固体物理复习资料1

合集下载

固体物理复习资料

固体物理复习资料

固体物理复习资料第一章晶体结构1、晶体、非晶体的概念2、常见的几种晶格结构:简单立方晶格、体心立方晶格、面心立方晶格、六角密排晶格、金刚石晶格结构、NaCl晶格结构、CsCl晶格结构、ZnS晶格结构。

3、晶格中最小的重复单元为原胞。

4、简单晶格中,某一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。

简单立方晶格、体心立方晶格和面心立方晶格均为简单晶格。

5、几种简单晶格的原胞基矢及原胞的体积6、复式晶格包含两种或两种以上的等价原子(或离子)。

常见的复式晶格有……7、维格纳—塞茨原胞:由某一个格点为中心,做出其与最近格点和次近格点连线的中垂面,这些中垂面所包围的空间为维格纳—塞茨原胞。

8、实际晶格= 布拉伐格子(理解)+ 基元(理解)9、理解晶列、晶向,会确定晶向指数;10、会确定晶面指数——密勒指数11、理解倒格子及相关内容(第四节)12、按宏观对称的结构划分,晶体分属于7大晶系,共14种布拉伐格子。

13、作业P578 习题1.3 至1.914、第五节、第六节主要掌握作业涉及的内容第二章固体的结合1、一般固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合四种基本形式。

2、作业P579 习题2.1 2.33、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性结合、共价结合、金属性结合和范德瓦尔结合力的特点。

离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交叠产生强大的排斥力。

当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时,每个原子的最外层电子为所有原子共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。

在这种情况下,电子和原子实之间存在库仑作用,体积越小,电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。

《固体物理》考试知识点.

《固体物理》考试知识点.

《固体物理》考试知识点第一章:晶体结构1、基本概念:基元,结点,点阵,晶格,简单格子,复式格子,原胞,固体物理学原胞,结晶学原胞,基矢,格矢,空间点阵学说的基本内容等。

2、基本知识点:立方晶系固体物理学原胞的惯用取法;NaCl、CsCl、金刚石、闪锌矿、钙钛矿结构、密堆积结构等常见晶体结构、七大晶系的基本特征;晶列的定义、性质和描述方法;晶面的定义、性质和描述方法;引入倒格子的目的;倒格子的性质;倒格子基矢与正格子基矢的解析关系。

3、基本技巧:会画特定晶面的原子排列状况;给出晶向指数和晶面指数,会画晶向和晶面;会计算晶面间距;会计算倒格子原胞基矢;会利用倒格子性质处理晶体学问题。

第二章、晶体的结合了解晶体结合的基本类型、特点以及结合力的一般性质。

第三章、晶格振动和晶体的热学性质1、基本概念:格波;声子2、基本知识点:格波波矢的取值范围和取值个数;格波与连续介质弹性波之间的比较;晶格振动的格波支数、本征频率数遵从的规律;为什么晶格振动问题必须用量子力学来处理;为什么说声子不是物理实在;经典理论在处理固体比热时遇到了什么样的困难;爱因斯坦模型和德拜模型的基本假设。

3、基本技巧:会计算一维原子链晶格振动的色散关系;会计算晶格振动的频率分布函数(即:格波态密度);会采用爱因斯坦模型、德拜模型、及在已知某种色散关系的前提下求解晶格比热。

第四章、晶体缺陷了解晶体缺陷的基本概念、类型及位错的形态;会热缺陷的统计计算第五章、金属自由电子理论1、基本概念:费米面、功函数、接触电势差2、基本知识点:金属中存在大量的自由电子,为什么电子气对比热的贡献却很小;3、基本技巧:会采用自由电子理论计算单位能量间隔内所能容纳电子数目;会计算金属中电子气的比热。

第六章、固体的能带理论1、基本概念:能带;有效质量2、基本知识点:Bloch定理;周期性势场中电子的E(K)关系特征;电导与能带的关系;导体、半导体、绝缘体导电性质差异的起源。

固体物理复习资料(1)8页word文档

固体物理复习资料(1)8页word文档

一.选择题:1、面心立方晶格的晶胞的体积是其原胞体积的( D )A.21 B. 31 C. 41 D. 612、下图为三维晶格的平面示意图,图中1α、2α分别表示晶格在该平面上的基矢,另一基矢3α垂直于1α、2α所在的平面。

现有平行于3α的晶面截取1α、2α(如下图(a )(b )(c )所示),图(a )中晶面的密勒指数为()100,图(b )和图(c )中晶面的密勒指数分别为( D )(a ) (b ) (c )A. ()110和()120B. ()110和()210C. ()011和()120D. ()011和()210 3、面心立方晶格和体心立方晶格的简约布里渊区分别是( D )A. 八面体和正十二面体B. 正十二面体和截角八面体C. 正十二面体和八面体D. 截角八面体和正十二面体 4、对一个简单立方晶格,若在第一布里渊区面心上一个自由电子的动能为E ,则在该区顶角上一个自由电子的动能为A. EB. 2EC. 3ED. 4E5、相邻原子间距为a 的一维单原子链的第一布里渊区也是波数q 的取值范围为( B ) A.aq a ππ22≤<-B. aq aππ≤<-C. aq a22ππ≤<-D. aq a44ππ≤<-6、关于电子有效质量下列表述中正确的是( B )A. 在一个能带底附近,有效质量总是负的;而在一个能带顶附近,有效质量总是正的B. 在一个能带底附近,有效质量总是正的;而在一个能带顶附近,有效质量总是负的C. 在一个能带底附近和能带顶附近,有效质量总是正的D. 在一个能带底附近和能带顶附近,有效质量总是负的 7、下面几种晶格中,不是金属元素常采取的晶格结构是( A )A. 金刚石晶格B.面心立方晶格C.六角密排晶格D. 体心立方晶格 9、温度升高,费米面E F ( D )A.不变B. 大幅升高C. 略为升高D. 略为降低10、在极低温度下,晶格的热容量C v 与温度T 的关系是 ( D )A. C v 与T 成正比B. C v 与2T 成正比 C. C v 与3T 成正比 D. C v 与T 3成反比 11、一晶格原胞的体积为v ,则其倒格子原胞的体积为( D )A. vB. 2vC. v π2D.v3)2(π13、以下属于简单晶格的是( A )A. 面心立方晶格B. 六角密排晶格C. 金刚石晶格D. NaCl 晶格 14、体心立方晶格的晶格常数为a ,则晶格中最近邻原子的间距r 为( B ) A. 2a B. 23a C. 334 a D. 433 a15、相邻原子间距为a 的一维双原子链的第一布里渊区也是波数q 的取值范围( C ) A.aq a ππ22≤<-B. aq aππ≤<-C. aq a22ππ≤<-D. aq a44ππ≤<-17、下图为三维晶格的平面示意图,图中1α、2α分别表示晶格在该平面上的基矢,另一基矢3α垂直于1α、2α所在的平面。

固体物理复习资料1

固体物理复习资料1
简单六方结构
a b 2R
a / c 1.633
在晶格常数的测量不是很方便的情况下,也可以 通过测定金属晶体的密度来估算金属原子的半径。
• 例如金属钨 (W) 的晶体具有体心立方结构; 通过实验测得钨晶体的密度为 19.30 g/cm3, 而钨的原子量为 183.9。根据这些信息就可 以通过简单的计算得到钨原子的金属半径。
哪个晶向?密堆面是哪个面?试作图表示之。
• 等大球体立方最紧密堆积结构中,密堆方向是
哪个晶向?密堆面是哪个面?试作图表示之。
• 找出面心立方格子中的一些对称面,写出其晶
面米勒指数。
第二章
习题
1、金属晶体的形成是因为晶体中存在 ( )
C
A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
格子和底心立方格子。说明你的分析 并不违背划分布拉维格子的四条基本 原则。
习题
• 7 大晶系都有各自的基本对称要素 对称
轴。试给出各晶系所含有的最高次对称轴所 在晶向的米勒指数。
• 画出一个面心立方布拉维格子,标出其中的 [111]、[121] 及 [1 1 0] 晶向。
习题
• 等大球体六方最紧密堆积结构中,密堆方向是
首先可以算出在一个体心立方晶胞中钨原子的质量W。1 个晶胞中含有 2 个钨原子,因此有
W
2 183.9 6.02 1023
6.11 1022 g
然后根据晶体的密度计算出晶胞体积 V:
6.11 1022 V 3.166 1023 cm 3 0.03166nm3 19.30 W
进而得到晶胞常数
a 3 V 0.316 nm

固体物理学考试重点

固体物理学考试重点

固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。

3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。

4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。

5.点阵:格点的总体称为点阵。

6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。

7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。

8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。

9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。

11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。

CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。

13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。

14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。

固体物理总复习资料及答案

固体物理总复习资料及答案

固体物理总复习资料及答案固体物理总复习题⼀、填空题1.原胞是的晶格重复单元。

对于布拉伐格⼦,原胞只包含个原⼦。

2.在三维晶格中,对⼀定的波⽮q ,有⽀声学波,⽀光学波。

3.电⼦在三维周期性晶格中波函数⽅程的解具有形式,式中在晶格平移下保持不变。

4.如果⼀些能量区域中,波动⽅程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表⽰有、、三种图式。

5.按结构划分,晶体可分为⼤晶系,共布喇菲格⼦。

6.由完全相同的⼀种原⼦构成的格⼦,格⼦中只有⼀个原⼦,称为格⼦,由若⼲个布喇菲格⼦相套⽽成的格⼦,叫做格⼦。

其原胞中有以上的原⼦。

7.电⼦占据了⼀个能带中的所有的状态,称该能带为;没有任何电⼦占据的能带,称为;导带以下的第⼀满带,或者最上⾯的⼀个满带称为;最下⾯的⼀个空带称为 ;两个能带之间,不允许存在的能级宽度,称为。

8.基本对称操作包括 , ,三种操作。

9.包含⼀个n重转轴和n 个垂直的⼆重轴的点群叫。

10.在晶体中,各原⼦都围绕其平衡位置做简谐振动,具有相同的位相和频率,是⼀种最简单的振动称为。

11.具有晶格周期性势场中的电⼦,其波动⽅程为。

12.在⾃由电⼦近似的模型中,随位置变化⼩,当作来处理。

13.晶体中的电⼦基本上围绕原⼦核运动,主要受到该原⼦场的作⽤,其他原⼦场的作⽤可当作处理。

这是晶体中描述电⼦状态的模型。

14.固体可分为 , ,。

15.典型的晶格结构具有简⽴⽅结构, , , 四种结构。

16.在⾃由电⼦模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作⽤,可以⽤原⼦轨道的线性组合来描述电⼦共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建⽴的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的⾊散关系。

19.固体物理学原胞原⼦都在,⽽结晶学原胞原⼦可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

固体物理学复习总结

固体物理学复习总结

第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。

晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。

非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。

3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。

固体物理复习(一)晶体结构描述和布拉格定律

固体物理复习(一)晶体结构描述和布拉格定律

固体物理复习(⼀)晶体结构描述和布拉格定律预备知识1.晶胞Crystal structure = Lattice(点阵) * Basis(基元)以NaCl为例, NaCl晶体的点阵为⾯⼼⽴⽅结构, 其基元包含⼀个Na和⼀个Cl.三维点阵的类型:Triclinic: a1!=a2!=a3, θ1!=θ2!=θ3 ,修饰 PMonoclinic: a1!=a2!=a3, θ1=θ2=90°!=θ3,P,COrthorhombic: a1!=a2!=a3, θ1=θ2=θ3=90°,P,I,F,CTetragonal: a1=a2!=a3, θ1=θ2=θ3=90°,P,ICubic: a1=a2=a3, θ1=θ2=θ3=90°,P,I,FTrigonal: a1=a2=a3, θ1=θ2=θ3<120°, !=90°,PHexagonal: a1=a2!=a3, θ1=θ2=90°, θ3=120°,PP=原胞(1个点阵点), I=体⼼(2点阵点), F=⾯⼼(4点阵点), C=Side-centred, 即在顶⾯和底⾯添加点阵点4种修饰*7种晶格系统组合起来得到14种Bravais点阵2. 对称操作平移对称操作: T=u1a1+u2a2+u3a3, u1u2u3为整数, a1a2a3为基⽮基⽮ a1a2a3 = 晶格常数 a1a2a3点对称操作: 对应群论的点群操作3. 原胞原胞(primitive cell):点阵中的最⼩晶胞, ⼀个点阵点对应⼀个原胞.wigner-seitz胞:划分原胞的⼀种⽅式, 取点间连线的中垂线围成的最⼩⾯积.(wigner-seitz胞⽰意图)正格⼦与倒格⼦1.正格⼦正格⼦中的布拉格定律:2dsinθ=nλ2.倒格⼦由于正格⼦的布拉格理论⽆法描述散射的强度, 因此要对正格⼦进⾏傅⾥叶变化⾸先将⼀维电⼦浓度n(r)进⾏傅⾥叶展开n(r)=n0+Σ(C p cosθ+S p sinθ)=Σn p exp(iθ), 令-n p=n p*使n(r)为实数θ=2πpx/a由此引出倒格⼦的概念, 2πp/a为晶体倒格⼦, 或在傅⾥叶空间中的⼀个点.推⼴到三维有n(r)=Σn G exp(iG*r)G=v1b1+v2b2+v3b3,b1=2π·a2xa3/(a1·a2xa3), b2=2π·a3xa1/(a1·a2xa3),b3=2π·a1xa2/(a1·a2xa3)倒格⼦空间中的Wigner-Seitz胞称为布⾥渊区, 布⾥渊区在晶体电⼦能带理论中有重要地位接下来推导倒格⼦的布拉格定律:⾸先引⼊散射振幅F的定义F=∫dVn(r)exp(-iΔk·r)Δk为散射波与⼊射波的波⽮差k'-k将n(r)傅⾥叶展开F=∫dVΣn G exp(iG*r)exp(-iΔk·r)=Σ∫dVn G exp(i(G-Δk)·r)由此可以看出, 当Δk=G时F=Vn G, 发⽣弹性散射.发⽣弹性散射时, 光⼦能量E=ћω守恒, ω=ck, 因此⼊射波波⽮⼤⼩与散射波波⽮相等, 即k2=k'2因为k+G=k', 所以综上有(k+G)2=k'2即2k·G=G2, 此即倒格⼦空间的布拉格定律的形式.。

固体物理复习材料

固体物理复习材料

第一章 晶体结构 名词解释:1. 晶体:原子按一定的周期排列规则的固体(长程有序)。

例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。

2. 晶体结构:晶体中原子的具体排列形式称为晶体结构。

晶体结构=基元+布拉菲点阵。

3. 平移周期性:4. 元胞:一个晶格中的最小重复单元(体积最小)。

5. 晶胞(单胞?):为了反应晶格的对称性,常取最小重复单元的几倍作为重复单元。

6. 基元:由不等价分人原子组成的最小重复单元。

7. 布拉菲点阵:为了简单明确地描述晶体内部结构的周期性,常把基元抽象成一点,这个基元的代表点称为格点。

格点在空间的周期性排列就构成布拉菲点阵(格子)。

8. 倒易点阵:倒点阵是正点阵的傅里叶变换,它是与坐标空间联系的傅里叶空间中的周期性阵列。

9. 倒易格矢: 10. 基矢:倒格子基矢与原胞基矢有如下关系:原胞体积:11. 晶格常数:晶格常数指的就是晶胞的边长,也就是每一个立方格子的边长。

12. 复式格子:基元(格点)含有2种或2种以上的原子。

13. 简单格子(布拉菲格子):基元(格点)只有一个原子的晶格。

14. 维格纳-塞茨原胞:由某一个格点为中心,做出最近各点和次近各点连线的中垂面,这些所包围的空间为维格纳-塞茨原胞。

15. 晶面指数:以基矢a 1、a 2、a 3为坐标系,从原点算起第一个晶面的截距的倒数h 1、h 2、h 3去标记这一簇晶面,记为(h 1h 2h 3),称为晶面指数。

16. 米勒指数:以单胞的三条棱a 、b 、c 为坐标系,决定的指数,称为米勒指数,记为(hkl )。

17. 晶向指数:如果从一个结点沿某晶列方向到最近邻结点的平移矢量为R l =l 1a 1+l 2a 2+l 3a 3,则用l 1、l 2、l 3来标志该晶列所对应的晶向,记为[l 1,l 2,l 3],称为晶向指数。

18. 金刚石结构: 19. 六角密排结构: 20. 立方密排结构: 21. NaCl 结构:22. 几种对称操作及相应对称元素:对称操作所凭借的几何元素—对称元素。

固体物理学整理复习资料

固体物理学整理复习资料

固体物理学整理复习资料固体物理复习要点第一章 1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。

说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。

3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,那么这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

4、试述固体物理学原胞和结晶学原胞的相似点和区别。

答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。

它反映了晶体结构的周期性。

(2)结晶学原胞〔简称晶胞〕构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。

特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。

其体积是固体物理学原胞体积的整数倍。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

6.晶体的对称性与对称操作由于晶体原子在三维空间的周期排列,因此晶体在外型上具有一定的对称性质。

这种宏观上的对称性,是晶体内在结构规律性的表达。

由于晶体周期性的限制,晶体仅具有为数不多的对称元素和对称操作。

对称元素:对称面〔镜面〕、对称中心〔反演中心〕、旋转轴和旋转反演轴。

相应的对称操作分别是:1对对称面的反映2晶体各点通过中心的反演3绕轴的一次或屡次旋转4一次或屡次旋转之后再次经过中心的反演。

固体物理复习总结

固体物理复习总结

固体物理复习总结(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 晶体结构1、试说明空间点阵和晶体结构的区别。

答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。

晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k aa ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222aa a a a a a a aa a a a -Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+-213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。

固体物理复习提纲1

固体物理复习提纲1

固体物理复习提纲(Part 1)- 自由电子气体模型部分1. 什么是自由电子近似?2. 什么是独立电子近似 (或单电子近似)?3. 什么是弛豫电子近似?4. 什么是周期性边界条件?它使得k 矢量的取值离散化,具体的k 矢量表示式是什么?5. 什么是k 空间?k 空间中离散的点代表什么?6. 如何计算k 空间中单位空间内单电子态(考虑自旋性质)的个数?7. 如何计算自由电子气体密度(单位体积内自由电子的个数)?8. 自由电子气体的单电子态的本征能量与k 矢量的关系是什么?9. 如何计算自由电子气体的单位能量间隔内的态密度?10. 温度0T K =情况下,电子如何占据自由电子气体体系的单电子态的?依据的原理是什么?11. 温度0T K =情况下,自由电子气体体系的费米能量F E 表示什么界限?F E 与单个电子平均能量的关系是什么?12. 如何计算温度0T K =情况下,自由电子气体体系的总能量?13. 温度0T K >情况下,电子按何种分布函数占据单电子态?写出该分布函数的标准形式。

并重新认识其中的费米能量F E 表示的含义。

14. 简要指出费米分布与波尔兹曼分布的适用体系和之间的关系。

15. 体系的化学势近似等于费米能量F E ,从这一观点出发,平衡态下的任意体系应该有统一的费米能量F E ,由此结论请描述粒子扩散现象。

16. 如何计算温度0T K >情况下,自由电子气体体系的总能量?写出精确计算的积分公式。

17. 如何计算温度0T K >情况下,自由电子气体体系的电子数密度?写出精确计算的积分公式。

18. 索末菲展开式是用于计算什么积分的?19. 怎样通过实验测定电子气体的比热系数γ,从而验证电子气体比热V C T γ=,而不是经典的杜德模型理论预计的32V B C k =,如何用索末菲的自由电子气体模型解释杜德模型的失误?20. 为什么在解释欧姆定律过程中,要引入弛豫电子近似?。

固体物理知识点总结

固体物理知识点总结

固体物理知识点总结一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。

原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。

每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。

晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。

WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。

4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。

六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。

固体物理复习资料

固体物理复习资料

第一章晶体的结构固体物理学:研究固体的结构及其组成粒子(原子、离子、电子等)之间相互作用与运动规律以阐明其性能与用途的学科。

固体物理学是研究固态物质物理性质的学科。

固体物理研究的不是单个原子的性质,而是大量原子组成在一起形成固体后所表现出来的集体性质。

固体分类:晶体(长程有序,单晶、多晶)非晶体(不具有长程序的特点,短程有序。

)准晶体(有长程取向性,而没有长程的平移对称性。

)长程有序:晶体中的原子都是按照一定规则排列的,这种至少在微米数量级范围的有序排列,称为长程有序。

自限性:晶体所具有的自发地形成封闭凸多面体的能力称为自限性。

其本质是原子之间的结合遵从了能量最小原理。

解理面:晶体沿某些确定方位的晶面劈裂的性质,称为晶体的解理性,这样的晶面称为解理面。

晶面角守恒定律:属于同一品种的晶体,两个对应晶面间的夹角恒定不变。

物理性质随观测方向而变化的现象叫做各项异性,是晶体区别非晶体的重要特性。

性质不随空间位置而改变的现象叫做均匀性。

晶体在某几个特定方向上可以异向同性,这种相同的性质在不同的方向上有规律地重复出现,称为晶体的对称性。

晶体的宏观特性:长程有序性、自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点。

晶体结构的微观基本特征:单元性和周期性在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限分布,这个点子称为晶格在晶格中取一个格点为顶点,以三个不共面的方向上的周期为边长形成的平行六面体作为重复单元,这个平行六面体沿三个不同的方向进行周期性平移,就可以充满整个晶格,形成晶体,这个平行六面体即为原胞,代表原胞三个边的矢量称为原胞的基本平移矢量,简称基矢。

一个粒子周围最近邻的粒子数称为配位数.简单的晶体结构:fcc (配位数12、原子数4)bcc(配位数8、原子数2)以布拉维原胞基矢为坐标轴来表示的晶面指数称为密勒指数,用(hkl)表示倒易矢量也可以理解为波矢k,k,通常用波矢来描述电子在晶体中的运动状态或晶体的振动状态。

固体物理学期末复习 -1

固体物理学期末复习 -1

金刚石结构:如:金刚石,Si, Ge
NaCl结构:如:NaCl, LiF, KBr CsCl结构:如:CsCl, CsBr, CsI 闪锌矿结构:如:ZnS, CdS, GaAs, -SiC
Ch13 固体物理复习
9
第一章 晶体结构——基本知识点 二、晶格的周期性 任取一点 数学抽象 晶格 —————— 等同点系 —————— 空间点阵 格点(或阵点) 基元:一个格点所代表的物理实体
va b 8
3

Rl G n 2 h
h=整数
Ch13 固体物理复习
12
第一章 晶体结构——基本知识点
四、晶体的宏观对称性,点群 8种独立的宏观点对称操作构成的对称操的集合,晶体共有32种点群, 又称32种宏观对称类型。晶体共有230种空间群。
Ch13 固体物理复习
13
10
第一章 晶体结构——基本知识点
2. 晶格原胞:晶格最小的重复单元 3. Wigner-Seitz原胞:由各格矢的垂直平分面所围成的 包含原点在内的最小封闭体积 晶格的分类:
简单晶格:每个晶格原胞中只含有一个原子,即晶格中
所有原子在化学、物理和几何环境完全等同 (如:Na、Cu、Al等晶格) 。 复式晶格:每个晶格原胞中含有两个或两个以上的原子, 即晶格中有两种或两种以上的等同原子(或 离子)。如:Zn、Mg、金刚石、NaCl等晶格。
a b 双粒子模型: u r m n r r
晶体的互作用能: 由平衡条件
A B U r m n r r dU 0 求出r0和U0 dr r0
结合能:W=-U0 >0 结合能的物理意义:把晶体拆分成彼此没有相互作用的原 子、离子或分子时,外界所做的功。

固体物理知识点总结

固体物理知识点总结

一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念与基本理论与知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体与非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。

原胞就是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。

每个原胞含1个格点,原胞选择不就是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。

晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。

WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。

4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。

六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
六方最紧密堆积结构的空间利用率
在六面体的上表面,短对角线与相邻两边构成了 一个等边三角形,边长为 a 。这个等边三角形与 体内球相切,4个球的中心连成了一个边长为a的 正四面体,这个正四面体的高为: (2/3) 1/2 a 。平 行六面体的高度即为2(2/3)1/2a。
如果球的半径为 r,则 a = 2r。平行六面体的体积为
因正负电荷数要中和,所以负离子电价要等于 它周围每个正离子分给它的电价之和。
例:MgO晶体,NaCl型结构, 1 Z O ,即 = 6= 2 2+ Mg2+,CN=6,S=2/6=1/3 Mg 给每个 3 周围O2-1/3价,因为O2-与6个Mg2+形成静电 价,所以
2
习题
• 以萤石 (CaF2) 晶胞为例,说明面心 立方紧密堆积中的八面体和四面体 空隙的位置和数量。 • 计算萤石 (CaF2) 晶体的理论密度。
特鲁德模型的基本假设 IV
• 电子和周围环境达到热平衡仅仅是通过碰
撞实现的,碰撞前后电子的速度毫无关联,
方向是随机的,其速率是和碰撞发生处的
温度相适应的。
纯铜的电阻率随温度的变 化关系曲线
m v 2 ne l
在低温时,电阻率通常很小
温度升高后,电阻率随温度的变化基本上呈线性: 温度越高,电阻率越大
2.金属能导电的原因是( ) B A.金属晶体中金属阳离子与自由电子间的 相互 作用较弱 B.金属晶体中的自由电子在外加电场作用下可发 生定向移动 C.金属晶体中的金属阳离子在外加电场作用下可 发生定向移动 D.金属晶体在外加电场作用下可失去电子
思考
Fe和CsCl晶体的结构类型和空间点阵型式 一致么?为什么?
体心立方堆积,空间利用率为 68%。 简单立方堆积,空间利用率为 52%。
小结一下
• 六方最紧密堆积的晶体结构图形与空间点阵图 形是不一样的,而三种立方堆积的晶体结构图 形与空间点阵图形则是一样的
• 六方最紧密堆积结构的基元由两个圆球构成, 是导致晶体结构与空间点阵图形不一样的原因 • 三种立方堆积中的基元均由一个圆球构成,因 此晶体结构图形与空间点阵图形是一样的
90
120
(4)
单斜晶系:a b c; = = 90; 六方晶系:a = b c; = = 90; =
(5) 三斜晶系:a b c; 90
(6)
(7) 三方晶系:a = b = c; = = 90
高级晶族
格子和底心立方格子。说明你的分析 并不违背划分布拉维格子的四条基本 原则。
习题
• 7 大晶系都有各自的基本对称要素 对称
轴。试给出各晶系所含有的最高次对称轴所 在晶向的米勒指数。
• 画出一个面心立方布拉维格子,标出其中的 [111]、[121] 及 [1 1 0] 晶向。
习题
• 等大球体六方最紧密堆积结构中,密堆方向是
7 大晶系
根据相应的平行六面体的几个特征,14 种布拉
维格子可以分为 7 类,称为 7 大晶系。这 7 大
晶系按对称程度增加的次序分别为: 三斜晶系、单斜晶系、正交晶系、 三方晶系、四方晶系、六方晶系、 立方晶系。
7 大晶系的几何特征
(1) 立方晶系:a = b = c; = = = 90 (2) 四方晶系:a = b c; = = = 90 (3) 正交晶系:a b c; = = = 90
特鲁德模型的基本假设 II
• 碰撞是电子突然改变速度的瞬时事件,正
如硬橡皮球从固定的物体上反弹回来一样, 它是由于运动中的电子碰到不可穿透的离 子实而反弹所造成的。
运动电子的轨迹
特鲁德模型的基本假设 III
• 单位时间内电子发生碰撞的几率是 1/。这
里的时间 称为驰豫时间 (或平均自由时 间),它意味着一个电子在前后两次碰撞之 间平均而言将有 时间的行程。驰豫时间 与电子的位置和速度无关。
3 3 2 2 V a a c (2r ) (2r ) (2r ) 8 2r 3 2 2 3
两个圆球的体积为
4 3 8 3 V B 2 r r 3 3
故空间利用率为VB/V = 74%。这是 理论上圆球紧密堆积所能达到的最 大堆积密度。
可以证明:立方最紧密堆积 结构的空间利用率也是 74%。 (证明过程留作课外作业自己完成) 在各类晶体结构中,六方最 紧密堆积和立方最紧密堆积是空 间利用率最高的两种结构。
萤石 (CaF2) 结构
根据Pauling第一规则
r+/r- = 0.744 > 0.732 CN+ = 8
所以Ca2+配位多面体形状是立方体,F-位 于顶角,Ca2+位于体心
萤石 (CaF2) 结构
根据Pauling第二规则 Ca2+ : S = 2/8 = 1/4 故每个F-必须与4个Ca2+形成静电键 即F-应该位于Ca2+的四面体中
½的立方体空隙
简单立方 (Ca2+呈面心立方 晶格) 八面体空隙( Ti4+ 呈体心四方晶格)
简单六方
因正负电荷数要中和,所以负离子电价要 等于它周围每个正离子分给它的电价之和。
例:MgO晶体,NaCl型结构, 1 Z O = 6=2 2+ 2+ Mg ,CN=6,S=2/6=1/3,即 Mg 给 3 每个周围O2-1/3价,因为O2-与6个Mg2+ 形成静电价,所以
首先可以算出在一个体心立方晶胞中钨原子的质量W。1 个晶胞中含有 2 个钨原子,因此有
W
2 183.9 6.02 1023
6.11 1022 g
然后根据晶体的密度计算出晶胞体积 V:
6.11 1022 V 3.166 1023 cm 3 0.03166nm3 19.30 W
当然,对这一现象的解释不是特鲁德模型能够完 成的。
电子运动的薛定锷方程为
h2 8 2 m
(r) 为电子的波函数 E 为电子的动能
2 ( r ) E ( r )
我们直接给出这个方程的解
(r ) Ae
ikr
考虑到势箱的深度应该大大超过电子的动能,因此 电子在边界以外出现的几率为零。这一边界条件可 以写成
2. 相应声子的能
3.在T=300K下,三种声子数目各为多少?
第五章
特鲁德模型
当金属原子凝聚在一起形成金属时,
原来孤立原子封闭壳层内的电子 (芯电子)
仍然能够紧紧地被原子核束缚着,它们和
原子核一起在金属中构成不可移动的离子
实;而原来孤立原子封闭壳层外的电子
(价电子) 则可以在金属中自由地移动。
设bcc 结构的点阵常数为ab,fcc 结构的点阵常数为af,由bcc 结构转变为fcc 结构 时体积减少1.06%,因bcc 晶胞含2 个原子,fcc 晶胞4 个原子,所以2 个bcc 晶胞 转变为一个fcc 晶胞。故
bcc 原子半径rb =√3ab / 4 ,fcc 原子半径rf = √2a f /4 ,把上面计算的af 和ab 的关系代 入,并以rf 表示rb:
CsCl
立方体空隙 简单立方 (也是简单立方晶格) 八面体空隙 面心立方 (也是面心立方晶格) 1/2的四面体空隙 面心立方 (也是面心立方晶格)
NaCl 立方ZnS (闪锌矿)
Na+
6 Cl- 6 Zn2+ 4 S2- 4
5种最常见类型离子晶体的空间结构特征
类型 CaF2 萤石 TiO2 金红石 阴离子晶格 阳离子占据空隙 CN Ca2+ 8 F4 Ti4+ 6 O2- 3 每个晶胞含有 Ca2+: F=4:8 Ti4+: O2=2:4
金属晶体的有效原子半径一般可以借助于 X 射线 衍射分析确定晶体的结构并测定晶体的晶格常数 而加以确定。
• 例如,金属铝的晶格常数为 a = b = c = 0.40496 nm,具有A1结构 (面心立方)。 面心立方结构
a b c 2 2R
可以得到铝的原子半径为
R 0.40496/(2 2 ) 0.143 nm
特鲁德模型的基本假设 I
• 在没有发生碰撞时,电子与电子、电子与
离子之间的相互作用可以忽略。在无外场 作用时,电子作匀速直线运动;在外场作 用下,电子的运动服从牛顿定律。
– 忽略了电子与电子之间相互作用的近似称为
独立电子近似 – 忽略了电子与离子之间相互作用的近似称为 自由电子近似 – 所以这样假设称为独立自由电子近似
立方晶系
有 4 条 3 次旋转轴或 3 次 倒转轴 唯一的 6 次旋转轴或 6 次 倒转轴
六方晶系
唯一的 4 次旋转轴或 4 次 倒转轴
中级晶族
四方晶系
唯一的 3 次旋转轴或 3 次 倒转轴
有 3 个 2 次旋转轴或 2 次 倒转轴
三方晶系
正交晶系 唯一的 2 次旋转轴或 2 次 倒转轴 低级晶族 单斜晶系 只有 1 次旋转轴或1 次倒 转轴
哪个晶向?密堆面是哪个面?试作图表示之。
• 等大球体立方最紧密堆积结构中,密堆方向是
哪个晶向?密堆面是哪个面?试作图表示之。
• 找出面心立方格子中的一些对称面,写出其晶
面米勒指数。
第二章
习题
1、金属晶体的形成是因为晶体中存在 ( )
C
A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
进而得到晶胞常数
a 3 V 0.316 nm
最后得到原子半径
a 4( 3 / 3)R
R = 0.137 nm
习题
• 纯铁在912C 由bcc 结构转变为fcc结构,体积 减少1.06%,根据fcc 形态的原子半径计算bcc 形态的原子半径。它们的相对变化为多少?如 果假定转变前后原子半径不变,计算转变后的 体积变化。这些结果说明了什么?
相关文档
最新文档