最新《力学》漆安慎(第二版)答案04章
漆安慎《力学》教案第04章 动能和势能
(4) 热学中永动机不可能实现的确认和各种物理现象之 间的普遍联系的发现,导致了能量守恒定律的最终确立.
(5) 能量守恒定律的发现最重要的贡献者是迈耶(M.Meyer) 焦耳(J.P.Joule)和亥姆霍兹(H.von.helmholtz)三位伟大的 科学家.
若 F F1 F2
则合力 F 的元功为:
dA ( Fi ) dr (Fi dr )
即合力所做的元功等于各分力所做元功的代数和.
上页 下页 返回 结束
第四章 动能和势能
⑷ 充分理解功的定义中的位移 dr :
① 更换受力点并不意味受力质点有位移,P.125
② 如果研究对象不是质点,则在力 F 的作用下,各部
F Fr
r
A F r F r cos Fr r
2. 变力的功 思想:无限分割,变曲为直
力 F 在元位移 dr 上的元功.
( r 是一有限位移)
dr m F
dA F dr F dr cos 元功的定义式
上页 下页 返回 结束
第四章 动能和势能
不管是恒力还是变力,由功的定义可以看出以下几点:
Δt0 Δt dt
dt
在SI单位制中功率的单位为瓦特(W),1W=1J/s dimP=L2MT3
上页 下页 返回 结束
第四章 动能和势能
§4.2.2 利用不同坐标系表示元功
元功的定义式: dA F dr
1. 平面直角坐标系
y
Δr
r1
F Fxi Fy j
y
F
dr dxi dyj
《力学》杜婵英漆安慎课后习题答案大全集
《力学》杜婵英漆安慎课后习题答案大全集《力学》是物理学的一个重要分支,对于理解自然界的运动规律和现象具有关键作用。
杜婵英和漆安慎所著的《力学》教材在众多物理学教材中备受青睐,而课后习题则是巩固和深化对知识理解的重要途径。
以下为您提供一份较为全面的课后习题答案大全集。
首先,让我们来谈谈第一章“质点运动学”的习题答案。
在涉及质点位置、位移和速度的问题中,我们要明确这些物理量的定义和关系。
例如,习题中可能会给出质点在不同时刻的位置坐标,要求计算位移和平均速度。
答案的关键在于准确计算坐标的变化量,并用时间相除得到平均速度。
对于瞬时速度的计算,则需要通过求导或者利用极限的概念来得出。
在加速度的相关习题中,要根据速度的变化量和时间来计算加速度。
同时,还需要理解加速度与力的关系,这在后续的章节中会有更深入的探讨。
第二章“牛顿运动定律”的习题答案有着重要的意义。
对于牛顿第一定律,要理解惯性的概念,以及物体在不受力或合力为零时保持静止或匀速直线运动的状态。
在习题解答中,可能会通过分析物体的运动状态来判断是否符合牛顿第一定律。
牛顿第二定律是这一章的核心,F =ma 这个公式的应用非常广泛。
在解题时,首先要确定研究对象,分析其所受的力,并正确分解和合成这些力。
然后,根据加速度的定义和公式计算加速度,进而求出物体的运动状态。
牛顿第三定律强调了作用力和反作用力的关系,大小相等、方向相反、作用在同一直线上。
在涉及相互作用的物体的习题中,要正确运用这一定律来分析问题。
第三章“动量守恒和能量守恒”的习题答案也颇具挑战。
动量守恒定律在碰撞、爆炸等问题中经常被应用。
在解答此类习题时,需要明确系统的范围,判断在某个过程中是否满足动量守恒的条件。
如果满足,就可以根据动量守恒定律列出方程求解。
能量守恒定律则涵盖了动能、势能、内能等多种形式的能量。
在习题中,可能需要分析物体在不同位置和状态下的能量变化,通过建立能量守恒的方程来解决问题。
例如,在涉及机械能守恒的问题中,要注意只有重力或弹力做功时机械能才守恒。
力学(漆安慎_杜婵英)习题解答
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
《力学》答案(漆安慎,杜婵英)
第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。
最新《力学》漆安慎(第二版)答案01章
力学(第二版)漆安慎习题解答数学预备知识第一章物理学和力学数学常识一、微积分1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴ ⎰⎰⎰⎰+--++dxb ax dxdx x x dx e x x x x x x)sin()cos (sin )2(22113⑹⑸⑷⑶⎰⎰⎰⎰⎰⎰-+-dxxdxdx xe xdx x dx e xx x b ax dx x ln 222)12(cos )11(cos sin 2⑽⑼⑻⑺ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx c x x dx x xdx ce x d e dx xe c x x xd xdx x c b ax b ax d b ax c ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e cx dx x dx dx x cx x x dx xdx dx x dx x x xx x x x aab ax dxxx x aax dxx x x x xxx x dxx xx x x x 221ln 4121212212213312222/112212************/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分⎰⎰⎰⎰⎰⎰⎰⎰++--++--2/021114/6/2111ln 12/12/111421)sin 3(2cos )()1()122πππ⑻⑺⑹⑸⑷⑶⑵(⑴dxx x dx xdxdx e dx dx e e dx x x xxex xxdx xx︒===-=-=--=--=-=-=----⎰⎰⎰⎰⎰⎰60|arcsin )1(|)1()1()1()1(||)132/12/12/12/111551105514143532421213221212/121223π⑶⑵(解:⑴x e e e d e dx e e x x dx dx xdx x xdx x x x x xπππππππππ412832/02/0212/0210101143214/6/4/6/21214/6/221211112211ln 1)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(2+=-+=+︒===-===+-=+=+=+=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰++dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x x x x eee xx πππ⑻⑺⑹⑸⑷示这些定积分。
最新《力学》漆安慎(第二版)答案04章
力学(第二版)漆安慎习题解答第四章动能和势能第四章 动能和势能 一、基本知识小结1、功的定义式:⎰⋅=2112r r rd F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x x dy F dx F A dx F A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A2、⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能m g y y E p =)(弹簧弹性势能 2)(21)(l r k r E p -=静电势能 rQqr E p πε4)(=3、动能定理适用于惯性系、质点、质点系 ∑∑∆=+k E A A 内外4、机械能定理适用于惯性系 ∑∑+∆=+)p k E E A A (非保内外5、机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+6、碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101对于完全弹性碰撞 e = 1 对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
7、克尼希定理 ∑+=22'2121i i c k v m mv E绝对动能=质心动能+相对动能应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μ u 为二质点相对速率二、思考题解答4.1 起重机起重重物。
问在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种情况下合力之功的正负。
又:在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功是否一样多?答:在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种况下合力之功的正负分别为:正、0、负、正、0、负。
力学答案(漆安慎,杜婵英)_详解_1-9章
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,j ˆ)e e (i ˆ)e e (r r r 222211---+-+-=-=∆2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 2)3y (x -=②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得: )m (385.3494.4cos 42404100242404100R 022≈⨯⨯-+=∆)s /m (8.46575.0385.349t R v ==∆∆≈利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
新版漆安慎力学第二版课后习题解答-新版.pdf
v |t 0 3i?, a |t 0 9 ?j, v |t 1 3i? 9 ?j 18k?, a |t 1 9 ?j 36k?
第 2 章质点运动学习题解答
8
2.3.1 图中 a、b 和 c 表示质 点沿直线运动三种不同情况下 的 x-t 图像,试说明每种运动的 特点(即速度,计时起点时质 点的位置坐标,质点位于坐标 原点的时刻)
(1 e qt ) 2
(1 e qt ) 2
因为 v>0 ,a>0 ,所以,跳伞员做加速直线运动,但当 t→∞时, v→ β, a→ 0,说明经过较长时间后,跳伞员将做匀速直线运动。
2.3.4 直线运行的高速列车在电
v(km/h)
子计算机控制下减速进站。 列车原运 v0
v=v 0cosπ x/5
行速率为 v0=180km/h ,其速率变化规
律如图所示。 求列车行至 x=1.5km 时
1.5
x(km)
的加速度。
解: v v0 cos( x / 5), dv / dx 5 v0 sin 5 x.
a v dv dx
dv
dx dt
dx
1 10
v0
2
sin
2 5
x ,将 v0=180km/h,x=1.5km 代入
a
1 10
2
3.14 180 sin108
ds , v | v | dt
第 2 章质点运动学习题解答
a a ? ann?, a
a 2 an2 , a dv dt
d 2s dt 2
,
an
v2
s(t) v (t) a (t)
最新《力学》漆安慎(第二版)答案章
最新《力学》漆安慎(第二版)答案章第十一章流体力学力学(第二版)漆安慎习题解答第11章流体力学习题解答力学(第二版)漆安慎课后答案第十一章流体力学基本知识小结⒈理想流体就是不可压缩、无粘性的流体;稳定流动(或称定常流动)就是空间各点流速不变的流动。
⒉静止流体内的压强分布相对地球静止:dpgdy,p1p2gh(h两点间高度)相对非惯性系静止:先找出等压面,再采用与惯性系相同的方法分析。
⒊连续性方程:当不可压缩流体做稳定流动时,沿一流管,流量守恒,即Qv11v22恒量⒋伯努力方程:当理想流体稳定流动时,沿一流线,2pgh1v恒量2⒌粘性定律:流体内面元两侧相互作用的粘性力与面元的面积、速度梯度成正比,即f⒍雷诺数及其应用Redvdy.为粘性系数,与物质、温度、压强有关。
vl,l为物体某一特征长度⑴层流、湍流的判据:ReRe临,层流;ReRe临,湍流⑵流体相似律:若两种流体边界条件相似,雷诺数相同,则两种流体具有相同的动力学特征。
⒎泊肃叶公式:粘性流体在水平圆管中分层流动时,距管轴r处的流速v(r)p1p22(Rr2)4l2第11章流体力学习题解答力学(第二版)漆安慎课后答案11.2.1若被测容器A内水的压强比大气压大很多时,可用图中的水银压强计。
⑴此压强计的优点是什么?⑵如何读出压强?设h1=50cm,h2=45cm,h3=60cm,h4=30cm,求容器内的压强是多少大气压?解:⑴优点:可以测很高的压强,而压强计的高度不用很大⑵设界面处压强由右向左分别为p0,p1,p2,p3,水和水银的密度分别用ρ,ρ'表示,据压强公式,有:p1p0'gh1,p1p2gh2,p3p2'gh3,pAp3gh4h1h3h2Ah4pAgh4p3gh4'gh3p2gh4'gh3gh2p1gh4'gh3gh2'gh1p0g(h4h2)'g(h1h3)p0用大气压表示:pA1hh3h4h230455060112.43atm13.6767613.6767611.2.2A,B两容器内的压强都很大,现欲测它们之间的压强差,可用图中装置,Δh=50cm,求A,B内的压强差是多少厘米水银柱高?这个压强计的优点是什么?解:由压强公式:pAp1gh1p1p2'gh,pBp2g(hh2)pApB(p1gh1)(p2gh2gh)(p1p2)g(h1h2h)'ghgh用厘米水银柱高表示:pApBhh/13.65050/13.646.3cmHgh1h2也可以忽略管中水的重量,近似认为压强差为50cmHgAB优点:车高雅差方便,压强计的高度不需太大。
力学 漆安慎 习题解答
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸xey sin = ⑹x ey x100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx x x ln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx cx x dx x xdx ce x d e dx xec x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e c x dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx xx x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x x xx eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
力学21世纪漆安慎习题答案-第四章
第四章 动能和势能 第四章 动能和势能4.1、本题图表示测定运动物体能的装置,绳栓在腰间沿水平展开跨过理想滑轮,下悬重物50kg ,人用力向后蹬传送带,而人的质心相对于地面不动,设传送带上侧以s m /2的速率向后运动,问运动员对传送带做功否?功率如何?解:如右图,建立图示坐标xy o -分析得:W T =又 人用力后蹬传送带而人的质心相对于地面不动∴人克服绳的拉力做功,即:运动员对传送带做功 k dE x d F dA =⋅=v F dtdA N ⋅== 28.950⨯⨯=∴N=)(108.92W ⨯ 即为所求4、2、一非线性拉伸弹簧的弹性力大小为321l k l k f +=,l 表示弹簧的伸长量,1k 为正。
(1)研究当0,022<>k k 和02=k 时,弹簧的劲度dldf有何不同;(2)求出将弹簧由1l 拉长至2l 时弹簧对外所作的功。
解:(1)由kx f -=,可建立以自然伸长处为坐标原点 l x =∴故 il k l k f ˆ)(321+-=i l k k dlf d ˆ)3(221+-=∴∴当02>k 时,i l k k dlf d ˆ)3(221+-=当02<k 时,i l k k dl f d ˆ)3(221+-= 当02=k 时,i k dlf d ˆ1-= (2)l d f x d f dA⋅-=⋅-=∴ ⎰⋅-=∴21l l dl f A=⎰⋅+-21)(321l l dl l k l k=2121|4|24221l l l l l k l k --=))]((21[212221222121l l l l k k -++ 即为所求 4.3、一辆卡车能够沿着斜坡以h km /15的速率向上行驶,斜坡与水平面夹角的正切02.0=αtg ,所受的阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的速率是多少?解:根据题意,可得:C v F N =⋅=上下坡均为匀速 0=∴合F 如图示,分析小车受力,得矢量式:=++W N f 阻故得标式:⎩⎨⎧='+-=-+0sin 0sin F mg mg F mg mg μαμα下坡:上坡: )2()1(由(1)得:μαmg mg F +=sin 由(2)得:αμsin mg mg F -=' C N =v F v F '⋅'=⋅∴即:F v F v '⋅=' =v mg mg mg mg ⋅-+αμμαsin sin=μαμμα⋅-+sin sin02.0=αtg 146.1≈∴α15146.1sin 04.004.0146.1sin ⨯-+='∴v h km /45≈s m /5.12≈ 即为所求4、4、质量为M 的卡车载一质量为m 的木箱,以速率v 沿平直路面行驶,因故紧急刹车,车轮立即停止转动,卡车滑行一定距离后静止,木箱在卡车上相对卡车滑行了l 距离,卡车滑行了L 距离,求L 和l 。
最新《力学》漆安慎(第二版)课后小结习题答案02章
力学(第二版)漆安慎习题解答第二章质点运动学第二章 质点运动学一、基本知识小结1、基本概念 22)(dtr d dt v d a dtrd v t r r====)()()(t a t v t r ⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t ===)2、直角坐标系 ,,ˆˆˆ222z y x r k z j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/. a a a a a k a j a i a a z y x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dt zd dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z y y x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔3、自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔ 4、极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+== dtd r v dt dr v r θθ==,5、相对运动 对于两个相对平动的参考系 ',0't t r r r =+=(时空变换) 0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v t t z z y y Vt x x =====-====-=',','',','',',','y y' Vo x o' x' z z'第2章 质点运动学 力学(第二版)漆安慎课后答案 二、思考题解答2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?解答:质点位置矢量方向不变,质点沿直线运动。
漆安慎力学第二版课后习题解答.
第二章基本知识小结⒈基本概念 22)(dt r d dt v d a dt rd v t r r====)()()(t a t v t r⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t===)⒉直角坐标系 ,,ˆˆˆ222z y x r k z j y ix r ++=++= r与x,y,z轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/.a a a a a k a j a i a a zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dtz d dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z yy x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔⒊自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔⒋极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+==dtd r v dt dr v r θθ==, ⒌相对运动 对于两个相对平动的参考系',0't t r r r =+=(时空变换)0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v tt z z y y Vt x x =====-====-=',','',','',',','y y'Vo x o' x' z z'2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=⑴ j t i t r ˆ)14(ˆ)32(-+-= ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为kj e i e r t t ˆ2ˆˆ22++=-.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
2023年大学_力学第二版(漆安慎著)课后答案下载
2023年力学第二版(漆安慎著)课后答案下载2023年力学第二版(漆安慎著)课后答案下载力学(mechanics) 研究物质机械运动规律的科学。
自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗拉、纤维、晶体,到微观的分子、原子、基本粒子。
通常理解的力学以研究天然的或人工的宏观对象为主。
但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止则是其中的一种特殊情况。
机械运动是物质运动最基本的形式。
物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
机械运动常与其他运动形式共同存在。
只是研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。
静止和运动状态不变,都意味着各作用力在某种意义上的平衡。
力学,可以说是力和(机械)运动的`科学。
力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。
力学是一门基础学科,同时又是一门技术学科。
它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。
力学可区分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
力学第二版(漆安慎著):简介点击此处下载力学第二版(漆安慎著)课后答案力学第二版(漆安慎著):研究方法力学研究方法遵循认识论的基本法则:实践——理论——实践。
最新《力学》漆安慎(第二版)答案03章
力学(第二版)漆安慎习题解答第三章动量定理及其守恒定律第三章 动量定理及其守恒定律一、基本知识小结1、牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F === 分量式:(弧坐标)(直角坐标)ρτττ2,,,v m ma F dt dv m ma F ma F ma F ma F n n z z y y x x =======2、动量定理适用于惯性系、质点、质点系。
导数形式:dtp d F =;微分形式:p d dt F=;积分形式:p dt F I∆==⎰)((注意分量式的运用)3、动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0(注意分量式的运用)4、在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f-=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c5、质心和质心运动定理⑴∑∑∑===i i c i i c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)二、思考题解答3.1试表述质量的操作型定义。
解答,kgv v m m 00 ∆∆= 式中kg 1m 0=(标准物体质量);0v∆:为m 与m 0碰撞m 0的速度改变;v∆:为m 与m 0碰撞m 的速度改变,这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒 )p p (p p ,p p p p 22112121-'-=-'+='+' ,p p 21∆-=∆t p t p 21∆∆-=∆∆,取极限dt p d dt p d 21 -=动量瞬时变化率是两质点间的相互作用力。
力学第二版课后答案漆安慎高等教育出版社
目录第01章物理学、力学、数学…………………01第02章质点运动学……………………………05第03章动量定理及其守恒定律………………15第04章动能和势能……………………………28第05章角动量及其规律………………………38第06章万有引力定律…………………………42第07章刚体力学………………………………45第08章弹性体的应力和应变…………………56第09章振动……………………………………60第10章波动……………………………………68第11章流体力学………………………………75祝风编写1.求下列函数的导数⑴⑵10432+−=x x y 100cos 8sin 7/1−++=x x x y ⑶⑷)/()(bx a b ax y ++=21sin xy +=⑸⑹xe y sin =xe y x 100+=−xxx ee y xe y x x x xx x y bx a b a y x x x x y x y −−−−=+−==++=++=+−=−+−=−=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22−−−−−−−−×−×=×−×=×−×=×+−=x x x x x x x dxd dxh d dxddxdh 令dh/dx=0,解得在x=0,10,-10处可能有极值。
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎_杜婵英_思考题习题解析
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎 杜婵英 思考题习题解析第一章 物理学和力学思 考 题1.1解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2解答,(1)由量纲1dim -=LT v ,2 dim -=LT a ,h km h km h km s m /6.3/36001036001/10/33=⨯==-- 2223232/36006.3/360010)36001/(10/h km h km h km s m ⨯=⨯==-- 改为以h (小时)和km (公里)作为时间和长度的单位时,,36006.3216.320at t v s ⨯⨯+=(速度、加速度仍为SI 单位下的量值) 验证一下: 1.0h 3600s t ,4.0m /s a ,/0.220====s m v 利用,2120at t v s += 计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,36006.3216.320at t v s ⨯⨯+= 计算得:)(2.25927259202.71436006.321126.32km s =+=⨯⨯⨯⨯+⨯⨯= (2). 仅时间单位改为h 由量纲1 dim -=LT v ,2 dim -=LT a 得h m h m h m s m /3600/360036001//=== 222222/3600/3600)36001/(/h m h m h m s m === 若仅时间单位改为h ,得:,3600213600220at t v s ⨯+=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,3600213600220at t v s ⨯+=计算得:)(259272002592000072001436002112360022m s =+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h 由量纲1 dim -=LT v ,得:sm h km h km h km s m /6.31/,/6.3)36001/(10/3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s 得:,216.3120at t v s +=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,216.3120at t v s +=计算得:)(25927200259200007200360042136003600/11026.3123m s =+=⨯⨯+⨯⨯⨯=- 1.3解答,,ksv f ,22=∝sv f][][][][][[?]][][]?[][32242222222222mkgsv f s m kgms sv f s m v m s N f k s m v m s k N f ====----物理意义:体密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学(第二版)漆安慎习题解答第四章动能和势能第四章 动能和势能 一、基本知识小结1、功的定义式:⎰⋅=2112r r rd F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x x dy F dx F A dx F A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中: ⎰+=2211,,12θθθθr r rrd F dr F A2、⎰⋅-=-=b ap p k r d F a E b E mv E 保势能动能)()(,212重力势能m g y y E p =)(弹簧弹性势能 2)(21)(l r k r E p -=静电势能 rQqr E p πε4)(=3、动能定理适用于惯性系、质点、质点系 ∑∑∆=+k E A A 内外4、机械能定理适用于惯性系 ∑∑+∆=+)p k E E A A (非保内外5、机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+6、碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101对于完全弹性碰撞 e = 1 对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
7、克尼希定理 ∑+=22'2121i i c k v m mv E绝对动能=质心动能+相对动能应用于二体问题 222121u mv E c k μ+=212121m m m m m m m +=+=μ u 为二质点相对速率二、思考题解答4.1 起重机起重重物。
问在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种情况下合力之功的正负。
又:在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功是否一样多?答:在加速上升、匀速上升、减速上升以及加速下降、匀速下降、减速下降六种况下合力之功的正负分别为:正、0、负、正、0、负。
在加速上升和匀速上升了距离h 这两种情况中,起重机吊钩对重物的拉力所做的功不一样多。
加速上升 mg F >;匀速上升 mg F =。
4.2 弹簧A 和B ,劲度系数B A K K >,(1)将弹簧拉长同样的距离;(2)拉长两个弹簧到某一长度时,所用的力相同。
在这两种情况下拉伸弹簧的过程中,对那个弹簧做的功更多?答: (1) B A K K > 拉长同样距离⎪⎪⎭⎪⎪⎬⎫∆=∆=2B B 2A A K 21A K 21A B A K K >,B A A A >. (2) A A A K F x =,B B B K F x =,B A F F = A A A K F =x BB B K F=x B B A A K K x x =B 2B 2B 2B B 2B B B A2A 2A 2A A 2A A A K F 21K F K 21K 21A K F 21K F K 21K 21A ======x x B A K K >,B A A A <4.3“弹簧拉伸或压缩时,弹簧势能总是正的。
”这一论断是否正确?如果不正确,在什么情况下,弹簧势能会是负的。
答:与零势能的选取有关。
4.4 一同学问:“二质点相距很远,引力很小,但引力势能大;反之,相距很近,引力势能反而小。
想不通”。
你能否给他解决这个疑难? 答:设两物体(质点)相距无限远处为零势能。
B O4.5 人从静止开始步行,如鞋底不在地面上打滑,作用于鞋底的摩擦力是否做了功?人体的动能是哪里来的?分析这个问题用质点系动能定理还是用能量守恒定律分析较为方便?答:(1)作用于鞋底的摩擦力没有做功。
(2)人体的动能是内力做功的结果。
(3)用质点系动能定理分析这个问题较为方便。
4.6 一对静摩擦力所做功的代数和是否总是负的?正的?为零? 答:不一定。
4.7 力的功是否与参考系有关?一对作用力与反作用力所做功的代数和是否和参考系有关?答:(1)有关。
如图:木块相对桌面位移(s-l )木板对木块的滑动摩擦力做功f(s-l)若以木板为参照系,情况不一样。
(2)无关。
相对位移与参照系选取有关。
(代数和不一定为零)4.8 取弹簧自由伸展时为弹性势能零点,画出势能曲线。
再以弹簧拉伸或压缩到某一程度时为势能零点,画出势能曲线。
根据不同势能零点可画出若干条势能曲线。
对重力势能和万有引力势能也可如此作,研究一下。
答(1)弹簧原长为势能零点2P K 21E x = A??)E E K 21d K 0E (0P P 20p -=-←==-⎰x x x x设0x x =处势能为零。
x x x x x x d k E E 00P p ⎰=- ; 202P k 21k 21E x x x -=(2)重力势能:0y =处势能为零,0h y =处势能为零yh Ph Py mgh mgy mgdy E E 00-==-⎰p mgh mgy )y (E -=0h y -=处势能为零,0yh -)P(-h Py mgh mgy mgdy E E 00+==-⎰万有引力势能与上雷同。
两质点距离无限远处势能为零:rm m GE 21p -=4.9 一物体可否只具有机械能而无动量?一物体可否只具有动量而无机械能?试举例说明。
答:机械能是系统作机械运动的动能和势能的总和。
动能与物体相对参考系的运动速度有关,势能则属于保守力系统,一物体所具有的势能,是相对势能零点而言的。
若保守力系统,物体相对参考系静止,那么物体的动能为零,动量也为零。
该系统的机械能就是物体相对系统势能零点所具有的势能。
所以,一物体可以有机械能而无动量。
例如:一质量为m 的物体(例如一气球)静止在相对地面为h 的高处,此时对于物体和地球系统,具有的机械能为重力势能,其值为mgh 。
由于此时物体静止,故其动量为零。
在保守力系统中,若一物体运动至某一位置时所具有的动能值,恰等于该位置相对势能零点所具有的负的势能值,则该物体的机械能为零,而因物体具有动能,因而动量不为零。
所以,一物体也可以有动量而无机械能。
例如:物体自离地面高为h 处自由下落,取物体和地球为系统,并取下落处为重力势能零点。
初始时刻系统的机械能为00E =,下落之地面时,物体具有的速度大小为v ,动能为212mv ,动量大小为mv ,系统的机械能为20102E mv mgh E =-== 。
4.10 两质量不等的物体具有相等的动能,哪个物体的动量较大?两质量不等的物体具有相等的动量,哪个物体的动能较大? 答:设两物体的质量和速度的大小分别为1m ,1v 和2m ,2v 且1m >2m 。
(1)动能相等时,有2211221122m v m v =,即有211v v => , 动量的大小分别为111p m v =,222p m v =,可得2111p m m v p == 。
质量的大的物体动量值较大。
(2)动量相等时,有1122m v m v = ,即有12112m v v v m => ,动能分别为211112K E m v = ,222212K E m v = ,可得: 22112211112211()22K K m m E m v m v E m m ==>。
质量小的物体动能较大。
4.11 如图所示,用线把球挂起来,球下系一同样地的细线,拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断?为什么? 答:无论何种拉法,细线之所以断,是因其所受拉力大于它所能承受的极限张力。
缓慢的加大力量拉球下细线时,拉力通过重球均匀的作用于球上方的细线,而上方的细线除受拉力外,还受球对对它的作用力(大小等于球的重力)。
因此在逐渐加大拉力的过程中,球上方细线中的张力因率先达到极限而被拉断。
用较大力量突然拉下面细线,意味着作用力较大而作用时间较短,该拉力就是冲力,冲力通过细线首先作用于重球,但由于重球惯性很大,动量改变极小,在冲力尚未通过重球的位移传给球上之细线前,球下细线所受冲力以大于其所能承受的张力之极限,因此先断。
4.12 一物体沿粗糙面下滑,试问在这过程中哪些力作正功?哪些力作负功?哪些力不作功? 答:物体沿粗糙面下滑时的受力有:重力、滑动摩擦力、斜面的支持力。
合力作功为22221231111cos cos cos T N A F dr G ds F ds F ds θθθ=⋅=++⎰⎰⎰⎰ ,其中,重力G 与物体位移dr 间的夹角12πθ<,所以重力作正功。
滑动摩擦力T F 与物体位移dr间的夹角2θπ=,因与物体位移反向,所以滑动摩擦力作负功。
斜面的支持力N F 因与物体位移相互垂直32πθ=,所以斜面的支持力不作功。
4.13 外力对质点不作功时,质点是否一定作匀速直线运动? 答:根据质点的动能定理K A E =∆可知,合外力对质点作功为零时,质点的动能保持不变,有两种情况:(1)若合外力0F =,则质点将保持原来的运动状态不变,动能自然不变。
此即牛顿第一定理,原来静止的将仍然保持静止;原来作匀速直线运动的,将继续保持原有速度的大小和方向不变的匀速直线运动。
(2)若合外力F 与质点的位移dr始终垂直,则合外力对质点不作功。
如:用细绳连接着的小球在光滑水平面内作圆周运动,拉力不作功;垂直进入均匀磁场的点电荷所作的圆周运动,磁场力不作功。
此时的质点所作的是匀速率圆周运动,其动能虽然不变,但速度方向不断改变,即动量时时在变。
4.14 两个相同的物体处于同一位置,其中一个水平抛出,另一个沿斜面无摩擦的自由滑下,问哪个物体先到达地面?到达地面时两者速率是否相等? 答:如图所示,取平抛物体为A ,下滑物体为B .设两物体离地面高度为h ,A 的水平速度为0v,斜面长为 l .对A ,有212h gt =,2201122mgh mv mv += ,式中t 和v 分别为A 到达地面的所用时间和速率。
可解得t = v = 对B ,有'2'211sin 22l at g t θ== ,'212mgh mv = .式中't 和v 分别为B 到达地面所用的时间和速率。
并且sin h l θ=,可解得't t ==> ,'v v =< ,即平抛物体A 先到达地面,并且到达地面时的速率比自由下滑物体B 的大。
4.15非保守力作功总是负的,对吗?举例说明之。
答:如果力所作的功与物体所经历的中间路径有关,或物体循闭合路径运行一周时,力所作的功不为零,这种力称作非保守力。
摩擦力、粘滞力、化学力等作的功都具有这样的特征,它们都是非保守力。