高中数学必修4学案 2 弧度制

合集下载

高中数学 弧度制学案 新人教A版必修4 学案

高中数学 弧度制学案 新人教A版必修4 学案

word
数学必修4学案第一章1.弧度制
一、学习目标:
1、知识与技能:从明确引入弧度制的必要性,理解新单位制意义.
2、过程与方法:学生经历熟练掌握角度制与弧度制的换算.
3、情感态度与价值观:学生经历数学活动,感受数学活动充满了探索性与创造性.
二、重点与难点:
重点:理解弧度制引入的必要性,掌握定义,能熟练地进行角度制与弧度制的互化。

难点:用弧度制定义的理解。

三、课前学习:
在角度制下,当把两个带着度、分、秒各单位的角相加、相减时,由于运算进率非十进制,总给我们带来不少困难.那么我们能否重新选择角单位,使在该单位制下两角的加、减运算与常规的十进制加减法一样去做呢?从中能发现什么?
四、课中学习:
对课前的学习,进一步分析:
1、复习角度制的定义:
2、正确理解弧度制定义的含义。

3、掌握角度制与弧度制的互换方法。

4、分析例题1,总结方法
5、总结弧度制的作用:
8、第9页,练习1-6,
五、课后反思
对这一节的收获是什么?有什么问题期待解决?
六、作业设计:
P10习题A组4-10
- 1 - / 1。

【B版】人教课标版高中数学必修四《弧度制和弧度制与角度制的换算》导学案-新版

【B版】人教课标版高中数学必修四《弧度制和弧度制与角度制的换算》导学案-新版

1.1.2 弧度制和弧度制与角度制的换算学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式=l rα(l 为以α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。

重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。

学习过程(一)复习:初中时所学的角度制,是怎么规定r 角的?角度制的单位有哪些,是多少进制的?(二) 叫做1弧度的角,用符号 表示,读作 。

练习:圆的半径为r ,圆弧长为2r 、3r 、2r 的弧所对的圆心角分别为多少? <思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是: ,α的正负由 决定。

正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。

<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是44l r r rπαπ-=-=-=-. (三)角度与弧度的换算3602rad π= 180r a dπ=1rad 0.01745rad 180π=≈ 1801rad 5718'π⎛⎫=≈ ⎪⎝⎭1 归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整例1、把下列各角从度化为弧度:(1)252 (2)1115' (3)30 (4)6730'变式练习:把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º例2、把下列各角从弧度化为度:(1)35π (2) 3.5 (3) 2 (4)4π变式练习:把下列各角从弧度化为度:(1)12π (2)43π- (3)310π(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.(五) 弧度下的弧长公式和扇形面积公式 弧长公式:l r α=⋅扇形面积公式:12S lr =.说明:以上公式中的α必须为弧度单位.例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。

高中必修四数学弧度制教案

高中必修四数学弧度制教案

高中必修四数学弧度制教案教学内容:弧度制的概念和应用
教学目标:
1. 理解弧度制的概念,掌握弧度和角度的相互转换关系;
2. 能够应用弧度制解决与圆相关的问题;
3. 能够灵活运用弧度制解决实际问题。

教学重点:
1. 弧度和角度的互相转换;
2. 弧度制在三角函数中的应用;
3. 弧度和圆角之间的关系。

教学难点:
1. 弧度和角度的互相转换;
2. 如何应用弧度制解决实际问题。

教学准备:
1. 一块黑板或白板;
2. 教室中心的圆;
3. 教学PPT或相关教学资源。

教学步骤:
第一步:导入(5分钟)
1. 引入圆的概念,介绍角度的度量单位;
2. 引导学生思考:是否有其他方法来度量圆的角度?
第二步:讲解弧度制的概念(15分钟)
1. 介绍弧度的概念,解释为何需要引入弧度制;
2. 讲解弧度与角度的转换公式;
3. 通过示例讲解弧度制在三角函数中的应用。

第三步:练习与讨论(20分钟)
1. 给学生几个练习题让他们转换弧度和角度;
2. 学生相互讨论解题思路,老师进行点评和指导。

第四步:实际应用(15分钟)
1. 老师设计一个实际问题,并引导学生用弧度制解决;
2. 学生展示解题思路和方法,老师进行指导和讨论。

第五步:总结与作业布置(5分钟)
1. 总结本节课的内容,强调弧度制的重要性;
2. 布置作业:完成课后习题,并思考如何应用弧度制解决更多问题。

教学反思:
1. 教师要注意引导学生理解弧度制的概念和方法,帮助他们建立相关知识的联系;
2. 鼓励学生在实际问题中灵活运用弧度制,提高解决问题的能力。

高中人教a版数学必修4:第2课时 弧度制 word版含解析

高中人教a版数学必修4:第2课时 弧度制 word版含解析

第2课时 弧度制1.2.理解弧度制的定义,能够对弧度和角度进行正确的换算.1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1 rad.2.弧长计算公式:l =|α|·r (α是圆心角的弧度数);扇形面积公式S =12l ·r 或S =12|α|·r 2(α是弧度数且0<α<2π).3一、选择题 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π答案:C解析:-315°×π180=-7π42.在半径为2 cm 的圆中,有一条弧长为π3cm ,它所对的圆心角为( )A.π6B.π3C.π2D.2π3 答案:A解析:设圆心角为θ,则θ=π32=π6.3.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3 答案:C解析:与角-π6终边相同的角的集合为αα=-π6+2k π,k ∈Z ,当k =1时,α=-π6+2π=11π6,故选C. 4.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案:D解析:由弧度的定义,知D 正确.5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 为( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π}∪{α|0≤α≤π} 答案:D解析:求出集合A 在[-4,4]附近区域内的x 的数值,k =0时,0≤x ≤π;k =1时,4<2π≤x ≤3π;在k =-1时,-2π≤x ≤-π,而-2π<-4,-π>-4,从而求出A ∩B .6.下列终边相同的一组角是( )A .k π+π2与k ·90°,(k ∈Z )B .(2k +1)π与(4k ±1)π,(k ∈Z )C .k π+π6与2k π±π6,(k ∈Z )D.k π3与k π+π3,(k ∈Z ) 答案:B解析:(2k +1)π与(4k ±1)π,k ∈Z ,都表示π的奇数倍. 二、填空题7.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. 答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad.8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2,∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.9.时钟从6时50分走到10时40分,这时分针旋转了________弧度.答案:-23π3解析:时钟共走了3小时50分钟,分针旋转了-⎝⎛⎭⎫3×2π+56·2π=-23π3三、解答题10.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车以30 km/h 的速度通过,求火车经过10 s 后转过的弧度数.解:∵圆弧半径R =2 km =2 000 m ,火车速度v =30 km/h =253m/s ,∴经过10 s 后火车转过的弧长l=253×10=2503(m),∴火车经过10 s 后转过的弧度数|α|=l R =25032 000=124.11.已知角α=2010°.(1)将α改写成θ+2k π(k ∈Z,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角.解:(1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为r =7π6+2k π(k ∈Z ).又-5π≤r <0,∴k =-3,-2,-1.∴与α终边相同的角为-296π,-176π,-56π.(3)令0≤r =76π+2k π<5π,∴k =0,1,∴与α终边相同的角为76π,196π.能力提升12.如下图所示,在某机械装置中,小正六边形沿着大正六边形的边顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,射线OA 围绕点O 旋转了θ角,其中O 为小正六边形的中心,则θ等于( )A .-4πB .-6πC .-8πD .-10π 答案:B解析:小正六边形沿着大正六边形滚动一条边并且到下一条边上时,射线OA 旋转了π3+2π3=π,则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置时,共旋转了π×6=6π.又射线OA 按顺时针方向旋转,则θ=-6π,故选B.13.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m π+π6,m ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n π2-π3,n ∈Z , P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π2+π6,k ∈Z ,试确定M 、N 、P 之间满足的关系.解:解法一:集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z ; N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =2m π2-π3或x =2m +12π-π3,m ∈Z=⎩⎨⎧ x ⎪⎪⎭⎬⎫x =m π-π3或x =m π+π6,m ∈Z ; P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2m 2π+π6或x =2m -12π+π6,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6或x =m π-π3,m ∈Z . 所以M N =P .解法二:M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =6m +16π,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3·(2m )+16π,m ∈Z ;N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z ;P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =3k +16π,k ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z =N .所以M ⊆N =P .。

高二数学必修4_《弧度制和弧度制与角度值的换算》教学教案2

高二数学必修4_《弧度制和弧度制与角度值的换算》教学教案2

1.1.2弧度制和弧度制与角度制的换算
学习目标:
1.了解角的集合与实数集R之间可以建立起一一对应关系;
2.掌握弧度制下的弧长公式,扇形的面积公式;
3.会利用弧度解决某些实际问题。

学习重点、难点:
重点:弧度的意义,弧度与角度的换算方法;
难点:理解弧度制与角度制的区别。

三、学习方法:
通过几何画板多媒体课件的演示,给学生以直观的形象,使学生进一步理解弧度作为角的度量单位的可靠性和可行性。

从特殊到一般,是人类认识事物的一般规律,让学生从某一个简单的、特殊的情况开始着手,更利于学习的开展和学生思维的拓展,共同找出弧度与角度换算的方法。

通过设置问题启发引导学生观察、分析、归纳,使学生在独立思考的基础上更好地进行合作交流。

四、学习过程:
的圆弧所对的圆心角
角,同一个.换算公式:
AB
附录(表格和图):。

北师大版数学高一(北师大)必修4学案 1.3弧度制 (2)

北师大版数学高一(北师大)必修4学案 1.3弧度制 (2)

三角函数1.3 弧度制自主学习一、教学目标:(1)理解1弧度的角及弧度的定义;(2)掌握角度与弧度的换算公式;(3)熟练进行角度与弧度的换算;(4)理解角的集合与实数集R 之间的一一对应关系;(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

二、教学重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。

三、教学难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。

四、知识引导1.角度值:我们把周角的3601规定为1度的角。

弧度制:我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角,其中正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。

2.角度和弧度直接的互化180°=πrad ,360°=2πrad1°=180π≈0.01745rad ,1rad =(π180)°≈57.30°=57°18’。

3.弧度制下扇形的弧长和面积L=|α|r 22121:R lR S α==扇形面积公式 对点讲练新课引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳:弧度制的性质: ①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. r l4.角度与弧度之间的转换:①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度: 2360;180;1801()57.305718rad ;180( )n n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.6.特殊角的弧度ll r r弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.知识点一角度值与弧度制的转化例1.把45°化成弧度。

人教A版高中数学必修四弧度制教案(2)

人教A版高中数学必修四弧度制教案(2)

4-1.1.2弧度制(2)教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。

教学过程:一、复习:弧度制的定义,它与角度制互化的方法。

二、由公式:⇒=r l α α⋅=r l 比相应的公式180rn lπ=简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积例一 利用弧度制证明扇形面积公式lR S 21=其中l 是扇形弧长,R 是圆的半径。

证: 如图:圆心角为1rad 的扇形面积为:221R ππ弧长为l 的扇形圆心角为rad R l ∴lR R R l S 21212=⋅⋅=ππ比较这与扇形面积公式 3602R n S π=扇要简单 例二 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π ⑵ ο165 解: cm r 10= ⑴: )(3401034cm r l ππα=⨯=⋅= ⑵:rad rad 1211)(165180165ππ=⨯=ο ∴)(655101211cm l ππ=⨯=例三 如图,已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

解:设扇形的半径为r ,弧长为l ,则有⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22162l r rl l r ∴ 扇形的面积221rl S ==例四 计算4sin π5.1tan解:∵ο454=π∴ 2245sin 4sin==οπ'578595.855.130.571.5rad οο==⨯=•∴ 12.14'5785tan 5.1tan ==οo R S l例五 将下列各角化成0到π2的角加上)(2Z k k ∈π的形式⑴π319⑵ ο315- 解:πππ63319+=ππ2436045315-=-=-οοο例六 求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m 解: ∵ 360π=ο∴ )(471514.3453m R l ≈⨯≈⨯=⋅=πα三、练习: 四、作业:。

1-02学案·弧度制

1-02学案·弧度制

年 月 日 班级 、姓名1—02 弧度制【学习目标】1.理解1弧度的角、弧度制的定义,理解引入弧度制度意义; 2.熟练地进行角度与弧度的换算; 3.熟记和应用特殊角的弧度数;4.应用弧度制下的弧长公式、扇形面积公式.第一课时【阅读思考】(阅读教材P 6—7,回答下列问题)(一)温故知新 1.与任意角α终边相同(共射线),连同角α在内的所有角的集合S = . 2.与任意角α终边共线(共直线),连同角α在内的所有角的集合S = . 3.“1°”的角等于 角的 ,用“度”作单位度量一个角的大小的制度叫 制. 4.理解:我们把长度等于 的 对 角叫做1弧度的角,符号 表示,读作 .已知⊙O 的半径为1,若1AB =,则∠AOB = 、若2AB =,则∠AOB = . 5.思考:1弧度大小的角与圆的半径是否有关?6.应用:如图,半径为r 的圆的圆心与x 原点重合,角α的始边与x 轴的非负半轴重合,交圆于点A ,终边叫圆于点B ,请填充下表:AB 的长旋转方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 2πr 逆时针方向r 1 2r -2 -π 0 180︒360︒6.归纳:弧长l =4πr ,其所对的圆心角的弧度数= 、弧长l =4rπ,其所对的圆心角的弧度数= 、一个半径为r 的圆的圆心角α所对的弧长为l ,则α的弧度数是 .(二)弧度制1.正角的弧度数是一个 数,负角的弧度数是一个 数,零角的弧度数是 ;2.任一角α的弧度数的绝对值lrα=,其中l 是以角α为圆心角时所对 ,r 是 . 这种以 作为单位来度量角的单位制叫做弧度制. (三)角度与弧度的换算 1.识记360_____rad 180______rad 1_________rad _________rad ︒=︒=︒=≈ 2r a d =_______r a d =_____1r a d =______________________π︒π︒︒≈︒=︒O2.理解:①今后用弧度制表示角时,或者说“弧度”为单位度量角时,“弧度”二字或符号“rad ”可以省略不写,而只写这个角的弧度数.如α=2,即α是2 rad 的角,sin3表示3 rad 角的正弦,π=180︒即π rad =180︒),但用角度制表示角时,或者用“度”为单位度量角时,“度”即“︒”不能省去.②用弧度制表示角时,或者说用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.③今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k ·360︒+3π或者2k π-60︒一类的写法. 3.实践:(1)根据教材P7给出的计算流程,完成例1和例2的解答,并检查结果是否一致. (2)用计算器比较sin1.5与cos5︒的大小. 4.填充下表,并熟记:度 0︒ 30︒ 45︒ 90︒ 120︒ 150︒ 180︒ 270︒ 360︒弧度3π34π【课堂练习】P9之1、2、3 、4 【交流思考】1.计算2214tancos sin sin cos043262ππππ-++⋅的值.2.把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出是第几象限角?(1)-1500°; (2)236π.【巩固练习】( )1.若α=-3,则角α的终边在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 ( )2.下列各式中正确的是(A )π=180 (B )π=3.14 (C )90︒=2πrad (D )1 rad =π( )3.下列表示中不正确...的是 (A )终边在x 轴上角的集合是{},Z k k αα=π∈(B )终边在y 轴上角的集合是,2Z k k ⎧⎫παα=+π∈⎨⎬⎩⎭(C )终边在坐标轴上角的集合是,2Z k k ⎧⎫παα=∈⎨⎬⎩⎭ (D )终边在直线y =x 上角的集合是2,4Z k k ⎧⎫παα=+π∈⎨⎬⎩⎭( )4.将分针拨慢10分钟,则分针转过的弧度数是(A )3π (B )-3π (C )5π (D )-5π ( )5.把-114π表示成θ+2k π(k ∈Z )的形式,使θ最小的θ值是(A )4π (B )-4π (C )34π (D )-34π 6.在半径为1的圆中,长度为1的弦所对的圆心角为 rad 、长度为1的弧所对的圆心角为rad 、长度为3的弦所对的圆心角为 rad 、长度为3的弧所对的圆心角为 rad.7.三角形三内角之比为3:4:5,则三内角的弧度数分别为 . 8.把下列各角从度化成弧度(用π表示):①18︒= ; ②-120︒= ;③735︒= ;④1080︒= . 9.把下列各角从弧度化成度:①-76π= ; ②-83π= ;③1.4= . 10.求值:sin tan tan cos tan cos 336642ππππππ+-.第二课时【阅读思考】(阅读教材P 8,回答下列问题)(一)弧长公式1.回顾:在初中角度制下,扇形弧长计算公式 .2.识记:在弧度制下扇形弧长计算公式 ,其中l 表示扇形的弧长,r 表示圆半径,α表示圆心角的弧度数.(二)扇形面积公式1.回顾:角度制下扇形面积公式___________S =2.识记:在弧度制下扇形面积计算公式___________S =.其中l 是扇形的弧长,r 是圆的半径,α表示圆心角的弧度数.3.理解:扇形面积公式类似于 的面积公式4.应用:已知扇形AOB 的圆心角为60︒,弦AB 长为4,求弧AB 的长以及弓形AB 的面积.【课堂练习】P9页练习5、6. 【交流思考】1.用弧度制表示终边与已知角α关于x 轴对称的角的集合.2.直径为1.4m 的飞轮,每小时按逆时针方向旋转24000圈.求: (1)飞轮每秒转过的弧度数;(2)轮周上一点P 每秒钟经过的弧长.【能力提升】1.已知222,33Z A k k k ⎧⎫ππ=απ-≤α<π+∈⎨⎬⎩⎭,{}2870B x x x =-+≤,求A B .2.已知扇形的周长为20 cm ,当扇形的中心角为多大时,它有最大面积?【巩固练习】( )1.已知扇形的弧含有54︒,半径为20cm ,则扇形的周长为(A )6πcm (B )60cm (C )(40+6π)cm (D )(40+3π)cm ( )2.若2rad 的圆心角所对的弧长为4cm ,则这个圆心角所夹扇形的面积为(A )4cm 2 (B )2 cm 2 (C )4πcm 2 (D )2πcm 2( )3.集合,,2,22A k k B k k ⎧⎫⎧⎫ππ=αα=π+∈=αα=π±∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,则A 与B 的关系是(A )A =B (B )A B (C )A B (D )A B4.直径为20cm 的轮子以45 rad s (弧度秒)的速度旋转,则轮子上一点经过5s 所转过的弧长为 .5.要在半径OA =100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,则圆心角∠AOB 的度数是 .(精确到1︒)6.蒸汽机飞轮的直径为1.2m ,以300r min (转/分)的速度作逆时针旋转,求: (1)飞轮每1s 转过的弧度数;(2)轮周上一点每1s 所转过的弧长.7.★已知集合{}22,Z A k k k =απ≤α≤π+π∈,{}44B =α-≤α≤,求A B .【学后随笔】⊂ /。

人教A版高中数学必修四教案弧度制

人教A版高中数学必修四教案弧度制

1.1.2弧度制(一) 教学目标知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制.二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=r r③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=.r l4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.7.弧长公式l l r ra a=??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度.例2.把rad53π化成度.例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p \是第三象限角. (2)315316,666p p pp -=-+\-是第二象限角.ORl.,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lRR R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴Rl R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P6 –P8;②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.。

高中新课程数学苏教版必修四1.1.2弧度制2教案

高中新课程数学苏教版必修四1.1.2弧度制2教案

1.1.2 弧度制(2)一、课题:弧度制(2)二、教学目标:1. 继续研究角度制与弧度制之间的转化;2.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用; 3.求扇形面积的最值。

三、教学重、难点:弧长公式、扇形面积公式的应用。

四、教学过程: (一)复习:(1)弧度制角如何规定的?||l r α=(其中l 表示α所对的弧长)(2)1801()π=o ; 1180π=o . 说出下列角所对弧度数30,45,60,75,90,120,150,180,240,270,360oo o o o o o o o o o .(练习)写出阴影部分的角的集合:(3)在角度制下,弧长公式及扇形面积公式如何表示?圆的半径为r ,圆心角为n o所对弧长为||||2360180n n r l r ππ=⨯=o o; 扇形面积为22||||360360n r n S r ππ=⨯=oo . (二)新课讲解: 1.弧长公式:在弧度制下,弧长公式和扇形面积公式又如何表示?∵||l rα=(其中l 表示α所对的弧长),所以,弧长公式为||l r α=⋅.]2.扇形面积公式:扇形面积公式为:22||1222lr S r r lr αππππ=⋅==.说明:①弧度制下的公式要显得简洁的多了;②以上公式中的α必须为弧度单位.3.例题分析:例1 (1)已知扇形OAB 的圆心角α为120o,半径6r =,求弧长AB 及扇形面积。

(2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?解:(1)因为21203π=o ,所以,21112||36122223S lr r παπ===⋅⋅=. (2)设弧长为l ,半径为r ,由已知220l r +=,所以202l r =-,202||l rr rα-==, xyo 30o60oxyo150o210oO A B 从而222211202||10(5)2522r S r r r r r rα-==⋅⋅=-+=--+, 当5r =时,S 最大,最大值为25,这时2022l rr rα-===.例2 如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。

高中数学 弧度制学案 新人教A版必修4

高中数学 弧度制学案 新人教A版必修4

河北省唐山市开滦第二中学高中数学 弧度制学案 新人教A 版必修4【学习目标】理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;【重点难点】理解弧度制定义,弧度制的运用.【学习内容】问题情境导学实例:(1)测量人的身高用米、厘米为单位进行度量,家庭购买水果常用千克、斤为单位进行度量。

(2)在初中平面几何中,我们曾用角度量过角的大小,并规定周角的3601为1度。

一、弧度制的定义?想一想1. 从度量长度和重量上,我们可以看出不同的单位制,能给我们解决问题带来方便,那么角的度量是否也能用不同单位制呢?填一填(1)1弧度的角:长度等于_______的弧所对的_______叫做1弧度的角,用符号_____来表示,读作_____(2)弧度制:以_____为单位来度量角的制度思考1:(1)一弧度的角与所选取的圆的半径大小有无关系?(2)任意角的弧度数与实数有怎样的对应关系?二、角的弧度制的计算填一填2:如果一个半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是_______三、角度与弧度的换算?想一想3:既然角度制和弧度制都是角的度量制,那么它们之间如何换算?填一填3:角度化弧度:o 360=_______,=o180_______ =o 1_______≈_______。

弧度化角度:=rad π2_______=rad π_______,=rad 1_______≈_______思考2:(1)角度制和弧度制有什么区别和联系?(2)在弧度制下,与角α终边相同的角β如何表示?角的集合与实数集R 之间有怎样的对应关系?四、弧度制下的扇形的弧长和面积公式填一填4:设扇形的半径为R ,圆心角为α,则弧长为l =_______面积=S _______=_______课堂互动探究类型一、弧度制的概念例1有关角的度量给出以下说法:①o 1的角是周角的3601,rad 1的角是周角的π21;②rad 1的角等于o 1的角;③o 180的角一定等于rad π的角;④度和弧度是度量角的两种不同的度量单位。

(新课程)高中数学 第02课时(弧度制)导学案 苏教版必修4

(新课程)高中数学 第02课时(弧度制)导学案 苏教版必修4

总 课 题任意角、弧度 总课时 第 2 课时 分 课 题弧度制 分课时 第 2 课时 教学目标理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;了解角的集合与实数集R 之间建立起一一对应的关系;掌握弧度制下的弧长公式,会利用弧度制解决某些简单的实际问题。

重点难点 弧度的意义,弧度与角度的换算引入新课1、问题:角度是怎样规定的?是否有其它方法来度量角?2、角度的定义:周角的3601为1度的角,用度作为单位来度量角的单位制叫做角度制。

3、弧度的定义4、角度与弧度的换算5、特殊角的弧度数与角度制(1)_____360=︒ (2)rad rad ________1≈=︒(3)︒≈=30.57____1度rad 6、弧长公式、扇形的面积公式例题剖析例1、把下列各角从弧度化为度:(1)53π (2)5.3例2、把下列各角从度化为弧度:(1)︒252 (2)'1511︒例3、已知扇形的周长为cm 8,圆心角为rad 2,求该扇形的面积。

巩固练习1、 把下列各角从角度化为弧度:(1)︒180 (2)︒90 (3)︒45(4)︒30 (5)︒120 (6)︒2702、把下列各角从弧度化为度:(1)π2 (2)2π (3)6π (4)π323、把下列各角从度化为弧度:(1)︒75 (2)︒-210 (3)︒135 (4)'3022︒4、把下列各角从弧度化为度:(1)12π (2)π52 (3)π34- (4)π12-5、若6-=α,则角α的终边在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6、已知半径为mm 240的圆上,有一段弧的长是mm 500,求此弧所对的圆心角的弧度数。

课堂小结弧度数的定义,一些特殊角的弧度数;弧长公式、扇形的面积公式。

课后训练班级:高一( )班 姓名__________一、基础题1、︒1000的角的终边所在的象限为( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、12π的角化成角度制是( ) A 、︒15 B 、︒30 C 、︒60 D 、︒753、下列各角中与︒-120角终边相同的角为( )A 、π34B 、π65-C 、π34-D 、π674、集合⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k B Z k k A ,22|,,2|ππααππαα的关系是( ) A 、B A = B 、B A ⊆ C 、B A ⊇ D 、以上都不对5、在半径不等的两个圆内,1弧度的圆心角( )A 、所对的弧长相等B 、所对的弦长相等C 、所对的弧长等于各自的圆的半径D 、所对的弦长等于各自的圆的半径二、提高题6、已知6πα=,角β的终边与α的终边关于直线x y =对称,则角β的集合为____________________.7、角rad 5的终边落在第______象限,角rad 3-的终边落在第______象限。

高中数学必修四1.1.2弧度制学案新人教A版必修4

高中数学必修四1.1.2弧度制学案新人教A版必修4

度制.
2.弄清 1 弧度的角的含义是了解弧度制,并能进行弧度与角度换算的关键.
3.引入弧度制后,应与角度制进行对比,明确角度制和弧度制下弧长公式和扇形面积公式的
联系与区别 .
1. 1 弧度的角:把长度等于
的弧所对的圆心角叫做
读作

2.弧度制:用
作为单位来度量角的单位制叫做弧度制.
3.角的弧度数的规定:
最大面积是多少?
解 设扇形的圆心角为 θ,半径为 r ,弧长为 l ,面积为 S,
1 ∴ S= 2lr

1 2×
(40

2r
)
r

20r

r
2=-
(
r

10)
2+ 100.
∴当半径 r = 10 cm 时,扇形的面积最大,最大值为 100 cm 2,
l 40-2×10 此时 θ =r = 10 rad =2 rad.
l 径为 r 的圆的圆心角 α 所对弧的长为 l ,那么,角 α 的弧度数的绝对值是 | α | = r . 这里, α
的正负由角 α 的终边的旋转方向决定.
问题 4 角度制与弧度制换算时,灵活运用下表中的对应关系,请补充完整
.
角度化弧度
弧度化角度
360°= rad
2π rad =
180°= rad
180
12
180 π °即可化为角度.
225
225 π 5π
所以, (1)112 °30′= 112.5 °= 2 °= 2 × 180= 8 .
7π 7π 180 (2) - 12 =- 12 × π °=- 105°.
小结 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记

高中数学:弧度制学案新课标人教A版必修4

高中数学:弧度制学案新课标人教A版必修4

1.1.2 弧度制一、教学目标①了解弧度制,能进行弧度与角度的换算.②认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.二、教学重点、难点重点:了解弧度制,并能进行弧度与角度的换算.难点:弧度的概念及其与角度的关系.三、学习方法:自学完成学案四、学习过程(1)复习引入.1、复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系. 提出问题:①初中的角是如何度量的?度量单位是什么?② 1°的角是如何定义的?弧长公式是什么?③角的范围是什么?如何分类的?二)概念形成(1)初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?1.自学课本第7、8页.通过自学回答以下问题:①角的弧度制是如何引入的?②为什么要引入弧度制?好处是什么?③弧度是如何定义的?④角度制与弧度制的区别与联系?2.学生动手画图来探究:①平角、周角的弧度数②角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?③角的弧度与角所在圆的半径、角所对的弧长有何关系?3.角度制与弧度制如何换算?4.初中学过用角度制计算弧长及扇形面积,现在用角的弧度制如何计算弧长及扇形面积呢?5.角度制、弧度制是度量角的两种不同的方法,虽然单位、进制不同,但反映了事物的本质属性不变,改变的是不同的观察、处理方法,因此结果就有所不同. 角度制与弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系三、应用举例例1:(1)把'3067 化成弧度(精确到0.001)(2)把'3067 化成弧度(用π表示)例2:把radπ53化成度例3:填写下表:度0°30°45°60°90°120°135°150°弧度度180°210°225°240°270°300°315°360°弧度例4:直径为20cm的圆中,求下列各圆心所对的弧长⑴3⑵165例5:已知扇形周长为10cm,面积为6cm2,求扇形中心角的弧度数.归纳小结:我的收获:我的疑问:我还想知道:1.布置作业:练习2.3.2.习题A的4、7正角零角负角正实数零负实数1 / 1。

弧度制(教案)

弧度制(教案)

课题:1.1.2弧度制授课教师:高邮市第一中学 吴玲教材:苏教版必修四1.教学目标:(1)使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R 之间可以建立起一一对应关系;(3)掌握弧度制下的弧长公式、扇形面积公式,会利用弧度制解决一些简单的问题.2.教学重点、难点:教学重点:理解弧度的意义,能正确地进行弧度与角度的换算; 教学难点:弧度的概念的理解.3.教学方法与教学手段:教学方法:讲授法、探究法、讨论法、归纳法; 教学手段:幻灯片、几何画板、实物投影. 4.教学过程: 一、问题与情境问题1:给定集合{}00030,45,60A =,1,222B ⎧⎪=⎨⎪⎪⎩⎭,你能找到某种确定的对应关系,将集合A 、B 联系起来吗? 问题2:这种对应关系是函数关系吗? 二、知识与技能(一)解决问题,建构概念问题3:1度角是怎么定义的?角度制下的弧长公式是什么?将一个圆周角分成360等分,每一份叫做1度(记为01).用“度”、“分”、“秒”作为角的单位来度量角的单位制称为角度制.设圆心角0n α=,AB 的弧长为l ,半径OA r =,则180n r l π=.问题4:你能找到一个合适的实数来度量060角吗?活动一:用量角器作一个060角的新量.60角,并探究能够度量0交流展示各个半径下的扇形,大家选择的半径、弧长可不同,但是弧长与半径的比值不变,故产生猜想:用弧长与半径的比值刻画角.特殊角如此,我们再来看下任意角是不是都这样呢?(几何画板演示验证:弧长与半径的比值与半径的大小无关,而只与圆心角α的大小有关,当α为定值时,这个比值也为定值;这个比值为定值时,α也是定值.)刚刚同学们所做的工作正是瑞士数学家欧拉在200多年前做的。

欧拉的一生是为数学发展奋斗的一生,他在数学上的建树很大,同学们课后可借助于书籍、网络进一步了解。

欧拉在1748年引入了严格的弧度概念,正是用弧长与半径的比值来度量圆心角。

人教版高中数学必修4学案 弧度制

人教版高中数学必修4学案   弧度制

1.1.2 弧度制[学习目标] 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.[知识链接]1.初中几何研究过角的度量,当时是用度来做单位度量角的.那么1°的角是如何定义的?它的大小与它所在圆的大小是否有关?答 规定周角的1360做为1°的角;它的大小与它所在圆的大小无关.2.用度做单位来度量角的制度叫做角度制,在初中有了它就可以计算扇形弧长和面积,其公式是什么? 答 l =n πR 180,S =n πR 2360.[预习导引] 1.弧度制 (1)弧度制的定义长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制. (2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是0. (3)角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr .2.角度制与弧度制的换算 (1)设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则要点一 角度制与弧度制的换算 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.解 (1)20°=20π180=π9.(2)-15°=-15180π=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.规律方法 (1)进行角度与弧度换算时,要抓住关系:π rad =180°.(2)熟记特殊角的度数与弧度数的对应值.跟踪演练1 (1)把112°30′化成弧度; (2)把-5π12化成度.解 (1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 要点二 用弧度制表示终边相同的角例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°; (2)23π6; (3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.规律方法 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪演练2 设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°范围内找出与它们终边相同的所有角. 解 (1)∵180°=π rad ,∴α1=-570°=-570π180=-19π6=-2×2π+5π6,α2=750°=750π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=35×180°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°, 得k =-2,或k =-1.故在-720°~0°范围内,与β1终边相同的角是-612°和-252°. β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0.故在-720°~0°范围内,与β2终边相同的角是-420°. 要点三 扇形的弧长及面积公式的应用例3 已知扇形的圆心角是α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l .(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 解 (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.规律方法 (1)联系半径、弧长和圆心角的公式有两个:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.(2)当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数. 跟踪演练3 若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2 B .80π cm 2 C .40 cm 2 D .80 cm 2答案 B解析 ∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2).1.时针经过一小时,时针转过了( )A.π6 rad B .-π6 rad C.π12 rad D .-π12 rad 答案 B解析 时针经过一小时,转过-30°,又-30°=-π6rad ,故选B.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4答案 C解析 设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧ r =1,α=4,或⎩⎪⎨⎪⎧r =2,α=1.3.已知两角的和是1弧度,两角的差是1°,则这两个角为 . 答案 12+π360,12-π360解析 设这两个角为α,β弧度,不妨设α>β,则⎩⎪⎨⎪⎧α+β=1,α-β=π180,解得α=12+π360,β=12-π360. 4.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是 .答案 -34π解析 -114π=-2π+⎝⎛⎭⎫-34π =2×(-1)π+⎝⎛⎭⎫-34π.∴θ=-34π.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 度数与弧度数的换算借助“计算器《中学数学用表》”进行,一些特殊角的度数与弧度数的对应值必须记牢.3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.一、基础达标1.-300°化为弧度是( )A .-43πB .-53πC .-54πD .-76π答案 B2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对答案 A3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1 D .2sin 1答案 C解析 r =1sin 1,∴l =|α|r =2sin 1.4.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z ) C .k ·360°-315°(k ∈Z ) D .k π+5π4(k ∈Z )答案 C5.已知α是第二象限角,且|α+2|≤4,则α的集合是 . 答案 (-32π,-π)∪(12π,2]解析 ∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∵|α+2|≤4,∴-6≤α≤2,当k =-1时,-32π<α<-π,当k =0时,π2<α≤2,当k 为其他整数时,满足条件的角α不存在.6.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的 . 答案 34解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .7.用弧度表示终边落在如图所示的阴影部分内(不包括边界)的角的集合.解 (1)阴影部分内(不包括边界)的角的集合为{θ|2k π-3π4<θ<2k π+π3,k ∈Z }.(2)阴影部分内(不包括边界)的角的集合为{θ|k π+π6<θ<k π+π2,k ∈Z }.二、能力提升8.若扇形圆心角为π3,则扇形内切圆的面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9 答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsin π6=r +2r =3r .∴S 内切圆=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切圆∶S 扇形=2∶3.9.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上的角的集合是{α|α=π2+k π,k ∈Z }C .终边在坐标轴上的角的集合是{α|α=k ·π2,k ∈Z }D .终边在直线y =x 上的角的集合是{α|α=π4+2k π,k ∈Z }答案 D解析 终边在直线y =x 上的角的集合应是{α|α=π4+k π,k ∈Z }.10.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z }, 集合B ={x |-4≤x ≤4},则A ∩B = .答案 [-4,-π]∪[0,π] 解析 如图所示,∴A ∩B =[-4,-π]∪[0,π].11.用30 cm 长的铁丝围成一个扇形,应怎样设计才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为α,半径为r ,面积为S ,弧长为l ,则有l +2r =30,∴l =30-2r , 从而S =12·l ·r =12(30-2r )·r=-r 2+15r =-⎝⎛⎭⎫r -1522+2254. ∴当半径r =152 cm 时,l =30-2×152=15 cm ,扇形面积的最大值是2254 cm 2,这时α=lr=2 rad.∴当扇形的圆心角为2 rad ,半径为152cm 时,面积最大,最大为2254 cm 2.12.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ (0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ. 解 因为0<θ<π,且2k π+π<2θ<2k π+3π2(k ∈Z ),则必有k =0,于是π2<θ<3π4,又14θ=2n π(n ∈Z ),所以θ=n π7,从而π2<n π7<3π4,即72<n <214,所以n =4或5,故θ=4π7或5π7.三、探究与创新13.已知一扇形的圆心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积?解 (1)设弧长为l ,弓形面积为S 弓, ∵α=60°=π3,R =10,∴l =αR =10π3 (cm).S 弓=S 扇-S △=12×10π3×10-12×2×10×sin π6×10×cos π6 =50⎝⎛⎭⎫π3-32 (cm 2).(2)扇形周长c =2R +l =2R +αR ,∴α=c -2RR ,∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R=-R 2+12cR =-⎝⎛⎭⎫R -c 42+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。

高中数学必修四导学案-弧度制

高中数学必修四导学案-弧度制

1. 1.2 弧度制一、学习目标 1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式||lrα=(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。

二、重点、难点弧度与角度之间的换算; 弧长公式、扇形面积公式的应用。

三教学过程(一)复习:初中时所学的角度制,是怎么规定1角的?角度制的单位有哪些,是多少进制的? (二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。

<我们规定> 叫做1弧度的角,用符号 表示,读作 。

练习:圆的半径为r ,圆弧长为2r 、3r 、2r的弧所对的圆心角分别为多少? <思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是: ,α的正负由 决定。

正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。

<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是 4||4l rr rπαπ-=-=-=-. (三)角度与弧度的换算3602π=rad 180π=rad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈例1、把下列各角从度化为弧度:(1)0252 (2)0/1115 变式练习 把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º (4) 030 (5)'3067︒ 例2、把下列各角从弧度化为度:(1)35π (2) 3.5变式练习 、把下列各角从弧度化为度:(1)12π (2)—34π (3)103π (4)4π (5) 2 归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整(四)在弧度制下分别表示轴线角、象限角的集合(1)终边落在x 轴的非负半轴的角的集合为 ;x 轴的非正半轴的角的集合为 ; 终边落在y 轴的非负半轴的角的集合为 ; y 轴的非正半轴的角的集合为 ; 所以,终边落在x 轴上的角的集合为 ; 落在y 轴上的角的集合为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沭第二中学高一数学学科学案
编号002时间:2013-1-24 主编:王廷建 审核:高一年级组 班级: 姓名:
课题:弧度制
【学习目标】
1.理解弧度制的意义;
2.能正确的应用弧度与角度之间的换算;
3.记住公式||l
r
α=
(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用
【学习重点】
1.弧度与角度之间的换算;
2.弧长公式、扇形面积公式的应用。

【学习难点】
1.弧度与角度之间的换算;
2.弧长公式、扇形面积公式的应用。

【问题导学】
1.初中时所学的角度制,是怎么规定1角的?角度制的单位有哪些,是多少进制的?
2.什么是弧度制?角度制与弧度制有什么区别?
3.<思考>:圆心角的弧度数与半径的大小有关吗?
由上可知:如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是: ,α的正负由 决定。

正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。

问;当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是 4.角度与弧度的换算
3602π=rad 180π=rad 180

=
︒rad 0.01745≈rad
1rad =︒)180
(
π
5718'≈
归纳:把角从弧度化为度的方法是:
把角从度化为弧度的方法是:
<
5.弧度下的弧长公式和扇形面积公式 弧长公式:
||l r α=⋅
因为||l r α=(其中l 表示α所对的弧长),所以,弧长公式为
||l r α=⋅.
根据这个你能证明出下面两个扇形面积公式吗?
请证明.
【典型例题】
1.把下列各角从度化为弧度:
(1)22 º30′ (2)—210º (3)1200º
2.把下列各角从弧度化为度:
(1)35π (2) 3.5 (3) 2 (4)
4
π
3.半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角的弧度数,并求出该扇形的面积。

【基础题组】
(2) ;R 21(1)S 2α=2
(1) 1(2) 2
1(3) 2
l R S R S lR αα==
=
1.半径变为原来的
1
2
,而弧长不变,则该弧所对的圆心角是原来的 倍。

2.若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积是 .
3.以原点为圆心,半径为1的圆中,一条弦AB 的长度为,AB 所对的圆心角α的弧度数为 .
4.在半径不等的几个圆中1rad 的圆心角所对的( )
A 弧长相等
B 弧长等于所在圆的半径
C 弦长相等
D 弦长等于所在圆的半径 5.在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数。

6.直径为20cm 的滑轮,每秒钟旋转45,则滑轮上一点经过5秒钟转过的弧长是多少?
7.已知扇形的周长为30cm ,当它的半径和圆心各取什么值时,才能使扇形的面积最大?最大面积是多少?
【拓展题组】
1.角α的终边落在区间(-3π,-5
2
π)内,则角α所在象限是 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.已知扇形的周长是cm 6,面积为2
2cm ,则扇形弧度数是( ) A 、1 B 、4 C 、1或4 D 、2或4
3.把411π
-
表示成)(2z k k ∈+πθ的形式,使||θ最小的θ为( ) A.43π- B.4
π C.43π D.4π-
4.将下列各角的弧度数化为角度数:
(1)=-
67π 度; (2)=
-38π
度;
(3)1.4 = 度; (4)=3
2
度.
5.若圆的半径是cm 6,则
15的圆心角所对的弧长是 ;所对扇形的面积是 .
6.用弧度制表示:(1)终边在x 轴上的角的集合 (2)终边在y 轴上的角的集合 (3)终边在坐标轴上的角的集合
7.已知集合}04|{},,2
3
|{2≥-=∈+
≤≤+
=x x B z k k x k x A π
ππ
π,求A ∩B
8.已知一个扇形周长为(0)C C >,当扇形的中心角为多大时,它有最大面积?。

相关文档
最新文档