题.【分析】(1)首先证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.(2)如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=x,由此即可解决问题.(3)分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,分别列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴∴==,,∵∠BAD=∠EAF,,由△ABE∽△ADF,得=,得DF=∴△AEF∽△ABD.(2)解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan ∠MAG=tan∠EFC=∵△ABE∽△ADF,∴=,,∴DF=x,∴y=,即y=(0≤x≤4).(3)解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.【点评】本题考查相似形综合题、相似三角形的判定和性质、锐角三角函数、四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.21/ 21。
2021年上海市杨浦区中考数学一模试卷有答案
2021年上海市杨浦区中考数学一模试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 将抛物线y =x 2向左平移1个单位,所得抛物线解析式是( ) A.y =(x −1)2 B.y =(x +1)2 C.y =x 2+1 D.y =x 2−12. 在Rt △ABC 中,∠C =90∘,如果AC =2,cos A =34,那么AB 的长是( ) A.52B.83C.103D.23√73. 已知a →、b →和c →都是非零向量,下列结论中不能判定a → // b →的是( ) A.a →∥c →,b →∥c →B.a →=12c →,b →=2c →C.a →=2b →D.|a →|=|b →|4. 如图,在6×6的正方形网格中,联结小正方形中两个顶点A 、B ,如果线段AB 与网格线的其中两个交点为M 、N ,那么AM:MN:NB 的值是( )A.3:5:4B.3:6:5C.1:3:2D.1:4:25. 广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是y =−32x 2+6x(0≤x ≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是( ) A.1米 B.2米 C.5米 D.6米6. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC ,CP ,AC 与BF 相交于点H ,下列结论中错误的是( )A.AE=2DEB.△CFP∼△APHC.△CFP∼△APCD.CP2=PH⋅PB7. 如果cotα=√3,那么锐角α=________度.8. 如果抛物线y=−x2+3x−1+m经过原点,那么m=________.9. 二次函数y=2x2+5x−1的图象与y轴的交点坐标为________.10. 在比例尺为1:8000000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为________千米.11. 已知点P是线段AB上的一点,且BP2=AP⋅AB,如果AB=10cm,那么BP=________√5−5)cm.12. 已知G是△ABC的重心,过点G作MN // BC分别交边AB,AC于点M,N,那么S△AMN=________.S△ABC13. 如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为________米.14. 如图,某商店营业大厅自动扶梯AB的倾斜角为31∘,AB的长为12米,则大厅两层之间的高度为________米.(结果保留一位小数)【参考数据:sin31∘=0.515,cos31∘=0.867,tan31∘=0.601】,则CD=15. 如图,在四边形ABCD中,∠B=∠D=90∘,AB=3,BC=2,tan A=43________.16. 定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70∘,BD平分∠ABC,那么∠ADC=________度.17. 在Rt△ABC中,∠A=90∘,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=________√3.18. 已知点A(x1, y1)、B(x2, y2)为抛物线y=(x−2)2上的两点,如果x1<x2<2,那么y1>y2.(填“>”“<”或“=”)19. 抛物线y=ax2+bx+c中,函数值y与自变量x之间的部分对应关系如表:(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M(2, 4)的位置,那么其平移的方法是________.20. 如图,已知在梯形ABCD 中,AB // CD ,AB =12,CD =7,点E 在边AD 上,DE AE=23,过点E 作EF // AB 交边BC 于点F .(1)求线段EF 的长;(2)设AB →=a →,AD →=b →,联结AF ,请用向量a →、b →表示向量AF →.21. 如图,已知在△ABC 中,∠ACB =90∘,sin B =35,延长边BA 至点D ,使AD =AC ,联结CD .(1)求∠D 的正切值;(2)取边AC 的中点E ,联结BE 并延长交边CD 于点F ,求CFFD 的值.22. 某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30∘,再沿DF 方向前行40米到达点E 处,在点E 处测得楼项M 的仰角为45∘,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精到0.1m ,参考数据:√2≈1.414,√3≈1.732,√6≈2.449)23. 如图,已知在△ABC 中,AD 是△ABC 的中线,∠DAC =∠B ,点E 在边AD 上,CE =CD .(1)求证:ACAB =BDAD;(2)求证:AC2=2AE⋅AD.24. 已知在平面直角坐标系xOy中,抛物线y=mx2−2mx+4(m≠0)与x轴交于点A,B(点A在点B的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y轴上取点E(0, 2),点F为第一象限内抛物线上一点,联结BF,EF,如果S四边形OEFB=10,求点F的坐标;(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在x轴上且在点B左侧,如果直线PF与y轴的夹角等于∠EBF,求点P的坐标.25. 已知在菱形ABCD中,AB=4,∠BAD=120∘,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30∘.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.参考答案与试题解析2021年上海市杨浦区中考数学一模试卷一、 选择题 (本题共计 6 小题 ,每题 3 分 ,共计18分 ) 1.【答案】 B【考点】二次函数图象与几何变换 【解析】根据“左加右减、上加下减”的原则进行解答即可. 【解答】解:将抛物线y =x 2向左平移1个单位,所得抛物线解析式是y =(x +1)2, 故选B . 2.【答案】 B【考点】锐角三角函数的定义 【解析】根据cos A =ACAB =34,求出AB 即可.【解答】解:在Rt △ABC 中,∵ ∠C =90∘,AC =2, 又∵ cos A =AC AB =34,∴ AB =83.故选B . 3.【答案】 D【考点】 *平面向量 【解析】根据平行向量的定义判断即可. 【解答】A 、由a → // c →,b → // c →,可以推出a → // b →.本选项不符合题意. B 、由a →=12c →,b →=2c →,可以推出a → // b →.本选项不符合题意. C 、由a →=2b →,可以推出a → // b →.本选项不符合题意. D 、由|a →|=|b →|,不可以推出a → // b →.本选项符合题意. 4.【答案】C【考点】相似三角形的性质与判定【解析】根据平行线分线段成比例定理得出即可.【解答】∵AMMN =13,MNNB=32,∴AM:MN:NB=1:3:2,5.【答案】B【考点】二次函数的应用【解析】根据二次函数的顶点式即可求解.【解答】方法一:根据题意,得y=−32x2+6x(0≤x≤4),=−32(x−2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x=62×32=2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.6.【答案】C【考点】等边三角形的性质相似三角形的性质与判定正方形的性质【解析】①正确.利用直角三角形30度角的性质即可解决问题.②正确,根据两角相等两个三角形相似即可判断.③错误.通过计算证明∠CPA≠∠CPF,即可判断.④正确.利用相似三角形的性质即可证明.【解答】∵四边形ABCD是正方形,∴∠D=∠DAB=90∘,∵△APB是等边三角形,∴∠PAB=∠PBA=∠APB=60∘,∴∠DAE=30∘,∴AE=2DE,故①正确,∵AB // CD,∴∠PFE=∠ABP=∠APH=60∘,∵∠AHP=∠PBA+∠BAH=60∘+45∘=105∘,又∵BC=BP,∠PBC=30∘,∴∠BPC=∠BCP=75∘,∴∠CPF=105∘,∴∠PHA=∠CPF,∴△CFP∽△APH,故②正确,∵∠CPA=60∘+75∘=135∘≠∠CPF,∴△PFC与△PCA不相似,故③错误,∵∠PCH=∠PCB−∠BCH=75∘−45∘=30∘,∴∠PCH=∠PBC,∵∠CPH=∠BPC,∴△PCH∽△PBC,∴PCPB =PHPC,∴CP2=PH⋅PB,故④正确,二、填空题(本题共计 11 小题,每题 3 分,共计33分)7.【答案】30【考点】特殊角的三角函数值【解析】直接利用特殊角的三角函数值进而得出答案.【解答】∵cotα=√3,∴锐角α=30∘.8.【答案】1【考点】二次函数图象上点的坐标特征【解析】把原点坐标代入y=−x2+3x−1+m中得到关于m的一次方程,然后解一次方程即可.【解答】∵抛物线y=−x2+3x−1+m经过点(0, 0),∴−1+m=0,∴m=1.9.【答案】(0, −1)【考点】二次函数图象上点的坐标特征【解析】根据y轴上点的坐标特征计算自变量为0时的函数值即可得到交点坐标.【解答】当x=0时,y=−1,所以二次函数y=2x2+5x−1的图象与y轴的交点坐标为(0, −1).10.【答案】320【考点】比例线段【解析】根据比例尺=代入数据计算即可.【解答】设甲、乙两地的实际距离为xcm,∵比例尺=,∴1:8000000=4:x,∴x=32000000,∴甲、乙两地的实际距离为是320km,11.【答案】(5【考点】黄金分割【解析】根据点P是线段AB上的一点,且BP2=AP⋅AB,列方程即可求解.【解答】∵点P是线段AB上的一点∴AP=AB−BP=10−BP,∵BP2=AP⋅AB,AB=10cm,BP2=(10−BP)×10,解得BP=5√5−5.12.【答案】49【考点】相似三角形的性质与判定三角形的重心【解析】根据三角形重心和相似三角形的判定和性质解答即可.【解答】解:如图,连接AG并延长交BC于点E,,∵点G是△ABC的重心,∴AGGE =21,∵MN // BC,∴△AMN∼△ABC,∴S△AMNS△ABC =(AGAE)2=49,故答案为:49.13.【答案】2.4【考点】相似三角形的应用旋转的性质【解析】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG // CH,根据相似三角形的性质即可得到结论.【解答】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG // CH,∴△ODG∽△OCH,∴DGCH =ODOC,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴DG0.3=30.5,∴DG=1.8m,∵OE=0.6m,∴栏杆D端离地面的距离为1.8+0.6=2.4m.14.【答案】6.2【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】在Rt△ABC中,∵∠ACB=90∘,∴BC=AB⋅sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.15.【答案】65【考点】解直角三角形【解析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】延长AD和BC交于点E.∵在直角△ABE中,tan A=BEAB =43,AB=3,∴BE=4,∴EC=BE−BC=4−2=2,∵△ABE和△CDE中,∠B=∠EDC=90∘,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A=DEDC =43,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=25,则CD=65.16.【答案】145【考点】相似图形【解析】依据四边形的相似对角线的定义,即可得到∠ABD=∠DBC,∠A=∠BDC,∠ADB=∠C,再根据四边形内角和为360∘,即可得到∠ADC的度数.【解答】如图所示,∵∠ABC=70∘,BD平分∠ABC,∴∠ABD=∠DBC,又∵对角线BD是它的相似对角线,∴△ABD∽△DBC,∴∠A=∠BDC,∠ADB=∠C,∴∠A+∠C=∠ADC,又∵∠A+∠C+∠ADC=360∘−70∘=290∘,∴∠ADC=145∘,17.【答案】4或4【考点】勾股定理翻折变换(折叠问题)三角形中位线定理【解析】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90∘时,如图1,根据对称的性质和平行线可得:A1C=A1E=4,根据直角三角形斜边中线的性质得:BC=2A1B=8,最后利用勾股定理可得AB的长;②当∠A1FE=90∘时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90∘时,如图1,∵△A1BC与△ABC关于BC所在直线对称,∴A1C=AC=4,∠ACB=∠A1CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE // AB,∴∠CDE=∠MAN=90∘,∴∠CDE=∠A1EF,∴AC // A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2−AC2,∴AB=√82−42=4√3;②当∠A1FE=90∘时,如图2,∵∠ADF=∠A=∠DFB=90∘,∴∠ABF=90∘,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45∘,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;三、解答题(本题共计 8 小题,每题 10 分,共计80分)18.【答案】>【考点】二次函数图象上点的坐标特征【解析】根据二次函数的性质得到抛物线y=(x−2)2的开口向上,对称轴为直线x=2,则在对称轴左侧,y随x的增大而减小,所以x1<x2<2时,y1>y2.【解答】∵y=(x−2)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x−2)2对称轴为直线x=2,∵x1<x2<2,∴y1>y2.19.【答案】解:(1)∵抛物线y=ax2+bx+c过点(−1, 0),(0, −1),(1, −4),∴{a−b+c=0, a+b+c=4, c=−1,解得{a=−1, b=−2, c=−1,∴该抛物线的表达式为y=−x2−2x−1.向右平移3个单位,向上平移4个单位【考点】待定系数法求二次函数解析式二次函数图象上点的坐标特征二次函数的性质二次函数图象与几何变换【解析】(1)将(−1, 0),(0, −1),(1, −4)代入抛物线解析式y=ax2+bx+c中即可得解;(2)根据“上加下减,左加右减”的原则进行解答即可.【解答】解:(1)∵抛物线y=ax2+bx+c过点(−1, 0),(0, −1),(1, −4),∴{a−b+c=0, a+b+c=4, c=−1,解得{a=−1, b=−2, c=−1,∴该抛物线的表达式为y=−x2−2x−1.(2)∵新的顶点M(2, 4),∴y=−(x−2)2+4,∵y=−x2−2x−1=−(x+1)2,∴抛物线的表达式为y=−x2−2x−1向右平移3个单位,向上平移4个单位可得到y=−(x−2)2+4,故答案为:向右平移3个单位,向上平移4个单位.20.【答案】过D作DM // BC交EF于N,交AB于M,则BM=FN=CD=7,∴AM=AB−BM=12−7=5,∵DEAE =23,∴DEDA =ENAM=25∴EN=2,∴EF=EN+FN=2+7=9;∵EF=9,AB=12,∴EFAB =34,∵AB→=a→,∴EF→=34AB→=34a→,∵AEAD =35,AD→=b→,∴AE→=35b →,∴AF→=AE→+EF→=35b→+34a→.【考点】*平面向量梯形相似三角形的性质与判定【解析】(1)过D作DM // BC交EF于N,交AB于M,则BM=FN=CD=7,根据平行线分线段成比例定理即可得到结论;(2)根据平行线分线段成比例定理即可得到结论.【解答】过D作DM // BC交EF于N,交AB于M,则BM=FN=CD=7,∴AM=AB−BM=12−7=5,∵DEAE =23,∴DEDA =ENAM=25∴EN=2,∴EF=EN+FN=2+7=9;∵EF=9,AB=12,∴EFAB =34,∵AB→=a→,∴EF→=34AB→=34a→,∵AEAD =35,AD→=b→,∴AE→=35b →,∴AF→=AE→+EF→=35b→+34a→.21.【答案】过点C作CG⊥AB,垂足为G,∵∠ACB=90∘,∴∠ACG=∠B,在△ABC中,sin B=35,设AC=3x,则AB=5x,BC=4x,∴sin∠ACG=AGAC =35=sin B,∴AG=95x,CG=125x,∴DG=DA+AG=3x+95x=245x,在Rt△DCG中,tan∠D=CGDG =12;过点C作CF // DB,交BF的延长线于点H,则有△CHF∽△DBF,又有E是AC的中点,可证△CHE≅△ABE,∴HC=AB=5x,由△CHF∽△DBF得:CFDF =CHDB=5x3x+5x=58.【考点】解直角三角形等腰三角形的性质【解析】(1)作高构造直角三角形,设AC=3x,表示出CG、AG、DG,再利用直角三角形的边角关系,求出∠D正切值;(2)过点C作CF // DB,交BF的延长线于点H,相似三角形、全等三角形,进而得出HC=AB=5x,将:CFDF 转化为求HCDB即可.【解答】过点C作CG⊥AB,垂足为G,∵∠ACB=90∘,∴∠ACG=∠B,在△ABC中,sin B=35,设AC=3x,则AB=5x,BC=4x,∴sin∠ACG=AGAC =35=sin B,∴AG=95x,CG=125x,∴DG=DA+AG=3x+95x=245x,在Rt△DCG中,tan∠D=CGDG =12;过点C作CF // DB,交BF的延长线于点H,则有△CHF∽△DBF,又有E是AC的中点,可证△CHE≅△ABE,∴HC=AB=5x,由△CHF∽△DBF得:CFDF =CHDB=5x3x+5x=58.22.【答案】楼MF的高56.1米【考点】解直角三角形的应用-仰角俯角问题【解析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】设MC=x,∵∠MAC=30∘,∴在Rt△MAC中,AC=MCtan∠MAC =√33=√3x.∵∠MBC=45∘,∴在Rt△MCB中,MC=BC=x,又∵AB=DE=40,∴AC−BC=AB=40,即√3x−x=40,解得:x=20+20√3≈54.6,∴MF=MC+CF=54.6+1.5=56.1(米),23.【答案】证明:∵CD=CE,∴∠CED=∠EDC,∵∠AEC+∠CED=180∘,∠ADB+∠EDC=180∘,∴∠AEC=∠ADB,∵∠DAC=∠B∴△ACE∽△BAD;∵∠DAC=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴ACCD =CBCA,∴AC2=CD⋅CB,∵△ACE∽△BAD,∴AEBD =CEAD,∴AE⋅AD=BD⋅CE,∴2AE⋅AD=2BD⋅CE=BC⋅CD,∴AC2=2AE⋅AD.【考点】相似三角形的性质与判定【解析】(1)先利用等腰三角形的性质,由CD=CE得到∠CED=∠EDC,则可根据等角的补角相等得到∠AEC=∠ADB,加上∠DAC=∠B,于是可根据有两组角对应相等的两个三角形相似判断△ACE∽△BAD.(2)由∠DAC=∠B及公共角相等证明△ACD∽△BCA,利用相似比即可得到结论.【解答】证明:∵CD=CE,∴∠CED=∠EDC,∵∠AEC+∠CED=180∘,∠ADB+∠EDC=180∘,∴∠AEC=∠ADB,∵∠DAC=∠B∴△ACE∽△BAD;∵∠DAC=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴ACCD =CBCA,∴AC2=CD⋅CB,∵△ACE∽△BAD,∴AEBD =CEAD,∴AE⋅AD=BD⋅CE,∴2AE⋅AD=2BD⋅CE=BC⋅CD,∴AC2=2AE⋅AD.24.【答案】由y=mx2−2mx+4=m(x−1)2+4−m得到:抛物线对称轴为直线x=1.∵AB=6,∴A(−2, 0),B(4, 0).将点A的坐标代入函数解析式得到:4m+4m+4=0,解得m=−12.故该抛物线解析式是:y=−12x2+x+4;如图1,联结OF,设F(t, −12t2+t+4),则S四边形OEFB =S△OEF+S△OFB=12×2t+12×4(−12t2+t+4)=10.∴t1=1,t2=2.∴点F的坐标是(1, 92)或(2, 4);由题意得,F(2, 4),如图2,设PF与y轴的交点为G.,∵tan∠EBO=OEOB =24=12,tan∠HFB=BHFH=12,∴tan∠EBO=tan∠HFB.∴∠EBO=∠HFB.又∵∠PFH=∠EGF=∠FBE,∴∠PFB=∠PBF.∴PF=PB.设P(a, 0).则PF=PB,∴(a−4)2=(a−2)2+42,解得a=−1.∴P(−1, 0)【考点】二次函数综合题【解析】(1)根据抛物线解析式求得对称轴方程为x=1,结合AB=6求得点A、B的坐标;然后利用待定系数法确定函数解析式;(2)如图1,联结OF,设F(t, −12t2+t+4),根据图形得到S四边形OEFB=S△OEF+S△OFB,由三角形的面积公式列出方程,利用方程求得点F的横坐标,结合二次函数图象上点的坐标特征求得点F的纵坐标;(3)如图2,设PF与y轴的交点为G.由tan∠EBO=tan∠HFB=12得到:∠EBO=∠HFB.易推知∠PFB=∠PBF.故PF=PB.设P(a, 0).由两点间的距离公式求得相关线段的长度并列出方程,通过解方程求得点P的横坐标.【解答】由y=mx2−2mx+4=m(x−1)2+4−m得到:抛物线对称轴为直线x=1.∵AB=6,∴A(−2, 0),B(4, 0).将点A的坐标代入函数解析式得到:4m+4m+4=0,解得m=−12.故该抛物线解析式是:y=−12x2+x+4;如图1,联结OF,设F(t, −12t2+t+4),则S四边形OEFB =S△OEF+S△OFB=12×2t+12×4(−12t2+t+4)=10.∴t1=1,t2=2.∴点F的坐标是(1, 92)或(2, 4);由题意得,F(2, 4),如图2,设PF与y轴的交点为G.,∵tan∠EBO=OEOB =24=12,tan∠HFB=BHFH=12,∴tan∠EBO=tan∠HFB.∴∠EBO=∠HFB.又∵∠PFH=∠EGF=∠FBE,∴∠PFB=∠PBF.∴PF=PB.设P(a, 0).则PF=PB,∴(a−4)2=(a−2)2+42,解得a=−1.∴P(−1, 0)25.【答案】如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD // BC,∴∠A+∠ABC=180∘,∵∠A=120∘,∴∠PBH=60∘,∵PB=3,∠PHB=90∘,∴ BH =PB ⋅cos 60∘=32,PH =PB ⋅sin 60∘=3√32, ∴ CH =BC −BH =4−32=52, ∴ PC =√PH 2+CH 2=(3√32)(52)=√13. 如图1中,作PH ⊥BC 于H ,连接PQ ,设PC 交BD 于O .∵ 四边形ABCD 是菱形,∴ ∠ABD =∠CBD =30∘,∵ ∠PCQ =30∘,∴ ∠PBO =∠QCO ,∵ ∠POB =∠QOC ,∴ △POB ∽△QOC ,∴ PO QO =BOCD ,∴ OP BO =QO CD ,∵ ∠POQ =∠BOC ,∴ △POQ ∽△BOC ,∴ ∠OPQ =∠OBC =30∘=∠PCQ ,∴ PQ =CQ =y ,∴ PC =√3y ,在Rt △PHB 中,BH =12x ,PH =√32x , ∵ PC 2=PH 2+CH 2,∴ 3y 2=(√32x)2+(4−12x)2,∴ y =√3x 2−12x+483(0≤x <8).①如图2中,若直线QP 交直线BC 于B 点左侧于E .此时∠CQE =120∘,∵ ∠PBC =60∘,∴ △PBC 中,不存在角与∠CQE 相等,此时△QCE 与△BCP 不可能相似.②如图3中,若直线QP 交直线BC 于C 点右侧于E .则∠CQE =∠B =QBC +∠QCP =60∘=∠CBP ,∵ ∠PCB >∠E ,∴ 只可能∠BCP =∠QCE =75∘,作CF ⊥AB 于F ,则BF =2,CF =2√3,∠PCF =45∘,∴ PF =CF =2√3,此时PB2+2√3,综上所述,满足条件的PB 的值为2+2√3.【考点】相似三角形综合题【解析】(1)如图1中,作PH ⊥BC 于H .解直角三角形求出BH ,PH ,在Rt △PCH 中,理由勾股定理即可解决问题.(2)如图1中,作PH ⊥BC 于H ,连接PQ ,设PC 交BD 于O .证明△POQ ∽△BOC ,推出∠OPQ =∠OBC =30∘=∠PCQ ,推出PQ =CQ =y ,推出PC =√3y ,在Rt △PHB 中,BH =12x ,PH =√32x ,根据PC 2=PH 2+CH 2,可得结论.(3)分两种情形:①如图2中,若直线QP 交直线BC 于B 点左侧于E .②如图3中,若直线QP 交直线BC 于C 点右侧于E .分别求解即可.【解答】如图1中,作PH ⊥BC 于H .∵ 四边形ABCD 是菱形,∴ AB =BC =4,AD // BC ,∴ ∠A +∠ABC =180∘,∵ ∠A =120∘,∴ ∠PBH =60∘,∵ PB =3,∠PHB =90∘,∴ BH =PB ⋅cos 60∘=32,PH =PB ⋅sin 60∘=3√32, ∴ CH =BC −BH =4−32=52,∴ PC =√PH 2+CH 2=(3√32)(52)=√13. 如图1中,作PH ⊥BC 于H ,连接PQ ,设PC 交BD 于O . ∵ 四边形ABCD 是菱形,∴ ∠ABD =∠CBD =30∘,∵ ∠PCQ =30∘,∴ ∠PBO =∠QCO ,∵ ∠POB =∠QOC ,∴ △POB ∽△QOC ,∴ PO QO =BO CD ,∴ OP BO =QO CD ,∵ ∠POQ =∠BOC ,∴ △POQ ∽△BOC ,∴ ∠OPQ =∠OBC =30∘=∠PCQ ,∴ PQ =CQ =y ,∴ PC =√3y ,在Rt △PHB 中,BH =12x ,PH =√32x , ∵ PC 2=PH 2+CH 2,∴ 3y 2=(√32x)2+(4−12x)2, ∴ y =√3x 2−12x+483(0≤x <8).①如图2中,若直线QP 交直线BC 于B 点左侧于E .此时∠CQE =120∘,∵ ∠PBC =60∘,∴ △PBC 中,不存在角与∠CQE 相等,此时△QCE 与△BCP 不可能相似.②如图3中,若直线QP 交直线BC 于C 点右侧于E .则∠CQE=∠B=QBC+∠QCP=60∘=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75∘,作CF⊥AB于F,则BF=2,CF=2√3,∠PCF=45∘,∴PF=CF=2√3,此时PB2+2√3,综上所述,满足条件的PB的值为2+2√3.。
上海市杨浦区2021届新高考第一次模拟数学试题含解析
上海市杨浦区2021届新高考第一次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列; ②若直线l 上有两个不同的点到平面α的距离相等,则//l α; ③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件; ④若0,0,24a b a b >>+=,则ab 的最大值为2. A .1 B .2C .3D .0【答案】B 【解析】 【分析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可; 【详解】解:①已知函数()f x 是一次函数,若数列{}n a 的通项公式为()n a f n =, 可得1(n n a a k k +-=为一次项系数),则该数列是等差数列,故①正确;②若直线l 上有两个不同的点到平面α的距离相等,则l 与α可以相交或平行,故②错误;③在ABC ∆中,(),0,B A π∈,而余弦函数在区间()0,π上单调递减,故 “cos cos A B >”可得“B A >”,由“B A >”可得“cos cos A B >”,故“cos cos A B >”是“B A >”的充要条件,故③错误;④若0,0,24a b a b >>+=,则42a b =+≥2ab ≤,当且仅当22a b ==时取等号,故④正确;综上可得正确的有①④共2个; 故选:B 【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.2.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则实数λ=( )A B .C .3D .2【答案】D【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r ,||362||AB AC λ===u u u ru u ur . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3.已知正方体1111ABCD A B C D -的棱长为1,平面α与此正方体相交.对于实数()03d d <<,如果正方体1111ABCD A B C D -的八个顶点中恰好有m 个点到平面α的距离等于d ,那么下列结论中,一定正确的是 A .6m ≠ B .5m ≠ C .4m ≠ D .3m ≠【答案】B 【解析】 【分析】此题画出正方体模型即可快速判断m 的取值. 【详解】如图(1)恰好有3个点到平面α的距离为d ;如图(2)恰好有4个点到平面α的距离为d ;如图(3)恰好有6个点到平面α的距离为d . 所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.4.如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F 且EF=22,则下列结论中错误的是( )A .AC ⊥BEB .EF //平面ABCDC .三棱锥A-BEF 的体积为定值D .异面直线AE,BF 所成的角为定值【答案】D 【解析】 【分析】A .通过线面的垂直关系可证真假;B .根据线面平行可证真假;C .根据三棱锥的体积计算的公式可证真假;D .根据列举特殊情况可证真假. 【详解】A .因为11,,AC BD AC DD DD BD D ⊥⊥=I ,所以AC ⊥平面11BDDB , 又因为BE ⊂平面11BDD B ,所以AC BE ⊥,故正确;B .因为11//D B DB ,所以//EF DB ,且EF ⊂/平面ABCD ,DB ⊂平面ABCD , 所以//EF 平面ABCD ,故正确;C .因为1122BEF S EF BB =⨯⨯=V 为定值,A 到平面11BDD B 的距离为122h AC ==, 所以11312A BEF BEF V S h -=⋅⋅=V 为定值,故正确; D .当1111AC B D E =I ,AC BD G ⋂=,取F 为1B ,如下图所示:因为//BF EG ,所以异面直线,AE BF 所成角为AEG ∠,且222tan 1AG AEG GE ∠===, 当1111AC B D F =I ,AC BD G ⋂=,取E 为1D ,如下图所示:因为11//,D F GB D F GB =,所以四边形1D GBF 是平行四边形,所以1//BF D G ,所以异面直线,AE BF 所成角为AEG ∠,且2232tan 3212AGAEG GE∠===⎛⎫+ ⎪⎝⎭,由此可知:异面直线,AE BF 所成角不是定值,故错误. 故选:D. 【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内. 5.若0.60.5a =,0.50.6b =,0.52c =,则下列结论正确的是( ) A .b c a >> B .c a b >>C .a b c >>D .c b a >>【答案】D 【解析】 【分析】根据指数函数的性质,取得,,a b c 的取值范围,即可求解,得到答案. 【详解】由指数函数的性质,可得0.50.50.610.60.50.50>>>>,即10b a >>>, 又由0.512c =>,所以c b a >>. 故选:D. 【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得,,a b c 的取值范围是解答的关键,着重考查了计算能力,属于基础题.6.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】对函数求导,根据函数在3x =-时取得极值,得到()30f '-=,即可求出结果. 【详解】因为()3239f x x ax x =++-,所以()2323f x x ax =++',又函数()3239f x x ax x =++-在3x =-时取得极值,所以()327630f a -=-+=',解得5a =. 故选D 【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型. 7.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3A B ⎛⎫= ⎪⎝⎭I B .10,3A B ⎛⎤= ⎥⎝⎦I C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞U【答案】D 【解析】 【分析】根据题意,求出集合A ,进而求出集合A B U 和A B I ,分析选项即可得到答案. 【详解】根据题意,{}215|log (31)2|33B x x x x ⎧⎫=-<=<<⎨⎬⎩⎭则15(0,),,33A B A B ⎛⎫⋃=+∞⋂= ⎪⎝⎭故选:D 【点睛】此题考查集合的交并集运算,属于简单题目,8.已知双曲线C :22221(0,0)x y a b a b -=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=u u u v u u u u v ,13PF =u u u v ,24PF =u u u u v,则双曲线C 的离心率为A .2B .C .52D .5【答案】D 【解析】 【分析】根据双曲线定义可以直接求出a ,利用勾股定理可以求出c ,最后求出离心率. 【详解】依题意得,2121a PF PF =-=,125F F ==,因此该双曲线的离心率12215F F e PF PF ==-.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力. 9.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D 【解析】 【分析】由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可.【详解】解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z ,得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D. 【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.10.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】先把(1)21z i i ⋅+=+变形为211i z i+=+,然后利用复数代数形式的乘除运算化简,求出z ,得到其坐标可得答案. 【详解】解:由(1)21z i i ⋅+=+,得21(21)(1)3311(1)(1)222i i i i z i i i i ++-+====+++-, 所以3122z i =-,其在复平面内对应的点为31,22⎛⎫- ⎪⎝⎭,在第四象限 故选:D 【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.11.已知双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为34y x =?,且其右焦点为(5,0),则双曲线C 的方程为( )A .221916x y -=B .221169x y -= C .22134x y -= D .22143x y -= 【答案】B 【解析】试题分析:由题意得34b a =,22225c a b =+=,所以4a =,3b =,所求双曲线方程为221169x y -=.考点:双曲线方程.12.阅读如图的程序框图,运行相应的程序,则输出的a 的值为( )A .2-3B .3-2C .52D .25【答案】C 【解析】 【分析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n 的值,进而求解a 的值,得到答案.【详解】由题意,3,15a n ==, 第1次循环,2,23a n =-=,满足判断条件;第2次循环,5,32a n ==,满足判断条件;第3次循环,3,45a n ==,满足判断条件;L L可得a 的值满足以3项为周期的计算规律,所以当2019n =时,跳出循环,此时n 和3n =时的值对应的a 相同,即52a =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
2022年上海市杨浦区九年级上学期期末中考数学一模试卷含详解
(1)求证: ;
(2)如果射线 经过点 ,求证: .
24.已知在平面直角坐标系 中,拋物线 与 轴交于点 和点 ,与 轴交于点 ,点 该抛物线在第一象限内一点,联结 与线段 相交于点 .
∴ ,
故答案为: .
【点睛】本题主要考查了向量的计算,解题的关键在于能够熟练掌握向量的相关知识.
12.如果两个相似三角形对应边之比是 ,那么它们的周长之比等于____________.
【答案】
【分析】根据相似三角形的周长比等于相似比,即可求解.
【详解】解:∵两个相似三角形对应边之比是 ,
∴它们的周长之比等于 .
21.如图,已知在 中, ,垂足为点 ,点 是边 的中点.
(1)求边 的长;
(2)求 的正弦值.
22.如图,为了测量建筑物 的高度,先从与建筑物 的底部 点水平相距100米的点 处出发,沿斜坡 行走至坡顶 处,斜坡 的坡度 ,坡顶 到 的距离 米,在点 处测得建筑物顶端 点的仰角为 ,点 在同一平面内,根据测量数据,请计算建筑物 的高度(结果精确到1米).(参考数据: )
A. B. C. D.
二、填空题:(本大题共12题,每题4分,满分48分)
7.已知 ,那么 ____________.
8. ____________.
9.已知抛物线 ,它与 轴的交点坐标为____________.
10.二次函数 图像上的最低点的纵坐标为____________.
11.已知 的长度为 的长度为4,且 和 方向相反,用向量 表示向量 ____________.
【详解】解:
上海市杨浦区2021年中考数学一模试卷附答案
中考数学一模试卷一、单选题(共6题;共12分)1.关于抛物线,下列说法中,正确的是()A. 经过坐标原点B. 顶点是坐标原点C. 有最高点D. 对称轴是直线2.在中,如果,,那么这个三角形一定是()A. 等腰三角形B. 锐角三角形C. 钝角三角形D. 直角三角形3.如果小丽在楼上点A处看到楼下点B处小明的俯角是35°,那么点B处小明看点A处小丽的仰角是()A. 35°B. 45°C. 55°D. 65°4.在中,点D、E分别在边、上,下列条件中,能判定的是()A. B. C. D.5.下列命题中,正确的是()A. 如果为单位向量,那么B. 如果、都是单位向量,那么C. 如果,那么D. 如果,那么6.在梯形中,,对角线与相交于点O,下列说法中,错误的是()A. B. C. D.二、填空题(共12题;共12分)7.计算:________.8.已知抛物线的开口向上,那么a的取值范围是________.9.如果小明沿着坡度为的山坡向上走了130米,那么他的高度上升了________米.10.已知线段的长为4厘米,点P是线段AB的黄金分割点(),那么线段的长是________厘米.11.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=________.12.已知抛物线,把该抛物线向上或向下平移,如果平移后的抛物线经过点,那么平移后的抛物线的表达式是________.13.一位运动员投掷铅球,如果铅球运行时离地面高度为y(米)关于水平距离x(米)的函数解析式为,那么铅球运动过程中最高点离地面的距离为________m.14.如图,已知在平行四边形中,点E在边上,,联结交对角线于点O,那么的值为________.15.如图,已知在中,,点G是的重心,,,那么________.16.如图,已知在中,,,,正方形的顶点G、F分别在边、上,点D、E在斜边上,那么正方形的边长为________.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形中,,,,,那么边的长为________.18.如图,已知在△ABC中,∠B=45º,∠C=60º,将△ABC绕点A旋转,点B、C分别落在点B1、C1处,如果BB1//AC,联结C1B1交边AB于点D,那么的值为________.三、解答题(共7题;共66分)19.计算:.20.已知一个二次函数的图像经过点、、.(1)求这个函数的解析式及对称轴;(2)如果点、在这个二次函数图像上,且,那么________ .(填“<”或者“>”)21.如图,已知在中,点D、E分别在边、上,,点M为边上一点,,联结交于点N.(1)求的值;(2)设,,如果,请用向量、表示向量.22.如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在中,测得,,米,求河宽(即点A到边的距离)(结果精确到0.1米).(参考数据:,,,)23.已知:如图,在梯形中,,对角线、相交于点E,过点A作,交对角线于点F.(1)求证:;(2)如果,求证:线段是线段、的比例中项.24.已知在平面直角坐标系中,抛物线与y轴交于点B,与x轴交于点C、D(点C在点D左侧),顶点A在第一象限,异于顶点A的点在该抛物线上.(1)如果点P与点C重合,求线段的长;(2)如果抛物线经过原点,点Q是抛物线上一点,,求点Q的坐标;(3)如果直线与x轴的负半轴相交,求m的取值范围.25.如图,已知在中,,,点D为边上一动点(与点B、C不重合),点E为边上一点,,过点E作,垂足为点G,交射线于点F.(1)如果点D为边的中点,求的正切值;(2)当点F在边上时,设,,求y关于x的函数解析式及定义域;(3)联结如果与相似,求线段的长.答案解析部分一、单选题1.【解析】【解答】解:,二次项前面的系数大于0,抛物线开口向上,有最低点,当x=0时,y=0,抛物线经过坐标原点,,抛物线的对称轴为直线,顶点坐标为,综上所述,B、C、D选项均不符合题意,只有A选项符合题意.故答案为:A.【分析】本题根据二次函数的性质直接判断即可得出符合题意结果.2.【解析】【解答】∵,,∴∠A=30°,∠B=60°,∴∠A+∠B=90°,∴这个三角形一定是直角三角形,故答案为:D.【分析】根据特殊的三角函数值可知,∠A=30°,∠B=60°,即可判断三角形的形状.3.【解析】【解答】解:根据两点之间的仰角与俯角构成的两条水平线夹角的内错角相等,可知,点B处小明看点A处小丽的仰角是35°,故答案为:A.【分析】根据两点之间的仰角与俯角构成的两条水平线夹角的内错角相等,即可得出答案.4.【解析】【解答】A、,可证明DE∥BC,故本选项符合题意;B、,不可证明DE∥BC,故本选项不符合题意;C、,不可证明DE∥BC,故本选项不符合题意;D、不可证明DE∥BC,故本选项不符合题意.故答案为:A.【分析】根据对应线段成比例,两直线平行,可得出答案.5.【解析】【解答】A、如果为单位向量,则有,但不等于1,所以,故不符合题意;B、长度等于1的向量是单位向量,故不符合题意;C、如果,那么,故符合题意;D、表示这两个向量长度相等,而表示的是长度相等,方向也相同的两个向量,故不符合题意;故答案为:C.【分析】根据向量的定义和要素可直接进行排除选项.6.【解析】【解答】解:如图所示:∵AD∥BC,∴△AOD∽△COB,,,故D不符合题意,∴,∴,故C符合题意;∵,∴,A不符合题意;∴,即,故B不符合题意;故答案为:C.【分析】根据相似三角形的性质及等积法可直接进行排除选项.二、填空题7.【解析】【解答】解:;故答案为:.【分析】根据向量的线性运算可直接进行求解.8.【解析】【解答】解:由抛物线的开口向上,可得:,解得:;故答案为:.【分析】根据二次函数的图像与性质可直接进行求解.9.【解析】【解答】解:设高度上升了h,则水平前进了2.4h,由勾股定理得:,解得h=50.故答案为50.【分析】设高度上升了h,则水平前进了2.4h,然后根据勾股定理解答即可.10.【解析】【解答】解:点P是线段AB的黄金分割点(),,可知(厘米),(厘米)故答案为:.【分析】根据黄金比值可知,计算得出结果即可.11.【解析】【解答】解:y=0时,0=x2﹣4x+3,解得x1=3,x2=1∴线段AB的长为2,∵与y轴交点C(0,3),∴以AB为底的△ABC的高为3,∴S△ABC=×2×3=3,故答案为:3.【分析】先根据题意求出AB的长。
2021年上海市初中毕业生统一考试(中考)数学试卷及解析
2021年上海市初中毕业生统一考试(中考)数学试卷一.选择题1.(2021•上海)下列实数中,有理数是( )A .12B .13C .14D .152.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A .ECB .CEC .ED D .DE6.(2021•上海)如图,长方形ABCD 中,4AB =,3AD =,圆B 半径为1,圆A 与圆B 内切,则点C 、D 与圆A 的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二.填空题7.(2021•上海)计算:72x x÷=.8.(2021•上海)已知6()f xx=,那么(3)f=.9.(2021•上海)已知43x+=,则x=.10.(2021•上海)不等式2120x-<的解集是.11.(2021•上海)70︒的余角是.12.(2021•上海)若一元二次方程2230x x c-+=无解,则c的取值范围为.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为.14.(2021•上海)已知函数y kx=经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得元.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 .三.解答题19.(2021•上海)计算:1129|12|28-+--⨯.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC的值; (2)若2DE =,3OE =,求CD 的长.2021年上海市初中毕业生统一考试(中考)数学试卷参考答案与试题解析一.选择题1.(2021•上海)下列实数中,有理数是( )A B C D 【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=,不是有理数,不合题意;B =12C =,是有理数,符合题意;D = 故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab【分析】依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【解答】解:A 、字母a 、b 的次数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的次数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的次数不相同,不是同类项,故本选项不符合题意;故选:B .【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变【分析】由于抛物线平移后的形状不变,对称轴不变,a 不变,抛物线的增减性不变.【解答】解:A 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,a 不变,开口方向不变,故不符合题意.B 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,抛物线的性质不变,自变量x 不变,则y 随x 的变化情况不变,故不符合题意.D 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,与y 轴的交点也向下平移两个单位,故符合题意.故选:D .【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质,注意:抛物线平移后的形状不变,开口方向不变,顶点坐标改变.4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【解答】解:由图知这组数据的众数为1.5~2.5kg kg ,取其组中值2kg ,故选:A .【点评】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A.EC B.CE C.ED D.DE 【分析】根据相等向量的几何意义和三角形法则解答.【解答】解:AB a=,∴12a EB=,四边形ABCD是平行四边形,∴BC AD b==,∴12a b EB BC EC+=+=,故选:A.【点评】本题考查平面向量,三角形法则,平行四边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.(2021•上海)如图,长方形ABCD中,4AB=,3AD=,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【分析】两圆内切,圆心距等于半径之差的绝对值,得圆A的半径等于5,由勾股定理得5AC=,由点与圆的位置关系,可得结论.【解答】解:两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:1AB R=-,4AB =,圆B 半径为1,5R ∴=,即圆A 的半径等于5,4AB =,3BC AD ==,由勾股定理可知5AC =,5AC R ∴==,3AD R =<,∴点C 在圆上,点D 在圆内,故选:C .【点评】本题考查了点与圆的位置关系、圆与圆的位置关系勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.二.填空题7.(2021•上海)计算:72x x ÷= 5x .【分析】根据同底数幂的除法法则进行解答即可.【解答】解:72725x x x x -÷==,故答案为:5x .【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键.8.(2021•上海)已知6()f x x=,那么f =【分析】将x ==【解答】解:由题意将x ==则有:f ==故答案为:【点评】本题考查函数求值问题,只需将自变量的取值代入函数表达式.9.(20213=,则x = 5 .【分析】根据算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 进行解答即可.【解答】解:3=,49x ∴+= 5x ∴=.故答案为:5.【点评】此题考查的是算术平方根的概念,掌握其概念是解决此题关键.10.(2021•上海)不等式2120x -<的解集是 6x < .【分析】不等式移项,把x 系数化为1,即可求出解集.【解答】解:移项,得:212x <,系数化为1,得:6x <,故答案为6x <.【点评】此题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.11.(2021•上海)70︒的余角是 20︒ .【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70︒,则它的余角度数是907020︒-︒=︒,故答案为,20︒.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,12.(2021•上海)若一元二次方程2230x x c -+=无解,则c 的取值范围为 98c > . 【分析】根据根的判别式的意义得到△224(1)0a =-⨯⨯-<,然后求出a 的取值范围. 【解答】解:一元二次方程2230x x c -+=无解,△2(3)420c =--⨯⨯<, 解得98c >, c ∴的取值范围是98c >. 故答案为:98c >. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式△24b ac =-:当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 13. 【分析】用偶数的个数除以数的总数即可求得答案. 【解答】解:共有9个数据,其中偶数有3个,∴从这些数据中选取一个数据,得到偶数的概率为3193=,故答案为:13. 【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.14.(2021•上海)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式 2y x =- .【分析】根据正比例函数的性质以及正比例函数图象是点的坐标特征限即可求解.【解答】解:函数y kx =经过二、四象限,0k ∴<.若函数y kx =经过(1,1)-,则1k =-,即1k =-,故函数y kx =经过二、四象限,且函数不经过(1,1)-时,0k <且1k ≠-, ∴函数解析式为2y x =-,故答案为2y x =-.【点评】考查了正比例函数图象上点的坐标特征,熟练掌握正比例函数的性质是解题的关键.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 335k 元.【分析】根据图像求出函数关系式,计算售价为8元时卖出的苹果数量,即可求解.【解答】解:设卖出的苹果数量y 与售价x 之间的函数关系式为y mx n =+,5410m n k m n k +=⎧⎨+=⎩, 解得:357m k n k⎧=-⎪⎨⎪=⎩,375y kx k ∴=-+, 8x =时,3118755y k k k ==-⨯+=, ∴现以8元卖出,挣得1133(85)55k k -⨯=,故答案为:335k.【点评】此题主要考查了函数图象,能够得出卖出的苹果数量y与售价x之间的函数关系式是解题关键.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=23.【分析】过D作DM BC⊥于M,过B作BN AD⊥于N,由四边形BMDN是矩形,可得DM BN=,12ADBC=,根据//AD BC,可得12OD ADOB BC==,23OBBD=,即可得到23BOCBCDSS∆∆=.【解答】解:过D作DM BC⊥于M,过B作BN AD⊥于N,如图://AD BC,DM BC⊥,BN AD⊥,∴四边形BMDN是矩形,DM BN=,12ABDBCDSS∆∆=,∴112122AD BNBC DM⋅=⋅,∴12ADBC=,//AD BC,∴12OD ADOB BC==,∴23OBBD=,∴23BOCBCDSS∆∆=,故答案为:23.【点评】本题考查三角形的面积,涉及基本的相似三角形判定与性质,掌握同(等)底三角形面积比等于高之比,同(等)高的三角形面积比等于底之比是解题的关键.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 332.【分析】利用ABG BCH ∆≅∆得到AG BH =,再根据含30度的直角三角形三边的关系得到2BG AG =,接着证明HG AG =可得结论.【解答】解:如图,ABG BCH ∆≅∆,AG BH ∴=,30ABG ∠=︒,2BG AG ∴=,即2BH HG AG +=,1HG AG ∴==,∴小两个正六边形的面积23336142=⨯⨯=, 故答案为:332.【点评】本题考查了含30度角的直角三角形:在直角三角形中,30︒角所对的直角边等于斜边的一半.也考查了正多边形与圆,解题的关键是求出HG .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 221d .【分析】由题意以及正方形的性质得OP 过正方形ABCD 各边的中点时,d 最大,OP 过正方形ABCD 的顶点时,d 最小,分别求出d 的值即可得出答案.【解答】解:如图:设AB 的中点是E ,OP 过点E 时,点O 与边AB 上所有点的连线中,OE 最小,此时d PE =最大,OP 过顶点A 时,点O 与边AB 上所有点的连线中,OA 最大,此时d PA =最小,如图①:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,1OE ∴=,2OP =,1d PE ∴==;如图②:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,2OA ∴=2OP =,22d PA ∴==;d ∴的取值范围为221d . 故答案为:221d .【点评】本题考查正方形的性质,旋转的性质,根据题意得出d 最大、最小时点P 的位置是解题的关键.三.解答题19.(2021•上海)计算:1129|12-+--【分析】直接利用算术平方根、负整数指数幂、绝对值的性质分别化简得出答案.【解答】解:119122-⨯1912=+182=. 【点评】此题主要考查了实数的混合运算,正确掌握相关运算法则是解题关键.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 【分析】解方程组的中心思想是消元,在本题中,只能用代入消元法解题.【解答】解:22340x y x y +=⎧⎨-=⎩①②, 由①得:3y x =-,把3y x =-代入②,得:224(3)0x x --=,化简得:(2)(6)0x x --=,解得:12x =,26x =.把12x =,26x =依次代入3y x =-得:11y =,23y =-,∴原方程组的解为121226,13x x y y ==⎧⎧⎨⎨==-⎩⎩. 【点评】本题以解高次方程组为背景,旨在考查学生对消元法的灵活应用能力.21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【分析】(1)解锐角三角函数可得解;(2)连接CF ,过F 作BD 的垂线,垂足为E ,根据直角三角形斜边中线等于斜边一半,可得CF FD =,由勾股定理可得213AD =,2EF =,即可求tan FBD ∠.【解答】解:(1)4cos 5BC ABC AB ∠==, 8BC =,10AB ∴=,AC BD ⊥, 在Rt ACB ∆中,由勾股定理得,22221086AC AB BC =-=-=,即AC 的长为6; (2)如图,连接CF ,过F 点作BD 的垂线,垂足E ,BF 为AD 边上的中线,即F 为AD 的中点,12CF AD FD ∴==, 在Rt ACD ∆中,由勾股定理得,222264213AD AC CD =+=+=三角形CFD 为等腰三角形,FE CD ⊥,122CE CD ∴==, 在Rt EFC ∆中,221343EF CF CE =-=-=,33tan 10FE FBD BE BC CE ∴∠===+. 【点评】本题考查解直角三角形,解本题关键根据题意作辅助线,熟练掌握解直角三角函数和勾股定理等基本知识点.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【分析】(1)先根据扇形统计图求出三月份所占百分比,即可利用总数乘以三月份所占百分比求解;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.根据“下载一部1000MB 的电影,5G 比4G 要快190秒”,列方程求解即可. 【解答】解:(1)80(130%25%)36⨯--=(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.1000100019095x x +=-, 解得:1100x =,25x =-(不合题意,舍去),经检验,1100x =是原方程的解,答:5G 手机的下载速度是每秒100MB .【点评】此题主要考查的是如何观察扇形统计图并且从统计图中获取信息,分式方程的应用,理解题意,找出正确的等量关系列出方程是解题的关键.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.【分析】(1)(3,0)P 、(1,4)Q 代入2y ax c =+即可得抛物线的解析式为21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,A 与(1,4)Q 重合时,4AB =,1GH =,由ABC ∆是等腰直角三角形,得122CH AH BH AB ====,C 到抛物线对称轴的距离是1CG =; ②过C 作CH AB ⊥于H ,先求出直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,3C y m =-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+解得12m =或3m = (与P 重合,舍去),即可求出5(2,)2C -. 【解答】解:(1)(3,0)P 、(1,4)Q 代入2y ax c =+得:094a c a c =+⎧⎨=+⎩,解得1292a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,如图:当A 与(1,4)Q 重合时,4AB =,1GH =,ABC ∆是等腰直角三角形,ACH ∴∆和BCH ∆也是等腰直角三角形,122CH AH BH AB ∴====, 1CG CH GH ∴=-=,而抛物线21922y x =-+的对称轴是y 轴(0)x =, C ∴到抛物线对称轴的距离是1CG =;②过C 作CH AB ⊥于H ,如图:设直线PQ 解析式为y kx b =+,将(3,0)P 、(1,4)Q 代入得:034k b k b =+⎧⎨=+⎩,解得26k b =-⎧⎨=⎩, ∴直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,132CH AH BH AB m ∴====-+, 3C y m ∴=-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+得: 2193(23)22m m -+=--+, 解得12m =或3m = (与P 重合,舍去), 12m ∴=,232m -=-,532m -+=, 5(2,)2C ∴-. 【点评】本题考查二次函数综合应用,涉及解析式、对称轴、等腰直角三角形、一次函数等知识,解题的关键是用含字母的代数式表示C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC 的值; (2)若2DE =,3OE =,求CD 的长.【分析】(1)①由等腰三角形的性质得出DAC DCA ∠=∠,由平行线的性质得出DAC ACB ∠=∠,由直角三角形的性质得出OBC OCB ∠=∠,根据相似三角形的判定定理可得出结论;②得出30OCE OCB EBC ∠=∠=∠=︒.过点D 作DH BC ⊥于点H ,设2AD CD m ==,则2BH AD m ==,则可得出答案;(2)①如图3,当点E 在AD 上时,证明四边形ABCE 是矩形.设AD CD x ==,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,由相似三角形的性质得出2x OC m BC =,证明EOC ECB ∆∆∽,得出比例线段OE EC OC EC EB CB ==,可得出方程3223x OC x m CB -==-+,解方程可得出答案.【解答】(1)①证明:如图1,AD CD =,DAC DCA ∴∠=∠.//AD BC ,DAC ACB ∴∠=∠.BO 是Rt ABC ∆斜边AC 上的中线,OB OC ∴=,OBC OCB ∴∠=∠,DAC DCA ACB OBC ∴∠=∠=∠=∠,DAC OBC∴∆∆∽;②解:如图2,若BE CD⊥,在Rt BCE∆中,OCE OCB EBC∠=∠=∠,30OCE OCB EBC∴∠=∠=∠=︒.过点D作DH BC⊥于点H,设2AD CD m==,则2BH AD m==,在Rt DCH∆中,2DC m=,CH m∴=,3BC BH CH m∴=+=,∴2233 AD mBC m==;(2)①如图3,当点E在AD上时,//AD BC,EAO BCO∴∠=∠,AEO CBO∠=∠,O是AC的中点,OA OC∴=,()AOE COB AAS∴∆≅∆,OB OE∴=,∴四边形ABCE是平行四边形,又90ABC∠=︒,∴四边形ABCE是矩形.设AD CD x ==,2DE =,2AE x ∴=-,3OE =,6AC ∴=,在Rt ACE ∆和Rt DCE ∆中, 222CE AC AE =-,222CE CD DE =-,22226(2)2x x ∴--=-, 解得119x =+,或119x =- (舍去).119CD ∴=+.②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,3OE =,3EB m ∴=+,DAC OBC ∆∆∽,∴DC AC OC BC =, ∴2x OC m BC =, ∴2OC x BC m=. 又EBC OCE ∠=∠,BEC OEC ∠=∠,EOC ECB ∴∆∆∽,∴OE EC OC EC EB CB ==, ∴3223x OC x m CB -==-+, ∴32232x x x m m-==-+, 226x x m -∴=,将226x xm-=代入3223xx m-=-+,整理得,26100x x--=,解得3x=+,或3x=(舍去).3CD∴=综合以上可得CD的长为13+【点评】本题是相似形综合题,考查了等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。
2021年上海市16区中考数学一模考点分类汇编专题01 数与式、方程与不等式(逐题详解版)
2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 4.(2021·上海静安区·九年级一模)32的相反数是____. 5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.8.(20212x -的根为____.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--【答案】D【分析】利用零指数幂的定义分别得出结果即可求解【详解】A 选项0()a =1-,故错误,B 选项0()a =1-,故错误C 选项01a -=-,故错误,D 选项01a -=-,故正确,故选:D【点睛】熟记任何非零次幂的零次幂等于1是解决本题的关键2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 【答案】A【分析】利用配方法分别转化为完全平方式的形式即可求解.【详解】A 选项214x x -+=212x ⎛⎫- ⎪⎝⎭,故正确,B 选项21124x x++=213416x ⎛⎫++ ⎪⎝⎭,故错误 C 选项21144x x +-=216516256x ⎛⎫+- ⎪⎝⎭,故错误,D 选项21144x x -+=216316256x ⎛⎫-+ ⎪⎝⎭,故错误 故选:A【点睛】本题考查配方法的运用,熟练添加常数项,即一次项系数一半的平方是解决问题的关键,添加之后要注意再减去添加的常数项,进行等价转化.二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 【答案】3-【分析】根据已知得到2y x =,代入所求式子中计算即可. 【详解】解:∵12x y =,∴ 2y x =,∴2332x y x x x x y x x x ++===----:故答案为:-3. 【点睛】本题考查了求分式的值,利用已知得到2y x =后再整体代入是解题的关键.4.(2021·上海静安区·九年级一模)32的相反数是____. 【答案】32- 【分析】只有符号不同的两个数叫互为相反数,根据定义解答. 【详解】32的相反数是32-,故答案为:32-. 【点睛】此题考查互为相反数的定义,掌握定义是解题的关键.5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.【分析】先代入特殊角的三角函数值,然后再进行计算即可.【详解】1sin 30cot 60=236︒⋅︒=⨯,故答案为:6. 【点睛】本题考查了特殊角的三角函数值、实数乘法运算,熟记特殊角的三角函数值是解题关键.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).【答案】1+【分析】设BP x =厘米,得2AB x =+厘米,根据题意得()222x x =⨯+,通过求解方程,即可得到答案. 【详解】设BP x =厘米,根据题意得:2AB AP BP x =+=+厘米∵2BP AP AB =⋅,∴()222x x =⨯+ ,∴1x =±10-,故舍去;∴15x ,即1BP =1+.【点睛】本题考查了一元二次方程、二次根式、线段的知识;解题的关键是熟练掌握一元二次方程、二次根式的性质,从而完成求解.7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.【答案】2【分析】如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b == 由三角形的周长关系可得:5,a b +=再证明:,ANM DEM ∽利用相似三角形的性质求解8,AN a =-再证明:,ANF CEF ∽可得:10432,b a ab +-=再解方程组可得答案.【详解】解:如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b ==()1,2AB BE AF AB BC AC ∴++=++ ()1101012815,2a b ∴++=++= 5,a b ∴+=:2:112BD CD BC ==,,84BD CD ∴==,, 8,DE a ∴=- M 为AD 的中点,,AM MD ∴= //AN BC ,,ANM DEM ∴∽ 1AN AM DE DM ∴==, 8,AN a ∴=- //AN BC ,,ANF CEF ∴∽ ,AN AF CE CF ∴= 即:8,848a b a b -=-+- ∴ 10432,b a ab +-= 510432a b b a ab +=⎧∴⎨+-=⎩解得:23a b =⎧⎨=⎩或94a b =⎧⎨=-⎩,经检验:94a b =⎧⎨=-⎩不合题意,舍去, 2.BE ∴= 故答案为:2.【点睛】本题考查的是三角形的相似的判定与性质,二元方程组的解法,一元二次方程的解法,掌握以上知识是解题的关键.8.(20212x =-的根为____.【答案】x 1=【分析】方程两边同时平方,得到一个一元二次方程,解出x 的值,再进行检验即可得出结果.【详解】解:方程两边同时平方得:()2322x x -=-,∴2210x x -+=,即()210x -=,∴x 1=x 2=1,经检验,x=1是原方程的根,故答案为:x=1.【点睛】本题考查了无理方程求解,先平方得到一元二次方程求解再验证根,掌握基本概念和解法是解题的关键.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.【答案】()17324x x -=【分析】垂直于墙的一段篱筐长为x 米,共有三段垂直于墙的篱笆,所以垂直于墙的篱笆总长度为3x ,又因为篱笆总长为17米(恰好用完),所以大长方形花圃的长为()173x -米,最后根据长方形的面积公式即可求解.【详解】解:由题意可得:()17324x x -=.故答案为:()17324x x -=.【点睛】本题考查了一元二次方程的应用,解题的关键是注意大长方形花圃的宽有三段都是篱笆.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 【答案】()21001y x =+; 【分析】根据:现有量=原有量×(1+增长率)n,即可列方程求解. 【详解】依题意得:()21001y x =+,故答案为:()21001y x =+【点睛】考查了一元二次方程的应用,可直接套公式:原有量×(1+增长率)n =现有量,n 表示增长的次数. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-【答案】2【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.【详解】解:原式14122⨯=⨯1= 2=.【点睛】本题考查特殊角的三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y --=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∴22310x x y y --=,∴x y = ∵x 、y表示线段,∴负值不符合题意,∴x y = 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB S DB AC ∴=⋅=,12ADB S AB DH =⋅,DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒,∴ACD EHD .∴AC EH CD DH = 即44EH x x EH =--.∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==,∴)44x EB x -==+ ,AB =∴)44x AE x -=+,∵EF AD ⊥,90C ∠=︒,∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠,∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒,∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+.整理得,()2402y x x =-+<≤; (3)在Rt △MDB 中,DB=4-x,所以).x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似: ①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或-4 (舍去),如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y xx x-=+结合y=2x-4,整理,得23160.x-=解得或3-(舍去)如果∠CFD=∠DAB,44x xy x-=+与y=2x-4,整理,得238160.x x-+=此方程无解.综上,CD的值为、8-或3.【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.。
2021年上海市16区中考数学一模考点分类汇编专题07 相似图形的相关概念(解析版)
2021年上海市16区中考数学一模汇编专题07 相似图形的相关概念一、单选题1.(2021·上海青浦区·九年级一模)如图,已知BD 与CE 相交于点A ,DE BC //,如果2AD =,3AB =,6AC =,那么AE 等于( )A .125B .185C .4D .9【答案】C【分析】根据平行线分线段成比例即可得到结论.【详解】解:∵ED∵BC ,∵AB AC AD AE =,即362AE=,∵AE=4,故选:C . 【点睛】本题考查了平行线分线段成比例的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.2.(2021·上海长宁区·九年级一模)下列命题中,说法正确的是( )A .四条边对应成比例的两个四边形相似B .四个内角对应相等的两个四边形相似C .两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似【答案】D【分析】根据三角形相似和相似多边形的判定解答.【详解】A、四个角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;B、四个内角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;C、两边对应成比例且其夹角相等的两个三角形相似,原命题是假命题;D、斜边与一条直角边对应成比例的两个直角三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形相似和相似多边形,难度不大.3.(2021·上海杨浦区·九年级一模)在ABC中,点D、E分别在边AB、AC上,下列条件中,能判定//DE BC 的是()A.AD DEAB BC=B.AD AEDB EC=C.DB AEEC AD=D.AD AEAC AB=【答案】A【分析】根据对应线段成比例,两直线平行,可得出答案.【详解】A、AD DEAB BC=,可证明DE∵BC,故本选项正确;B、AD AEDB EC=,不可证明DE∵BC,故本选项错误;C、DB AEEC AD=,不可证明DE∵BC,故本选项不正确;D、AD AEAC AB=不可证明DE∵BC,故本选项不正确.故选A.【点睛】本题考查了平行线分线段成比例,对应线段成比例,两直线平行.4.(2021·上海浦东新区·九年级一模)A、B两地的实际距离AB=250米,如果画在地图上的距离A B''=5厘米,那么地图上的距离与实际距离的比为()A.1∵500B.1∵5 000C.500∵1D.5 000∵1【答案】B【分析】地图上距离与实际距离的比就是在地图上的距离A B ''与实际距离AB 的比值.【详解】解:∵250米=25000cm ,∵:A B AB ''=5:25000=1:5000.故选:B .【点睛】本题主要考查了比例尺,掌握比例尺的计算方法,注意在求比的过程中,单位要统一. 5.(2021·上海崇明区·九年级一模)已知线段a 、b 、c 、d 的长度满足等式ab cd =,如果某班四位学生分别将该等式改写成了如下四个比例式,那么其中错误的是( )A .a c b d =B .a d c b =C .b d c a =D .b c d a= 【答案】A【分析】根据比例的两内项之积等于两外项之积逐项排查即可.【详解】解:A.由a c b d=可得bc=ad ,故A 选项符合题意; B.由a d c b=可得ab=cd ,故B 选项不符合题意; C.由b d c a=可得ab=cd ,故C 选项不符合题意; D.由b c d a =可得ab=cd ,故D 选项不符合题意.故答案为A . 【点睛】本题主要考查了比例的基本性质,即掌握两内项之积等于两外项之积成为解答本题的关键. 6.(2021·上海闵行区·九年级一模)古希腊艺术家发现当人的头顶至肚脐的长度(上半身的长度)与肚脐至足底的长度(下半身的长度)的比值为“黄金分割数”时,人体的身材是最优美的,一位女士身高为154cm ,她上半身的长度为62cm ,为了使自己的身材显得更为优美,计划选择一双合适的高跟鞋,使自己的下半身长度增加,你认为选择鞋跟高为多少厘米的高跟鞋最佳( )A .4cmB .6cmC .8cmD .10cm【答案】C【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】解:根据题意,设她穿的高跟鞋的高度是x cm ,则620.61815462x =+-, 解得:8.3x ≈,∵我认为选择鞋跟高为8厘米的高跟鞋最佳;故选:C .【点睛】本题主要考查了黄金分割的应用;关键是明确黄金分割所涉及的线段的比.7.(2021·上海奉贤区·九年级一模)下列两个图形一定相似的是( )A .两个菱形B .两个正方形C .两个矩形D .两个梯形【答案】B【分析】对应边成比例,对应角相等的两个四边形相似,根据定义逐一判断各选项即可得到答案.【详解】解:两个菱形满足对应边成比例,但是对应角不一定相等,所以两个菱形不一定相似,故A 不符合题意;两个正方形满足对应边成比例,对应角相等,所以两个正方形一定相似,故B 符合题意;两个矩形满足对应角相等,但是对应边不一定成比例,故C 不符合题意;两个梯形的对应边不一定成比例,对应角也不一定相等,故D 不符题意;故选:.B【点睛】本题考查的是四边形相似的判定,掌握多边形相似的判定是解题的关键. 8.(2021·上海嘉定区·九年级一模)如果实数a ,b ,c ,d 满足a c b d=,下列四个选项中,正确的是( ) A .a b c d b d++= B .a c a b c d =++ C .a c c b d d+=+ D .22a cb d = 【答案】A 【分析】根据比例的性质选出正确选项.【详解】A 选项正确,∵11a c b d+=+,∵a b c d b d ++=; B 选项,当0a b +=或0c d +=时, 不成立;C 选项,当0b d +=时,不成立;D 选项不成立,例如:当1224=时,221224≠;故选:A . 【点睛】本题考查比例的性质,解题的关键是掌握比例的性质.9.(2021·上海松江区·九年级一模)如果两个相似多边形的面积之比为1:4,那么它们的周长之比是( ) A .1:2B .1:4C .1:8D .1:16【答案】A【分析】根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【详解】解:∵两个相似多边形面积的比为1:4,∵两个相似多边形周长的比等于1:2,∵这两个相似多边形周长的比是1:2.故选:A .【点睛】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.10.(2021·上海青浦区·九年级一模)已知点P 是线段AB 的黄金分割点()AP BP >,若2AB =,则AP 的长为A 1B 1CD .3【答案】A【分析】利用黄金分割点的定义即可求AP 的长度【详解】利用黄金分割点的定义, AP AB = 111.(2021·上海徐汇区·九年级一模)下列说法中,正确的是( )A .两个矩形必相似B .两个含45︒角的等腰三角形必相似C .两个菱形必相似D .两个含30角的直角三角形必相似【答案】D 【分析】根据相似多边形、相似三角形的判定逐项判断即可得.【详解】A 、两个矩形的对应角相等,但对应边不一定成比例,则不一定相似,此项错误;B 、如果一个等腰三角形的顶角是45︒,另一等腰三角形的底角是45︒,则不相似,此项错误;C 、两个菱形的对应边成比例,但四个内角不一定对应相等,则不一定相似,此项错误;D 、两个含30角的直角三角形必相似,此项正确;故选:D .【点睛】本题考查了相似多边形、相似三角形的判定,熟练掌握相似图形的判定方法是解题关键. 12.(2021·上海九年级一模)如图,在ABC 中,点D 在边AB 上,DE BC //,DF AC //,联结BE ,BE 与DF 相交于点G ,则下列结论一定正确的是( )A .AD DE DB BC = B .AE BF AC BC = C .BD BF AD DE = D .DG BF GF FC= 【答案】C【分析】根据相似三角形的判定和平行线分线段成比例进行判断即可.【详解】解:∵DE∵BC ,DF∵AC ,∵四边形DFCE 是平行四边形,∵DE=CF ,DF=CE ,∵DE∵BC ,DF∵AC ,∵∵ADE∵∵ABC ,∵BFD∵∵BAC ,∵AD DE AB BC=,故A 错误;AE AD AC AB BC CF ==,即AE CF AC BC=,故B 错误; ∵DF∵AC ,∵BD BF BF AD CF DE==,故C 正确; ∵DE∵BC ,∵DG DE CF GF BF BF ==,故D 错误,故选:C . 【点睛】本题考查了相似三角形的判定与性质、平行线分线段成比例、平行四边形的判定与性质,熟练掌握相似三角形的性质和平行线分线段成比例是解答的关键.13.(2021·上海浦东新区·九年级一模)如图,在ABC 中,点D 、F 是边AB 上的点,点E 是边AC 上的点,如果∵ACD=∵B ,DE //BC ,EF //CD ,下列结论不成立的是( )A .2AE AF AD =⋅B .2AC AD AB =⋅C .2AF AE AC =⋅D .2AD AF AB =⋅【答案】C【分析】根据相似三角形的判定及性质以及平行线分线段成比例对每个选项逐个证明即可.【详解】解:∵DE //BC ,EF //CD ,∵∵ADE=∵B ,∵ACD=∵AEF ,又∵∵ACD=∵B ,∵∵ADE=∵AEF ,∵∵ADE=∵AEF ,∵A=∵A ,∵AEF∵ADE , ∵AE AD AF AE=,∵2AE AF AD =⋅,故选项A 正确; ∵∵ACD=∵B ,∵A=∵A ,∵ACD∵ABC ,∵AC AD AB AC=,∵2AC AD AB =⋅,故选项B 正确; ∵DE //BC ,∵AE AD AC AB =,∵EF //CD ,∵AE AF AC AD=,∵AF AD AD AB =,∵2AD AF AB =⋅,故选项D 正确;∵EF//CD,∵AE AFAC AD=,∵AF AC AE AD⋅=⋅,故选项C错误,故选:C.【点睛】本题考查了平行线分线段成比例以及相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解决本题的关键.14.(2021·上海静安区·九年级一模)在∵ABC中,点D、E分别在边BA、CA的延长线上,下列比例式中能判定DE∵BC的为()A.BC ABDE AD=B.AC ABAD AE=C.AC ABCE BD=D.AC BDAB CE=【答案】C【分析】根据平行线分线段成比例定理、平行线的判定定理判断即可.【详解】解:当BC ABDE AD=时,不能判定DE∵BC,A选项错误;AC ABAD AE=时,不能判定DE∵BC,B选项错误;AC ABCE BD=时,DE∵BC,C选项正确;AC BDAB CE=时,不能判定DE∵BC,D选项错误;故选:C.【点睛】本题考查了平行线分线段成比例定理、平行线的判定定理,掌握相关的判定定理是解题的关键.15.(2021·上海长宁区·九年级一模)已知P,Q是线段AB的两个黄金分割点,且AB=10,则PQ长为()A.1)B.C.2) - D.5(3【答案】C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ、PB的长度,再根据PQ=AQ+PB-AB即可求出PQ的长度.【详解】解:如图,根据黄金分割点的概念,可知PB AQ AB AB ==∴AQ =PB ,AB =10,∴AQ =PB =11052⨯=,∴PQ =AQ +PB -AB =5510202)+-==. 故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.二、填空题16.(2021·上海徐汇区·九年级一模)已知点P 在线段AB 上,如果2AP AB BP =⋅,4AB =,那么AP 的长是_____.【答案】2【分析】设AP=x ,则PB=4-x ,根据AP 2=AB•PB 列出方程求解即可,另外,注意舍去负数解.【详解】解:设AP=x ,则PB=4-x ,由题意,x 2=4(4-x ),解得x=2或2-(舍弃)故答案为:2.【点睛】本题考查的是比例线段与黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.注意方程思想的应用是解题的关键.17.(2021·上海徐汇区·九年级一模)如图,////AB CD EF ,如果2AC =,3CE = , 1.5BD =,那么BF 的长是______.【答案】3.75【分析】直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线////AB CD EF ,2AC =,3CE =, 1.5BD =, ∵AC BD AE BE = 22235==+,∵ 1.55=3.752BE ⨯=.故答案为:3.75. 【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.18.(2021·上海松江区·九年级一模)如图,已知直线1l ,2l ,3l 分别交直线l 于点A ,B ,C ,交直线l 于点D ,E ,F ,且123////l l l ,4AB =,6AC =,10DF =,则DE =___.【答案】203【分析】根据平行线分线段成比例定理解答即可.【详解】∵123////l l l 4AB =,6AC =,10DF =,∵AB DE AC DF = 即4610DE =, 可得:DE=203,故答案为:203. 【点睛】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键. 19.(2021·上海奉贤区·九年级一模)如果4是a 与8的比例中项,那么a 的值为_______________________.【答案】2【分析】根据比例中项的概念:如果a 、b 、c 三个量成连比例,即::a b b c =,b 叫作a 和c 的比例中项,即可求解.【详解】4是a 与8的比例中项,∴:44:8a =,即248a =,∴2a =.故答案为:2.【点睛】本题考查了比例中项的概念,熟练掌握比例中项的概念是解题的关键.20.(2021·上海普陀区·九年级一模)已知52x y =,那么x y x y+=-__________. 【答案】73【分析】由52x y =,设()50x k k =≠,则2y k =,再把,x y 的值代入代数式即可得到答案. 【详解】解: 52x y =,∴ 设()50x k k =≠,则2y k =,52775233x y k k k x y k k k ++∴===--, 故答案为:7.3【点睛】本题考查的是比例的基本性质,掌握设参数法解决比例的问题是解题的关键.21.(2021·上海奉贤区·九年级一模)如果2a =5b (b ≠0),那么a b=_____. 【答案】52【分析】利用比例的基本性质可得答案.【详解】解:∵2a =5b (b ≠0),∵5.2a b = 故答案为:52【点睛】本题考查的是比例的基本性质,掌握基本性质是解题的关键.22.(2021·上海徐汇区·九年级一模)如果:2:3a b =,那么代数式b a a-的值是_____. 【答案】12【分析】根据比例的性质可得23a b =,则代入原代数式计算即可.【详解】由题意:23a b =,∵213223b b b a a b --==,故答案为:12. 【点睛】本题主要考查比例的性质,熟练根据比例的性质变形求解是解题关键.23.(2021·上海长宁区·九年级一模)如图,已知AC ∵EF ∵BD .如果AE :EB =2:3,CF =6.那么CD 的长等于_________.【答案】15【分析】根据平行线分线段成比例定理列出比例式首先求得CF 的长,再求得DC 的长.【详解】解:∵AC ∵EF ∵BD ,CF =6,23AE CF BE DF ==,∵DF=9, ∵CD=DF+CF=9+6=15.故答案是:15.【点睛】本题考查了平行线分线段成比例定理和比例的基本性质,解题的关键是注意数形结合思想的应用. 24.(2021·上海九年级一模)如果34a b =,那么b a b a -=+__________________. 【答案】17【分析】设a=3k ,得到b=4k ,代入b a b a -+化简即可求解. 【详解】解:设a=3k ,∵34a b =,∵b=4k ,∵4314377b a k k k b a k k k --===++.故答案为:17 【点睛】本题主要考查了比例化简求值,理解比例的意义,用含k 的式子分别表示a 、b 是解题关键. 25.(2021·上海黄浦区·九年级一模)已知三角形的三边长为a 、b 、c .满足234a b c ==,如果其周长为36,那么该三角形的最大边长为________.【答案】16 【分析】设234a b c ===k ,根据三角形的周长列出方程即可求出k 的值,从而求出结论. 【详解】解:设234a b c ===k∵a =2k ,b =3k ,c =4k 由题意可知:a +b +c=36∵2k +3k +4k=36解得:k=4∵该三角形的最大边长为4×4=16故答案为:16.【点睛】此题考查的是比例的性质,掌握设参法是解题关键.26.(2021·上海宝山区·九年级一模)已知线段2a =厘米,8c =厘米,那么线段a 和c 的比例中项b 的长度为______厘米.【答案】4【分析】根据线段的比例中项可直接进行列式求解.【详解】解:由题意可得:22816b ac ==⨯=,∵4b =cm ;故答案为4.【点睛】本题主要考查比例中项,熟练掌握比例中项是解题的关键.27.(2021·上海崇明区·九年级一模)已知线段6cm AB =,点C 是AB 的黄金分割点,且AC BC >,那么线段AC 的长为________.【答案】3,列式计算即可.【详解】∵点C 是线段AB 的黄金分割点,AC >BC ,∵AC AB =(3)cm ,故答案为3.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段叫做黄金比. 28.(2021·上海闵行区·九年级一模)如果23(0)a b b =≠,那么a b=__________. 【答案】32【分析】根据等式的性质解题即可,等式两边同时除以一个不为零的数,等式仍成立 【详解】323(0)2a ab b b =≠∴=故答案为:32. 【点睛】本题考查比例的性质,利用等式的性质解题即可.29.(2021·上海奉贤区·九年级一模)如图,已知点D 在ABC ∆的边BC 上,联结,AD P 为AD 上一点,过点Р分别作AB AC 、的平行线交BC 于点,,E F 如果3BC EF =,那么AP PD=_______________________.【答案】2 【分析】根据平行线分线段成比例性质可得PD DE DF AD BD CD ==,再由等比性质可得13PD AD =,即可得出2AP PD=. 【详解】解:∵PE∵AB ,PF∵AC , ∵PD DE AD BD =,PD DF AD CD =.∵DE DF BD CD=. ∵BC =3EF ,∵13DE DF EF BD CD BC +==+.∵13PD PD AD AP PD ==+.∵2AP PD=.答案:2. 【点睛】本题考查了平行线分线段成比例性质,掌握平行线分线段成比例性质定理及等比性质是解答此题的关键.30.(2021·上海虹口区·九年级一模)如果:3:2a b =,那么a a b=+________. 【答案】35【分析】设a=3k ,然后用k 表示出b ,最后代入a a b+计算即可. 【详解】解:设a=3k∵:3:2a b =∵3:3:2k b =,即3b=6k ,解得b=2k ∵3333255a k k a b k k k ===++.故答案为35. 【点睛】本题主要考查了比例化简求值,设出中间量、分别表示出a 、b 成为解答本题的关键. 31.(2021·上海嘉定区·九年级一模)正方形的边长与其对角线长的比为________.【答案】1【分析】设正方形的边长为1,计算即得结果.【详解】解:设正方形的边长为1,所以正方形的边长与其对角线长的比为1【点睛】此题主要考查对正方形的性质和线段比的定义的理解及运用.难度不大,属于基础题型. 32.(2021·上海杨浦区·九年级一模)已知线段AB 的长为4厘米,点P 是线段AB 的黄金分割点(AP BP <),那么线段AP 的长是______厘米.【答案】6-【分析】根据黄金比值可知AP BP BP AB ==,计算得出结果即可.【详解】解:点P 是线段AB 的黄金分割点(AP BP <),∴12AP BP BP AB ==,可知2BP AB ==(厘米),6AP BP ==-(厘米)故答案为:6-.【点睛】本题考查的是黄金分割比,属于基础题,掌握黄金比值12是解题的关键. 33.(2021·上海青浦区·九年级一模)如图,在ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果::CF CA a b =,那么:BE AE 的值为____.(用含a 、b 的式子表示)【答案】a b a- 【分析】过点B 作BH∵AC 交EF 于点H ,先证明∵BDH∵∵CDF ,得出BH=CF ,再根据BE BH AE AF=得出=BE BH CF AE AF AF=即可得解. 【详解】解:过点B 作BH∵AC 交EF 于点H ,∵BE BH AE AF=,∵C=∵DBH, ∵点D 是边BC 的中点,∵BD=CD ,∵∵BDH=∵CDF ,∵∵BDH∵∵CDF ,∵BH=CF ,∵=BE BH CF AE AF AF =, ∵CF a CA b =,∵CF a AF b a =-,∵BE a AE b a=-,故答案为: a b a -..【点睛】本题考查了全等三角形的判定与性质及平行线分线段成比例定理,解题的关键是正确作出辅助线.34.(2021·上海黄浦区·九年级一模)已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为________.【答案】1或0.5或2【分析】根据题意,画出图形,然后分直线l∵AD和直线l∵AB两种情况,然后根据相似图形的性质列出比例式即可分别求出结论.【详解】解:如图所示,矩形ABCD中,AB:AD=1:2.5,∵AD=BC若直线l∵AD,交AB、CD于E、F根据题意和图形可知:矩形AEFD∵矩形BEFC此时这两个小矩形的相似比为AD:BC=1;根据相似图形的性质,两个相似图形中长边必定对应长边,故此时不存在其它情况;若直线l∵AB,交AD、BC于E、F此时存在两种情况:①若矩形ABFE∵矩形DCFE,如下图所示此时这两个小矩形的相似比为AB:DC=1;②若矩形BAEF∵矩形EDCF,如下图所示∵AB AEDE CD=设AB=CD=a,AE=x,则AD=2.5a,DE=2.5a x-∵2.5a xa x a=-解得:x=0.5a或x=2a当x=0.5a时,这两个小矩形的相似比为AE:CD=0.5a:a=0.5;当x=2a时,这两个小矩形的相似比为AE:CD=2a:a=2;综上:这两个小矩形的相似比为1或0.5或2.故答案为:1或0.5或2.【点睛】此题考查的是求相似图形的相似比,掌握相似多边形的性质和分类讨论的数学思想是解题关键.35.(2021·上海浦东新区·九年级一模)如果线段a、b满足52ab=,那么a bb-的值等于______.【答案】3 2【分析】根据1a b a b b -=-,再将52a b =代入计算即可. 【详解】解:∵52a b =,∵1a b a b b -=-512=-32=,故答案为:32. 【点睛】本题考查了比例的性质,将a b b-变形为1-a b 是解决本题的关键. 36.(2021·上海宝山区·九年级一模)如果线段AB 的长为2,点P 是线段AB 的黄金分割点,那么较短的线段AP =______.【答案】3【分析】设较短的线段AP x =,则BP AB AP =-,根据黄金分割点的性质列方程并求解,即可得到答案.【详解】设较短的线段AP x =∵AB 的长为2∵2BP AB AP x =-=- ∵BP AP AB BP= ∵222x x x-=- ∵()222x x -=∵3x =+3-32+>,故舍去∵(22310x -=-=≠∵3x =∵较短的线段3AP =3【点睛】本题考查了黄金分割点、分式方程、一元二次方程、二次根式的知识;解题的关键是熟练掌握黄金分割点、分式方程、一元二次方程、二次根式的性质,从而完成求解. 37.(2021·上海崇明区·九年级一模)已知53x y =,则x y y-=_____. 【答案】23 【分析】由53x y =得到53x y =,代入式子计算即可. 【详解】∵53x y =,∵53x y =,∵x y y -5233y y y -==,故答案为:23.【点睛】此题考查比例的性质,正确进行变形,熟练掌握和灵活运用相关运算法则是解题的关键.38.(2021·上海虹口区·九年级一模)点P 是线段AB 上的一点,如果2AP BP AB =⋅,那么AP AB的值是________.【分析】设AB=1,AP=x ,则BP=1-x ,代入AP 2=BP·AB 求出x 的值,最后代入AP AB即可. 【详解】解:设AB=1,AP=x ,则BP=1-x ,∵AP 2=BP·AB ∵x 2=(1-x )·1,即x 2+x -1=0,解得或(舍)∵21APAB ==. 【点睛】本题考查了成比例线段,设出合适的未知数、根据比例列式求出未知数成为解答本题的关键. 39.(2021·上海嘉定区·九年级一模)已知点P 是线段AB 的一个黄金分割点,且AP >BP ,那么AP :AB 的比值为______.【答案】12【分析】根据黄金分割的定义列即可得答案.【详解】∵点P 是线段AB 的一个黄金分割点,且AP BP >,∵AP :. 【点睛】题考查了黄金分割点的应用,把一条线段分割为两部分,使较大部分与全长的比值等于较小部分;理解黄金分割点的定义是解题的关键.40.(2021·上海宝山区·九年级一模)已知 ()2x 3y y 0=≠,那么x y y+=________. 【答案】52【分析】由已知得出比例式,表示出x ,y ,代入解答即可.【详解】由2x=3y (y≠0),可得:x y =32,所以x y y +=232+=52,故答案为52 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.三、解答题41.(2021·上海浦东新区·九年级一模)如图,已知AD //BE //CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F ,且AB=6,BC=8.(1)求DE DF的值; (2)当AD=5,CF=19时,求BE 的长.【答案】(1)37;(2)11 【分析】(1)根据AD //BE //CF 可得DE AB DF AC =,由此计算即可; (2)过点A 作AG //DF 交BE 于点H ,交CF 于点G ,得出AD=HE=GF=5,由平行线分线段成比例定理得出比例式求出BH=6,即可得出结果.【详解】解:(1)∵AD //BE //CF ,∵DE AB DF AC =,∵AB=6,BC=8,∵63687DE DF ==+, 故DE DF 的值为37; (2)如图,过点A 作AG //DF 交BE 于点H ,交CF 于点G ,∵AG //DF ,AD //BE //CF ,∵AD=HE=GF=5,∵CF=19,∵CG=CF -GF=14,∵BE //CF ,∵BH AB CG AC =,∵3147BH =,解得BH=6,∵BE=BH+HE=11. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.42.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y--=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∵22310x x y y --=,∵x y =.∵x 、y 表示线段,∵负值不符合题意,∵x y =. 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.43.(2021·上海奉贤区·九年级一模)已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.【详解】∵:2:3a b =,:3:4b c =,∵设2a k =,3b k =,4c k =,∵()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∵24a k ==,36b k ==,48c k ==.【点睛】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.。
[试卷合集3套]上海市杨浦区2021届中考复习检测数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【答案】A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B【解析】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD 是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.3.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B.C.D.【答案】B【解析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.4.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 2【答案】D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a =-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=210【答案】B【解析】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.6.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°【答案】B【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题9.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.10.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP (1点),OA=AP (1点),OA=OP (2点)三种情况讨论.∴以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有4个. 故选C. 【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题(本题包括8个小题) 11.因式分解:a 2b-4ab+4b=______.【答案】2(2)b a -【解析】先提公因式b ,然后再运用完全平方公式进行分解即可. 【详解】a 2b ﹣4ab+4b =b (a 2﹣4a+4) =b (a ﹣2)2, 故答案为b (a ﹣2)2. 【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键. 12.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式, ∴2(m-3)=±8, 解得:m=-1或1, 故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键. 13.若4a+3b=1,则8a+6b-3的值为______. 【答案】-1【解析】先求出8a+6b 的值,然后整体代入进行计算即可得解. 【详解】∵4a+3b=1,∴8a+6b=2, 8a+6b-3=2-3=-1; 故答案为:-1. 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.14.若, 则x 2+2x+1=__________. 【答案】2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可.【详解】∵-1,∴x2+2x+1=(x+1)2-1+1)2=2, 故答案为:2. 【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键. 15.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 【答案】B .【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分. 故选B .考点:1.众数;2.中位数.16.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 【答案】2.1【解析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解. 【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k ,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.17.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.【答案】1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=12×AD×DC=8,∴AD=4,又∵S△ABD=12×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=12×12(AB+CD)×AD=1,故答案为1.18.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.【答案】56【解析】解:∵AB ∥CD,34B ∠=, ∴34CDE B ∠=∠=, 又∵CE ⊥BE ,∴Rt △CDE 中,903456C ∠=-=, 故答案为56.三、解答题(本题包括8个小题)19.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【答案】(1)购进A 型台灯75盏,B 型台灯25盏;(2)当商场购进A 型台灯25盏时,商场获利最大,此时获利为1875元.【解析】试题分析:(1)设商场应购进A 型台灯x 盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y 元,然后求出y 与x 的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A 型台灯x 盏,则B 型台灯为(100﹣x )盏, 根据题意得,30x+50(100﹣x )=3500, 解得x=75, 所以,100﹣75=25,答:应购进A 型台灯75盏,B 型台灯25盏; (2)设商场销售完这批台灯可获利y 元, 则y=(45﹣30)x+(70﹣50)(100﹣x ), =15x+2000﹣20x , =﹣5x+2000,∵B 型台灯的进货数量不超过A 型台灯数量的3倍, ∴100﹣x≤3x , ∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.20.如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,∠ACD=120°.求证:CD是O 的切线;若O的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)图中阴影部分的面积为2 3π.【解析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC=2602360π⨯=23π.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD22OD OC-23∴S Rt△OCD=12OC×CD=12×2×233∴图中阴影部分的面积为:23π. 21.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.22.济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y (单位:m )与滑行时间x (单位:s )之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m ,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.【答案】(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y =840时,2x 2+2x =840,解得:x =20(负值舍去),即他需要20s 才能到达终点;(2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23.先化简,再求值:2214422x x x x x x x -÷-++++,其中x=2﹣1. 【答案】21-.【解析】试题分析:试题解析:原式=2221(2)2x x x x x x +-⨯-++ =122x x x x --++ =12x + 当x=21-时,原式=21212=--+. 考点:分式的化简求值.24.如图,抛物线y=-x 2+bx+c 的顶点为C ,对称轴为直线x=1,且经过点A (3,-1),与y 轴交于点B .求抛物线的解析式;判断△ABC 的形状,并说明理由;经过点A 的直线交抛物线于点P ,交x 轴于点Q ,若S △OPA =2S △OQA ,试求出点P 的坐标.【答案】(1)y=-x 2+2x+2;(2)详见解析;(3)点P 的坐标为(21)、(2,1)、(6,-3)或(1-6,-3).【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.【详解】解:(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=32,BC=2,AC=25,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=12,∴P(1+2,1)或(1-2,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±6,∴P(1+6,-3),或(1-6,-3),综上可知:点P的坐标为(1+2,1)、(1-2,1)、(1+6,-3)或(1-6,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.25.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【答案】(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.26.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【答案】(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【答案】D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.2.滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【答案】D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.3.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【答案】C【解析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.4.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm【答案】D【解析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2,∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高, ∴OF CD OE AB =,即2126CD =, 解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.5. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .【答案】C 【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】A【解析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤16【答案】C 【解析】试题解析:由于△ABC 是直角三角形,所以当反比例函数k y x =经过点A 时k 最小,进过点C 时k 最大,据此可得出结论.∵△ABC 是直角三角形,∴当反比例函数k y x=经过点A 时k 最小,经过点C 时k 最大, ∴k 最小=1×2=2,k 最大=4×4=1,∴2≤k≤1.故选C .8.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y 的最大值是( )A .0B .3C .﹣3D .﹣7【答案】B【解析】由于一次函数y=-2x+3中k=-2<0由此可以确定y 随x 的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y 随x 的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B .【点睛】本题考查了一次函数y=kx+b 的图象的性质:①k >0,y 随x 的增大而增大;②k <0,y 随x 的增大而减小.9.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+【答案】A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】解:大正方形的面积-小正方形的面积=22a b -,矩形的面积=()()a b a b +-,故22()()a b a b a b +-=-,故选:A .【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.10.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A .2cmB .3cmC .6cmD .7cm 【答案】D【解析】先求AC,再根据点D 是线段AC 的中点,求出CD ,再求BD.【详解】因为,AB=10cm ,BC=4cm ,所以,AC=AB-BC=10-4=6(cm )因为,点D 是线段AC 的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm )故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.如果m ,n 互为相反数,那么|m+n ﹣2016|=___________.【答案】1.【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n ﹣1|,∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质.12.12的相反数是______. 【答案】﹣12. 【解析】根据只有符号不同的两个数叫做互为相反数解答. 【详解】12的相反数是12-.故答案为1 2 -.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.13.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.【答案】22.5【解析】连接半径OC,先根据点C为BE的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=12×45°,可得结论.【详解】连接OC,∵OE⊥AB,∴∠EOB=90°,∵点C为BE的中点,∴∠BOC=45°,∵OA=OC,∴∠A=∠ACO=12×45°=22.5°,故答案为:22.5°.【点睛】本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.14.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.15.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .【答案】200【解析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴22OA AC -22500400-=300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.16.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____. 【答案】12【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2 -1 1 2 -22 -2 -4 -12 -1 -2 1 -2 -1 2。
杨浦数学一模(定稿)2021
1杨浦区2021学年度第一学期高三年级模拟质量调研数学学科试卷 2021.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果. 1. 函数sin(2)3y x π=+的最小正周期T = .2. 已知集合{}1,2,3,4A =,5,R 2B x x x ⎧⎫=≤∈⎨⎬⎩⎭,则A B = . 3. 已知函数1()2x f x x -=+的反函数为1()f x -,则1(0)f -= . 4. 若双曲线221y x m-=的渐近线方程为2y x =±,则实数m = . 5. 在6(12)x +的二项展开式中,2x 项的系数为 .6. 已知圆锥的底面半径为1,母线长为3,则圆锥的体积为 .7. 已知复数z 满足:20ii z++=(i 为虚数单位),则z = . 8. 方程233log (1)2log (1)x x -=+-的解为x = .9. 某市高考新政规定每位学生在物理、化学、生物、历史、政治、地理中选择三门作 为等级考试科目,则甲、乙两位学生等级考试科目恰有一门相同的不同选择共有 种.(用数字作答)10. 在ABC ∆中,三边a 、b 、c 所对的三个内角分别为A 、B 、C ,若3a =,b =2B A =,则边长c = .2D 1DNMC 1B 1A 1C BA 11. 在平面直角坐标系中,已知点(1,0)A -、(0,3)B ,E F 、为圆224x y +=上两个动点,且4EF =,则AE BF ⋅的最大值为 . 12. 无穷等差数列{}n a 满足:①10a <,232a >;②在区间(11,20)中的项恰好比区间[41,50]中的项少2项,则数列{}n a 的通项公式为n a = .二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 关于x 、y 的二元一次方程组23341x y x y +=⎧⎨+=-⎩的增广矩阵为 ( )A.1234⎛⎫⎪⎝⎭; B. 1234; C. 123341-⎛⎫⎪⎝⎭; D. 123341⎛⎫⎪-⎝⎭. 14. 记数列{}n a 的通项公式为(1)20212120221n n n a n n n ⎧-≤⎪=⎨+≥⎪+⎩ n N *∈,则数列{}n a 的极限为 ( ) A .1-; B .1; C .2; D .不存在.15. 如图,在正方体1111ABCD A B C D -中,点M N 、分别在棱11AA CC 、上,则“直线MN ⊥直线1C B ”是“直线MN ⊥平面1C BD ”的 ( ) A .充分非必要条件; B .必要非充分条件 ; C .充要条件; D .既不充分又不必要条件.3NM C 1B 1A 1CBA16. 已知非空集合,A B 满足:A B R =,A B =∅,函数2()21x x Af x x x B⎧∈=⎨-∈⎩,对于下列两个命题:①存在唯一的非空集合对(,)A B ,使得()f x 为偶函数;②存在无穷多非空集合对(,)A B ,使得方程()2f x =无解. 下面判断正确的是 ( ) A .①正确,②错误; B .①错误,②正确; C .①、②都正确; D .①、②都错误.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,直三棱柱111ABC A B C -的底面为直角三角形且90ACB ∠=︒,直角边CA CB 、的长分别为34、,侧棱1AA 的长为4,点M 、N 分别为线段11A B 、11C B 的中点. (1)求证:,,,A C N M 四点共面;(2)求直线1AC 与平面ACNM 所成角的大小.418.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()sin cos f x x x ωω=+.(1) 若2ω=,求函数()f x 在[0,]π上的零点;(2) 已知1ω=,函数()2()()g x f x x =+,[0,]4x π∈,求函数()g x 的值域.19.(本题满分14分,第1小题满分6分,第2小题满分8分)为了防止某种新冠病毒感染,某地居民需服用一种药物预防。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵cosA=பைடு நூலகம்,
∴AB=AC· = ,
故选:B.
【点睛】
本题考查了余弦函数的定义,理解定义是关键.
3.D
【分析】
根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.
【详解】
解:A.∵ // , // ,∴ ∥ ,故本选项错误;
B.∵ ∴ ∥ ,故本选项错误.
C.∵ ,∴ ∥ ,故本选项错误;
A. B. C. D.
3.已知 , 和 都是非零向量,下列结论中不能判定 ∥ 的是()
A. // , // B. C. D.
4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()
A.3:5:4B.3:6:5C.1:3:2D.1:4:2
D.∵ ,∴ 与 的模相等,但不一定平行,故本选项正确;
故选:D.
【点睛】
本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.
4.C
2021年上海市杨浦区中考数学一模试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.将抛物线 向左平移1个单位,所得抛物线解析式是()
A. B. C. D.
2.在Rt 中,∠C=90°,如果AC=2, ,那么AB的长是()
A.AE=2DEB. C. D.
二、填空题
7.如果 ,那么锐角 ____________度
8.如果抛物线 经过原点,那么 ______.
9.二次函数 的图像与y轴的交点坐标为____________
10.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1_____y2.(填“>”“<”或“=”)
16.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA= ,则CD=_____.
17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
5.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离 (米)的函数解析式是 ,那么水珠的高度达到最大时,水珠与喷头的水平距离是()
A.1米B.2米C.5米D.6米
6.如图,在正方形ABCD中, 是等边三角形,AP、BP的延长线分别交边CD于点E、F,联结AC、CP、AC与BF相交于点H,下列结论中错误的是()
23.如图,已知在 中,AD是 的中线,∠DAC=∠B,点E在边AD上,CE=CD.
(1)求证: ;
(2)求证: .
24.已知在平面直角坐标系 中,抛物线 与 轴交于点A、B(点A在点B的左侧),且AB=6.
(1)求这条抛物线的对称轴及表达式;
(2)在y轴上取点E(0,2),点F为第一象限内抛物线上一点,联结BF、EF,如果 ,求点F的坐标;
21.如图,已知在 中,∠ACB=90°, ,延长边BA至点D,使AD=AC,联结CD.
(1)求∠D的正切值;
(2)取边AC的中点E,联结BE并延长交边CD于点F,求 的值.
22.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度.他们先在点 用高1.5米的测角仪 测得塔顶 的仰角为30°,然后沿 方向前行 到达点 处,在 处测得塔顶 的仰角为60°.请根据他们的测量数据求此塔 的高.(结果精确 ,参考数据: , , ).
(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在 轴上且在点B左侧,如果直线PF与y轴的夹角等于∠EBF,求点P的坐标.
25.已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC,在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.
(1)求该抛物线的表达式;
(2)如果将该抛物线平移,使它的顶点移到点M(2,4)的位置,那么其平移的方法是____________.
20.如图,已知在梯形ABCD中,AB//CD,AB=12,CD=7,点E在边AD上, ,过点E作EF//AB交边BC于点F.
(1)求线段EF的长;
(2)设 , ,联结AF,请用向量 表示向量 .
14.如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为____________米
15.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)
(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;
(2)当点P在射线BA上时,设 ,求y关于 的函数解析式及定义域;
(3)联结PQ,直线PQ与直线BC交于点E,如果 与 相似,求线段BP的长.
参考答案
1.B
【详解】
抛物线y=x2向左平移1个单位得到 ,
故选B.
2.B
【分析】
根据余弦函数的定义即可直接求解.
11.在比例尺为1:8000 000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为____________千米
12.已知点P是线段AB上的一点,且 ,如果AB=10cm,那么BP=_____cm
13.已知点G是 的重心,过点G作MN//BC分别交边AB、AC于点M、N,那么 ________
18.在Rt 中,∠A=90°,AC=4, ,将 沿着斜边BC翻折,点A落在点 处,点D、E分别为边AC、BC的中点,联结DE并延长交 所在直线于点F,联结 ,如果 为直角三角形时,那么 ____________
三、解答题
19.抛物线 中,函数值y与自变量 之间的部分对应关系如下表:
…
0
1
…
y
…
0
…