不确定性推理方法
不确定性推理方法
不确定性推理是一种在不确定情况下进行推理的方法,是人工智能领域中的一个重要分支。
它是基于对不确定性的建模,使用数学方法对不确定的信息进行推理的过程。
不确定性推理的应用非常广泛,在计算机科学、统计学、人工智能等领域都有广泛的应用。
它可以用于解决各种类型的推理问题,例如:
决策支持:通过不确定性推理,可以对决策过程中的不确定信息进行推理,为决策者提供支持。
建模和预测:不确定性推理可以用于对复杂的系统进行建模,并预测未来的发展趋势。
诊断和故障排除:不确定性推理可以用于诊断系统故障,并提供
解决矛盾问题:不确定性推理可以用于解决矛盾问题,例如两个相互矛盾的命题的真假性判定。
自然语言理解:不确定性推理可以用于自然语言理解,例如解决句子的歧义问题。
模式识别:不确定性推理可以用于模式识别,例如识别图像中的物体。
不确定性推理方法有许多种,其中包括贝叶斯网络、规则基系统、不确定性推理语言、随机游走模型等。
贝叶斯网络是一种用于不确定性推理的图形模型,它基于贝叶斯定理,通过对条件概率进行建模,可以对不确定的信息进行推理。
规则基系统是一种基于规则的不确定性推理方法,它使用规则来描述系统的知识,并使用规则来对不确定的信息进行推理。
不确定性推理语言是一种用于表示不确定信息的语言,常见的不确定性推理语言有PROLOG 和Fuzzy Logic。
随机游走模型是一种基于随机游走的不确定性推理方法,它通过模拟随机游走的过程,对不确定的信息进行推理。
在实际应用中,不确定性推理方法通常需要与其他方法结合使用,才能得到最优的结果。
例如,在人工智能系统中,不确定性推理方法常常与机器学习方法结合使用,以获得更好的结果。
不确定性推理
2021/5/15
14
不确定性推理方法分类
对于数值方法,按其依据的理论不同又可分为以下两类: 1、基于概率的方法:是基于概率论的有关理论发展起来的 方法,如可信度方法、主观Bayes方法、证据理论等; 2、模糊推理:是基于模糊逻辑理论发展起来的可能性理论 方法
2021/5/15
24
可信度方法---CF模型
CF是由称为信任增长度MB和不信任增长度MD 相减而来的。即
CF(H,E)=MB(H,E)-MD(H,E)
1 MB(H,E) max(P(H E),P(H))P(H)
1P(H)
当P(H)=1 否则
1 MD(H,E) min(P(H E),P(H))P(H)
P(H)
2021/5/15
当P(H)=0 否则
25
可信度方法---CF模型
当MB(H,E)>0,表示由于证据E的出现增加了 对H的信任程度。当MD(H,E)>0,表示由于证 据E的出现增加了对H的不信任程度。由于对同 一个证据E,它不可能既增加对H的信任程度又 增 加 对 H 的 不 信 任 程 度 , 因 此 , MB(H,E) 与 MD(H,E)是互斥的,即
H 表示规则的结论部分,即假设 C F( H, E ) 表示规则的精确程度或可信度。 任何一个不确定性推理模型必须解决三个问题:
前提(证据,事实)的不确定性描述 规则(知识)的不确定性描述 不确定性的更新算法
2021/5/15
17
不确定性推理模型基本结构
证据的不确定性 C F( E ) ,表示证据E为真的程度。需 定义其在三种典型情况下的取值: E 为真 E 为假 对 E 一无所知 ( 该情况下的取值称为证据的单位元 e(E) )
确定性与不确定性推理主要方法-人工智能导论
确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论 H 为真的可信度,则 CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
不确定性推理方法(导论)
(1)在每一步推理中,如何把证据及知识的不确定性 传递给结论。
(2)在多步推理中,如何把初始证据的不确定性传递 给最终结论。
5. 结论不确定性的合成
9
第4章 不确定性推理方法
4.1 不确定性推理的基本概念 4.2 可信度方法 4.3 证据理论 4.4 模糊推理方法
10
则 CF (E)=min{CF (E1), CF (E2 ),..., CF (En )} ▪ 组合证据:多个单一证据的析取
E=E1 OR E2 OR … OR En 则 CF (E)=max{ CF (E1), CF (E2 ), ,CF (En )}
17
4.2 可信度方法
4. 不确定性的传递算法
下面首先讨论不确定性推理中的基本问题,然后着 重介绍基于概率论的有关理论发展起来的不确定性 推理方法,主要介绍可信度方法、证据理论,最后 介绍目前在专家系统、信息处理、自动控制等领域 广泛应用的依据模糊理论发展起来的模糊推理方法。
2
第4章 不确定性推理方法
4.1 不确定性推理的基本概念 4.2 可信度方法 4.3 证据理论 4.4 模糊推理方法
Introduction of Artificial Intelligence
第 4 章 不确定性推理方法
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017. 7
第4章 不确定性推理方法
现实世界中由于客观上存在的随机性、模糊性,反 映到知识以及由观察所得到的证据上来,就分别形 成了不确定性的知识及不确定性的证据。因而还必 须对不确定性知识的表示及推理进行研究。这就是 本章将要讨论的不确定性推理。
7
4.1 不确定性推理中的基本问题
不确定性知识的表示与推理技术
由r2可得: CF2(H)=0.8×0.9=0.72
从而 CF1,2(H)=0.32+0.72-0.32×0.72=0.8096
这就是最终求得的H的可信度。
2024/10/13
25
4.3主观贝叶斯方法(1)
简介 主观贝叶斯方法是R.O.Duda等人1976年提出的一种
表示因与前提条件E匹配的证据的出现,使结论H为真的不 信任增长度。MD定义为:
1
当P(H )=0
MD(H ,
E)
min{P( H
| E), P(H P(H )
)}
P(H
)
否则
2024/10/13
15
4.2.1知识的不确定性表示(4)
由MB、MD得到CF(H,E)的计算公式:
1
当P(H )=1
• LS 称为充分性量度,用于指出 E 对 H 的支持程度,取值范围 为 [ 0, ∞ ),其定义为: LS = P(E/H) P(E/H)
LS 的值由领域专家给出,具体情况在下面论述。
• LN 称为必要性量度,用于指出 E 对 H 的支持程度,取值范 围为 [ 0, ∞ ),其定义为:
P( E/H)
若由于相应证据的出现增加结论 H 为真的可信度,则使 CF(H,E)>0,证据的出现越是支持 H 为真,就使CF(H,E)的值越 大;
反之,使CF(H,E)<0,证据的出现越是支持 H 为假,就使CF(H,E) 的值越小;
若证据的出现与否与 H 无关,则使 CF(H,E)=0。
2024/10/13
若 CF1(H) 与 CF2(H) 异号
2024/10/13
2不确定性推理1基本概念2不确定性推理中的基本问题不确定
2 不确定性推理中的基本问题
1. 不确定性的表示与度量
不确定性推理中的“ 不确定性推理中的“不确定性” 不确定性”一般分为两类: 一般分为两类:一是知 识的不确定性, ,一是证据的不确定性。 识的不确定性 一是证据的不确定性。 知识不确定性的表示: 知识不确定性的表示:目前在专家系统中知识的不确定 性一般是由领域专家给出的, 性一般是由领域专家给出的,通常用一个数值表示, 通常用一个数值表示,它 表示相应知识的不确定性程度, 表示相应知识的不确定性程度,称为知识的静态强度。 称为知识的静态强度。 证据不确定性的表示: 证据不确定性的表示:证据不确定性的表示方法与知识 不确定性的表示方法一致, 不确定性的表示方法一致,通常也用一个数值表示, 通常也用一个数值表示,代 表相应证据的不确定性程度, 表相应证据的不确定性程度,称之为动态强度。 称之为动态强度。
第四章2
基本概念 概率方法 可信度方法
不确定性推理
1 基本概念
什么是不确定性推理 不确定性推理是建立在非经典逻辑基础 上的一种推理, 上的一种推理,它是对不确定性知识的 运用与处理。 运用与处理。 具体地说, 具体地说,所谓不确定性推理就是从不 确定性的初始证据( 确定性的初始证据(即事实) 即事实)出发, 出发,通 过运用不确定性的知识, 过运用不确定性的知识,最终推出具有 一定程度不确定性的结论。 一定程度不确定性的结论。
8
7
概率推理方法 概率推理方法
经典概率方法要求给出条件概率P(H/E),在实际 中通常比较困难。 中通常比较困难。例如E代表咳嗽, 代表咳嗽,H代表支气管 炎,则P(H/E)表示在咳嗽的人群中患支气管炎的 概率, 概率,这个比较困难, 这个比较困难,因为样本空间太大。 因为样本空间太大。而逆 概率P(E/H)表示在得支气管炎的人群中咳嗽的概 率,这个就比较容易获得。 这个就比较容易获得。 我们可以根据Bayes定理从P(E/H)推出P(H/E)
人工智能第4章(不确定性推理方法)
例:容器里的球
现分别有 A,B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球。
现已知从这两个容器里任意抽出了一个球,且是红球, 问:这个红球是来自容器 A 的概率是多少?
假设已经抽出红球为事件 B,从容器 A 里抽出球为事件 A, 则有:P(B) = 8 / 20 P(A) = 1 / 2 P(B | A) = 7 / 10,
证据(前提)的不确定性表示 规则的不确定性表示 推理计算---结论的不确定性表示
11
证据的不确定性度量
单个证据的不确定性获取方法:两种 初始证据:由提供证据的用户直接指定,用可信度因子对 证据的不确定性进行表示。如证据 E 的可信度表示为 CF(E)。 如对它的所有观测都能肯定为真,则使CF(E)=1;如能肯定 为假,则使 CF(E)=-1 ;若它以某种程度为真,则使其取小 于1的正值,即0< CF(E)<1;若它以某种程度为假,则使其 取大于 -1 的负值,即-1< CF(E)<0; 若观测不能确定其真假, 此时可令CF(E)=0。
P (H | E) - P (H) , 当 P (H | E) P (H) 1 P (H) CF(H, E) P (H | E) - P (H) , 当P (H | E) P (H) P (H)
15
确定性方法
规则
规则的不确定性表示 证据(前提)的不确定性表示 推理计算—结论的不确定性表示
24
规则
(推理计算 4)
CF(E) < =0,
规则E H不可使用,即此计算不必进行。
0 < CF(E) <= 1,
人工智能及其应用-不确定性推理方法-证据理论
Bel({红,黄}) M ({红}) M ({黄}) M ({红,黄})
0.3 0.2 0.5
Pl({蓝}) 1 Bel({蓝}) 1 Bel({红,黄})=系
因为
Bel( A) +Bel(¬A) =∑M (B) +∑M (C)
则: K 1 M1(x)M 2 ( y) x y 1 [M1({黑})M 2 ({白}) M1({白})M 2 ({黑})]
1 [0.3 0.3 0.5 0.6] 0.61
M ({黑}) K 1 M1(x)M 2 ( y)
0.161x[My{1黑({}黑})M 2 ({黑}) M1 ({黑})M 2 ({黑,白})
Pl(A) :对A为非假的信任程度。
8 A(Bel(A), Pl(A)) :对A信任程度的下限与上限。
8
概率分配函数的正交和(证据的组合)
定义4.4 设 M1和 M 2 是两个概率分配函数;则其正交 和 M =M1⊕M2 : M (Φ) 0
M ( A) K 1
M1(x)M2( y)
x yA
B⊆A
C⊆¬A
≤∑M (E) =1
B⊆D
所以 Pl( A) Bel( A) 1 Bel(A) Bel( A)
1 (Bel(A) Bel( A)) 0
∴所以 Pl( A) ≥Bel( A)
A(0,0);A(0,1)
Bel(A) :对A为真的信任程度。
A(1,1);A(0.25,1) A(0,0.85);A(0.25,0.85)
1981年巴纳特(J. A. Barnett)把该理论引入专家系 统中,同年卡威(J. Garvey)等人用它实现了不确定 性推理。
人工智能原理教案03章 不确定性推理方法3.2.3证据理论
3.4证据理论0. 前言●主观Bayes方法必须给出先验概率。
●Dempster和Shafer提出的证据理论,可用来处理这种由不知道所引起的不确定性。
●证据理论采用信任函数而不是概率作为不确定性度量,它通过对一些事件的概率加以约束来建立信任函数而不必说明精确的难于获得的概率。
●证据理论满足比概率论更弱的公理系统,当这种约束限制为严格的概率时(即概率值已知时),证据理论就退化为概率论了。
1. 证据的不确定性度量(1) 基本理论辨别框概念:设U为假设x的所有可能的穷举集合,且设U 中的各元素间是互斥的,我们称U为辨别框(Frame of discernment)。
设U的元素个数为N,则U的幂集合2U的元素个数为2N,每个幂集合的元素对应于一个关于x取值情况的命题(子集)。
对任一A U,命题A表示了某些假设的集合(这样的命题间不再有互斥性)。
针对医疗诊断问题,U就是所有可能疾病(假设)的集合,诊断结果必是U 中确定的元素构成的。
A 表示某一种(单元素)或某些种疾病。
医生为了进行诊断所进行的各种检查就称作证据,有的证据所支持的常不只是一种疾病而是多种疾病,即U 的一子集A 。
定义1:基本概率分配函数(Basic probability assignment ):对任一个属于U 的子集A (命题),命它对应于一个数m ∈[0,1],而且满足∑⊆==ΦUA A m m 1)(0)(则称函数m 为幂集2U 上的基本概率分配函数bpa ,称m(A)为A 的基本概率数。
m(A)表示了证据对U 的子集A 成立的一种信任的度量,取值于[0,1],而且2U 中各元素信任的总和为1。
m(A)的意义为● 若A ⊂U 且A ≠U ,则m(A)表示对A 的确定信任程度。
● 若A=U ,则m(A)表示这个数不知如何分配(即不知道的情况)。
例如,设U={红,黄,白},2U 上的基本概率分配函数m 为m ({ },{红},{黄},{白},{红,黄},{红,白},{黄,白},{红,黄,白})=(0,0.3,0,0.1,0.2,0.2,0,0.2)其中,m({红})=0.3 表示对命题{红}的确定信任度。
4_2 不确定性推理
不确定性推理的问题
(3) 不确定性的传递算法
在每一步推理中,如何把证据及知识的不确定性传递给 结论 在多步推理中,如何把初始证据的不确定性传递给最终 结论
把当前推出的结论及其不确定性程度作为证据放入数 据库中,在以后的推理中,它又作为证据推出进一步 的结论,由此一步步进行推理,把初始证据的不确定 性传递给最终结论。
2) 量度范围的指定应便于领域专家及用户对不确定性的估 计的程度。
3) 要便于对不确定性的传递进行计算,而且对结论算出的 不确定性量度不能超出量度规定的范围。 4) 量度的确定应是直观的且有理论依据。
不确定性推理的问题
(2) 不确定性匹配算法及阈值的选择
如何确定是否匹配?
• 不确定性匹配算法:计算匹配双方相似程度的算法 • 阈值:相似的“限度”
(5) People were demonstrating and seniors were asked, on campus, to stop them .
(6)People were demonstrating and seniors were asked, to stop them from doing so on campus (although they could do it elsewhere)
模 型 方 法
非 数 值 方 法
框架推理 语义网络推理 常识推理 … 可信度方法
数 值 方 法 控制方法
基于概率的方法
主观Bayes方法
证据理论
模糊推理
不确定性推理方法的类型
1) 主观 Bayes 方法
利用新的信息将先验概率P(H)更新为后验概率P(H|E)的 一种计算方法
由 Duda 等人于 1976 年提出,其首先在Prospector专家 系统中使用,它以概率论中的 Bayes公式为基础。 核心思想: 根据证据的概率P(E),利用规则的(LS,LN),把结 论 H 的先验概率更新为后验概率 P(H|E)
(完整版)不确定性推理推理方法
CF(H,E):是该条知识的可信度,称为可信度因子或 规则强度,静态强度。
CH(H,E) 在[-1,1]上取值,它指出当前提条件 E 所 对应的证据为真时,它对结论为真的支持程度。
例如: if 头痛 and 流涕 then 感冒(0.7)
表示当病人确有“头痛”及“流涕”症状时,则有7 成的把握认为 他患了感冒。
MD:称为不信任增长度,它表示因与前提条件E匹 配的证据的出现,使结论H为真的不信任增长度。
在 C-F 模型中,把CF(H,E)定义为:
CF(H,E)=MB(H,E) – MD(H,E)
MB:称为信任增长度,它表示因与前提条件 E 匹 配的证据的出现,使结论H为真的信任增长度。
MB定义为:
MB(H,E)=
1 Max{P(H/E), P(H)} – P(H)
1 – P(H)
若P(H)=1 否则
性。
3. 可信度方法
(1) 可信度 根据经验对一个事物或现象为真的相信程度。
(2) C-F模型 C-F 模型是基于可信度表示的不确定性推理的基本方法。
Ⅰ. 知识不确定性的表示
在C-F模型中,知识是用产生式规则表示的,其一般 形式是:
if E then H (CF(H, E)) 其中,
E:是知识的前提条件,它既可以是一个单个条件, 也可以是用 and 及 or 连接起来的复合条件;
* 证据的不确定性表示方法应与知识的不确定性表 示方法保持一致,以便于推理过程中对不确定性进行统 一处理。
• 不确定性的量度
对于不同的知识和不同的证据,其不确定性的程度 一般是不相同的,需要用不同的数据表示其不确定性的 程度,同时还要事先规定它的取值范围。
《不确定性推理》PPT课件
2020/11/2
5
不确定性推理中的基本问题
• 要实现对不确定性知识的处理,必须要解决不确定知识的表示问题,不确定信息的计 算问题,以及不确定性表示和计算的语义解释问题。
1.表示问题 2. 计算问题
表达要清楚。表示方法规则不仅 仅是数,还要有语义描述。
不确定性的传播和更新。也是获取
新信息的过程。
3. 语义问题
个事件发生)的可能性程度是0.9。
• 在实际应用2020中/11,/2 知识的不确定性是由领域专家给出的。 8
知识的不确定性表示
(2)不确切性知识的表示
•
对于不确切性,一般采用程度或集合来刻划。所谓
程度就是一个命题中所描述的事物的属性、状态和关系等的
强度。
• 例如,我们用三元组(张三,体型,(胖,0.9))表示命题 “张三比较胖”,其中的0.9就代替“比较”而刻划了张三 “胖”的程度。
不确定性推理
• 现实世界中的大多数问题是不精确、非完备的。对于这些问题,若采用精确性推理方 法显然是无法解决的。为此,人工智能需要研究不精确性的推理方法,以满足客观问 题的需求。
2020/11/2
1
本章内容
1.不确定性推理概论
不确定性及其类型 不确定性推理概念
2.不确定性推理中的基本问题
表示问题 计算问题
• 概率方法: P(A1∧A2)= P(A1)×P (A2)
P(A1∨A2)= P(A1)+ P(A2)- P(A1)×P (A2)
• 有界方法:20P20(/A111/∧2 A2)=max(0,P(A1)+P (A2)-1)
11
P(A1∨A2)=min(1,P(A1)+P (A2))
人工智能及其应用-不确定性推理方法-可信度方法
7
7
C-F模型
2. 证据不确定性的表示
静态强度CF(H,E):知识的强度,即当 E 所对应
的证据为真时对 H 的影响程度。 动态强度 CF(E):证据 E 当前的不确定性程度。
8
8
C-F模型
3. 组合证据不确定性的算法
组合证据:多个单一证据的合取
E=E1 AND E2 AND … AND En 则 CF (E)=min{CF (E1), CF (E2 ),..., CF (En )} 组合证据:多个单一证据的析取
0.28
15
CF (H , E):可信度因子(certainty factor),反映前提
条件与结论的联系强度 。
IF 头痛 AND 流涕 THEN 感冒 (0.7)
5 5
C-F模型
1. 知识不确定性的表示
CF(H,E)的取值范围: [-1,1]。 若由于相应证据的出现增加结论 H 为真的可信度, 则 CF(H,E)> 0,证据的出现越是支持 H 为真, 就使CF(H,E) 的值越大。 反之,CF(H,E)< 0,证据的出现越是支持 H 为 假,CF(H,E)的值就越小。 若证据的出现与否与 H 无关,则 CF(H,E)= 0。
不确定性推理方法
• 不确定性推理的基本概念 • 概率方法
可信度方法
• 证据理论 • 主观Bayes方法
1
1
可信度方法
• 1975年肖特里菲(E. H. Shortliffe)等人在 确定性理论(theory of confirmation)的基 础上,结合概率论等提出的一种不确定性 推理方法。
• 优点:直观、简单,且效果好。
H H
人工智能第四章不确定性推理
– 如制导回溯、启发式搜索等等
2016-1-22
史忠植 人工智能:不确定性推理
5
内容提要
4.1 概述 4.2 可信度方法 4.3 主观贝叶斯方法 4.4 证据理论 4.5 模糊逻辑和模糊推理 4.6 小结
2016-1-22
史忠植 人工智能:不确定性推理
6
知识的不确定性表示
• 产生式规则:
If E Then H (CF(H, E))
MB(H,E)= m-a--x-{-P--(-H--1-|-E-P-)-(,-H-P-)-(-H--)-}--–---P--(-H--)--- 否则
• MD的定义:
1
若P(H)=0
MD(H,E)= m-i-n---{-P--(-H---P|-E-(-)H-,-)P--(-H--)-}--–---P--(-H--)--- 否则
信度CF(H)
2016-1-22
史忠植 人工智能:不确定性推理
15
结论不确定性合成算法
• r1: if E1 then H (CF(H,E1))
r2: if E2 then H (CF(H,E2)) 求合成的CF(H)
(ห้องสมุดไป่ตู้)首先对每条知识求出CF(H),即:
CF1(H)=CF(H,E1) max{0, CF(E1)} CF2(H)=CF(H,E2) max{0, CF(E2)}
• 已知C(A), AB f(B,A),如何计算C(B)
• 已知C1(A),又得到C2(A),如何确定C(A)
• 如何由C(A1),C(A2)计算C(A1A2), C(A1A2)
–语义问题: 指的是上述表示和计算的含义是
什么,如何进行解释.
2016-1-22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( H i
︳ E
1
E2 Em ) =
P ( E1 ︳ H i ) P( E 2 ︳ H i ) P( E m ︳ H i ) P( H i )
∑ P( E1 ︳H j ) P( E 2 ︳H j ) P( Em ︳H j ) P( H j )
1 j=
n
i 1,2,, n
普通关系:两个集合中的元素之间是否有关联,
4.4.4 模糊关系与模糊关系的合成
1.模糊关系
模糊关系的定义 : A、B:模糊集合,模糊关系用叉积表示:
R : A B 0,1
叉积常用最小算子运算:
AB (a, b) min A (a), B (b)
A、B:离散模糊集,其隶属函数分别为:
身高与体重的模糊关系表
从X到Y的一个模糊关系R, 用模糊矩阵表示:
1 0.8 R 0.2 0.1 0 0.8 1 0.8 0.2 0.1 0.2 0.8 1 0.8 0.2 0.1 0 0.2 0.1 0.8 0.2 1 0.8 0.8 1
22
25
4.4.4 模糊关系与模糊关系的合成
2.模糊关系的合成
例8 设模糊集合 X {x1, x2 x3 , x4}, Y { y1 , y2 , y3}, Z {z1, z2}
Q X Y , R Y Z , S X Z , 求S。
0.5 0.7 Q 0 1 0.6 0.3 0.4 1 0.8 0 0.2 0.9
7
教学内容设计
可信度方法
1975 年肖特里菲等人在确定性理论的基础上, 结合概率论等提出的一种不确定性推理方法。 优点:直观、简单,且效果好。
产生式规则表示:
IF
E
THEN
H
(CF ( H , E ))
CF ( H , E ) :可信度因子( certainty factor ),反映前提 条件与结论的联系强度 。
16
4.4.1 模糊逻辑的提出与发展
1983年日本Fuji Electric公司实现了饮水处理装置的 模糊控制。
1987年日本 Hitachi公司研制出地铁的模糊控制系统。 1987 年- 1990 年在日本申报的模糊产品专利就达 319种。 目前,各种模糊产品充满日本、西欧和美国市场, 如模糊洗衣机、模糊吸尘器、模糊电冰箱和模糊摄 像机等。
1.0
0.6
0.0]
24
ቤተ መጻሕፍቲ ባይዱ.4.4 模糊关系与模糊关系的合成
1. 模糊关系
1.0 0.7 0.8 0.7 R 0.5 0.7 0.2 0.7 0.0 0.7
1.0 1.0 0.8 1.0 0.5 1.0 0.2 1.0 0.0 1.0
知识: IF E THEN (LS,LN)
H (P(H))
( LS , LN )
LS
:规则强度
——规则成立的充分性度量
P(E H) P(E H)
1- P (E∣H) LN = P(E H) 1- P ¬ H) (E∣ ——规则成立的必要性度量
6
P(E H)
教学内容设计
主观Bayes方法的主要优点:
0.2 1 R 0 . 8 0 . 4 0.5 0.3
26
4.4.4 模糊关系与模糊关系的合成
2. 模糊关系的合成
解:
0 . 5 0 . 6 0 .3 0 . 7 0 . 4 1 0 .2 1 0 .8 0 .4 S QR 0 0 .8 0 0 .5 0 .3 1 0 . 2 0 .9 (0.5 0.2) (0.6 0.8) (0.3 0.5) (0.5 1) (0.6 0.4) (0.3 0.3) (0.7 0.2) (0.4 0.8) (1 0.5) ( 0 . 7 1 ) ( 0 . 4 0 . 4 ) ( 1 0 . 3 ) (0 0.2) (0.8 0.8) (0 0.5) (0 1) (0.8 0.4) (0 0.3) ( 1 0 . 2 ) ( 0 . 2 0 . 8 ) ( 0 . 9 0 . 5 ) ( 1 1 ) ( 0 . 2 0 . 4 ) ( 0 . 9 0 . 3 ) 0 .6 0 .5 0 .5 0 .7 0 .8 0 .4 0 . 5 1
4.1 不确定性推理的基本概念
4.2 可信度方法 4.3 证据理论 4.4 模糊推理方法
12
4.4 模糊推理方法
4.4.1 模糊逻辑的提出与发展
4.4.2 模糊集合
4.4.3 模糊集合的运算
4.4.4 模糊关系与模糊关系的合成
4.4.5 模糊推理 4.4.6 模糊决策
13
4.4.1 模糊逻辑的提出与发展
采用Zadeh表示法:
u 50 2 1 O [1 ( ) ] u 5 50 200
Y
0 25
1 u
25 200
[1 (
u 25 2 1 ) ] u 5
21
4.4.4 模糊关系与模糊关系的合成
1.模糊关系
例4.6 某地区人的身高论域X={140,150,160,170,180}(单位: cm模糊关系 ),体重论域 Y={40,50,60,70,80}。 :两个模糊集合中的元素之间关联程度的多少。
不确定性推理主要有两类:
基于概率论的不确定性推理方法:概率方法、主观 Bayes方法、可信度方法、证据理论。 基于模糊理论的模糊推理方法。
2
教学内容设计
经典概率方法
产生式规则:
IF E THEN Hi
i =1,2,, n
E :前提条件, H i :结论
P(Hi E) :在证据 E 出现的条件下,结论 H i成立的确定性程度。
(1)具有较坚实的理论基础。 (2)知识的静态强度 LS 及LN 是由领域专家根据实践经验给 出的,推出的结论有较准确的确定性。 ( 3 )主观 Bayes 方法是一种比较实用且较灵活的不确定性推 理方法。
主观Bayes方法的主要缺点 :
(1)要求领域专家在给出知识时,同时给出H的先验概率。 (2)Bayes定理中关于事件独立性的要求使主观 Bayes 方法 的应用受到了限制。
M
1
1
( x) M 2 ( y )
9
2
其中: K 1
x y
M ( x)M
1
2
( y)
x y
M ( x)M
( y)
教学内容设计
模糊推理
模糊知识表示
人类思维判断的基本形式: 如果 (条件) → 则 (结论)
例如:如果 压力较高且温度在慢慢上升 则 阀门略开
4
教学内容设计
概率方法的优缺点
优点 : 较强的理论背景和良好的数学特征,当证 据及结论都彼此独立时计算的复杂度比较低。
缺点: 要求给出结论 H i的先验概率 P( H i )及证据 E j 的条件概率 P( E j H )。 i
5
教学内容设计
主观 Bayes 方法
1976年,杜达、哈特等人提出主观Bayes方法。
模糊推理过程直观、符合人的思维过程,已经在专家
系统、信息处理、自动控制等领域广泛应用。
10
教学内容设计
4.1 不确定性推理的基本概念
4.2 可信度方法
4.3 证据理论 4.4 模糊推理方法
参考教材: 王万良,《人工智能导论》(第3版),高等教 育出版社,2011
11
教学示范
Introduction of Artificial Intelligence
第 4 章 不确定性推理方法
主讲:王万良 浙江工业大学 教材:王万良《人工智能导论》(第3版) 高等教育出版社,2011
教学内容设计
现实世界中由于客观上存在的随机性、模糊性,反 映到知识以及由观察所得到的证据上来,就分别形 成了不确定性的知识及不确定性的证据。 不确定性推理:从不确定性的初始证据出发,通过 运用不确定性的知识,最终推出具有一定程度的不 确定性但却是合理的结论的思维过程。
首先提出了模糊理论。
1965年,美国L. A. Zadeh发表了“fuzzy set”的论文,
14
4.4.1 模糊逻辑的提出与发展
2008 年 10 月, Zadeh 在 北京现代智 能国际会议 上做报告。
15
4.4.1 模糊逻辑的提出与发展
从 1965 年到 20 世纪 80 年代,在美国、欧洲、中国 和日本,只有少数科学家研究模糊理论。 1974年,英国Mamdani首次将模糊理论应用于热电 厂的蒸汽机控制。 1976年,Mamdani又将模糊理论应用于水泥旋转炉 的控制。
复合条件:
E=Ei AND E2 AND
…
AND
Em
P(Hi E1, E2 ,, Em ) :在证据 E1 , E2 ,, Em 出现时结论的确定 程度。 3
教学内容设计
逆概率方法
Bayes定理: 逆概率 P( E Hi ) 原概率 P(Hi E)
多个证据 E1 , E2 ,, Em ,多个结论 H1 , H 2 ,, H n ,
A 10 . / a1 08 . / a2 05 . / a3 0.2 / a4 0.0 / a5 B 0.7 / b1 10 . / b2 0.6 / b3 0.0 / b4
求A到B的模糊关系R。